Gibbs–Duhem Relation for Phase-Field Models of Polymeric Mixtures

Rami Alhasan and Douglas R. Tree*

ABSTRACT: Phase-field models are relatively inexpensive field-based models capable of capturing the nonequilibrium multiphase behavior of polymers and other soft materials. With their rise in popularity over the past several years, questions have arisen concerning the thermodynamic consistency of some model formulations. In doing so, researchers have employed several different forms of the Gibbs–Duhem equation—a classical thermodynamic relationship used to assess consistency—leading to questions about the correct form of this expression for inhomogeneous mixtures. In this paper, we derive a generalized Gibbs–Duhem relation that is valid for phase-field models. The key to the derivation is the recognition that the functional derivatives used with phase-field models give exchange chemical potentials, in contrast to the classical chemical potentials commonly used in homogeneous thermodynamics. We use this derivation to demonstrate that a phase-field model that generalizes the Flory–Huggins model satisfies the Gibbs–Duhem expression and is therefore thermodynamically consistent. In addition, we find that the Gibbs–Duhem relationship provides some unique insights into the relationship between the traditional chemical potentials, the exchange chemical potentials, and the osmotic stress tensor.

INTRODUCTION

Phase-field models have been increasingly used in the last two decades in simulations of polymers and soft materials for describing multiphase systems undergoing phase separation, mass transfer, and fluid flow. For example, researchers have demonstrated their utility in simulating the formation of polymer membranes including the processes of phase separation, microstructural evolution, and kinetic arrest in a complex multicomponent polymer solution. Recently, several authors have begun probing the thermodynamic consistency of a variety of phase-field models with a focus on whether or not they obey the Gibbs–Duhem equation. The Gibbs–Duhem equation is a classical relationship for assessing thermodynamic consistency in mixture thermodynamics.

\[
\sum_i n_i \, d\mu_i = -S \, dT + V \, dP
\]

(1)

where \(n_i \) is the number of molecules of component \(i \), \(\mu_i \) is the chemical potential, \(S \) is the entropy, \(T \) is the temperature, \(V \) is the system volume, and \(P \) is the system pressure. In this paper, we attempt to resolve the ongoing confusion about the Gibbs–Duhem equation by obtaining its correct form for phase-field models. We then use our expression to demonstrate the thermodynamic consistency of a popular phase-field model used for polymer solutions and blends.

Phase-field models differ from classical thermodynamics by permitting inhomogeneous fields of concentration, pressure, temperature, etc. The presence of these inhomogeneities necessitates a generalization of the free energy, and for a phase-field model of a mixture of fluids the Helmholtz energy is a functional of \(z \) number density fields \(\rho_i(r) \) of the species of the mixture.

\[
F[\rho_1, \rho_2, ...] = \int \, dr [f_0(\rho_1, \rho_2, ...) + g(\nabla \rho_1, \nabla \rho_2, ...)]
\]

(2)

In eq 2, \(f_0 \) is a homogeneous intensive mixing free energy density and \(g \) is a free energy density describing interfacial energies. An exchange chemical potential (also called a diffusional potential) can be defined for the system by taking the functional derivative of the free energy functional in eq 2.

Received: September 25, 2021
Revised: December 28, 2021
Published: January 18, 2022

© 2022 American Chemical Society

https://doi.org/10.1021/acs.macromol.1c02021
Macromolecules 2022, 55, 759–765
\[\rho_i = \frac{\delta F}{\delta \tilde{\rho}_i} = \frac{\delta f_i}{\delta \tilde{\rho}_i} - \nabla \cdot \frac{\partial g}{\partial \nabla \tilde{\rho}_i} \]

(3)

As we will see, the use of this definition leads to subtle consequences for the final form of the Gibbs–Duhem relationship for phase-field models.

The literature contains different versions of the Gibbs–Duhem relationship for phase-field models, and these approaches can be subdivided into two categories. First, numerous researchers have used mechanical equilibrium arguments to derive an expression for the osmotic stress of a single-component, two-phase system.8,14,16 This approach begins with a momentum balance

\[\rho \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) \mathbf{v} = -\nabla \cdot \sigma + \rho \nabla U_{\text{ext}} \]

(4)

where \(\rho \) is the total mass density, \(\mathbf{v} \) is the velocity, \(t \) is the time, \(\sigma \) is the total stress tensor, and \(U_{\text{ext}} \) is an external potential. In steady state conditions, eq 4 simplifies to

\[\rho \nabla U_{\text{ext}} = \nabla \cdot \sigma \]

(5)

Assuming that the osmotic stress, \(\mathbf{H} \), and the exchange chemical potential, \(\mu_i \), can replace \(\sigma \) and \(U_{\text{ext}} \) respectively, one obtains

\[\hat{\rho} \nabla \hat{\mu} = \nabla \cdot \hat{\mathbf{H}} \]

(6)

in the absence of fluid velocities. For a steady-state multicomponent mixture, one assumes that the left-hand side of eq 5 consists of a linear combination of exchange chemical potentials,\(^{18,22} \) resulting in

\[\sum_{i=1}^{z} \hat{\rho}_i \nabla \hat{\mu}_i = \nabla \cdot \hat{\mathbf{H}} \]

(7)

Liu et al.\(^{14} \) claimed that eq 7 is a valid expression of the Gibbs–Duhem relation for multicomponent phase-field models.

The second approach uses the homogeneous Gibbs–Duhem relation in eq 1 from classical thermodynamics as a starting point.\(^{3,23} \) In contrast to arguments based on mechanical equilibrium, researchers using the thermodynamic approach rely on the traditional chemical potential and state the Gibbs–Duhem relationship as

\[\sum_{i=1}^{z} \hat{\rho}_i \nabla \mu_i = 0 \]

(8)

when temperatures and pressures are constant. There has been some confusion in the literature over the use of traditional and exchange chemical potentials in eq 8, leading to yet another possible version

\[\sum_{i=1}^{z} \hat{\rho}_i \nabla \tilde{\mu}_i = 0 \]

(9)

We seek to reconcile these approaches and provide a definitive answer to the question of the correct Gibbs–Duhem relation for multicomponent phase-field models. In doing so we will need to resolve the apparent conflict between the use of the traditional and exchange chemical potentials in the above expressions. In addition, by providing a rigorous derivation of the correct expression, we aim to resolve an ongoing controversy surrounding claims\(^2 \) that several popular phase-field models, including the Cahn–Hilliard model\(^{8,11} \) and a multicomponent Flory–Huggins–de Gennes model,\(^{12,19,25} \) do not satisfy the Gibbs–Duhem relation and are therefore thermodynamically inconsistent.

Consequently, in this work we build upon prior literature to provide a transparent and consistent theoretical framework spanning both homogeneous thermodynamics and inhomogeneous phase-field models that leads to expressions for the Gibbs–Duhem relationship. We first provide a rigorous derivation of the Gibbs–Duhem relationship for a homogeneous, multicomponent system using principles from classical thermodynamics. This derivation provides key insights into the relationship between the classical chemical potential, the exchange chemical potential, and the osmotic stress. In the following section, we extend our derivation and postulate a Gibbs–Duhem relationship for an inhomogeneous system. We find that eqs 7 and 8 are equivalent and valid expressions of the Gibbs–Duhem relationship, thereby resolving the apparent controversy in the literature. However, we also find that the traditional chemical potential in eq 8 is inconvenient to use for phase-field models, and therefore, eq 7 is preferred. Finally, we conclude with a concrete example, demonstrating the thermodynamic consistency of a multicomponent Flory–Huggins–de Gennes model that we and others have used in several studies.\(^{1,3,7,12,26} \)

Gibbs–Duhem Relation for a Homogeneous System

In this section, we use principles of classical thermodynamics to derive the Gibbs–Duhem equation in terms of exchange chemical potentials. As outlined above, we suspect that much of the confusion on this topic originates from a misunderstanding of the relationship between traditional chemical potentials and exchange chemical potentials. As such, we are careful to explicitly define both here.

The traditional chemical potential is defined as

\[\mu_i = \left(\frac{\partial F_0}{\partial n_i} \right)_{T,V,n_{j\neq i}} \]

(10)

where \(F_0 = f_0 V \) is the extensive (Helmholtz) free energy of a homogeneous multicomponent system and \(n_i \) is the number of molecules of component \(i \). As expressed by the fundamental relation of thermodynamics\(^{9,10} \)

\[dF_0 = S \, dT - P \, dV + \sum_{i=1}^{z} \mu_i \, dn_i \]

(11)

the constant temperature and volume thermodynamic phase behavior of the system is completely determined by the chemical potentials: \(\mu_1, \mu_2, ..., \mu_z \). The Gibbs–Duhem relation for a compressible, multicomponent system is given by eq 1, and for an incompressible liquid–liquid phase separation commonly considered in systems of soft materials,\(^5,12 \) the temperature and pressure are constant, simplifying the relation to

\[\sum_{i=1}^{z} n_i \, d\mu_i = 0 \]

(12)

An alternate but equally valid set of thermodynamic potentials can be used in addition to the traditional chemical potential in eq 10. These are the so-called “exchange” chemical
potentials and the osmotic pressure, which are defined, respectively, as
\[
\hat{\mu}_i = \frac{1}{V} \left(\frac{\partial F_i}{\partial \bar{N}_i} \right)_{T,V,\bar{\rho}_i,m} = \left(\frac{\partial F_0}{\partial \bar{N}_i} \right)_{T,V,\bar{\rho}_i,m}
\]
(13)
\[
\pi = -\frac{1}{V} \left(\frac{\partial F_0}{\partial V} \right)_{T,V,\bar{\rho}_i,m}
\]
(14)

Note that eq 14 is defined at constant specific volume but variable mass, making it an osmotic pressure (as we describe in more detail below). For the homogeneous case, it is convenient to use a mass fraction, \(\rho_i\), instead of the number density as the former is more commonly encountered in homogeneous thermodynamics. The two concentrations are closely related. The mass fraction is given by
\[
\rho_i = \frac{n_i M_i}{m}
\]
(15)

where \(M_i\) is the molecular weight of component \(i\) and \(m\) is the total system mass. The number density is given by
\[
\bar{\rho}_i = \frac{n_i N_i}{V}
\]
(16)

where \(N_i\) is the degree of polymerization. Using the fact that \(N_i = M_i/M^0_i\), where \(M^0_i\) is the molecular weight of a monomer of component \(i\), one can relate the two concentrations using
\[
\rho_i = \bar{\rho}_i M^0_i \hat{V}
\]
(17)

with \(\hat{V}\) giving the specific volume of the mixture. Substituting the latter into eq 13 gives
\[
\hat{\mu}_i = \frac{M^0_i}{m} \left(\frac{\partial F_0}{\partial \rho_i} \right)_{T,V,\bar{\rho}_i,m} = M^0_i \left(\frac{\partial F_0}{\partial \rho_i} \right)_{T,V,\bar{\rho}_i,m}
\]
(18)

To obtain the Gibbs–Duhem equation for a compressible multicomponent system, we first re-express the total derivative of the homogeneous free energy as a function of the independent mass fractions \(\rho_i\) and the total system mass \(m\):
\[
dF_0 = S dT - P dV + \sum_{i=1}^{z-1} \left(\frac{\partial F_0}{\partial \rho_i} \right)_{T,V,\bar{\rho}_i,m} d\rho_i + \left(\frac{\partial F_0}{\partial m} \right)_{T,V,\bar{\rho}_i,m} dm
\]
(19)

instead of \(n\).

It is convenient to manipulate eq 19 so that \(F_0\) depends on only one extensive quantity: the total mass. Accordingly, we substitute the definition of the specific volume \(V = m\hat{V}\) into eq 19, expand the derivatives, and collect like terms to give
\[
dF_0 = S dT - mP d\hat{V} + \sum_{i=1}^{z-1} \left(\frac{\partial F_0}{\partial \rho_i} \right)_{T,V,\bar{\rho}_i,m} d\rho_i + \left(\frac{\partial F_0}{\partial m} \right)_{T,V,\bar{\rho}_i,m} dm
\]
(20)

Additional insight into the meaning of the terms in eq 20 can be obtained by comparing them to the total derivative of the homogeneous free energy
\[
dF_0 = \left(\frac{\partial F_0}{\partial \hat{V}} \right)_{T,V,\bar{\rho}_i,m} d\hat{V} + \sum_{i=1}^{z-1} \left(\frac{\partial F_0}{\partial \rho_i} \right)_{T,V,\bar{\rho}_i,m} d\rho_i + \left(\frac{\partial F_0}{\partial m} \right)_{T,V,\bar{\rho}_i,m} dm
\]
(21)

whose independent variables are \(T, \hat{V}, \rho_i\) and \(m\). As expected, the first term identifies the entropy as
\[
S = \left(\frac{\partial F_0}{\partial T} \right)_{V,\rho_i,m}
\]
(22)

and the second term identifies the traditional definition of the pressure
\[
P = -\frac{1}{m} \left(\frac{\partial F_0}{\partial \hat{V}} \right)_{T,\rho_i,m} = -\left(\frac{\partial F_0}{\partial V} \right)_{T,\rho_i,m}
\]
(23)

The third term identifies the exchange chemical potential
\[
\hat{\mu}_i = \frac{M^0_i}{m} \left(\frac{\partial F_0}{\partial \rho_i} \right)_{T,V,\bar{\rho}_i,m}
\]
(24)

noting that the constraint of constant specific volume and constant mass is equivalent to one of constant volume. The fourth term provides an expression for the osmotic pressure
\[
\pi = -\frac{1}{V} \left(\frac{\partial F_0}{\partial m} \right)_{T,\rho_i,m} = -\left(\frac{\partial F_0}{\partial V} \right)_{T,\rho_i,m}
\]
(25)

as the change in free energy with a change in total volume at constant composition and specific volume. Note the meaningful difference between the definition of the thermodynamic pressure and the osmotic pressure, with the former being held at constant mass (and variable specific volume) and the latter at constant specific volume (and variable mass). Finally, substituting eqs 22–25 into eq 21 gives
\[
dF_0 = S dT - mP d\hat{V} + \sum_{i=1}^{z-1} m\hat{\mu}_i d\rho_i - \pi d\hat{V} dm
\]
(27)

To obtain a Gibbs–Duhem expression, we follow the traditional approach using Euler’s theorem9,10 and integrate eq 27 to give the free energy
\[
F_0 = \sum_{i=1}^{z-1} m\hat{\mu}_i \rho_i - \pi \hat{V} m
\]
(28)

Next, we take the total derivative of eq 28
\[
dF_0 = \sum_{i=1}^{z-1} \left[\left(\frac{m\hat{\mu}_i}{M^0_i} \right) d\rho_i + \rho_i \left(\frac{m\hat{\mu}_i}{M^0_i} \right) d\hat{V} \right] - (\pi d\hat{V}) dm - m d(\pi d\hat{V})
\]
(29)

and subtract it from eq 27. Expanding the derivatives and collecting like terms gives
\[
0 = -SdT + m(P - \pi) d\hat{V} + \sum_{i=1}^{z-1} \frac{\rho_i}{M^0_i} d(m\hat{\mu}_i) - V d\pi
\]
(30)
which is an expression of the Gibbs–Duhem relationship for a homogeneous system in terms of the exchange chemical potential and osmotic pressure. Keep in mind that up to this point the system has been compressible and nonisothermal; however, in liquid–liquid phase separation we frequently assume an incompressible and isothermal system. Assuming incompressibility, i.e., that \(V \) and \(T \) are constant, simplifies eq 30 to

\[
\sum_{i=1}^{z-1} \dot{\rho}_i \, d\bar{\mu}_i = d\pi \tag{31}
\]

Note also that the pressure becomes ill defined for an incompressible system, as is well known, for example, in the study of fluid mechanics.\(^{27}\) The pressure is conjugate to the specific volume and therefore does not appear in eq 31; however, one must use caution when employing the preceding equations for an incompressible system.

The above analysis demonstrates that combination of the exchange chemical potentials and the osmotic pressure is thermodynamically equivalent to the traditional chemical potentials and the osmotic pressure is proportional to this reference. In addition, one notes that in contrast to the traditional chemical potentials, the osmotic pressure has units of pressure. The appearance of the \(z \)th component in eqs 35 and 38 is also curious given that the choice of the \(z \) is arbitrary. This peculiarity is a consequence of incompressibility and the fact that the \(z \)th component is not an independent variable. Consequently, for an incompressible system one can think of the \(z \)th component as the implicit “osmotic medium” in which diffusion takes place.

Gibbs–Duhem Relation for an Inhomogeneous System

With the above thermodynamic relationships in mind, we now turn our attention to inhomogeneous models which employ free energy functionals rather than free energy functions, necessitating a further generalization to the Gibbs–Duhem relationship in eq 31. On the basis of a straightforward generalization of the homogeneous relationship in eq 31, one can generalize the Gibbs–Duhem relationship for an inhomogeneous, compressible, and isothermal system

\[
\sum_{i=1}^{z-1} \dot{\rho}_i \nabla \bar{\mu}_i = \nabla \cdot \mathbb{I} \tag{39}
\]

where \(\mathbb{I} \) is the second-rank osmotic stress tensor and \(\bar{\mu}_i \) is the exchange chemical potential for component \(i \). We seek to justify eq 39 more rigorously.

A chemical potential can be rigorously defined for an inhomogeneous system by taking a Legendre transform of eq 2 to obtain the grand potential\(^{20,28}\)

\[
\Omega\{\{\bar{\rho}_i\}\} = F\{\{\bar{\rho}_i\}\} - \sum_i \bar{\mu}_i \int dr \bar{\rho}_i (r) \tag{40}
\]

The grand potential obeys the variational principle \(\delta \Omega = 0 \), and taking the functional derivative

\[
\frac{\delta \Omega}{\delta \bar{\rho}_i} = \frac{\delta F}{\delta \bar{\rho}_i} - \bar{\mu}_i = 0 \tag{41}
\]

identifies \(\delta F/\delta \bar{\rho}_i \) as the local exchange chemical potential of \(i \) at \(r \) conjugate to \(\bar{\rho}_i \) as originally expressed in eq 3. We suppose that one may also attempt to formally express a traditional chemical potential using the functional derivative\(^3\)

\[
\mu_i = \frac{\delta F}{\delta n_i} \tag{42}
\]
but the evaluation of such an expression is not straightforward since \(n_i \) is an extensive quantity that is itself a functional of \(\dot{\rho}_i \). Consequently, eq 3 is overwhelmingly preferred in the literature.\(^{14,18,20,21,29}\)

With a firm definition of the exchange chemical potential, we derive the inhomogeneous Gibbs–Duhem relation for multi-component systems. The rate of work done by osmotic forces (per unit volume), \(h_i \) in the system is given by

\[
\frac{\partial F}{\partial t} = \int d\mathbf{r} \left[- \sum_{i=1}^{z-1} \mathbf{h}_i \cdot \mathbf{v}_i \right]
\]

(43)

We seek to manipulate the free energy functional in eq 2 to this form. Taking the time derivative of \(F(\{\dot{\rho}_i\}) \) and using the chain rule gives

\[
\frac{\partial F}{\partial t} = \int d\mathbf{r} \left[\sum_{i=1}^{z-1} \delta F \frac{\partial \dot{\rho}_i}{\partial t} \right]
\]

(44)

\[
= \int d\mathbf{r} \left[\sum_{i=1}^{z-1} \dot{\rho}_i \mathbf{v}_i \right]
\]

(45)

The species mass conservation equation for component \(i \) is given by

\[
\frac{\partial \rho_i}{\partial t} = -\nabla \cdot (\dot{\rho}_i \mathbf{v}_i)
\]

(46)

where \(\mathbf{v}_i \) is the velocity of component \(i \). Substituting eq 46 into eq 45 and using the product rule

\[
\nabla \cdot (\dot{\rho}_i \mathbf{v}_i) = \dot{\rho}_i \nabla \dot{\rho}_i \cdot \mathbf{v}_i + \dot{\rho}_i \nabla \mathbf{v}_i
\]

(47)

to perform integration by parts gives

\[
\frac{\partial F}{\partial t} = -\int d\mathbf{r} \left[\sum_{i=1}^{z-1} \nabla \cdot (\dot{\rho}_i \mathbf{v}_i) - \dot{\rho}_i \nabla \mathbf{v}_i \cdot \mathbf{v}_i \right]
\]

(48)

\[
\frac{\partial F}{\partial t} = \int d\mathbf{r} \left[\sum_{i=1}^{z-1} \dot{\rho}_i \nabla \mathbf{v}_i \cdot \mathbf{v}_i \right]
\]

(49)

Note that the first term in the summation in eq 48 is zero through the use of Gauss’ divergence theorem and natural boundary conditions. Equation 49 identifies the osmotic forces (in a medium of component \(z \)) as \(h_i = \dot{\rho}_i \nabla \mathbf{v}_i \). Consequently, using the conventional relation between stresses and forces,\(^5\) the divergence of the osmotic stress is given by

\[

\nabla \cdot \mathbf{\Pi} = \sum_{i=1}^{z-1} \mathbf{h}_i
\]

(50)

giving the Gibbs–Duhem relationship in eq 39.

Having specified the form of the free energy functional, it is also possible to provide an explicit expression for \(\mathbf{\Pi} \). We obtain it by first taking the gradient of the free energy density in eq 2

\[
\nabla f_0(\rho_1, \rho_2, ..., \rho_j, ...)] + g(\nabla \dot{\rho}_1, \nabla \dot{\rho}_2, ..., \nabla \dot{\rho}_j)
\]

(51)

Using eq 3 to replace the partial derivatives of \(f_0 \), employing the product rule from vector calculus \(\nabla(\dot{\rho}_i \mathbf{v}_i) = \dot{\rho}_i \nabla \mathbf{v}_i + \dot{\mathbf{v}}_i \nabla \dot{\rho}_i \), and noting that \(\nabla \mathbf{v}_i = \nabla \cdot (\mathbf{v}_i \mathbf{d}) \), one finally obtains

\[
\sum_{i=1}^{z-1} \dot{\rho}_i \nabla \dot{\rho}_i = \nabla \left[\sum_{i=1}^{z-1} \left(\dot{\rho}_i \mathbf{v}_i \mathbf{d} \right) - f_0 - g \right] + \sum_{i=1}^{z-1} \frac{\partial g}{\partial \dot{\rho}_i} \nabla \dot{\rho}_i
\]

(52)

after considerable algebraic manipulation. The osmotic stress tensor is therefore given by

\[
\mathbf{\Pi} = \left(\sum_{i=1}^{z-1} \dot{\rho}_i \mathbf{v}_i \mathbf{d} - f_0 - g \right) + \sum_{i=1}^{z-1} \frac{\partial g}{\partial \dot{\rho}_i} \nabla \dot{\rho}_i
\]

(53)

where \(I \) is the identity matrix. As a further proof of consistency, when \(z = 2 \), eq 53 reduces to the binary stress tensor obtained by Dean et al.\(^31\)

THERMODYNAMIC CONSISTENCY OF A MULTICOMPONENT FLORY–HUGGINS–DE GENNES MODEL

Flory–Huggins theory is a classical cornerstone for describing the thermodynamics and phase behavior of polymeric solutions and blends. de Gennes expanded the theory for inhomogeneous mixtures using the so-called random phase approximation leading to the inclusion of square gradient terms (i.e., \(|\nabla \phi|^2 \)) that penalize composition fluctuations.\(^2,33\)

In our present formalism, a multi-component Flory–Huggins–de Gennes model can be specified by defining the local free energy

\[
f_0(\{\phi_i\}) = \sum_{i=1}^{z} \frac{\phi_i}{N_i} \ln \phi_i + \sum_{i=1}^{z} \sum_{j<i} \chi_{ij} \phi_i \phi_j
\]

(54)

and gradient terms

\[
g(|\nabla \phi|) = \frac{1}{2} \sum_{i=1}^{z} \kappa_i |\nabla \phi_i|^2
\]

(55)

in the free energy functional in eq 2. In the above, \(N_i \) is the degree of polymerization of component \(i \), \(\chi_{ij} \) is the binary interaction parameter between components \(i \) and \(j \), and \(\kappa_i \) are phenomenological gradient coefficients penalizing interfaces. de Gennes obtained functional forms for the composition dependence of \(\kappa_i \) but as is often the case in the literature, we assume here that they are constants.

Notably, in these Flory–Huggins-type models, one typically employs the volume fraction of component \(i \), \(\phi_i \), rather than the number density. The volume fraction is given by

\[
\phi_i = \frac{n_i N_i V^0}{V} = \dot{\rho}_i \mathbf{v}_i^0
\]

(56)

where \(\mathbf{v}_i^0 \) is the volume of monomer \(i \). Keeping with the spirit of the original lattice models, \(\mathbf{v}_i^0 \) is typically assumed to be a constant \(\mathbf{v}_0 \), as is the monomer mass, \(M_0^0 = M_0^0 \), rendering the system incompressible with a specific volume \(V = \mathbf{v}_0^0 / M_0^0 \). With these assumptions, mass fractions are equivalent to volume fractions, \(\omega_i = \phi_i \), and incompressibility ensures that \(\phi_i = 1 - \sum_{i=1}^{z} \phi_i \).

Accordingly, the inhomogeneous Gibbs–Duhem relationship simplifies to

\[
\sum_{i=1}^{z-1} \phi_i \nabla \dot{\rho}_i = \mathbf{v}_0^0 (\nabla \cdot \mathbf{\Pi})
\]

(57)
To verify that the Flory–Huggins–de Gennes model is thermodynamically consistent, it is sufficient to show that this equality holds. The osmotic stress on the right-hand side is obtained from eq 53 and is given by

$$\mathbf{v}^0 \Pi = \left[\sum_{i=1}^{z-1} \phi_i \frac{\partial \mu_i^0}{\partial \phi_i} - \sum_{i=1}^{z-1} \sum_{j=1}^{z-1} \phi_i \kappa_{ij} \nabla^2 \phi_j - f_0 - g \right] I$$

$$+ \sum_{i=1}^{z-1} \sum_{j=1}^{z-1} K_{ij} \nabla \phi_i \nabla \phi_j$$

(58)

In the above it is convenient to rewrite eq 55 as

$$g = \frac{1}{2} \sum_{i=1}^{z-1} \sum_{j=1}^{z-1} K_{ij} (\nabla \phi_i \cdot \nabla \phi_j)$$

(59)

where the matrix \(\kappa_{ij} \) is a symmetric matrix of \(\kappa_i \)

$$\kappa_{ij} = \begin{cases} \kappa_i + \kappa_j, & \text{if } i = j \\ \kappa_i, & \text{if } i \neq j \end{cases}$$

(60)

This osmotic stress is consistent with those given by others for single-component Flory–Huggins–de Gennes models. Taking the divergence of the osmotic stress in eq 58 gives

$$\mathbf{v}^0 (\nabla \cdot \Pi) = \sum_{i=1}^{z-1} \phi_i \nabla \left(\frac{\partial \mu_i^0}{\partial \phi_i} + \frac{\partial \mu_i^0}{\partial \phi_i} \nabla \phi_i \right)$$

$$- \sum_{i=1}^{z-1} \sum_{j=1}^{z-1} K_{ij} (\nabla \phi_i \cdot \nabla \phi_j + \nabla^2 \phi_j) - \nabla f_0$$

$$- \nabla g + \sum_{i=1}^{z-1} \sum_{j=1}^{z-1} K_{ij} \nabla \phi_i \nabla \phi_j$$

(61)

and using the product rule and simplifying leads to

$$\mathbf{v}^0 (\nabla \cdot \Pi) = \sum_{i=1}^{z-1} \phi_i \nabla \frac{\partial \mu_i^0}{\partial \phi_i} - \sum_{i=1}^{z-1} \sum_{j=1}^{z-1} K_{ij} \phi_i \nabla^2 \phi_j$$

(62)

On the left-hand side of eq 57 the exchange chemical potential is evaluated by performing the functional derivative in eq 3 giving

$$\bar{\mu}_i = \frac{\partial \mu_i^0}{\partial \phi_i} - \sum_{j=1}^{z-1} K_{ij} \nabla^2 \phi_j$$

(63)

Substituting this expression into the left-hand side of eq 57 yields

$$\sum_{i=1}^{z-1} \phi_i \nabla \bar{\mu}_i = \sum_{i=1}^{z-1} \phi_i \nabla \left(\frac{\partial \mu_i^0}{\partial \phi_i} - \sum_{j=1}^{z-1} \phi_j K_{ij} \nabla^2 \phi_j \right)$$

(64)

which agrees with eq 62, completing the proof of consistency.

DISCUSSION AND CONCLUSION

The literature contains at least three competing versions of the Gibbs–Duhem relationship for inhomogeneous multicomponent systems: eqs 7, 8, and 9. The former owes its potential validity to arguments based on the mechanical equilibrium of a single-component two-phase system, and the latter two were justified based on homogeneous thermodynamics.

Using purely thermodynamic arguments, we first derived a Gibbs–Duhem relationship for a homogeneous system using an exchange chemical potential. This derivation enables two important conclusions. First, the homogeneous version of eq 8 (i.e., eq 12) using traditional chemical potentials is not equivalent to the homogeneous version of eq 9 (i.e., \(\sum_{i=1}^{z-1} n_i \partial \mu_i = 0 \)). Accordingly, the latter is not a valid statement of the Gibbs–Duhem relationship. We suspect that the confusion between these two equations originates from a misunderstanding of the difference between traditional chemical potentials and exchange chemical potentials. Second, we showed that a form of the Gibbs–Duhem equation that uses exchange chemical potentials, eq 31, is equivalent to eq 12, showing that an approach using either traditional chemical potentials or exchange chemical potentials can yield a valid Gibbs–Duhem relationship. This derivation also provided additional insight into the physical meaning of the exchange chemical potentials and the osmotic pressure.

In addition, we demonstrated that exchange chemical potentials are the natural variable for inhomogeneous systems. Because “traditional” chemical potentials are not easily defined for an inhomogeneous system (as is assumed in eq 8) a form of the Gibbs–Duhem relation that relies on them is perhaps valid, but it is not easily used. Instead, we used a work-based argument to obtain a general expression for the multi-component, inhomogeneous Gibbs–Duhem relationship in terms of exchange chemical potentials, and we obtained a general expression for the osmotic stress tensor. This work-based approach is quite similar in spirit to the traditional mechanical equilibrium arguments and has in fact been used by others for deriving two-fluid models, though the derivation has not been previously explicitly connected to the Gibbs–Duhem relation.

Taken together, both the homogeneous and the inhomogeneous arguments are in agreement, and there is a clear justification that eq 7 is a valid and preferred statement of the Gibbs–Duhem relationship for inhomogeneous systems. Importantly, the agreement between the thermodynamic arguments and the work/mechanical arguments in the sections reconcile the apparent disagreement between the two approaches in the literature.

Finally, in the last section, we used our generic formulas to demonstrate the thermodynamic consistency of the popular Flory–Huggins–de Gennes phase-field model. This proof is particularly important because the consistency of these models has been called into question. Indeed, we anticipate that similar disputes will continue to surface as phase-field models increase in both popularity and complexity. Accordingly, we endeavored to provide clear, generic criteria that can be used to critically examine the thermodynamic consistency of future models.

AUTHOR INFORMATION

Corresponding Author

Douglas R. Tree – Chemical Engineering Department, Brigham Young University, Provo, Utah 84602, United States; orcid.org/0000-0002-1412-0244; Email: tree.doug@byu.edu

Author

Rami Alhasan – Chemical Engineering Department, Brigham Young University, Provo, Utah 84602, United States; orcid.org/0000-0002-8215-3793
Complete contact information is available at: https://pubs.acs.org/10.1021/acs.macromol.1c02021

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We gratefully acknowledge conversations and feedback on early drafts from Kris Delaney, Jan Garcia, and Glenn Fredrickson. In addition, we acknowledge financial support from the Board of Trustees at Brigham Young University.

REFERENCES
(17) Evans, R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Advances in physics 1979, 28, 143−200.