Prediction of the Synergistic Glass Transition Temperature of Coamorphous Molecular Glasses Using Activity Coefficient Models

Xiao Zhao, Sixue Cheng, Yung P. Koh, Brandon D. Kelly, Gregory B. McKenna, and Sindee L. Simon*

ABSTRACT: The glass transition temperature (T_g) of a binary miscible mixture of molecular glasses, termed a coamorphous glass, is often synergistically increased over that expected for an athermal mixture due to the strong interactions between the two components. This synergistic interaction is particularly important for the formulation of coamorphous pharmaceuticals since the molecular interactions and resulting T_g strongly impact stability against crystallization, dissolution kinetics, and bioavailability. Current models that describe the composition dependence of T_g for binary systems, including the Gordon–Taylor, Fox, Kwei, and Braun–Kovacs equations, fail to describe the behavior of coamorphous pharmaceuticals using parameters consistent with experimental ΔC_P and $\Delta \alpha$. Here, we develop a robust thermodynamic approach extending the Couchman and Karasz method through the use of activity coefficient models, including the two-parameter Margules, non-random-two-liquid (NRTL), and three-suffix Redlich–Kister models. We find that the models, using experimental values of ΔC_P and fitting parameters related to the binary interactions, successfully describe observed synergistic elevations and inflections in the T_g versus composition response of coamorphous pharmaceuticals. Moreover, the predictions from the NRTL model are improved when the association-NRTL version of that model is used. Results are reported and discussed for four different coamorphous systems: indomethacin–glibenclamide, indomethacin–arginine, acetaminophen–indomethacin, and fenretinide–cholic acid.

KEYWORDS: stable coamorphous pharmaceuticals, glass transition temperature, activity coefficient model

INTRODUCTION

Amorphous or glassy materials can provide improved properties in numerous applications due to their lack of crystallinity and grain boundaries, including in the areas of pharmaceutical and energetic materials.\(^1\)\(^{-21}\) For example, in pharmaceuticals, amorphous drugs provide higher bioavailability and improved dissolution relative to their crystalline counterparts and, thus, lower doses relative to the toxic limit can be used,\(^1\)\(^{-19}\) whereas amorphous energetics are expected to show decreased shock sensitivity and improved performance relative to their crystalline counterparts.\(^20\)\(^{,21}\) The improved bioavailability and solubility of coamorphous solids may also find applications in agrichemicals and personal care and household products.\(^22\)\(^{,23}\) However, the downside of molecular (i.e., low-molecular-weight, nonpolymeric) amorphous solids is their tendency to crystallize during processing, storage, and use. One solution is the addition of polymeric binders or excipients, which are mixed with the low-molecular-weight glass former to form an amorphous solid dispersion, thereby increasing the glass transition temperature and reducing the potential for crystallization; however, the result is poor processability and often low loadings of the active components, leading to low energy densities for glassy energetic materials and, in the case of pharmaceuticals, requiring larger drug dosages and consequently reduced patient compliance. In addition, the hygroscopic polymers used as excipients in pharmaceuticals may result in the formulations being unstable in humid conditions. An alternative solution is the creation of stable coamorphous molecular glasses in which the interactions between two or more low-molecular-weight components are strong enough to prevent phase separation and crystallization of the pure components while, at the same time, ensuring that cocrystallization of the components is frustrated due to a mismatch of shapes or interactions between the components. Coamorphous pharmaceuticals are a relatively new develop-
ment in the drug delivery field and hold the promise of providing significant increases in drug dissolution rates, supersaturation levels, and bioavailability.21–39

The glass transition temperature, T_g, and the dynamics and kinetics of related phenomena, such as structural recovery and physical aging, are at the forefront of studies on coamorphous solids for a number of reasons. First and foremost, since crystallization during storage and use must be avoided, a brute force approach to making a stable coamorphous solid is to make T_g as high as possible. By definition, molecular mobility is approximately the same for all compounds at their T_g (with an α-relaxation time of ~ 100 s), and then, with decreasing temperature, mobility decreases roughly 1 decade every 20 K in the glassy state;40 thus, the higher that we can elevate T_g, the more likely that we can obtain a glass that is stable against crystallization during storage,21,30,31,42 explaining, in part, why polymeric excipients have been commonly used with amorphous drugs despite their drawbacks with respect to hygroscopicity and processing.43–48

Perhaps more importantly, and less well explored, the T_g of a coamorphous solid is reflective of the interactions between the two components,16,23,24,49 and one of the goals of the present work is to develop the framework to predict and understand the relationship between the T_g changes in coamorphous systems and the molecular-level interactions. The focus of this paper is on modeling systems in which there is a synergistic increase in T_g due to strong specific interactions between the two components because that is important for coamorphous pharmaceuticals, but we note that coamorphous systems can also show negative deviations as in several polymer blends50–53 as well.

Based on the earlier work in polymeric systems, in the case of no interactions, the T_g of a miscible amorphous binary mixture is well described by the Gordon–Taylor54,55 or Kelley–Bueche equation56

$$ T_g = \frac{X_1 T_{g1} + X_2 T_{g2}}{X_1 + X_2} $$

(1)

where X_i and T_{gi} are the mole fraction and T_g of species i, respectively, and the parameter k is equal to the ratio of the step change in $(dV/dT)_T = V/\Delta\alpha$ at T_g of the two components ($V_2\Delta\alpha_1/V_1\Delta\alpha_2$) or the ratio of the step change in the heat capacity ($\Delta C_P/\Delta C_H$), depending on whether eq 1 is derived from free volume theory57 or configurational entropy theory.58

Notably, the mole fractions used in eq 1 are interchangeable with weight fractions, as commonly used in the literature,3,15,59 with the units of $V/\Delta\alpha$ or ΔC_P used to determine the k value being per mole or per gram, depending on which is used. Couchman and Karasz60 have also derived eq 1 by considering the nominal glass transition to be an Ehrenfest second-order transition with entropy (or enthalpy or volume) being continuous at T_g. A simplification of eq 1 involving the Simha–Boyer approximation that $\Delta\alpha T_g$ is constant62 results in the widely used Fox equation63

$$ \frac{1}{T_g} = \frac{w_1}{T_{g1}} + \frac{w_2}{T_{g2}} $$

(2)

where w_i is the weight fraction of component i.

Importantly, eqs 1 and 2 predict that the T_g of a mixture lies between the component T_g values and varies monotonically, and smoothly, between them. However, in the case of strong interactions,64 the possibility of nonmonotonic or synergistic behavior exists as is observed in a number of molecular systems, including carvedilol with benzoic, maleic, and citric acids,25 and several drug/amino acid systems.26,27,30,31,34,35,37

The effect of specific interactions was recognized by Kwei,49 who modified the Kelley–Bueche equation (eq 1) to account for hydrogen bonding in polymeric mixtures

$$ T_g = \frac{w_1 T_{g1} + w_2 T_{g2}}{w_1 + w_2} + q w_1 w_2 $$

(3)

where the second term represents the influence of the number of hydrogen bonds or specific interactions in the system and q is an adjustable parameter. This formulation is similar to the second-order concentration term used in the Jenckel–Heusch65 equation. Equation 3 is also similar to the Braun–Kovacs66 equation that was developed based on the assumption of the additivity of the parameter B in Doolittle’s67 viscosity equation at the glass transition, leading to an iso-free volume surface at T_g with the excess volume also given by a term that is second-order in concentration qX_1X_2

$$ T_g = \frac{X_1 T_{g1} + X_2 k T_{g2} + qX_1X_2}{X_1 + X_2k} $$

(4)

where q again is an adjustable parameter. It is also again emphasized that in eq 3 or 4, either mole or weight fractions can be used with k adjusted accordingly. Both the Kwei and Braun–Kovacs equations can predict nonmonotonic increases in T_g; however, the equations assume that the interactions are a maximum for either a 50/50 weight or mole fraction mixture, respectively. Then, without taking the parameter k as a fitting parameter, they are unable to describe systems in which there is unusual synergy such that the T_g change relative to the “ideal” case of the Gordon–Taylor or Fox equation is asymmetrical with respect to composition. Of course, a symmetrical model in terms of mole fraction will become asymmetrical in terms of weight or volume fraction, but even so, the point of maximum deviation from the ideal T_g behavior given by the Gordon–Taylor or Fox equation is predetermined by the molecular-weight difference and the k value; hence, it is found that k needs to be taken as a fitting parameter to provide the Kwei and Braun–Kovacs equations with sufficient flexibility to fit highly asymmetric data.

From a theoretical perspective, the synergistic elevation of T_g has also been considered in the Flory–Huggins framework, in addition to a configurational entropy framework. However, as shown by Kim et al.,68 the model requires the knowledge of lattice coordination number and still uses the strength of the specific interactions as fitting parameters. On the other hand, the synergistic interactions were theoretically interpreted in the Painter–Coleman association model,69 where Couchman and Karasz’s60 approach was extended by counting the self- and cross-association interactions in the liquid state; the model successfully predicts the maximum T_g for the coamorphous mixture of poly(vinyl pyridine) and poly(vinyl phenol) and requires no fitting parameters, although the association strength and population need to be predetermined by infrared spectroscopic measurements.

In this study, we aim to develop a framework to predict the synergistic T_g behavior while maintaining the physical significance of the parameters. The intermolecular interactions, or nonideal mixing, are accounted for by activity coefficient models. Such activity coefficient models have been extensively used to describe and predict phase equilibria in nonideal
systems, including but not limited to polymer solutions,69–72 hydrogen-bonding fluids73–76 and ionic solutions.77–80
Furthermore, activity coefficient models can be combined with perturbation theories to describe complex association interactions.81,82 Here, we develop our model and then show predictions of T_g as a function of the composition for multiple pharmaceutical coamorphous systems within a framework that uses activity coefficient models to describe the nonideal mixing. The results are compared to predictions using the Gordon–Taylor, Kwei, and Braun–Kovacs equations. The investigation includes analysis of T_g data for four coamorphous systems: indomethacin–glibenclamide, indomethacin–arginine, acetaminophen–indomethacin, and fenretinide–cholic acid. The data come from calorimetric measurements of the glass transition temperature as a function of composition and are measured in this study and/or obtained from the literature.

METHODOLOGY

Derivation of the Model. The model is derived as shown below for a binary mixture, and extrapolation to a multiple-component system is unchallenging and will not be shown. Based on the Painter–Coleman association model83,84 framework, we interpret the specific interactions in the liquid state by the excess enthalpy, ΔH_{liq}^{E}, a well-defined thermodynamic property that represents the enthalpy difference between the real and ideal (athermal) mixtures

$$T_g = \frac{X_1 T_{g1} + X_2 T_{g2} - \Delta H_{liq}^{E} / \Delta C_p}{X_1 + X_2} \tag{5}$$

and

$$k = \frac{\Delta C_{p2}}{\Delta C_{p1}} \tag{6}$$

Notably, Painter et al. attributed the temperature dependence of ΔC_p to the self-association among species themselves, and this temperature-dependent association strength can be accounted for when assuming ΔH_{liq}^{E} is temperature-dependent in our method, such as for the association-non-random-two-liquid (NRTL) model that will be shown below.

The excess enthalpy is theoretically expressed in terms of mole fraction and the activity coefficient, γ_i, of species i (=1 or 2)

$$\Delta H_{liq}^{E} = RT(X_1 \ln \gamma_1 + X_2 \ln \gamma_2) \tag{7}$$

where R denotes the gas constant. The activity coefficient as a function of composition (or temperature) can be estimated, empirically or theoretically, by activity coefficient models,83,84 of which the simplest one is the empirical one-parameter Margules model85

$$\Delta H_{liq}^{E} = RTA_{12}X_1X_2 \tag{8}$$

Here, A_{12} is a constant that indicates the strength of the specific interactions. Equation 8 results in a correction similar to the Braun–Kovacs equation (eq 4). The two-parameter Margules model85 adds more complexity

$$\Delta H_{liq}^{E} = RTX_1X_2(A_{12}X_1 + A_{12}X_2) \tag{9}$$

where A_{12} and A_{12}' are the adjustable parameters that describe a composition-dependent strength of the binary interactions. Moreover, expressions for the interactions that could be multibody, such as the three-suffix Redlich–Kister activity coefficient model,86 may be useful to describe more complex binary or higher-order interactions

$$\Delta H_{liq}^{E} = RTX_1X_2\left[B_{12} + C_{12}(X_1 - X_2) + D_{12}(X_1 - X_2)^2 \right] \tag{10}$$

where B_{12}, C_{12}, and D_{12} are adjustable parameters. It is important to note that in all of these models, as well as the NRTL model discussed below, the model parameters are directly related to the strength of specific interactions, and these interactions are not a function of composition. However, the excess enthalpy, itself, is a function of composition because even for a binary mixture of A and B molecules, the probability of A–A, B–B, and A–B interactions changes with composition.

Further complexity, in comparison to the two-parameter Margules model, and with a theoretical connection to the underlying interactions, is obtained using the non-random-two-liquid theory (NRTL)87 in which the intermolecular interactions result in differences between local and bulk concentrations, as originally suggested by Wilson’s local composition theory88

$$\Delta H_{liq}^{E} = RTX_1X_2\left[\frac{\tau_{12}G_{12}}{X_1G_1 + X_2} + \frac{\tau_{12}G_{21}}{X_1 + X_2G_2} \right] \tag{11}$$

and

$$G_{ij} = \exp(-\alpha_i\tau_{ij}) \tag{12}$$

Here, the τ_{ij} are the normalized local interaction energies between the component i around j relative to those among the component j themselves, which is assumed to be temperature-independent in the present study; G_{ij} represents a weighting factor that accounts for the local composition relative to the overall composition; α_i is a nonrandomness parameter that has been shown to be related to the reciprocal of the coordination number of the lattice, which is expected to be a positive constant of the order 0.1–0.3 for coordination numbers on the order of 6–12. In the present study, α_i is taken to be 0.3 as is often suggested in the literature.89,90,92

Although the NRTL model often better describes nonidealities than does the two-parameter Margules model, it has been shown to insufficiently correlate association interactions52,93 as it requires multiple sets of parameters to separately predict the liquid–liquid- and vapor–liquid-phase equilibria for hydrogen-bonding mixtures. This problem can be mitigated by separating the association (chemical) interactions from the physical dispersion and/or repulsion interactions in the NRTL model.82,83 Moreover, the association interactions can be effectively predicted using perturbation theories92 without knowing the association energy or the equilibrium constant of the “reaction”; technically, the association interactions are approximated by perturbation expansions from a reference fluid. Here, we follow the approach outlined in a recently published association-NRTL (A-NRTL) activity coefficient model82 to improve the interpretation of the additive physical and chemical interactions in the synergistic coamorphous systems

$$\ln \gamma_i = \ln \gamma_i^{NRTL} + \ln \gamma_i^{Aso} \tag{13}$$

where $\ln \gamma_i^{NRTL}$ accounts for the physical force and is expressed using eq 11 but with different sets of τ_{ij}; $\ln \gamma_i^{Aso}$ accounts for hydrogen-bonding or similar association interactions and is
expressed using a simplified model93 of the statistical associating fluid theory (SAFT)94 that originates from Wertheim’s thermodynamic perturbation theory95,96. According to Hao and Chen,82 the overall association interaction is reflected by the concentration of unbound hydrogen bond acceptor and donor sites in the mixture (X^A) and in the pure component (X^B)

$$\ln \gamma_i^{\text{A iso}} = \sum B \nu_B \left[\ln \left(\frac{X^B}{X_i} \right) + \frac{X_i - 1}{2} \right]$$

$$+ r_i \sum B \rho_B \left(\frac{1 - X^B}{2} \right)$$

(14)

Here, B denotes hydrogen bond acceptor (A) and donor (D) sites among all species; ν_B is the number of the B site in molecule i; r_i is the normalized van der Waals volume of molecule i; and $\rho_B (= \sum_{i=1}^{N_B} \rho_i)$ is the dimensionless molar density of the B site in the mixture. X^A and X^B are in units of mole fraction and are obtained from the mass balance

$$X^A = \frac{1}{1 + \sum D \rho_D \Delta^{AD} X^D} \text{ and } X^D = \frac{1}{1 + \sum A \rho_A \Delta^{AD} X^A}$$

and

$$X^A = \frac{1}{1 + \sum D \rho_D \Delta^{AD} X^D} \text{ and } X^D = \frac{1}{1 + \sum A \rho_A \Delta^{AD} X^A}$$

(15)

(16)

Here, $\rho_B (= \sum_{i=1}^{N_B} \rho_i)$ is the dimensionless molar density of the B site in pure component i; and Δ^{AD} is the normalized association strength between an acceptor site and a donor site and is approximated by a product of the association strength parameters, δ^A and δ^D, respectively, for the acceptor site and donor site, relative to a normalized reference association strength

$$\Delta^{AD} = \frac{\delta^A \delta^D}{\delta_{ref}^A \delta_{ref}^D} \text{ and } \delta_{ref}^{AD}$$

(17)

Moreover, Δ^{AD} is chosen as that of the self-association in water molecules, as is recommended in the A-NRTL model, giving that $\delta_{ref}^A = 1$ and $\delta_{ref}^D = 1$, and

$$\Delta_{ref}^{AD} = 0.034 \left(\exp \left(\frac{1960}{T} \right) - 1 \right)$$

(18)

In the present study, r_i is estimated by Bondi’s group-contribution method.97 ν_B is the number of acceptor and donor sites for each species as obtained from the PubChem database.98–103 Furthermore, for a given species, all acceptor sites have the same δ^A and the same is true for donor sites. δ^A, δ^D, τ_{12}, and τ_{13} are determined from the best fit to the T_g data.

In what follows, we compare the two parameter Margules (eq 9), NRTL (eqs 11 and 12), A-NRTL (eqs 13–18), and three-suffix Redlich–Kister (eq 10) activity coefficient models with the Gordon–Taylor (eq 1), Kovacs–Braun (eq 4), and Kwei (eq 3) equations in their description of the synergistic T_g data for four binary pharmaceutical coamorphous mixtures: indomethacin–glibenclamide, indomethacin–arginine, acetaminophen–indomethacin, and fenretinide–cholic acid. The k values used in this work are shown in Table 1. They are estimated using eq 6 along with experimental values of ΔC_p (per mole) for three of the four systems studied; for the system indomethacin/arginine, the k value is taken from ref 31 and converted from a per-gram to per-mole basis. All adjustable parameters are determined from the best prediction of the composition-dependent T_g data using the gradient descent method.104 The uncertainties in the parameters are estimated from a biased error of $\pm 5\%$ on the T_g data.

Materials. Indomethacin ($\geq 99\%$), glibenclamide ($\geq 99\%$), acetaminophen ($\geq 99\%$), and cholic acid ($\geq 99\%$) are used as obtained from Sigma-Aldrich (St. Louis, MO) for the investigation. Fenretinide ($\geq 98\%$) is obtained from Apexbio (Houston, TX) and used for the composition dependence study, whereas fenretinide ($\geq 99\%$, Sigma-Aldrich) is used to measure the thermal properties of the pure compound. All materials were received and initially used in the crystalline state and tested by differential scanning calorimetry (DSC) to obtain the T_g data. To compare the data measured in this study to that in the literature, data for indomethacin–glibenclamide and acetaminophen–indomethacin systems are also obtained from Pajula et al.105 Data for the indomethacin–arginine system are taken from Jensen et al.106 The chemical structure of the pharmaceutical molecules and other excipients that are studied here are provided in Table 2.

Differential Scanning Calorimetry (DSC) Measurements and Analysis. A conventional DSC (Mettler Toledo DSC 823e, Switzerland), equipped with a Freeman cooling system and a nitrogen purge, was used to measure T_m, T_g, and ΔC_p for all pure compounds and for the coamorphous mixtures as a function of composition. Prior to measurements, the DSC temperature and heat flow were calibrated using indium. Samples were sealed in 20 μL aluminum hermetic pans under nitrogen with sample mass ranging from 2 to 5 mg.

All DSC measurements included two heating cycles. Samples were first heated at 10 K/min from room temperature to 10 K above the T_m of the pure glibenclamide, indomethacin, and cholic acid for the indomethacin–glibenclamide, acetaminophen–indomethacin, and fenretinide–cholic acid sample, respectively, followed by an isothermal hold for 1 min. Samples were then cooled at 10 K/min to 40 K below the T_m of the pure indomethacin, acetaminophen, and fenretinide for the indomethacin–glibenclamide, acetaminophen–indomethacin, and fenretinide–cholic acid samples, respectively, with no recrystallization observed during cooling. A second heating scan was then performed at 10 K/min to 10 K above T_m and T_g was obtained on this scan. None of the scans showed an endotherm or exotherm at high temperatures related to degradation or decomposition. The scans also did not show any melting endotherms on the second heating and, thus, indicate the complete coamorph formation.

The melting points, T_m, for the pure compounds were obtained from the onset temperature of the melting

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>indomethacin–glibenclamide</td>
<td>measured in this study</td>
</tr>
<tr>
<td>indomethacin–arginine</td>
<td>retrieved from ref 31</td>
</tr>
<tr>
<td>acetaminophen–indomethacin</td>
<td>measured in this study</td>
</tr>
<tr>
<td>fenretinide–cholic acid</td>
<td>measured in this study</td>
</tr>
</tbody>
</table>

aIn ref 31, k is determined as T_g/T_g^ref for a gram-based unit, and it is converted in this work to a per-mole basis.
endotherms, and the results are provided in Table 3. T_g values of the pure materials are obtained on the second heating by determining the fictive temperature, T_f106, using Moynihan’s method107 and they are also provided in Table 3. T_g measured on heating after cooling at a given rate in the absence of isothermal aging in the glassy state, is equivalent to T_g108,109 measured on a cooling at that same rate; T_f also represents the vitrified structure, where the glassy enthalpy intersects the extrapolated supercooled liquid enthalpy in a plot of enthalpy versus temperature. The DSC heat flow data for the second heating of the pure compounds are shown in Figure 1, where overshoots are obviously observed such that Moynihan’s method is needed for a consistent analysis. However, since many researchers analyze such data using the midpoint method and ignoring the overshoot, we also provide midpoint T_g values in Table 3 to compare with those from Moynihan’s method. The T_f values from Moynihan’s method are lower than those from the midpoint method by as little as 0.6 °C for fenretinide to as much as 3.0 °C for glibenclamide; the difference is related to the magnitude of the overshoot relative to the significance of the step change ΔC_P at T_g, the latter of which is calculated at T_i and is also provided in Table 3. In the current study, the T_i values are used and referred to as T_g for further modeling.

RESULTS

Experimental T_g data for indomethacin(1)–glibenclamide(2) obtained in the present work (crosses) are shown in Figure 2A, along with the data from Pajula et al.105 (open circles) and model predictions. For this coamorphous pharmaceutical mixture, the T_g data manifest a maximum in the glibenclamide

Table 2. Chemical Structures for Pharmaceutical Molecules and Excipients Investigated

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indomethacin</td>
<td></td>
</tr>
<tr>
<td>Glibenclamide</td>
<td></td>
</tr>
<tr>
<td>Arginine</td>
<td></td>
</tr>
<tr>
<td>Acetaminophen</td>
<td></td>
</tr>
<tr>
<td>Fenretinide</td>
<td></td>
</tr>
<tr>
<td>Cholic Acid</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. DSC Results of T_m, T_f, T_g, and ΔC_P for Pure Indomethacin, Glibenclamide, Acetaminophen, Cholic Acid, and Fenretinide

<table>
<thead>
<tr>
<th>Material</th>
<th>T_m (°C)</th>
<th>T_f (°C)</th>
<th>T_g (°C)</th>
<th>ΔC_P (J mol-1 K-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indomethacin</td>
<td>160.1</td>
<td>38.7</td>
<td>41.5</td>
<td>142.0</td>
</tr>
<tr>
<td>Glibenclamide</td>
<td>168.8</td>
<td>52.5</td>
<td>55.5</td>
<td>194.6</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>169.3</td>
<td>17.1</td>
<td>20.0</td>
<td>101.8</td>
</tr>
<tr>
<td>Cholic Acid</td>
<td>201.4</td>
<td>123.0</td>
<td>125.1</td>
<td>193.7</td>
</tr>
<tr>
<td>Fenretinide</td>
<td>155.2</td>
<td>77.7</td>
<td>78.3</td>
<td>177.4</td>
</tr>
</tbody>
</table>

T_f is obtained using Moynihan’s method.107 T_g is obtained using the midpoint method. ΔC_P is obtained at the corresponding T_g.

Figure 1. DSC heat flow data for pure acetaminophen, indomethacin, glibenclamide, fenretinide, and cholic acid measured on the second heating scan at 10 K/min.
composition dependence, although the T_g data measured by Pajula et al. are on average 7.9 °C higher than our data, as is indicated by the secondary y-axis in Figure 2A. The difference is presumably due to the fact that Pajula et al. cooled their samples at an uncontrolled and faster rate resulting in a higher T_g and they took the midpoint T_g rather than using the T_i from Moynihan’s method, which also increases T_g by roughly 3 °C. The T_g data measured in the present study and the shifted data from Pajula et al. were fitted to eq 5, with ΔH_{liq}^E given by the A-NRTL, NRTL, and two-parameter Margules activity coefficient models and with the k value, which is equated to the ratio of $\Delta C_{pi}/\Delta C_{p1}$ in eq 6, experimentally found here to be 1.37. The adjustable parameter values, along with the root-mean-square error (RMSE) from the model fits to the T_g data, are reported in Table 4. For the A-NRTL model, the values of r_0, ν_i^2, δ^i, and δ^{0} parameters are reported in Table 5; of particular note, the δ^A and δ^{0} values for indomethacin were optimized by simultaneously fitting the T_g data for the three coamorphous systems that contain indomethacin. The A-NRTL, NRTL, and two-parameter Margules models all quantitatively predict the off-center maximum T_g near $X_1 = 0.30$ and its magnitude, giving RMSE values of 1.4–1.8 °C. The activity coefficient model parameters are further used to calculate ΔH_{liq}^E based on eqs 10, 11, and 13, with the predictions of ΔH_{liq}^E plotted in Figure 2B against mole fraction indomethacin. Also shown as points are ΔH_{liq}^E data calculated from eq 5 using the T_g data. The A-NRTL, NRTL, and Margules models predict negative bell-shaped curves that agree well with the data and indicate the miscibility between the two species in the liquid state. The fits of the Kwei and Braun–Kovacs equations are also shown in Figure 2A using the experimental k value of 1.37, and both models predict a maximum close to the equimolar composition rather than the observed asymmetric data, resulting in larger RMSE values of 2.8 and 3.3 °C, respectively.

Experimental T_g data for indomethacin(1)–arginine(2) from Jensen et al.31 are shown in Figure 3A, along with model predictions. The corresponding excess enthalpy plots are shown in Figure 3B. For this coamorphous pharmaceutical

Table 4. Values of Fitting Parameters and Mean-Square Errors for the Four Pharmaceutical Coamorphous Systems Investigated

<table>
<thead>
<tr>
<th>System</th>
<th>A-NRTL</th>
<th>NRTL</th>
<th>Margules</th>
<th>Kwei</th>
<th>Braun–Kovacs</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{12}</td>
<td>–3.21 ± 0.24</td>
<td>–1.49 ± 0.44</td>
<td>–1.52 ± 0.23</td>
<td>–1.10 ± 0.66</td>
<td></td>
</tr>
<tr>
<td>τ_{11}</td>
<td>2.13 ± 0.88</td>
<td>0.362 ± 0.80</td>
<td>2.81 ± 0.86</td>
<td>6.76 ± 4.30</td>
<td></td>
</tr>
<tr>
<td>RMSE (°C)</td>
<td>1.76</td>
<td>5.01</td>
<td>0.82</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>τ_{22}</td>
<td>–3.54 ± 0.23</td>
<td>–2.44 ± 0.34</td>
<td>–1.72 ± 0.22</td>
<td>–2.03 ± 0.53</td>
<td></td>
</tr>
<tr>
<td>τ_{21}</td>
<td>2.28 ± 0.94</td>
<td>–2.88 ± 0.35</td>
<td>3.54 ± 1.22</td>
<td>8.33 ± 4.50</td>
<td></td>
</tr>
<tr>
<td>RMSE (°C)</td>
<td>1.44</td>
<td>5.77</td>
<td>0.73</td>
<td>5.70</td>
<td></td>
</tr>
<tr>
<td>A_{12}</td>
<td>–6.48 ± 0.96</td>
<td>–7.07 ± 1.03</td>
<td>0.187 ± 0.66</td>
<td>3.46 ± 1.63</td>
<td></td>
</tr>
<tr>
<td>A_{21}</td>
<td>–1.20 ± 0.92</td>
<td>–8.10 ± 1.22</td>
<td>–0.755 ± 0.626</td>
<td>–6.05 ± 1.61</td>
<td></td>
</tr>
<tr>
<td>RMSE (°C)</td>
<td>1.62</td>
<td>5.57</td>
<td>0.80</td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td>q (°C)</td>
<td>62.7 ± 7.2</td>
<td>227 ± 18</td>
<td>6.16 ± 6.76</td>
<td>25.9 ± 13.8</td>
<td></td>
</tr>
<tr>
<td>RMSE (°C)</td>
<td>2.76</td>
<td>8.41</td>
<td>0.95</td>
<td>6.02</td>
<td></td>
</tr>
<tr>
<td>q (°C)</td>
<td>72.8 ± 8.3</td>
<td>163 ± 13</td>
<td>7.62 ± 8.05</td>
<td>28.1 ± 14.5</td>
<td></td>
</tr>
<tr>
<td>RMSE (°C)</td>
<td>3.29</td>
<td>6.53</td>
<td>0.92</td>
<td>5.93</td>
<td></td>
</tr>
</tbody>
</table>
The A-NRTL, NRTL, and two-parameter Margules models also predict negative bell-shaped curves of ΔH_{liq} versus composition that qualitatively agree with the data, as shown in Figure 3B, indicating the miscibility between two species in the liquid state, but the magnitude of the minimum is not captured. The fits of the Kwei and Braun–Kovacs equations are also shown in Figure 3A using the experimental k value of 0.469; neither are satisfactory, giving RMSE values of 8.4 and 6.5 °C, respectively.

Experimental T_g data for acetylsalicylic acid (1)–indomethacin (2) obtained in the present work (crosses) are shown in Figure 4A, along with the data from Pajula et al.105 (open circles) and model predictions. The corresponding excess enthalpy plots are shown in Figure 4B. For this coamorphous pharmaceutical mixture, the T_g data manifest a monotonically descending inflectional behavior, showing a gradually diminished negative dT_g/dX_1 followed by a gradually strengthened one, with the inflection point located in the acetylsalicylic acid-rich region near $X_1 = 0.30$. The two sets of experimental data

"For indomethacin, values of δ^1 and δ^0 are obtained by simultaneously fitting the T_g data for three systems, indomethacin–glibenclamide, indomethacin–arginine, and acetylsalicylic acid–indomethacin.”

Table 5. Values of A-NRTL Parameters r_i, $V_{B,i}$, and δ^0 for Species Studied Here

<table>
<thead>
<tr>
<th>Species</th>
<th>r_i</th>
<th>$V_{B,i}$</th>
<th>δ^1</th>
<th>δ^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>indomethacin</td>
<td>12.1</td>
<td>4</td>
<td>1</td>
<td>1.33 ± 0.31</td>
</tr>
<tr>
<td>glibenclamide</td>
<td>17.1</td>
<td>5</td>
<td>4.09 ± 0.57</td>
<td>3.97 ± 0.25</td>
</tr>
<tr>
<td>arginine</td>
<td>6.45</td>
<td>4</td>
<td>0.75 ± 0.15</td>
<td>8.54 ± 1.17</td>
</tr>
<tr>
<td>acetylsalicylic acid</td>
<td>5.60</td>
<td>2</td>
<td>6.05 ± 0.70</td>
<td>0.21 ± 0.09</td>
</tr>
<tr>
<td>cholic acid</td>
<td>17.5</td>
<td>5</td>
<td>1.09 ± 0.41</td>
<td>4.52 ± 3.80</td>
</tr>
<tr>
<td>fenretidine</td>
<td>16.1</td>
<td>2</td>
<td>4.98 ± 2.64</td>
<td>0.11 ± 0.60</td>
</tr>
</tbody>
</table>

° For indomethacin, values of δ^1 and δ^0 are obtained by simultaneously fitting the T_g data for three systems, indomethacin–glibenclamide, indomethacin–arginine, and acetylsalicylic acid–indomethacin.
are consistent with one another with respect to the composition dependence, although the T_g data measured by Pajula et al. are on average 4.5 °C higher than our data, as is indicated by the secondary y-axis in Figure 4A, due to their higher cooling rate and midpoint analysis method as described above for the indomethacin–glibenclamide system. The T_g data measured in the present study and the shifted data from Pajula et al. were fitted to the activity coefficient models using an experimental k value of 1.39. The model parameters, along with the RMSE values for the fits to the data, are reported in Table 4, and the A-NRTL model parameters are reported in Table 5. The A-NRTL, NRTL, and two-parameter Margules models all quantitatively predict the inflection point near $X_t = 0.30$ and its curvature, giving RMSE values of 0.7–0.8 °C. In Figure 4B, the A-NRTL, NRTL, and Margules models predict an "unlike" (positive ΔH^liq_{fi} maximum) interaction in the indomethacin-rich region followed by a "like" (negative ΔH^liq_{fi} minimum) interaction that qualitatively agrees with the data. The fits of the Kwei and Braun–Kovacs equations are also shown in Figure 4A using an experimental k value of 1.39, and neither predict the observed inflectional behavior.

Experimental T_g data for fenretinide(1)–cholic acid(2) obtained in the present work are shown in Figure 5A, along with model predictions. The corresponding excess enthalpy plots are shown in Figure 5B. For this coamorphous pharmaceutical mixture, the T_g data manifest a descending inflectional behavior similar to that of the acetaminophen–indomethacin system, except that the inflection point is located in the cholic acid-rich region near $X_t = 0.65$, and for $X_t > 0.80$, the gradually strengthened negative dT_g/dX_t is much stronger than is observed for acetaminophen–indomethacin, leading to an elevation of T_g 14 °C above the Gordon–Taylor prediction. The T_g data measured in the present study were fitted to the activity coefficient models using an experimental k value of 1.11. The model parameters, along with the RMSE values for the fits to the data, are reported in Table 4, and the A-NRTL model parameters are reported in Table 5. The best description of the inflectional behavior is given by the two-parameter Margules model with an RMSE value of 2.9 °C. The A-NRTL and NRTL models do not capture the location of the inflection point, although the A-NRTL model improves the correlation of the NRTL model with the prediction of the inflection point right-shifted from $X_t = 0.20$ to 0.30.

In Figure 5B, although all three of these activity coefficient models predict unlike (positive ΔH^liq_{fi} maximum) interactions in the cholic acid-rich region followed by the like (negative ΔH^liq_{fi} minimum) interaction in the fenretinide-rich region, none quantitatively describe the strength or position of the strong like interaction. Again, the two-parameter Margules model gives the closest description of this ΔH^liq_{fi} predicting a minimum of -2100 J/mol near $X_t = 0.75$, compared to an experimental minimum of -2300 J/mol at $X_t = 0.85$. The fits of the Kwei and Braun–Kovacs equations are also shown in Figure 5A using an experimental k value of 1.11, and neither predict the observed inflectional behavior.

DISCUSSION

Examination of the τ_i parameters for NRTL and A-NRTL models shows that the τ_i values are generally smaller in magnitude but the same sign for A-NRTL in comparison to those for NRTL. This is because the τ_i terms in A-NRTL only account for the physical dispersion and/or repulsion and not for the chemical association interactions. A similar result was observed by Hao and Chen. However, in the case of the indomethacin–arginine system, the sign of τ_{12} changes from the negative for NRTL to the positive for A-NRTL, as shown in Table 4. This change of the sign is due to the flexibility of this parameter in terms of its contribution to the overall interactions, given that the majority of the like interactions are captured by the statistical association theory in A-NRTL, i.e., 90% of ΔH^liq_{fi} is attributed to the summation of X_i^{asso}.

Furthermore, values of the δ^A and δ^P parameters in A-NRTL qualitatively reveal information concerning the sites of the association interactions. For indomethacin and glibenclamide, the values of δ^A are 4.17 and 4.09, respectively, indicating comparable strong associating abilities of the acceptor site toward the donor site for both species; the δ^P parameter value for glibenclamide is 3.97 and is 3 times higher than that for indomethacin. Hence, a competition exists between the self-association within glibenclamide and the cross-association between the two species, leading to a weak net association interaction. Thus, magnitudes of the τ_i parameters for A-NRTL are only slightly reduced in comparison to those for NRTL. Similarly, for acetaminophen–indomethacin, competition between the self- and cross-associations exists, and the result is a weak net association interaction.

On the other hand, for indomethacin–arginine, values of the δ^A and δ^P parameters indicate a strong cross-association between the acceptor site in indomethacin and the donor site in arginine, which is consistent with strong interactions between the indomethacin carboxylate group and the arginine

Figure 5. (A) T_g data measured in the present study and model predictions for fenretinide(1)–cholic acid(2) as a function of mole fraction fenretinide (X_t). (B) Excess enthalpy for fenretinide(1)–cholic acid(2) as a function of X_t calculated from experimental data using eq 5 and predicted by activity coefficient models.
guanidine group, as observed by Jensen et al.31 using Fourier transform infrared (FTIR) spectroscopy. However, the statistical association-NRTL model does not well describe the gradually strengthened dT_g/dX_1 when approaching the maximum T_g due to two potential reasons. First, Δ^{AD} is not a constant parameter but is assumed to decrease as temperature increases, being proportional to $1/T$ in eq 18, eliminating this constraint in the model and allowing Δ^{AD} to be independent of temperature result in an improved fit that qualitatively captures the gradually steepened slope giving an RMSE value of 3.0 °C. A second potential issue is that each site is assumed to establish only one single association with another site92 and all acceptor and donor sites on a given molecule are assumed to be identical. Thus, a model that can describe more complex and higher-order interactions, such as the three-suffix Redlich–Kister activity coefficient model,86 eq 10, provides a quantitative description of both T_g and ΔH^e as shown in Figure 6, where both the gradually steepened slope and the level of the maximum T_g are captured, giving an RMSE value of 2.1 °C, the three-suffix Redlich–Kister model also uses an experimental k value of 0.47, and values of the B_{12}, C_{12}, and D_{12} fitting parameters are -8.34, 0.27, and 5.91, respectively.

For fenretinide–cholic acid, values of the δ^b and δ^o parameters also indicate a strong cross-association between the acceptor site in fenretinide and the donor site in cholic acid. The association interaction is extremely strong for $X_1 > 0.70$, as is manifested by the positive deviation of T_g that is 11.8 °C above the Gordon–Taylor prediction at $X_1 = 0.76$ and is equivalent to 31% of the T_g data range. Neither the NRTL nor the A-NRTL models predict strong like interactions in this range. On the other hand, the three-suffix Redlich–Kister model can again capture this large positive deviation, as is also shown in Figure 6, giving an RMSE of 1.6 °C, implying the existence of more complex or higher-order interactions in the fenretinide-rich region; the three-suffix Redlich–Kister model also uses an experimental k value of 1.11, and values of the B_{12}, C_{12}, and D_{12} fitting parameters are -0.42, -4.31, and -5.11, respectively.

As was pointed out in the Introduction section, the Kwei and Braun–Kovacs equations are often able to describe the T_g data when k is taken as a fitting parameter. In fact, Kwei applied the equation to describe inflectional behavior for the mixture of poly(methyl methacrylate) and Novolac B with k equal to 12, compared to an experimental k value of 0.94 (estimated by $T_g/2k$). Similarly, in this work, the Kwei equation, eq 3, quantitatively captures the inflectional T_g data for acetaminophen–indomethacin, with k and q equal to 0.35 ± 0.11 and 35.6 ± 6.8 °C, respectively, giving an RMSE value of 0.74 °C; in addition, the Kwei equation can quantitatively capture the inflectional T_g for fenretinide–cholic acid, with k and q equal to 9.2 ± 3.3 and $-57.0 ± 13.7$ °C, respectively, giving an RMSE value of 0.76 °C. However, the Kwei equation cannot describe the synergistic off-center maximum T_g for indomethacin–glibenclamide even when k is taken as a fitting parameter because the term gw_1w_2, in eq 3, always favors an extremum at $w_1 = 0.50$ or $X_1 = 0.60$, rather than at the experimentally observed value of $w_1 = 0.25$ or $X_1 = 0.30$. On the other hand, the Braun–Kovacs equation, eq 4, quantitatively captures the off-center maximum of T_g for indomethacin–glibenclamide, with k and q equal to 0.32 ± 0.12 and 51.2 ± 4.9 °C, respectively, giving an RMSE value of 1.4 °C. However, the Braun–Kovacs equation cannot describe inflectional T_g data. Thus, both the Kwei and Braun–Kovacs equations have significant limitations in describing the composition dependence of T_g for coamorphous systems with strong interactions, even when k is taken as a fitting parameter. Furthermore, when k is adjusted, the physical meaning is lost and the equations do not provide the insight needed to understand and predict coamorphous systems.

Importantly, our methodology uses a k parameter equal to the experimental value of $\Delta C_P/\Delta C_P^1$ and, thus, the appropriate physics is captured, allowing synergistic T_g behaviors to not only be described but also be predicted if activity model parameters can be determined from other data or simulations. In fact, activity coefficient models have been widely used to solve solid–liquid equilibrium problems to predict the aqueous solubility of pharmaceutical molecules and the miscibility between coamorphous or cocrystal species. In addition, activity coefficient model parameters can be obtained directly from molecular dynamics simulations or can be predetermined by correlating solid–liquid equilibria data in simple liquids, for example, using the UNIFAC,116 NRTL-segment activity coefficient (SAC),117,118 or association-NRTL-SAC.119 The NRTL-SAC model has been used to predict drug solubility in complex solvents,120–122 and it focuses on the characteristic hydrophobicity, hydrophilicity, and polar attractiveness and repulsivity of single molecules, sophisticatedly accounting for the overall intermolecular interactions, which can be obtained by fitting equilibria data for simple molecular liquids. The association-
Our methodology assumes that the acid indicating complex binary or higher-order associations. Redlich-Kister equations can capture only the sectional or sectional activity coefficient model quantitatively describes the nonideality for indomethacin–arginine and fenretinide–cholic acid indicating complex binary or higher-order associations. The framework developed here is anticipated to be extended to allow predictions of \(T_g \) and miscibility of coamorphous mixtures using activity coefficient models with parameters obtained from solubility data and/or molecular simulations.

CONCLUSIONS

The synergistic glass transition temperature (\(T_g \)) of binary pharmaceutical coamorphous mixtures is well described by extending Couchman and Karasz’s approach and using activity coefficient models for the excess enthalpy in the liquid state. The off-center maximum in \(T_g \) data as a function of composition is captured by the \(\Delta \)-NRTL, NRTL, and two-parameter Margules models, quantitatively for indomethacin–glucosamine and qualitatively for indomethacin–arginine. The inflectional \(T_g \) behavior for acetaminophen–indomethacin is quantitatively predicted by these three-activity coefficient models, whereas that for fenretinide–cholic acid is poorly captured due to the insufficient description of the strong like interaction in the fenretinide–rich region. The three-suffix Redlich–Kister activity model quantitatively describes the nonideality for indomethacin–arginine and fenretinide–cholic acid indicating complex binary or higher-order associations. Our methodology assumes that the \(k \) parameter in the \(T_g \) versus composition equations is equal to the experimental value of \(\Delta C_{pV}/\Delta C_{pV} \). On the other hand, the Kwei and Braun–Kovacs equations can capture only the inflectional or asymmetrical maximum behavior, respectively, when \(k \) is treated as a fitting parameter, and in this situation, \(k \) loses its physical significance. The framework developed here is anticipated to be extended to allow predictions of \(T_g \) and miscibility of coamorphous mixtures using activity coefficient models with parameters obtained from solubility data and/or molecular simulations.

AUTHOR INFORMATION

Corresponding Author
Sindee L. Simon — Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States; orcid: 0000-0001- 5676-9930; Email: slsimon@ncsu.edu

Authors
Xiao Zhao — Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
Sixue Cheng — Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
Yung P. Koh — Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States

Brandon D. Kelly — Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
Gregory B. McKenna — Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States; orcid: 0000-0002- 5676-9930

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.molpharmaceut.1c00353

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge National Science Foundation under grants DMR-2004960 and CMMI-1662046. The authors thank Drs. Chau-Chyun Chen and Yifan Hao for help with the association-NRTL modeling.

REFERENCES

the experimental challenge of detection.

O. Phase separation in coamorphous systems: in silico prediction and minimization problems.

Q. Appl. Math. 2271

thermal expansion of glass in its annealing range.

Molecular Pharmaceutics pubs.acs.org/molecularpharmaceutics

1976

Ceram. Soc. glass transition temperature versus the fictive temperature.

Fluid Phase Equilib. Acree models.

proteinogenic amino acids with the NRTL, Gude and Jouyban-

E. Modelling the effects of ethanol on the solubility of the pKa and solubility of drugs in water, ethanol, and 1-octanol.

Cryst. Solids

1990

2009

Chem. B

2012

using thermal, spectroscopic and drug release methods.

mide solid dispersions: characterisation of microstructural properties combinations show improved physical stability without evidence of intermolecular interactions.

2018

