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Abstract 

The Debye equation for polymer coils describes scatter- 
ing from a polymer chain that displays Gaussian statist- 
ics. Such a chain is a mass fractal of dimension 2 as 
evidenced by a power-law decay o f - 2  in the scattering at 
intermediate q. At low q, near q ~_ 2rc/Rg, the Debye 
equation describes an exponential decay. For polymer 
chains that are swollen or slightly collapsed, such as is 
due to good and poor solvent conditions, deviations from 
a mass-fractal dimension of 2 are expected. A simple 
description of scattering from such systems is not poss- 
ible using the approach of Debye. Integral descriptions 
have been derived. In this paper, asymptotic expansions 
of these integral forms are used to describe scattering in 
the power-law regime. These approximations are used to 
constrain a unified equation for small-angle scattering. A 
function suitable for data fitting is obtained that 
describes polymeric mass fractals of arbitrary mass- 
fractal dimension. Moreover, this approach is extended to 
describe structural limits to mass-fractal scaling at the 
persistence length. The unified equation can be substi- 
tuted for the Debye equation in the RPA (random phase 
approximation) description of polymer blends when the 
mass-fractal dimension of a polymer coil deviates from 2. 
It is also used to gain new insight into materials not 
conventionally thought of as polymers, such as nanopor- 
ous silica aerogels. 

1. Introduction 

The application of mass scaling laws to scattering from 
disordered materials has led to an understanding of weak 
power-law decays in terms of mass-fractal morphologies 
(Schmidt, 1992; Korberstein, Morra & Stein, 1980; De- 
bye, Henderson & Brumberger, 1957; Fisher & Burford, 
1967). These power-law decays display power-law slopes 
shallower than -3 .  Several authors have noted that mass- 
fractal scaling regimes display limits at high and low q 
related to size limits to mass-fractal scaling (Lin, Klein, 
Lindsay, Weitz, Ball & Meakin, 1990; Schaefer & Hurd, 
1990; Wiltzius, Bates, Dierker & Wignall, 1987; 
Mountain & Mulholland, 1988; Mountain, Mulholland 
& Baum, 1986; Hurd, 1990). Recently, a description for 
these limits to mass-fractal scaling and their associated 
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scattering power-laws has been presented (Beaucage, 
1995; Beaucage & Schaefer, 1994; Beaucage, Ulibarri, 
Black & Schaefer, 1995; Ulibarri, Beaucage, Schaefer, 
Olivier & Assink, 1992; Hua, Anderson, Hareid, Smith & 
Beaucage, 1994; Schaefer, Pekala & Beaucage, 1995). 
Although an approximate form, this unified approach has 
been demonstrated to duplicate closely exact calculations 
for mass fractals, surface fractals, diffuse-interfaced 
particulate systems and structural systems displaying 
multiple structural levels such as rods and lamellae 
(Beaucage, 1995). It has also been used extensively to fit 
experimental data (Beaucage & Schaefer, 1994; 
Beaucage, Ulibarri, Black & Schaefer, 1995; Ulibarri, 
Beaucage, Schaefer, Olivier & Assink, 1992; Hua, 
Anderson, Hareid, Smith & Beaucage, 1994; Schaefer, 
Pekala & Beaucage, 1995). 

The unified equation describes a material over a wide 
range of sizes in terms of structural levels. One structural 
level pertains to a Guinier regime, describing an average 
structural size, and a power-law regime, describing the 
mass- or surface-fractal scaling for that structural level. 
Any number of structural levels can be described in this 
pammeterization of morphology. 

In this paper, the unified approach is applied to mass- 
fractal structures. Specifically, fractal ideas native to 
disordered materials will be applied to polymeric 
morphologies. A description of scattering from polymer 
coils that allows for arbitrary mass scaling results from 
this comparison. The hybrid equations can in turn be 
used to describe mass-fractal morphologies throughout 
the disordered materials field. Insight can be gained by 
viewing disordered materials as polymeric. 

The scattered intensity from a polymer coil, described 
by a random walk of Kuhn steps of length b, follows the 
Debye equation (Debye, 1947, 1945), 

I(q) = 2G[e -x - (1 - x)]/x 2, (1) 

where q is defined as 47rsin(0/2)/2, 0 is the scattering 
angle and 2 is the " " = watt;length of the radiation x q2R2 
and R~ = zb2/6, z " number of Kuhn steps of leng~J~ 
b in a random walk. G is a constant defined by the 
specifics of the chain composition and the concentration 
of chains. For dilute chains, G 2 = N n_, where N. is the p ~, ~. 
number of polymer coils in the scattering volume and np 
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is a contrast factor. For X-ray scattering, np is the number 
of excess electrons in a coil relative to the solvent, thus, 
G - Np(Pe Vp) 2, where Vp is the volume of a particle and 
Pe IS the electron-density difference between the coil or 
particle and the solvent. For more concentrated chains, G 
takes on more complicated forms, as is discussed in §7 
below. 

The Debye equation predicts an exponential decay in 
scattering at low angles where the scattering vector q is of 
the order of 2re~R_, and R. is the radius of gyration for 
the polymer chain. At higher angles, the scattered 
intensity decays with a power law of -2 .  Deviations 
from the Debye equation in the power-law regime may 
reflect collapse or expansion of the Gaussian chain 
leading to a mass scaling that differs from that of an ideal 
random walk. Equation (1) is an exact description of one 
structural level for a Gaussian chain. That is, it describes 
a Guinier regime and an associated power-law regime for 
a mass fractal of dimension 2. 

Equation (1) is restricted to polymer coils of mass 
fractal dimension 2 because a random walk was assumed 
in the description of the chain conformation. Several 
attempts have been made to obtain a simple function that 
can describe scattering from polymer coils of arbitrary 
mass-fractal dimension. Such an equation would describe 
swollen or partially collapsed coils and branched 
polymers. An exact calculation of a Debye-like equation 
for arbitrary polymeric mass-fractal scaling was 
attempted by Benoit (1957) and by Peterlin (1953). 
Integral forms were obtained. A simple function suitable 
for curve fitting, however, was not obtained. An 
asymptotic expansion that applies in the high-q power- 
law scaling regime was described by Benoit. 

Here, this asymptotic expansion of the integral form 
described by Benoit and Peterlin will be used to obtain 
the power-law prefactor for arbitrary mass-fractal dimen- 
sions. This expansion can be used in conjunction with the 
unified approach (Beaucage, 1995; Beaucage & Schae- 
fer, 1994; Beaucage, Ulibarri, Black & Schaefer, 1995; 
Ulibarri, Beaucage, Schaefer, Olivier & Assink, 1992; 
Hua, Anderson, Hareid, Smith & Beaucage, 1994; 
Schaefer, Pekala & Beaucage, 1995) to describe scatter- 
ing from polymeric mass fractals of arbitrary dimension. 
The unified equation under 'polymeric constraints' to the 
power-law prefactor can be used as a close approximation 
for (1) when the mass-fractal dimension deviates from 2. 
For example, it can be substituted for the Debye equation 
in the RPA (random phase approximation) equation for 
polymer blends (de Gennes, 1979). Equation (1) uses two 
independent parameters. The constrained unified equa- 
tion uses three, the third being the mass-fractal dimen- 
sion, df. 

Besides a description of a single structural level, the 
unified approach can be easily extended to describe any 
number of related structural levels in a material, given a 
wide enough range of experimentally observed size. Two 
structural levels are present in a polymer coil. The large- 

scale structural level pertains to the chain's radius of 
gyration and the power law - 2  regime as described by 
(1). At high q, the persistence length limits the mass- 
fractal scaling regime. Conventionally, the persistence 
length for the coil is described as a rod substructure. In 
the scattering pattem, the rod substructure is character- 
ized by a Guinier regime for the average overall size of 
the rod and an associated power-law - 1  regime that 
accounts for one-dimensional rods. These two structural 
levels can be consistently modeled using the unified 
approach. 

Two structural levels are also present in broad classes 
of disordered materials. In analogy to a polymer chain, a 
large-scale structure is present that displays a mass- 
scaling regime at intermediate q. At high q, the 
substructure to the mass-fractal morphology limits the 
mass-fractal power law. Often, the substructure is a three- 
dimensional level with a power law described by Porod's 
law or surface-fractal scaling laws (Schmidt, 1992), in 
contrast to the one-dimensional rod substructure con- 
ventionally used for organic polymers. 

Materials that can be described using the unified 
approach under polymeric constraints are termed 'poly- 
meric mass fractals' here. Polymeric mass fractals can be 
distinguished from materials that are not polymeric but 
display power-law scattering with power-law slopes 
shallower than - 3  by comparison of the power-law 
prefactor. Randomly oriented rods and lamellae are 
examples of these apparent mass fractals. 

Several examples from polymer blends, far from the 
critical point, are examined where fits based on the 
unified equation under polymeric constraints are ex- 
pected to be good. Additionally, examples from low- 
density silica aerogels are examined in which polymeric 
mass-fractal scaling that differs from a random walk is 
observed. The constrained unified approach works well 
in both cases. An example of an apparent mass fractal 
that does not follow the Benoit scaling function for 
polymeric mass fractals is also shown. For the case of a 
porous polymer-like system such as a nano-porous silica 
aerogel, the surface area per gram of the sample is 
calculated using the ideas presented here. The surface 
area of an apparent mass fractal is also calculated for 
comparison. 

2. Unified Guinier-exponential/power-law equation 

The unified equation (Beaucage, 1995) is an approximate 
form that describes a complex morphology over a wide 
range of q in terms of structural levels. A structural level 
in scattering is described by Guinier's law and a struc- 
turally limited power law, which on a log-log plot is 
reflected by a knee and a linear region (Figs. 1, 2 and 3). 
The approach can closely duplicate exact calculations for 
mass fractals, discussed here, and particles that display 
Porod behavior, as well as structures such as rods and 
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lamellae that display multiple structural levels (Beau- 
cage, 1995). Moreover, the unified equation has been 
successfully applied to a number of experimental systems 
(Beaucage & Schaefer, 1994; Beaucage, Ulibarri, Black 
& Schaefer, 1995; Ulibarri, Beaucage, Schaefer, Olivier 
& Assink, 1993; Hua, Anderson, Hareid, Smith & 
Beaucage, 1994; Schaefer, Pekala & Beaucage, 1995). 
The unified equation for one structural level is given 
below. 

I(q) ~_ Gexp(-q2R2/3) + B(1/q*) P, (2) 

where q * =  q/[erf(kqRg/61/2)] 3, G is the Guinier pre- 
factor defined above and B is a prefactor specific to the 
type of power-law scattering: B is defined according to 
the regime in which the exponent P falls. Generally, for 
surface fractals 4 > P > 3, for mass fractals P < 3 and for 
diffuse interfaces P > 4  (Schmidt, 1992; Korberstein, 
Morra & Stein, 1980; Debye, Henderson & Brumberger, 
1957; Fischer & Burford, 1967). For Porod's law, P = 4  
and B = Np2rcpZS., where St, is the particulate surface /, 
area. For a Gausslan polymer, P = 2, and B is given by 
2G/R 2, (5), through a comparison with (1) at the high-q 
limit as discussed below. 

The constant, k, used to define q* in (2), accounts for 
an approximation involved in the description of the low-q 
power-law limit (Beaucage, 1995). This is an empirical 
constant that has a value of 1 for steep power-law decays, 
P > 3. For weak power-law decays, k deviates slightly 
from 1. For polymeric mass fractals of fractal dimension 
df close to 2 (1.5 to 3), k is empirically found to be close 
to 1.06. Weak deviations are observed between the 
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Fig. 1. Plot of  log of calculated intensity versus log q from equations (1) 
and (2) for a Debye coil of Rg=71 A and G=10000 .  The 
Benoit/Peterlin integral form is shown for comparison (dotted line). 
In the main figure, the dotted line overlaps with equation (2). 
Residuals as a percentage of equation (1) are shown in the inset. 
Deviations at high q for the B/P integral are due to a limited number 
of  numerical integration steps. 

scattered intensity as calculated using (2) and exact 
calculations for values of q between 2n/Rg and rt/Rg in 
these cases when k = 1. These deviations are reduced to 
less than 3% of the calculated intensity using k =  1.06/f 

3. Polymeric structures of arbitrary mass-fractai 
dimension 

3.1. Radius of gyration, Rg, and q = 0 intensity, G 

The parameters G, Rg and B in (2) remain to be de- 
termined for a mass fractal of arbitrary mass-fractal 
dimension dr. Rg for a polymeric mass fractal of dimen- 
sion df is given by 

R 2 = b2z2/af/(1 + 2/df)(2 + 2/df). (3) 

Equation (3) is obtained through incorporation of mass 
scaling behavior into the definition of Rg.:~ b is the 
Kuhn step length (Kurata & Tsunashima, 1989; 

t From Beaucage, 1995, a value close to the empirically observed k = 
1.06 can be obtained by integration j '~ [ s in (qr ) /q*r ] -  
[sin (q*r)/q*r] dr ~_ 0 for k = 1.0497. This means that with k --~ 1.05 
positive and negative deviations from the actual and approximated 
forms for the power-law cutoff at low q near Rg are balanced in the 
q = 2n/Rg to q = n/Rg region. The optimal value for k depends on 
To(r) and df but is expected to be close to 1.05, where ~o(r) is the 
correlation function. 

Equation (3) can be obtained by substitution of  R 2 = zaJ 2 b 2 in the 
calculation of  the radius of  gyration, where R is the end-to-end distance 
for a polymer coil of  fraetal dimension df For example, Heimenz (1984) 
gives a derivation of  R 2 = zb2/6 for a Gaussian coil. In Heimenz's 
book, I is substituted for b. If k2/d/l 2 is substituted for k/2 in equation 
(1.56) of  Heimenz, (3) results after the two indicated integrations are 
performed. For a rod, df = 1 and (3) leads to Rg,~ = Rrod/12 I/2, where 
R~od = zb. For a Gaussian coil, dr=2 and Rg,~ian = zl/2b/6 I/2. 
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Fig. 2. Comparison of equations (6) and (2) for a polymeric mass fractal 
of df = 1.5, Rg= 70 A and G =  10 000. Residuals as a percentage of  
equation (6) are shown in the inset. The rise of  residuals at high q is 
due to the limited number of  numerical integration steps in equation 
(6). 
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Tsvetkov & Andreeva, 1989; Schmitz, 1990) and z is the 
number of Kuhn steps in the polymer chain. For an ideal 
chain, df = 2. G in (2) with dilute chain concentrations is 
given by 

G 2 2 = Npp e Vp, (4) 

as noted above. 

3.2. Power-law prefactor, B 

For df = 2, the power-law prefactor B is given by 

B = 2G/R 2 (for theta conditions) (5) 

as noted above. This is a polymeric constraint to B for the 
special case of a Gaussian coil of fractal dimension 2. 
Under this constraint, (1) and (2) are compared in Fig. 1. 
A close agreement between the Debye equation and the 
unified equation is observed. Deviations at q ~_ x/Rg are 
approximately evenly spaced about the calculation for 
(1). Thus, (2) constrained by (5) can approximate the 
Debye equation for polymer coils using the same two 
parameters, Rg and G. (P = d f -  2 for the Gaussian 
coil.) 

Benoit (1957) demonstrated that an exact non-integral 
function to describe arbitrary mass-fractal scaling cannot 
be obtained using the approach of Debye (1947, 1945). 
However, an integral form for arbitrary mass-fractal 
dimension is possible. Benoit's (1957) integral form is 
given by 

(q i  g)2 I 
I(q) = G df 1 ydJ2 lo_y,,(d#2_l)dy" (6) 

(qRg)al (q-RJ/J 
Numerical integration of (6) can be used to calculate 
scattering from an arbitrary polymeric mass fractal. The 
integral can only be numerically solved and cannot be 
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Fig. 3. Comparison of equations (6) and (2) for a polymeric mass fractal 
of df = 2.5, Rg = 42 A and G = I 0 000. Residuals as a percentage of 
equation (6) are shown in the inset. The rise of residuals at high q is 
due to the limited number of numerical integration steps in equation 
(6). 

used to fit data except by iteration. For very small qR~, 
(6) yields G, which is the Guinier prefactor previously 
described. For large qRg, an asymptotic form is written 
(Benoit, 1957) 

~_ G df F ( d f / 2 ) -  . . .  (7) I(q) ,~. (qRg)uf 
h i g h - q  

where F is the gamma function. By comparison with (2) 
the power-law prefactor is given by 

B = (G df/R~Z)F(df/2) (8) 

for an arbitrary polymeric mass fractal. For df = 2, (8) 
yields (5) for the power-law prefactor. Equation (8) 
defines/~ in terms of G, Rg and df, thereby reducing the 
number of free parameters in the unified equation to 
three. This assumption is termed a 'polymeric constraint' 
on the unified equation. 

Equation (2), using (3), (4) and (8), is compared with 
numerical integrations using (6). This comparison is 
done for df = 2 in Fig. 1, for df = 1.5 in Fig. 2 and for 
df = 2.5 in Fig. 3. The residuals shown in the lower left 
corner are as a percentage of (1) for Fig. 1 and (6) for 
Figs. 2 and 3. At high q, the integral form, (6), deviates 
from the actual power law owing to the limited number of 
steps in the numerical integration. For Figs. 1 and 3, 
l0 000 integration steps are used. For Fig. 2, 100 000 
steps are used. The constrained unified equation uses 
three unknown parameters including df. Equation (1) 
uses two unknown parameters with df fixed at 2. 

4. A high-q cutoff for power-law scattering and the 
unified equation 

The unified equation can be used to calculate scattering 
from an arbitrary number of structural features at diffe- 
rent sizes if a sufficient range of size is observed. For 
example, the transition from power-law - 2  scaling for a 
polymer chain to power-law -1  for the rod-like Kuhn 
steps of a chain can be easily described. This is done by 
considering two structural levels, a large structural level 
corresponding to the chain, which is composed of a small 
structural level, the rod subunits corresponding to Kuhn 
steps. In this case, the high-q power-law prefactor for a 
dilute suspension of randomly oriented rods is known 
from classic work (Guinier & Fournet, 1955) to be 
Nrn2x/2L, where L is half the Kuhn-step length (Kurata 
& Tsunashima, 1989; Tsvetkov & Andreeva, 1989; 
Schmitz, 1990), N r is the number of rods in the scattering 
volume and n r is the number of electrons per rod; for X- 
ray scattering, n r = Pe//rod, where Pe is the skeletal elec- 
tron density of the chain. The skeletal electron density of 
the chain is the electron density of the rod-like Kuhn 
step. Vro d is the corresponding volume per Kuhn step. n r 
can also be approximated using Bondi's method of group 
contribution (Bondi, 1964; Beaucage & Stein, 1993a) or 
using molecular-modeling software. 
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In the unified approach, an exponential prefactor is 
used to describe the high-q structural limit for fractal 
scaling (Beaucage, 1995; Beaucage & Schaefer, 1994; 
Beaucage, Ulibarri, Black & Schaefer, 1995; Ulibarri, 
Beaucage, Schaefer, Olivier & Assink, 1992; Hua, 
Anderson, Hareid, Smith & Beaucage, 1994; Schaefer, 
Pekala & Beaucage, 1995). The two size limits to mass- 
fractal scattering for a polymer coil are described through 
an extension of (2). 

/ 2R2 \ ( ~ ) P  
I(q) ~-- Gexp(-q2R2/3) + Bexp t-q_~ sub) 

+ G s exp + B, , (9) 

where q* = q[[erf(qkRJ61/2)] 3 and ~ = 
q/[erf(qk~RJ61/2)].~"Equatlon (9) is developed by 
Beaucage & Schaefer (1994). The first term in (9) des- 
cribes the large-scale polymer coil of size Rg composed 
of small-scale Kuhn steps of size R~, captured in the third 
term. The second term describes the mass-fractal regime 
with two structural limits. The low-q limit is at Rg and is 
described by the error function. The high-q limit is at 
Rsub and is described by the exponential prefactor (Beau- 
cage, 1995). The final two terms are (2) for the sub- 
structural mer unit. Using (9), scattering from a system 
with multiple-size-scale features is parameterized. Gen- 
erally, the high-q cutoff for the intermediate power law, 
Rsub, is identical to the substructural radius of gyration, 
R s. The assumption that Rsu b = R~ should always be true 
for typical mass fractals. It should be noted that, although 
(9) appears cumbersome, no new parameters have been 
introduced over local fits using exponentials and power 
laws. Under the assumption that R~ub = R~, (9) can be 
extended to describe an arbitrary number of interrelated 
structural features at different size scales, 

1 

_ [-q2R~(,+,)~ (I l ';l 
+/~iexp L" ~ }~,q--~,] J' (9') 

where i - 1  refers to the largest size structure and 
q* = q/[erf(qkiRgi/61/2)] 3. Such extensions, however, 
can only be justified when data extend over many 
decades in q. Again, (9') introduces no new parameters 
over local Guinier and power-law fits. 

For a polymer coil we consider a special case in which 
Ps in (9) is often assumed to be 1 for a rod-like Kuhn step 
and Bs is given by equations for rod scattering (Guinier & 
Fournet, 1955), 

B r o  d - N-Z-~enr°jZ (10) 
2R 

R = Rsu b = R s is defined by the Kuhn-step length, nrod is 
the number of electrons per Kulm step and Np is the 
number of Kuhn steps in the scattering volume. 

Equations (9) and (9') are most useful in systems 
where structural levels are well separated in size such as 
in polymer coils and simple mass fractals. If different 
structures of similar size exist in a material, the unified 
approach can be used to separate contributions to 
scattering, but this depends on the resolution of the data. 
Miscible polymer-polymer blends are a special case. 
Such blends can be dealt with using the RPA approach of 
de Gennes coupled with either (2) or (9) or (9'). This 
manuscript demonstrates that (2) is a good approximation 
for the Debye equation used in the RPA approach when 
the mass-fractal dimension deviates from (2). In a 
publication to follow, application of the unified approach 
to polymer blends will be dealt with in detail. 

5. Applications of polymer functions to disordered 
materials 

The description of polymeric mass fractals is applicable 
to a number of systems that are not generally considered 
polymers. For example, polymerization phenomena in 
the formation of silica based aerogels leads to power-law 
scattering with power-law slope -2.5.  Scattering from 
this disordered material obeys the unified equation under 
polymeric constraints discussed above. Several cases are 
summarized in Table 1. 

In all the experimental cases we have investigated 
(Beaucage & Schaefer, 1994; Beaucage, Ulibarri, Black 
& Schaefer, 1995; Ulibarri, Beaucage, Schaefer, Olivier 
& Assink, 1992; Hua, Anderson, Hareid, Smith & 
Beaucage, 1994; Schaefer, Pekala & Beaucage, 1995), 
mass-fractal scattering can be described by three 
parameters, Rg, G and df, using the unified equation, 
(2) and (9), under polymeric constraints, (8). This 
description is true for all the materials in Table 1 except 
the low-dimensional objects. For materials that display a 
weak power-law decay but are not mass fractals, such as 
randomly oriented rod and lamellar systems, this 
approach leads to a mismatch between the observed 
(Beaucage & Schaefer, 1994) or calculated intensity 
(Beaucage, 1995) and the unified equation under 
polymeric constraints. The unified equation can still be 
used but with B calculated for that particular structure 
(Beaucage, 1995; Beaucage & Schaefer, 1994) as 
discussed in §6 below. 

In the disordered-materials field, nanoporous materials 
with a mass-fractal morphology are occasionally en- 
countered. Examples of such materials include fumed 
silica (Beaucage, Ulibarri, Black & Schaefer, 1995), 
tetraethoxysilane and tetmmethoxysilane based aerogels 
and zerogels (Beaucage & Schaefer, 1994), colloidal- 
silica-based aerogels (Hua, Anderson, Hareid, Smith & 
Beaucage, 1994) and several cases of low-density 
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Table 1. Several cases of mass-fractal power-law 
scattering (modified from Schaefer, Martin & Keefer, 

1985) 
Mass-fractal structures Power-law slope 

Polymers 
Polymer in good solvent -1.5 
Self-avoiding walk (linear swollen polymer) -1.67 
Random walk (polymer in theta solvent) -2.0 
Swollen branched polymer -2.0 
Randomly branched ideal polymer -2.29 

Non-equlibrium growth processes 
Multiparticle diffusion limited aggregate -1.8 
Percolation cluster -2.5 
Diffusion limited aggregate -2.5 

Low-dimensional objects (apparent mass fractals) 
Randomly distributed rods -1.0 
Randomly distributed lamellae or platelets -2.0 

polymer foams such as some of the resorcinol-formalde- 
hyde aerogels (Schaefer, Pekala & Beaucage, 1995). In 
these cases, it is desirable to have a method by which the 
surface area can be determined from the mass-fractal 
scaling regime of the small-angle scattering pattern. The 
surface area can be estimated by application of the 
polymer model, discussed above, to these materials. 
Generally, the surface area is expected to vary with the 
size scale of observation, which corresponds to the size 
scale of the molecular probe used in a gas absorption 
experiment, for example. In a scattering experiment, the 
size scale of observation varies with 2rc/q. Scattering 
offers the opportunity to measure the scaling of surface 
area with the size scale of observation. Observing a mass 
fractal at size scale 2a is equivalent to considering a chain 
structure composed of subunits of size 2a. This subunit 
may correspond to a Kuhn step of the chain if the size of 
observation is the same as that of a Kuhn step. Often the 
size scale of interest, however, is defined by a technique 
such as gas absorption* (Hurd, Schaefer, Smith, Ross, Le 
Mehaute & Spooner, 1989), yielding an arbitrary size 
scale 2a that is not related to the chains Kuhn step. 

The scaling relationship between the surface area and 
the size scale of observation, 2a, can be determined by 
consideration of the surface area per chain. The chain 
might be approximated by a spherical structure whose 
size scales with the chain's radius of gyration. Such a 
chain can be thought of as being composed of subunits of 
arbitrary size, smaller than the chain's radius of gyration. 
These subunits of smaller size could be approximated as 
spheres whose sizes are related to the subunit's radius of 
gyration. Because the subunits are arbitrary sections of 
the chain, their structure is mass fractal. These arbitrary 
subunits are composed of Kuhn-step units, as shown in 
Fig. 4. In this approach, the mass-fractal scaling of a 
subunit matches the mass-fractal scaling of the chain 
(note the self-similarity between the chain and the 

arbitrary subunit of Fig. 4). The overall surface area per 
coil is N2aSs, b. N2a is obtained from Rg using (3) and 
b=2a. 

N2a = (1 + 2/df)di/2(2 + 2/df)d-r/2(Rg/2a) di. (11 ) 

Thus, for a spherical unit: 

- Rd:a2-a:, Scoil ~- Ksp h g spherical unit, (12) 

where g s p  h = 47z2-dI(1 + 2/df)d//2(2 + 2/df) dy/2. To re- 
iterate, in (11) and (12), a is an arbitrary size in the mass- 
fractal scaling regime that is fixed by the size scale of 
observation. When one is comparing scattering data to a 
measurement with a fixed size scale of observation, such 
as a gas absorption measurement, the size scale of the 
comparative technique is used. Because the mass of a 
coil is fixed, the surface area per coil given by (12) is 
proportional to the specific surface area for the sample, 
i.e. the surface area per mass. This is related to the sur- 
face area per volume through the sample density. The 
mass per coil, although constant, is sometimes difficult to 
determine if the mass per Kuhn step or mass per per- 
sistance segment length is not known. If the mer units 
are observed in the scattering pattern, this problem can 
be overcome, as is discussed in §7.2 below. 

In (12) the surface area per coil increases with 
decreasing a for df > 2. For df = 2, the coil surface area 
does not depend on the size scale of observation, a. For 
df < 2, (12) predicts a decreasing coil surface area with 
decreasing a. Equation (12) can be viewed as a design 
criterion for materials of high surface area based on three 
rules. (i) If high surface area is desired from a mass- 
fractal material, (12) indicates that a mass-fractal 
dimension greater than 2 is necessary. (ii) Moreover, 
(12) defines a Gaussian mass fractal composed of 
spherical subunits as one in which the surface area does 
not change with size scale of observation. (iii) Mass 
fractals that display a dimension less than 2 are predicted 
to display the peculiar and nonintuitive behavior of a 
decreasing surface area with size scale of observation. 
This behavior is because the radius of the chains' 
primitive path (de Gennes, 1979) decreases with size of 
the spherical subunits. 

Point (iii) can be clarified by consideration of the 
structure of an arbitrary coil subunit for df < 2. Equation 
(12) is obtained by considering each subunit to obey the 
same scaling as the polymer coil as a whole. The subunits 

b 2a Rg 

Kuhn Step Arbiwary Chain 
Subunit 

* The idea of two conditions for the substructural size is also important 
to the determination of surface area for surface fractals, as is shown in 
the last part of {}7. 

Fig. 4. A mass-fractal chain composed of subunit chains of arbitrary 
size that are in turn composed of Kuhn steps. The size of the subunit 
chains corresponds to the size scale of observation. 
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are considered to approximate spherical structures. 
Altematively, the polymer coil can be considered to be 
composed of subunits that have some degree of 
asymmetry. This asymmetry might be rooted in the 
chemical composition of a subunit for the chain. Mass- 
fractal scaling with a dimension less than 2 might 
indicate a stiffer or more rod-like chain. Under these 
conditions, the assumption that the subunit is a sphere 
may not be appropriate. A more appropriate assumption 
might be to use a rod with some aspect ratio. For a rod 
subunit with radius c and length 2a, the surface area per 
coil is given by 

Scoil - -  Na ( 2Srod en d "F Srodside) 

= KrodRag:[(2a)-a:c 2 + c(2a)a-a/], rod-like unit, 

(12') 

where Kro d = 2re (1 + 2/df) a:/2 (2 + 2/df) a:/2. Equation 
(12') leads to a dependence of coil surface area with size 
of measurement a more consistent with intuition* for 
fractal dimensions smaller than 2. If the rods are conn- 
ected at their ends, the contribution of the rod end term, 
first term in (12'), will be diminished. Additionally, the 
rod diameter, c is expected to scale in some way with the 
size of observation, a. Equation (12) is expected to be 
obeyed close to the chain radius of gyration, low q, while 
(12') is expected to be obeyed close to the Kuhn-step 
size, expecially for rod-like Kulm steps. 

When the scattering pattern is measured over a 
sufficient range of q to observe the substructural units 
of the chain (Kuhn steps), the two structural levels of the 
chain can be fitted using (9). Surface fractal or Porod 
approaches can then be used to determine the surface 
area for the chain's substructural units (Kuhn steps). In 
order to calculate the surface area, the volume of the 
substructural unit needs to be determined. The volume of 
the mer unit can be obtained by separating the part of the 
fit pertaining to the subunit, the second two terms in (9). 
The calculated curve from this part of the fit multiplied 
by qZ can be integrated to obtain the Porod invariant, Q, 
for the substructure, without scattering from the large- 
scale mass-fractal morphology, according to (15) below. 
The volume of a mer unit can be obtained from Q and G. 
Assuming a model for the substructure such as a rod or 
sphere, one can obtain a second value for the volume of 
the mer unit using the radius of gyration for this 
substructure measured in the data at high q. If the two 
values for the volume of the subunit agree, the model is 
acceptable. This model can be used to calculate the 
surface-to-volume ratio for a mer and the specific surface 
area for the microporous sample. This approach is used 
in §7.2 below. 

* Since df = 1 is the lowest dimension for a chain to show increasing 
surface area with decreasing size of  measurement, this is the lowest 
dimension allowed in the polymer model. Moreover, the term 
[1 -ya:/2/(qRg)a:]  in (6) limits df to values greater than 1. 

When the mer subunit to polymeric scattering is 
observed in the scattering pattern, it should be compared 
to the size of a comparison technique, e.g. gas 
absorption. If the comparable measurement size 2a falls 
in the polymeric mass-fractal scaling regime, that is 
2a > b, then the scaling relationships, (12) above, are 
appropriate for the determination of surface area, Fig. 9 
below. When 2a < b, the surface area should be obtained 
from the high-q surface-fractal scaling regime using the 
Porod or surface-fractal approach (Hurd, Schaefer, Smith, 
Ross, Le Mehaute & Spooner, 1989; Bale & Schmidt, 
1984; Wong & Bray, 1988) if sufficient data are available 
in this regime. The surface area can be approximated for 
a polymeric mass fractal even when 2a <b.  This 
approach is used to determine the surface area of 
Airglass ® in §7.2 below and is compared to the value 
obtained using the surface-fractal approach. 

6. Low-dimensional objects (apparent mass fractals) 

As noted above (Table 1), a number of systems display 
mass-fractal-like power-law scattering, that is power-law 
decays shallower than - 3 ,  yet do not fit into the struc- 
tural category of polymeric mass fractals. For example, a 
power law o f - 2  is expected from randomly oriented 
lamellae. Such materials, which do not follow the 
Benoit/Petedin power-law prefactor, (8), will be termed 
'apparent mass fractals'. The power-law prefactor for 
these materials is expected to follow classic functions. 
For a dilute suspension of lamellar particles: 

Blam = Np2nZ / R 2, (13) 

where 2R is the long dimension of the lamella and P = 2 
(Guinier & Foumet, 1955) in (9). For rod systems, (10) 
applies and P = 1. 

By conservation of units and by comparison with the 
power-law prefactors for lamellar and rod systems, a 
generalized form for the power-law prefactor of apparent 
mass fractals is obtained: 

B app~,t = ANpp2eSpr (4-d:) = AG(Sp/VZ)r (4-d:), (14) 
mass-fractal 

where A is a unitless geometric factor, Vp is the volume 
of one low-dimensional particle, Sp is the surface area per 
particle and r is the small dimension of the particle such 
as the radius of a rod or half the thickness of the lamella. 
For a lamellar system, A = 4 n  and df = 2. For a rod 
system, A = rr2/2 and df = 1. In the majority of cases, the 
structure is not an ideal lamella or rod so the small di- 
mension, r, is not easily determined. For these cases, it is 
simpler to substitute the high-q cutoff to the apparent- 
mass-fractal regime in terms of the high-q radius of gy- 
ration measured in the scattering pattern, Rsub of (9), for r 
in (14) and to include all structural factors in the un- 
known constant A. For lamellae and rod systems, we can 
compare the classic exponential cutoff given by Guinier 



G. BEAUCAGE 141 

& Foumet (1955) with the power-law cutoff, e -iR2q2/3, o f  

(9), to obtain ,4 (Beaucage, 1995). When the power-law 
cutoff, Rsub of (9), is used for r, A for a rod is 
4~z2/33/2 and A for a lamella is 4re. 

Using (14), we can explore structures that deviate from 
ideal rods or ideal lamellae. The Porod invariant, Q, can 
be used to simplify (14): 

oo 

Q = f I(q)q 2 dq = 2n2G/Vp (15) 
0 

B apparent -- [AQ(Sp/Vp)/27z2]r (4-d/). (16) 
mass-fractal 

G, df and Q can be obtained from the scattering pattern 
(df is the negative of the power-law slope), r is given by 
the observed limit to apparent-mass-fractal scaling at 
high q using a unified fit, (9), as discussed above. 
Equation (16) can be used to obtain the particulate sur- 
face-to-volume ratio, Sp/Vp, multiplied by the geometric 
factor, ,4. As noted above, ,4 is expected to be between 
7.6 and 12.6. Assuming a value for A, one can obtain the 
specific surface area from 

total surface area (Sp/Vp)tpp 27z 2 tDpB apparent 
__ __ mass- f rac ta l  (17) 

mass sample P~m A PsamQr(a-df ) 

where Psam is the sample density and ~Op is the volume 
fraction of structures in the sample. For a nano-porous 
material, q~p can be obtained from the density of the 
sample. 

7. Results/discussion 

7.1. Polymer blends far from the critical point 

In Fig. 5, neutron scattering from a symmetric 
(matched molecular weights, 50:50 blends), isotopic 
(H/D) polystyrene blend at 399 K is fitted. The inco- 
herent background was independently measured and 
subtracted from the data. The interaction parameter, Z, 
for this case is negligibly small. Since the sample is 
somewhat polydisperse (Mw/M, ~--1.3), the degree of 
polymerization (DOP) is allowed to float in the fit. The 
prefactor, G, is calculated in this case as 
G = DOP Vme r q)vHq)vD X ( P H  - -  P D )  2 = 0.1055 DOP 
cm -1, where (Pvi is the volume fraction of component i, 
Pi is the neutron scat-tering density for a mer unit of type 
i and Vme r is the volume of a mer unit, that is, the molar 
volume divided by Avagadro's number. This equation is 
from the RPA equation (de Gennes, 1979) using Z = 0 
and equal degrees of polymerization and molar volumes 
for the blend components. The radius of gyration is also 
calculated from (3) with knowledge of the statistical 
segment length of 6.8 A for PS, the DOP and df Con- 
ventional RPA fits are limited to the first 10 to 15 data 
points and therefore ignore deviations in mass-fractal 
scaling. That is, the conventional fit range excludes the 

power-law regime. Here, the entire data set is fitted to the 
Debye equation, (1), using only the DOP as a parameter. 
(Rg is fixed by (3) using df = 2.) The DOP from the 
Debye fit is 4040. The Debye equation (with dffixed at 2) 
leads to a poor fit (dashed line in Fig. 5). When df is also 
used as a free parameter in (2) under polymeric constr- 
aints (8) the data are matched extremely well for df- 
= 2.11 and DOP = 2400. The weight average DOP for 
this blend from gel permeation chromatography is 2210. 
Allowing the fractal dimension to vary slightly accounts 
for deviations in the data from Gaussian behavior. 

The third fit in Fig. 5 uses the same parameters as the 
least-squares two-parameter fit to (2) and (8). Moreover, 
it includes parameters from a local fit to the high-q data 
with a power law of - 1  for rod behavior using (9). A 
radius of gyration of 6.3 A is used for the high-q regime. 
This value is obtained by calculation of the radius of 
gyration of a rod whose length is the persistence length 
of polystyrene, 12.41 A (Kuhn length/2), and whose 
radius is 7.3 A. The radius is obtained from molecular 
models (Beaucage, Stein & Koningsveld, 1993; Beau- 
cage & Stein, 1993). Since only limited data are available 
for this regime, the fit is only meant to demonstrate the 
ability of the unified approach to model transitions 
between structural levels as discussed above. 

When some degree of swelling or collapse of the coils 
is present, (2) and (9) may be useful as substitutes for the 
Debye equation in the random-phase approximation (de 
Gennes, 1979) to determine the interaction parameter for 
polymer blends. Additionally, (9) can account for 
deviations from the Debye equation at high q for rigid 
systems where segment structure overlaps with Debye 
scattering. 

Fig. 5 can be compared with Fig. 6. In this case, an 
isotopic blend of polydimethylsiloxane is shown. The 
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Fig. 5. log R, absolute intensity (or Rayleigh ratio), versus log q for 
neutron scattering data from a symmetric isotopic blend of 
polystyrene at 399 K. Fits are to equations (1), (2) and (9) as 
discussed in the text. The incoherent background has been measured 
and subtracted from these data. 
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data do not display deviations from Gaussian behavior 
for this flexible chain. Additionally, since the calculated 
radius of gyration for the rod subunit, 3 A [based on the 
persistence length of 7.35 A and an estimated radius of 
3.15 A from the Bondi approach (Bondi, 1964)], is just 
outside the observable range for the data, the Debye 
equation fits the data even at very high q. 

Finally, we can consider a polymer blend with specific 
interactions. Fig. 7 shows neutron scattering data from a 
PVME/dPS blend (polyvinylmethylether/deuterated 
polystyrene) in which the PVME has a high degree of 
isotacticity (Beaucage & Stein, 1993b). The mass-fractal 
dimension using the unified fit under polymeric con- 
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Fig. 6. Neutron scattering data from a symmetric isotopic blend of 
d-PDMS with PDMS. Data do not show deviations from df = 2 for 
molecular weights of 15, 25, or 75 kg mol -  x over temperatures from 
273 to 373 K (75 kg mo1-1 sample is shown.) The incoherent 
background has been measured and subtracted from these data. 
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Fig. 7. Neutron scattering data from an isotactic PVME/dPS blend far 
from the critical point that shows deviations from Gaussian behavior. 
The fit is to the unified equation under polymeric constraints, 
equation (9), yielding dr= 1.8, Rg=55 A. The incoherent back- 
ground has been measured and subtracted from these data. 

straints is 1.8. This deviation from df = 2 may be due to a 
good solvent effect. Blends with a higher percentage of 
PVME show stronger deviations from ideal behavior. For 
this blend, the high-q Rg is fixed at 6.8 A and P for the 
high-q power law is fixed at 1 for rod-like scattering. 

7.2. Low-density silica aerogels 

A number of materials that would not normally be 
considered polymers display polymeric mass-fractal 
scaling. That is, scattering data from these systems can 
be fitted with the unified approach, (2) or (9), using 
polymeric constraints, (8). An interesting case is that of 
low-density nano-porous silica aerogels. Aerogels can be 
made by supercritical extraction of aqueous gels based on 
hydrolysis of tetraethoxysilane (TEOS) or tetramethoxy- 
silane (TMOS). (A good review of silica aerogels can be 
found in Brinker & Scherer, 1990.) Variation of the pH of 
the gel precursor leads to dramatic variation in structure. 
A polymeric structure can result under the proper con- 
ditions of pH (Schaefer, Olivier, Ashley, Richter, Farago, 
Frick, Hrubesh, van Bommel, Long & Krueger, 1992; 
LeMay, Hopper, Hrubesh & Pekala, 1990). For Silica 
aerogels, the most important material property is the 
small pore size that leads to high specific surface areas. 

The polymeric mass-fractal approach is useful in using 
small-angle scattering to determine the surface area of 
nano-porous samples that display mass-fractal scaling. 
As discussed above, the determination of a surface area 
for a mass fractal requires the use of a model for the base 
structure, of Kulm step in the polymeric structure. The 
base structure must be observed in the scattering pattern 
to determine an appropriate model. 

Data from a commercial silica aerogel sample, 
Airglass ®, are shown in Fig. 8. A polymeric mass-fractal 
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Fig. 8. X-ray scattering data from Airglass ® silica aerogel. The high-q 
cutoff to mass-fractal scaling occurs close to the second decade line 
in q where the power-law slope shifts from -2.36 to -3.80. Unified 
fit is to equation (9) with R g = 1 0 7 A ,  G=983  cm -1, B =  
a:Grfa:12)/n~: = 0.0352, e = d f  = 2.36, Rsub = Rs= 30.2 A, Gs = 
107 c m -  , Bs=0.000768, P~=3.80. 
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regime, df =2.36,  is observed in the second decade ofq. 
That is, the data fit the unified equation under the 
polymeric constraint. This sample of Airglass ® displays 
the two limits to polymeric mass-fractal scaling in the 
conventional small-angle X-ray scattering size regime. 
The low-q limit is a Guinier regime reflecting the coil- 
like radius of gyration of a chain structure, 107 A, the 
low-q knee in the log-log plot of Fig. 8. The high-q limit 
is related to the Kuhn-step size for the chain-like 
structure (high-q knee in Fig. 8). Above the high-q limit, 
the base structure of the chain is observed. The base 
structure can be described as fractally rough particulates 
with surface-fractal dimension, d , = 6 -  P~=2.2,  and 
with a radius of gyration of 30.2 A. 

The high-q part of the global fit (dotted line in Fig. 8), 
reflects the substructural mer unit in the absence of the 
low-q mass-fractal scaling regime. This curve is due to 
the second two terms of (9) and yields Ghighq = 
107 c m -  1 and the invariant Q = 0.0148 cm-  1 A -  3. 
(The invariant, Q, from the fit to the whole data set is 
0.0193 cm - l  A-3.)  From (15), the volume of the base 
structural unit is therefore 142 600 A 3. We can use the 
high-q radius of gyration, 30.2 A, to describe the base 
structural size, a. Using a spherical model for the base 
unit of the polymer chain with r = Rs(5/3)1/2= 39 A 
and Pbase s t ructural  uni t  = 2.2 g c m  -3,  a degree of polymer- 
ization of 15 and a surface area of 610 m 2 g-~ are 
obtained. The volume of a sphere of radius 39 A is 
248 700/~3, which does not agree with the volume from 
the high-q invariant of 142 600 A 3 given above. 

Since the assumption of a hard-sphere base unit to the 
polymeric structure leads to this discrepancy in base unit 
volume, we consider an asymmetric structure, a rod, as 
the base for the polymeric structure. Since the data fail to 
show a power-law - 1  regime at high q, the aspect ratio 
(ratio of the principle radii of the rod structure) must be 
less than 2.5 to 3 (Feigin & Svergun, 1987). The radius of 
gyration for a rod is given by R2rod = r2/2 +R2/3,  
where r is the radius of the rod and R-is half the length of 
the rod. For an aspect ratio of 2, R = 44.6 and r = 22.3 
and the subunit volume = 139 700/~3 (DOP = 11 *). This 

* A DOP of 11 is based on the assumption that the substructure is a 
prolate ellipsoid aligned in the long direction along the chain axis. For a 
prolate ellipsoid aligned perpendicular to the chain, the DOP is 56. An 
oblate ellipsoid is also possible. Additionally, substructural polydisper- 
sity cannot be distinguished from asymmetry in the scattering pattern 
leading to further complication to this approach. However, as a simple 
model for the morphology, the approach presented here is satisfactory. 
An additional concern is the low DOP values. Most of the equations 
presented here are based on the large DOP limit which this sample of 
Airglass ® probably does not meet. Airglass ® is used as an example 
because the morphology is known to be polymer-like from electron 
micrographs and because the coil structure and the substructure can be 
clearly observed in the scattering pattern. Other low-density silica 
materials display a much higher DOE Fig. 9, for example, shows three 
aerogels which have DOPs of the order of 1000 to 10 000 based on 
2a = 5 A and (11). In these samples, the substructure is out of the 
observable size range. 

is very close to the correct aspect ratio for the base 
structure, since the calculated and measured particle 
volumes agree. Using these sizes, the surface area per 
gram is calculated to be 348 m 2 g-1 if only the sides of 
the rod are used to calculate surface area and 
436 m 2 g-~ if the slides and ends are used to calculate 
the surface area, (12'). The surface area measured by 
nitrogen absorption is close to 500 m 2 g-1.  

A second approach to surface area calculation is to 
consider the surface area of the surface-fractal base 
structure. The dotted line in Fig. 8 corresponds to this 
component of the unified fit, the last two terms of (9). 
The surface area for a surface fractal (Hurd, Schaefer, 
Smith, Ross, Le Mehaute & Spooner, 1989; Bale & 
Schmidt, 1984; Wong & Bray, 1988) at a size of 
measurement r is given by S(r) = Sr 2-d,, where 

and 

S = 2rtcp(1 - ¢p)B/QPsampleF(d~), 

F(ds) = r ( 5  - d s )  s i n  [ ~ ( 3  - d~)/2]/(3 - d~). 

For the microporous material of Fig. 8, tp = 
--Psample/Pbasematerial = 0 .036 ,  w h e r e  Psample = 
0.08 g cm -3 and Pbasematerial = 2.2 g cm -3. B for the 
high-q power-law regime is 0.000768 cm-1 A6-d, and 
F(ds)= 1.99. In order to calculate Q, (15), parameters 
from the high-q unified fit for the surface-fractal structure 
are used to simulate the scattering pattern of the base 
structure in the absence of the large-scale structure. This 
corresponds to the dashed line in Fig. 8. As noted above, 
integration of the dashed curve in Fig. 8 yields 
Q = 0 . 0 1 4 8 c m - l A  -3. A large-scale cutoff to the 
surface-fractal scaling regime is not observed in the 
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Fig. 9. log-log plot of  neutron scattering data from a series of silica 
aerogels (data from D. W. Schaefer and C. S. Ashley) fitted to the 
unified equation under the polymeric constraint. For CA26A 
Rg= 144 A, df = 2.46 and G=207  cm - I ,  for CA26B Rg= 119 A, 
dy = 2.24 and G = 54.6 cm-  l, and for CA36 Rg = 99.2 A, df = 2.34 
and G=9.94 cm - l .  Samples prepared by C. Ashley, Sandia 
National Laboratories. 



144 SMALL-ANGLE SCATTERING FROM POLYMERIC MASS FRACTALS 

data; the data go to 2n/q = 16 A. We can estimate that 
this cutoff size is close to the structural size of an SiO2 
unit which is 3 to 5/1, depending on the degree of 
substitution, from the Bondi (1964) method. Here 
r = 4  A can be used following Hurd (Hurd, Schaefer, 
Smith, Ross, Le Mehaute & Spooner, 1989) for nitrogen 
absorption. We have S(r) = 715 r-  0.2 and 
$4 A = 542 m 2 g-1.  This surface area is larger than the 
surface area for the polymeric structure, as is expected 
because the polymeric model assumed a smooth interface 
while this model accounts for surface roughness. The 
measured Nz absorption Brunauer, Emmett & Teller 
surface area for this sample is close to 500 m z g-1,  as 
noted above. Most of the surface area in the sample 
results from the polymeric mass-fractal nature of the 
sample. The surface-fractal characteristic of the base 
structure increases the total surface area by 20 to 36% 
depending on the portion of the rod subunit used to 
calculate the surface area. 

For Airglass ®, the base structure was observed in the 
scattering pattern and this was used to estimate a model 
for the subunit of the chain. This model was used to 
determine the surface area for the sample in the mass- 
fractal regime. Often, the base structure is not observed 
in the accessible range of q. Fig. 9 is an example of this 
type of neutron scattering data for three silica aerogels 
with polymeric mass-fractal structures. Fits to the unified 
equation under polymeric constraints are shown. These 
are three-parameter fits, G, Rg and df, using (2) and (8). 
The mass-fractal dimension varies from 2.2 to 2.5 in this 
series. The surface area for these structures might be 
estimated using the approach discussed above. In Fig. 9, 
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Fig. 10. Light scattering, Bonse-Hart X-ray data and conventional 
X-ray data on low-density polyacrylonitrile foam with a strut 
morphology, x. fit to equation (9) with Rg=8200 A, 
G=3.64x 106cm -1, P=I.61, B=2.1cm -1, R~b=120A, 
Rs=66 A, Gs=410 cm -1, P~=3.391, B~=0.000243; . . . . .  uni- 
fied fit under polymeric constraint, P= 1.83 from a least-squares fit. 
The constrained fit does not match the data in the third and fourth 
decades of q since the material is not a polymeric mass fractal. 

the DOP for a substructure with 2 a = 5  A is 
CA26A=28900;  CA26B=8140 and CA36=7640  
from (11). 

7.3. Apparent mass fractals (low-density polymer foams) 

Fig. 10 is scattering data for a low-density micro- 
porous polyacrylonitfile (PAN) foam produced by 
supercritical extraction of a phase-separated 10% 
PAN/dimethyl sulfoxide solution. This sample was made 
by  R. Lagasse at Sandia National Laboratories. The plot 
is a compilation of data from static light scattering, 
Bonse-Hart X-ray, pin-hole X-ray in two geometries and 
X-ray diffraction (XRD) up to 40 °. The Bonse-Hart and 
pin-hole data are in absolute intensity while the light- 
scattering and XRD data are scaled to match the absolute 
data. Extensive overlap of these data sets allows for 
accurate scaling. Light scattering is from the foam 
imbued with an index-matching solvent. Electron micro- 
graphs of the sample reveal a distorted rod structure in 
the 1 to 0.01 ~tm size range that corresponds to the first 
three decades of q in the plot. This has been previously 
referred to as a strut morphology (Aubert, 1988, 1991; 
Beaucage, Schaefer, Aubert, Lagasse, 1996) and has 
been related to spinodal decomposition in this system. 
An aspect ratio of 70 is common in micrographs. The 
scattering data in this size regime display power-law 
scaling with a power-law exponent of -1.61.  Rs corres- 
ponds to a nano-structure within the struts that may be 
related to crystallinity. The marked difference between Rs 
and Rsub is seen in the data at q = 10-2 A-1.  Rsub cor- 
responds well with the thickness of the struts in the strut 
morphology; Rg corresponds to the strut length. 

The data are fitted to (9), 'Free Unified Fit', in Fig. 10. 
From this fit, the two size limits to the apparent-mass- 
fractal power-law regime are determined, Rg= 0.82 pm 
and Rsub "-120 A. The larger Rg corresponds to the 
overall radius of gyration for the struts. This aspect ratio 
agrees with micrographs. The smaller, cutoff Rg, Rsub, is 
related to the radius of the struts. A third size scale is 
observed at higher q, R~ = 66 A from (9), that is related 
to the base structure of the struts. Beyond this size, a 
power-law regime of slope -3 .39 is observed. At still 
higher q, this surface-fractal regime decays into a power- 
law - 4  or Porod regime (not fitted) before the onset of 
diffraction at highest q. The scattering for these smallest 
subunits of the structure is characteristic of fractally 
rough solid objects. 

The data in Fig. 10 are also fitted using (9) and (8) to 
constrained the power-law prefactor, 'Unified Fit Under 
Polymeric Constraint'. In this fit, the high-q structural 
level was fixed to the values of the free fit and a least- 
squares optimization was used for the low-q data. For the 
constrainted fit, P =  1.83. The constrained fit does not 
match the data in the third and fourth decades of q. This 
is a typical case in which the material is an apparent 
mass-fractal (low-dimensional objects) and is therefore 
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not expected to be described by equations derived for 
deviations from polymeric structures. Equation (14) is 
expected to describe the power-law prefactor in this case. 

Using (17), the surface area per gram for the 
microporous PAN sample of Fig. 10 is obtained. This 
sample has a density of 0.1 g cm-3 and bulk PAN has a 
density of 1.175 g cm -3, thus q~p=0.085. From the 
unified fit, we have G = 3.64 x 106 cm-  l, 
B=2.1 cm -1 •-df, df'- 1.6, Rsub-- 120 A and for a rod 
structure RsmaHdi m = 2/31/2Rsub (Beaucage, 1995; Beau- 
cage & Schaefer, 1994). From a numerical integration 
over the free unified fit of Fig. 10, extrapolating the low-q 
region using a constant intensity of G and the high-q 
region using power-law - 4  above q=0.39  A - l ,  the 
invariant is obtained, Q = 0.00809 cm-  1 A3. Using these 
values, A × (S/mass) = 393 m z g -  1. For scattering from 
randomly distributed rods, A = 47t2/33/2 and the surface 
area per gram is 51.7 m 2 g -  1. The nitrogen BET surface 
area for this sample is about 300 m z g-1.  This means 
that most of the surface area for the sample is derived 
from the 66 A fractally rough structure seen in the fourth 
and fitth decades of q in Fig. 10. 

As previously discussed, the surface area for a surface 
fractal (Hurd, Schaefer, Smith, Ross, Le Mehaute & 
Spooner, 1989; Bale, Schmidt, 1984; Wong & Bray, 
1988) at a size of measurement r is given by 
S(r)=Sr 2-as where ds=2.61 from Fig. 10. B for the 
high-q power-law regime is 0.000243 cm -~ A 6-as. 
F(ds) = 1.82, Q for the high-q structure = 0.00468 [using 
the last two terms of (9)], S =  1390 A 2-as m 2 g - I  and 
S(r) = 1390r -°'61. As noted above, for nitrogen absorp- 
tion, Hurd (Hurd, Schaefer, Smith, Ross, Le Mehaute & 
Spooner, 1989) has used 4 A for r yielding 
(S/mass)4A=597 m 2 g-1.  This value deviates from 
the specific surface area measured with nitrogen absorp- 
tion because the actual cutoff to surface-fractal scaling 
occurs at a size larger than 4 A. 

Rather than using Hurd's nitrogen value of 4 A for r, 
the transition size for surface fractal to Porod scattering 
should be used. The value of q at this transition can be 
determined by comparing a line of slope - 4  to the data 
of Fig. 10 at high q. A rough estimate of q =0.39 A -  
can be obtained in this manner. The r value for the 
transition from power-law -3.39 to - 4  is r =  
2rc/0.39 A-1 = 16 A. Using r =  16 A, (S/mass)16A : 
256 m 2 g-1. This agrees well with the surface area 
measured by nitrogen absorption, about 300 m 2 g-1. To 
reiterate, r in the determination of surface area from a 
surface fractal should correspond with either the 
transition size from surface fractal to Porod scattering, 
or to the size of the probe molecule in a gas-absorption 
measurement, depending on which is larger. 

8. Conclusions 

By the application of fractal ideas native to the disordered 
materials community to polymeric systems, deviations 

from ideal polymeric scaling can be described in a simple 
equation suitable for curve fitting. This functional form is 
developed through comparison of asymptotic forms for 
scattering from polymeric systems with a unified 
Guinier/power-law function. This approach can be 
extended to different regimes of power-law scattering 
through an extension of the structural level idea. For 
example, the transition from random walk to rod-like 
scattering at the persistence length of a polymer coil can 
be described using this approach. 

This polymeric function can be, in turn, applied to 
mass-fractal disordered materials such as silica aerogels 
that display a wide variety of mass-fractal scaling. This 
leads to a better understanding of these disordered 
materials in terms of parameters common to the polymer 
field. Specifically, the degree of polymerization, the 
persistence length and the concept of a mer unit can all 
be used in describing these materials. This is used to 
estimate the surface area for these mass-fractal morphol- 
ogies. 

For polymer blends, this approach can account for 
deviations from ideal mass scaling. This allows an entire 
data set to be fitted in the RPA approach, rather than the 
conventional use of low-q fits that ignore the mass fractal 
scaling regime. 

The approach presented here has been successful in 
describing a wide range of mass-fractal morphologies 
including fumed silica, low-density silica aerogels, 
colloidal silica gels and aerogels, polymeric microporous 
foams and gels as well as conventional polymeric 
systems (Beaucage, 1995; Beaucage & Schaefer, 1994; 
Beaucage, Ulibarri, Black & Schaefer, 1995; Ulibarri, 
Beaucage, Schaefer, Olivier & Assink, 1992; Hua, 
Anderson, Hareid, Smith & Beaucage, 1994; Schaefer, 
Pekala & Beaucage, 1995). Deviations from the poly- 
meric mass-fractal approach are seen in systems with 
asymmetric structural units such as in randomly oriented 
lamellar and rod systems. For these cases, an approach to 
the determination of surface area and power-law 
exponents was discussed. Apparent mass fractals can 
be distinguished from polymeric mass fractals by 
comparison of the power-law prefactor in the scattering 
pattern. 

Some of this work was performed at Sandia National 
Laboratories supported by the US Department of Energy 
(DOE) by Sandia National Laboratories under Contract 
#DE-AC04-94AL85000. Polymer foams were supplied 
by J. Aubert and R. Lagasse; isotropic PS blends were 
supplied by M. Satkowski and S. Smith and some aerogel 
data were supplied by Dale W. Schaefer and C. Ashley. 
Detailed papers on these systems are in preparation. 
Neutron scattering data were obtained at Los Alamos 
National Laboratory, Oak Ridge National Laboratory and 
the National Institute of Standards and Technology. 
Ultra-low-q SAXS measurements were made at NIST's 
X23A3 beamline at Brookhaven National Laboratories 



146 SMALL-ANGLE SCATTERING FROM POLYMERIC MASS FRACTALS 

National Synchrotron Light Source, the use of which was 
courtesy of G. Long and D. Fischer (Long, Jemain, 
Weertrnan, Black, Burdette & Spal, 1991). Pin-hole 
SAXS data are from Oak Ridge National Laboratories, 
courtesy of J. S. Lin. 
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