Phase Distribution of Carbon Black filler in Polymer Blend

Kiet Phama, Kabir Rishia, Gregory Beaucagea
a Department of Materials Science & Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Methods

- Polymer blend used is PBD/SBR
- Filler used is Carbon Black N110 (CB)

Unified Scattering Model2

\[I_0(q)/\phi_0 = \sum_{i=1}^{n} G_i \exp(-q^2 R_{g,i}^2/3) + B_i(q^2) \exp(-q^2 R_{g,i-1}^2/3) \]

Random Phase Approximation3

\[\phi/I(q) = \phi_0/I_0(q) + \phi \nu \]

\[A_2 = \frac{(\Delta \rho)^2}{2 \rho^2} N_A \]

Filler Distribution

1. Filler predominantly distributes to PBD or SBR phase
2. Filler segregates at interface
3. Filler uniformly distributed between SBR and PBD phases
4. Filler partially segregates between SBR and PBD phases

Introduction

- Properties of processed polymers depend on not only the volume fraction but dispersion of fillers
- In the matrix of immiscible polymer blends, added fillers unevenly distributes to each component of the blend
- The distribution of fillers was previously studied based on the wetting coefficient which is related to interfacial free energy1
- In this research, we are studying the distribution of fillers in the polymer blend through pseudo-second order virial coefficient A2.

Experiments

- Polymer blend used is PBD/SBR
- Filler used is Carbon Black N110 (CB)

References

Acknowledgements

For further information, please contact:
Gregory Beaucage beaucag@ucmail.uc.edu