Chemical Engineering Thermodynamics
 Quiz 1 January 14, 2016

1)

P1.1. Estimate the average speed (mph) of hydrogen molecules at 200 K and 3 bars.
H_{2} is $2.02 \mathrm{~g} / \mathrm{mole}$
$\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{K}$ mole $)$
Joule $=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}$
$2.24 \mathrm{mph} /(\mathrm{m} / \mathrm{s})$
You can assume you know the temperature and pressure to 10% accuracy or you can make some other assumption concerning the accuracy of these values (state your assumption).
2)
1.12. The gas phase reaction $\mathrm{A} \rightarrow 2 \mathrm{R}$ is conducted in a $0.1 \mathrm{~m}^{3}$ spherical tank. The initial temperature and pressure in the tank are 0.05 MPa and 400 K . After species A is 50% reacted, the temperature has fallen to 350 K . What is the pressure in the vessel?

$$
\mathrm{R}=8.314 \mathrm{~cm}^{3} \mathrm{MPa} /(\mathrm{K} \mathrm{~mole})
$$

3)

1.17. Determine the temperature, volume, and quality for one kg water under the following conditions:
a. $U=3000 \mathrm{~kJ} / \mathrm{kg}, P=0.3 \mathrm{MPa}$
c. $U=2500 \mathrm{~kJ} / \mathrm{kg}, P=0.3 \mathrm{MPa}$

See tables below.

E.9. Properties of Water ${ }^{1}$

I. Saturation Temperature

T	P	ν^{1}	$V^{\prime \prime}$	U^{2}	$\Delta U^{\text {nup }}$	U^{V}	H^{1}	$\Delta H^{\text {up }}$	H^{V}	$s^{\text {L }}$		S^{\prime}
$\left({ }^{\circ} \mathrm{C}\right)$	(MPa)	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	kJ/kg	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$	$\mathrm{k} / \mathrm{kg}-\mathrm{K}$	$\mathrm{k} / \mathrm{kg}-\mathrm{K}$
0.01	0.000612	0.001000	205.9912	0.00	2374.92	2374.92	0.00	2500.92	2500.92	0.0000	9.1555	9.1555
5	0.000873	0.001000	147.0113	21.02	2360.76	2381.78	21.02	2489.04	2510.06	0.0763	8.9485	9.0248
10	0.001228	0.001000	106.3032	42.02	2346.63	2388.65	42.02	2477.19	2519.21	0.1511	8.7487	8.8998
15	0.001706	0.001001	77.8755	62.98	2332.51	2395.49	62.98	2465.35	2528.33	0.2245	8.5558	8.7803
20	0.002339	0.001002	57.7567	83.91	2318.41	2402.32	83.91	2453.52	2537.43	0.2965	8.3695	8.6660
25	0.003170	0.001003	43.3373	104.83	2304.30	2409.13	104.83	2441.68	2546.51	0.3672	8.1894	8.5566
30	0.004247	0.001004	32.8783	125.73	2290.18	2415.91	125.73	2429.82	2555.55	0.4368	8.0152	8.4520
35	0.005629	0.001006	25.2053	146.63	2276.04	2422.67	146.63	2417.92	2564.55	0.5051	7.8466	83517
40	0.007385	0.001008	19.5151	167.53	2261.86	2429.39	167.53	2405.98	2573.51	0.5724	7.6831	8.2555
45	0.009595	0.001010	15.2521	188.43	2247.65	2436.08	188.43	2394.00	2582.43	0.6386	7.5247	8.1633
50	0.012400	0.001012	12.0269	209.33	2233.40	242.73	209.34	2381.95	2591.29	0.7038	73710	8.0748
55	0.015800	0.001015	9.5643	230.24	2219.10	2449.34	230.26	2369.83	2600.09	0.7680	7.2218	7.9898
60	0.019900	0.001017	7.6672	251.16	2204.74	2455.90	251.18	2357.65	2608.83	0.8313	7.0768	7.9081
65	0.025000	0.001020	6.1935	272.09	2190.32	2462.41	27.12	2345.38	2617.50	0.8937	6.9359	7.8296
70	0.031200	0.001023	5.0395	293.03	2175.83	2468.86	293.07	2333.03	2626.10	0.9551	6.7989	7.7540
75	0.038600	0.001026	4.1289	313.99	2161.25	2475.24	314.03	2320.57	2634.60	1.0158	6.6654	7.6812
80	0.047400	0.001029	3.4052	334.96	2146.60	2481.56	335.01	2308.01	2643.02	1.0756	6.5355	7.6111
85	0.057900	0.001032	2.8258	355.95	2131.86	2487.81	356.01	2295.32	2651.33	1.1346	6.4088	7.5434
90	0.070200	0.001036	2.3591	376.97	2117.00	2493.97	377.04	2282.49	2659.53	1.1929	6.2852	7.4781
95	0.084600	0.001040	1.9806	398.00	2102.04	2500.04	398.09	2269.52	2667.61	1.2504	6.1647	7.4151
100	0.101400	0.001043	1.6718	419.06	2086.96	2506.02	419.17	2256.40	2675.57	1.3072	6.0469	7.3541
105	0.120900	0.001047	1.4184	440.15	2071.75	2511.90	440.27	2243.12	2683.39	1.3633	5.9319	7.2952
110	0.143400	0.001052	1.2093	461.26	2056.41	2517.67	461.42	2229.64	2691.06	1.4188	5.8193	7.2381
115	0.169200	0.001056	1.0358	482.41	2040.92	2523.33	482.59	2215.99	2698.58	1.4737	5.7091	7.1828
120	0.198700	0.001060	0.8912	503.60	2025.26	2528.86	503.81	2202.12	2705.93	1.5279	5.6012	7.1291
125	0.232200	0.001065	0.7700	524.83	2009.44	2534.27	525.07	2188.03	2713.10	1.5816	5.4954	7.0770
130	0.270300	0.001070	0.6680	546.09	1993.44	2539.53	546.38	2173.70	2720.08	1.6346	53918	7.0264
135	0.313200	0.001075	0.5817	567.41	1977.24	2544.65	567.74	2159.13	2726.87	1.6872	5.2900	6.9772
140	0.361500	0.001080	0.5085	588.71	1960.85	2549.62	589.16	2144.28	2733.44	1.7392	5.1901	6.9293
145	0.415700	0.001085	0.4460	610.19	1944.23	2554.42	610.64	2129.16	2739.80	1.7907	5.0919	6.8826
150	0.476200	0.001091	0.3925	631.66	1927.39	2559.05	632.18	2113.75	2745.93	1.8418	4.9953	6.8371
155	0.543500	0.001096	0.3465	653.19	1910.32	2563.51	653.79	2098.02	2751.81	1.8924	49002	6.7926
160	0.618200	0.001102	0.3068	674.79	1892.99	2567.78	675.47	2081.97	2757.44	1.9426	4.8065	6.7491
165	0.700900	0.001108	0.2724	696.46	1875.39	2571.85	697.24	2065.57	2762.81	1.9923	4.7143	6.7066
170	0.792200	0.001114	0.2426	718.20	1857.53	2575.73	719.08	2048.82	2767,90	2.0417	4.6233	6.6650
175	0.892600	0.001121	0.2166	740.02	183937	2579.39	741.02	2031.69	2772.71	2.0906	4.5335	6.6241
180	1.002800	0.001127	0.1938	761.92	1820.91	2582.83	763.05	2014.16	2777.21	2.1392	4.4448	6.5840
185	1.123500	0.001134	0.1739	783.91	1802.13	2586.04	785.19	1996.22	2781.41	2.1875	4.3572	65447
190	1.25520	0.001141	0.1564	806.00	1783.01	2589.01	807.43	1977.85	2785.28	2.2355	4.2704	6.5059
195	139880	0.001149	0.1409	828.18	1763.56	2591.74	829.79	1959.03	2788.82	2.2832	4.1846	6.4678
200	1.55490	0.001157	0.1272	850.47	1743.73	2594.20	852.27	1939.74	2792.01	2.3305	4.0997	6.4302

III. Superheated Steam

ANSWERS: Chemical Engineering Thermodynamics Quiz 1 January 14, 2016

1)

P1.1. Estimate the average speed (mph) of hydrogen molecules at 200 K and 3 bars.
H_{2} is $2.02 \mathrm{~g} / \mathrm{mole}$
$\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{K}$ mole)
Joule $=\mathrm{kg} \mathrm{m} \mathrm{m}^{2} / \mathrm{s}^{2}$
$2.24 \mathrm{mph} /(\mathrm{m} / \mathrm{s})$
You can assume you know the temperature and pressure to 10% accuracy or you can make some other assumption concerning the accuracy of these values (state your assumption).

Energy $=3 / 2 \mathrm{kT}=1 / 2 \mathrm{mv}^{2}$
So $\mathrm{v} \sim\left(3 \mathrm{RT} / \mathrm{M}_{\mathrm{w}}\right)^{1 / 2}=\mathbf{3 5 0 0} \mathbf{~ m p h}$ if you assume 10% accuracy in the temperature and you assume an ideal gas. The ideal gas assumption is probably not very good at 3 bar. You don't need the pressure if you assume an ideal gas. The book answer seems to be wrong.
2)
1.12. The gas phase reaction $\mathrm{A} \rightarrow 2 \mathrm{R}$ is conducted in a $0.1 \mathrm{~m}^{3}$ spherical tank. The initial temperature and pressure in the tank are 0.05 MPa and 400 K . After species A is 50% reacted, the temperature has fallen to 350 K . What is the pressure in the vessel?

$$
\mathrm{R}=8.314 \mathrm{~cm}^{3} \mathrm{MPa} /(\mathrm{K} \mathrm{~mole})
$$

Initially assume you are at pure "A" Use the ideal gas law you can get the initial moles of "A"
$\mathrm{n}_{\mathrm{A}, \mathrm{i}}=\mathrm{PV} / \mathrm{RT}=0.05 \mathrm{MPa} 0.1 \times 10^{6} \mathrm{~cm}^{3} /\left(8.314\left(\mathrm{~cm}^{3} \mathrm{MPa} /(\mathrm{K}\right.\right.$ mole $\left.\left.)\right) 400 \mathrm{~K}\right)$
$=1.5$ moles of A initially
Then 50% reacts so you have 0.75 moles of A and 1.50 moles of R so you have 2.25 moles total. Again assume an ideal gas (doesn't matter the type of atom for an ideal gas) $\mathrm{P}=\mathrm{n}_{\text {total }} \mathrm{RT} / \mathrm{V}=2.25$ moles $8.314\left(\mathrm{~cm}^{3} \mathrm{MPa} /(\mathrm{K}\right.$ mole $\left.)\right) 400 \mathrm{~K} / 0.1 \times 10^{6} \mathrm{~cm}^{3}=\mathbf{0 . 0 7 5} \mathbf{~ M P a}$ assuming 10% accuracy in the initial values. He gets 0.065 in the book answer after a bit more complicated calculation.

3)

1.17. Determine the temperature, volume, and quality for one kg water under the following conditions:
a. $U=3000 \mathrm{~kJ} / \mathrm{kg}, P=0.3 \mathrm{MPa}$
c. $U=2500 \mathrm{~kJ} / \mathrm{kg}, P=0.3 \mathrm{MPa}$
(1.17) Determine the temperature, volume, and quality under the following conditions:
a) $\mathbf{U}=\mathbf{3 0 0 0}, \mathbf{P}=0.3 \Rightarrow>$ superheated $q=1, T=400+(3000-2966) /(3047.5-2966.0)=50=421^{\circ} \mathrm{C}$ $V=1.0315+21 / 50 *(1.1092-1.0315)=1.064 \mathrm{~m}^{3} / \mathrm{kg}$

Assume 10% accuracy in the P and U values so you have $1.1 \mathrm{~m}^{3} / \mathrm{kg}$ (you can make other assumptions concerning the accuracy but need to state that.) It asks for one kg of water so the answer is $\mathbf{1 . 1} \mathrm{m}^{3}$ and $420^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { c) } \mathbf{U}=\mathbf{2 5 0 0}, \mathrm{P}=0.3 \Rightarrow \text { two-phase, } T=133.58^{\circ} \mathrm{C} \\
& U=2500=561 .+\mathrm{q}^{*} 1982.0, q=0.978 \\
& V=0.001073+0.978^{*}(0.6058-0.001073)=0.593 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

Again, assume 10% accuracy in values he specifies for U and P so, $T=130^{\circ} \mathbf{C}, \mathbf{q}=0.98$, and it is for 1 kg so $0.59 \mathrm{~m}^{3}$.

