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Polymer Analysis

    Chapter 2.  Error Analysis/Statistical Descriptions of Data.   

All Polymer Properties are Disperse:
Polymeric materials are subject to dispersion in all analytic properties.  For example, the melting
point in a low molecular weight organic or inorganic is a fixed value constant which might display
some variability over 1 or 2 degrees.  The melting point for high-density polyethylene (HDPE), for
example can vary from about 110°C to about 160°C depending on processing and generally
displays a broad dispersion over about 10 to 20°C.  Spectroscopic analysis of polymers using
techniques such as infra red adsorption (IR) and nuclear magnetic resonance (NMR) rely mostly on
local chemical groups, so can display fairly sharp absorption bands.  In these spectroscopic
techniques, dispersion is shown by the existence of peak splittings or the presence of a number of
chemical species in small amounts.  Additionally, many absorption bands in polymers are difficult
to describe analytically and pertain to various acoustic modes associated with the conformation of
long chain structures.  These are typically broad bands due to wide dispersion in these long chain
conformations.  X-ray diffraction from polymer crystallites generally displays broad diffraction
peaks associated with small crystals and a high degree of disorder within crystallites.  Polymers
also display dispersion in structural and chemical orientation which should be viewed with
statistics.  Dispersions in mechanical properties are always seen in polymers.  Statistics are also
used to describe the dispersion of chain size, molecular weight, and topological arrangement of
tacticity.  All descriptions of polymer chain size are based on statistics.  It is critical to realized at
the onset of any analysis of a polymeric system that every physical property will be described by a
distribution.  

Error Analysis in Analytic Methods:
In the physical sciences each analytic measurement must be associated with an assessment of the
confidence which should be associated with the analytic description.  A value for some property of
a material is of no use unless some estimate of the expected error and distribution is provided.  For
example, for a commercial sample of HDPE a technician might report the melting point of a blown
film as 135°C.  You might be involved in using this material in a packaging application where the
material will be subjected to shipping at a maximum temperature of 95°C.  From the reported
melting point and operating temperature would you feel confident that this material would meet the
specs of the packaging company?  The correct answer is that the measured value is of no use
without a description of the statistical distribution in the samples as well as a statistical description
of the distribution of melting points, i.e. onset, peak and maximum melting point.  

The technician should be required to measure at least 10 samples (preferably more) and calculate a
standard deviation for the reported value.  Additionally, similar determinations of the onset of
melting and the maximum melting point would be needed to determine if this material meets the
specifications of the packager.  

There are a number of useful texts which describe the correct handling of experimental data.  The
most commonly cited reference is "Data Reduction and Error Analysis for the Physical Sciences"
by P. R. Bevington, 1969 McGraw Hill.  This section of the course will summarize some of the
major points of Bevington with an emphasis on applications in polymeric systems.

Types of Error:
Statisticians categorize three types of error.  This framework may be useful in considering a
specific experiment such as determination of the d-spacing from an XRD peak.  

Illegitimate Error:  These errors involve an operator error, e. g. you have placed the wrong sample
in the diffractometer and are determining the d-spacing for the wrong sample.  There is no
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statistical description for these errors unless you want to consider sociology.  Your main protection
against illegitimate errors is to always consider, when faced with extremely unexpected results, that
the results involve a human error.  Always look carefully at completely unexpected results.

Systemic Error:  There errors are also not subject to a statistical analysis.  They result from faulty
calibration of the instrument or other problems which result in a constant shift of the data.  In XRD
a systematic error might involve confusion of 2θ with θ leading to roughly a doubling of the d-
spacings.  Systemic errors can sometimes be corrected after the fact if one is careful.  It is
important to keep a good record of the analysis that was performed partly for the purpose of
correction of systemic errors of this type.

Random Error:  Random errors are the main area which statistics can deal with (i.e. standard
deviation, mean).  Random errors have two sources.  1)  Random variability in the samples
themselves.  2)  Limited precision of the analytic equipment.  These two sources can be
distinguished if more precise equipment is available or a standard sample is available.  

In describing the error involved in an analytic measurement all types of error should be considered.  

Accuracy of a measurement pertains to how close a measurement is to the actual value.  Precision
refers to the reproducibility of the measurement whether or not it is close to the actual value.  If
systematic error is present a measurement might be extremely precise but completely inaccurate!
Also, if the equipment is well calibrated a measurement could be extremely accurate but not
particularly precise.  Mostly the importance of these terms is in communication of your confidence
in a particular value and what the possible sources of error are.

Statistical Analysis of Measurements:

Generally a given measurement will be conducted several times in order to determine the statistical
distribution for the measurement.  The values most commonly determined are the mean, µ, and the

standard deviation, σ:
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N is the number of measurements made, the value from each measurement is xi for measurement i.
The square of the standard deviation is called the variance.

Distribution Functions (see P. C. Heimenz, Polymer Chemistry, 1984, Marcel
Dekker, pp. 34):

If a measurement is not single valued then it is common to fit the number distribution of values to a
distribution function.  The simplest distribution functions will involve two parameters, the mean, µ
and the standard deviation, σ.  More complicated continuous distribution functions will involve
higher moments of the distribution.  The k'th moment of a distribution is given by:
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where fi is the fraction of all measurements which have the value xi, i.e. Ni/N, xs is basis for the
moment and k is the order of the moment.  For example, the mean, µ, is the first moment (k = 1)

about the origin (xs = 0).  The variance, σ2, is the second moment (k = 2) about the mean (xs = µ).  

The molecular weight distributions commonly used in polymer science can be described in terms of
the more broadly used statistical description of moments.

The number average molecular weight, Mn is the same as the first moment about the origin or the
mean.  The weight average molecular weight (mass average), Mw, is given by:
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or the ratio of the second to the first moment about the origin.

The polydispersity index, Mw/Mn, is the ratio of the second moment to the square of the first
moment about the origin.

Given Mw and Mn the standard deviation of a distribution of molecular weights can be determined:
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Several specific distribution functions are mentioned below.  A distribution is usually considered
unimodal if one of these continuous distribution functions describes the distribution of measured
values.  If the data is best described by several of these functions it is termed bimodal, trimodal etc.
A bimodal distribution in lamellar thicknesses in polyethylene might be generated if crystallization
occurred in two distinct steps such as primary crystallization and secondary epitaxial spherulitic
decoration for instance.  This distribution might be described by two Gaussian functions, so a total
of 4 parameters, 2 means and 2 standard deviations.

Binomial Distribution:

Consider a tactic polymer such as polypropylene.  As discussed in class, on passing along the
main chain of the polymer there is a choice in handedness for the substitutent methyl group which
could be considered similar to a coin toss, i.e. if the substitutent occurs with the same handedness
as the previous mer unit this would be similar to a coin tossed heads (R for tacticity) and if it
occurs with the opposite handedness (S for tacticity) this would be similar to a coin tossed tails.  If
the tacticity of the polymer is determined at random (atactic) then there is equal probability for R
and S handedness.  The binomial distribution describes such a situation where the "probability of
success" is given by p, (consider R a success, here p = 0.5 for atactic polymers).  The probability
of observing "n" R handedness mer units in a chain of N mer units when the probability of seeing
an R handiness mer unit is p is given by:
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the mean, µ, and standard deviation, σ, for the binomial distribution are given by:

µ = Np

σ 2 1= −( )Np p

PBinomial could be used to plot a distribution function of tacticities for example.  Note that there is a
finite probability for a completely R polymer (0! =1).

Poisson Distribution:

When N is large and the mean, µ, is constant with sample size, the binomial distribution simplifies
to the Poisson Distribution:

P n
n

ePoisson

n

,
!

µ µ µ( ) = −

where the standard deviation is given by:

σ µ=

The Poisson Distribution is used to describe small samples of large populations, so is appropriate
in analytic techniques which involve counting of events, such as XRD and light counters, and
mass spectrometers which measure events.  The standard deviation in such a counting
measurement (counting of events) is the square root of the number of counts.  For example, an
integrated diffraction peak might generate 10,000 counts on a proportional detector.  The error in
this value is ± 100.  If an analytic instrument does not report "counts" or "events" then the
Poission distribution value for the standard deviation can not be used directly.

Gaussian Distribution:

For very large samples, N, with a finite probability of success, p, a smooth distribution is usually
observed.  Such a distribution can be described by a Gaussian function:
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The Gaussian distribution is the basis of the "bell-shaped curve".  It is also used to describe
random walks in diffusion as well as the path of a polymer coil under theta-conditions.  Integration
of the Gaussian distribution as a weighting factor for r2, the square of the chains end-to-end
distance yields the mean square end-to-end distance for a "Gaussian" chain, Nl2, where l is the step
size and N is the number of randomly arranged steps in the non-interacting chain.  For the
Gaussian chain µ = 0 and σ2 = nl2.

Other Distributions:

There are many other distribution functions commonly used in polymer science such as the
Lorentzian Distribution (see hand out) and the Maxwellian Distribution (see Polymer Materials
Science by J. Schultz for instance).  The definition of these distributions will rely on an
understanding of the moments of a continuous distribution described above.  
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Covariance:

In many analytic experiments several parameters are determined from a single measurement
through the use of a fit to experimental data.  For instance, a light scattering curve can be used to
determine the molecular weight (first moment about the origin) and second viral coefficient, A2,
through the Zimm plot (figure 2.8 in our text).  Often the two parameters which are measured are
not completely independent in terms of the fit to the data.  Under such conditions it is necessary to
determine the covariance of the two parameters.  The covariance reflects the degree to which two
parameters effect each other.  If more than two parameters are unknown, then a covariance matrix
can be constructed to determine the extent two which any two parameters are associated.  For two
parameters the covariance is defined by:

σ uv u u v v2 = −( ) −( )( )
where <> indicates a mean.  Covariance is included for completeness here.  Determination of the
covariance is generally rare in the literature.

Propagation of Errors:

In many analytic techniques a value is measured, an error is determined, and this value is used to
calculate a parameter of interest.  For example, in the determination of the modulus of a sample the
extension of the sample is measured with some error and is normalized against the original length
to determine the engineering strain.  The force applied to the sample is measured with an
experimental error and is normalized by the cross sectional area to determine the stress.  These two
parameters are plotted (stress versus strain) and a curve fit is used to determine the modulus at low
strain.  In order to determine the standard deviation in the modulus the experimentally determined
errors in length, force and area must be propagated to the stress and strain and the error in these
parameters must be propagated to a linear fit of the data points.  Propagation of errors is a
rudimentary tool necessary to perform polymer analysis.  

Consider a measurement of the absorption, A, and absorption coefficient, α , using a single
wavelength of light which passes through a sample and a photomultiplier tube which reports
counts.  The relevant equation is the Beer-Lambert Law for linear absorption (pp. 40 and 54 in
Cambell):

A
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where c is the concentration of absorbing species and l is the sample thickness.  T is called the
transmission.  For a solid sample c = 1.  Two measurements are necessary, I0 with no sample and
I with a sample of thickness l.  If the two measurements are I0 = 100,000 counts , and I = 20,000
counts, the respective standard deviation is given by a Poission Distribution function as the square
root of the number of events,

I0 = 100,000 ± 320 counts; I = 20,000 ± 140 counts.

To propagate the error in I0 and I to 1/T the general error propagation rule in differential form can
be used:
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Here it is safe to assume that I and I0 are uncorrelated (unrelated) so the covariance, σuv = 0.  The

two standard deviations are given above.  For x = 1/T, δx/δI0 = 1/I, and δx/δI = -I0/I
2.  The above

equation yields:
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this follows the general rule for ratios given by Bevington (see handout).  The propagated value
and error for 1/T is, 1/T = 5 ± 0.04.

The absorption, A, is the natural log of 1/T and the propagated error is given by:
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So, A = 1.61 ± 0.01.

The sample thickness, l, is 0.1 ± 0.02 cm as calculated from a series of 10 measurements using the
mean and number of samples equation given above.  The absorption coefficient, α , is calculated

from α = A/cl, where c is 1 for a solid sample.  Replacing the variables in the equation above for

the error in 1/T, α  = 16 ± 3 .  Notice the reduction in the number of significant
figures associated with the large error.

It should also be noted that often the largest source of error is related to factors which are of minor
significance to the measurement, e.g. here error in the sample thickness dominates the error in the
absorption coefficient.  

Purpose of Error Analysis:

Although it is assumed that you can determine the error value for any quantity you measure in
science, the most important part of error analysis involves interpretation of the significance of the
analysis in view of the error and in view of logic and the reasonableness of the results.  Error
analysis is a critical factor in both demonstrating the scientific reasonableness of a result, as well as
forming a basis of a scientific critique of work performed for you by a technician or outside lab.
Error analysis is always at the heart of a scientific argument.  A measured value has no meaning
without an analysis of the associated error.  Such an analysis can be quantitative, as above, or
qualitative, based on your scientific judgment.  The value in either case is based on the
reasonableness and logic of the approach.  In the remainder of this course special emphasis will be
given to qualitative and quantitative assessments of the error in the analytic techniques covered.
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Least-Squares Fits:

In order to determine analytic parameters it is often necessary to perform a curve fit to a raw data
set.  For example the determination of modulus from a stress-strain measurement requires a linear
fit of the type σ = Eε where s is the stress, σ = F/A, and e is the strain, ε = ∆l/l, and E is the
Youngs modulus.  The error in the stress measurement could be propagated from the estimated
error in the Force and area measurements.  These errors can be propagated to the modulus in a
linear fit through a least squares minimization of χ2. χ2 is a measure of the difference between the
actual data points and the projected points associated with the fit parameter.  It bears resemblance to
the variance,

χ
σ

2

2

2
1

=
−( )∑ y f xi i

i

N ( )

The propagated uncertainty in the coefficients for the least squares fit can be obtained in a computer
program by calculation of the second derivative of χ2 with respect to variation in the parameter:
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A full discussion of least-squares fitting routines and propagation of error is given in Bevington.
For linear functions a relatively simple algorithm for propagation of error is given in the handout.


