1) **P1.1.** Estimate the average speed (mph) of hydrogen molecules at 200 K and 3 bars.

- H_2 is 2.02 g/mole
- $R = 8.314 \text{ J/(K mole)}$
- Joule = $\text{kg m}^2/\text{s}^2$
- 2.24 mph/(m/s)

You can assume you know the temperature and pressure to 10% accuracy or you can make some other assumption concerning the accuracy of these values (state your assumption).

2) **1.12.** The gas phase reaction $A \rightarrow 2R$ is conducted in a 0.1 m3 spherical tank. The initial temperature and pressure in the tank are 0.05 MPa and 400 K. After species A is 50% reacted, the temperature has fallen to 350 K. What is the pressure in the vessel?

- $R = 8.314 \text{ cm}^3 \text{ MPa/(K mole)}$

3) **1.17.** Determine the temperature, volume, and quality for one kg water under the following conditions:

- a. $U = 3000 \text{ kJ/kg}$, $P = 0.3 \text{ MPa}$
- c. $U = 2500 \text{ kJ/kg}$, $P = 0.3 \text{ MPa}$

See tables below.
E.9. Properties of Water

I. Saturation Temperature

| \(T \) (°C) | \(P \) (MPa) | \(v^l \) (m³/kg) | \(v^g \) (m³/kg) | \(u^l \) (kJ/kg) | \(u^g \) (kJ/kg) | \(h^l \) (kJ/kg) | \(h^g \) (kJ/kg) | \(\Delta u^l_{

Properties

- **Pressure (\(P \))**: Measures the force per unit area, typically expressed in MPa.
- **Volume at saturation (\(v \))**: Represents the volume of liquid or gas at saturation conditions.
- **Internal Energy at saturation (\(u \))**: The energy content of the substance at saturation.
- **Enthalpy at saturation (\(h \))**: The total energy of the substance, including both internal and kinetic energy.

Units

- **Temperature (\(T \))**: Measured in °C.
- **Pressure (\(P \))**: Measured in MPa.
- **Volume (\(v \))**: Measured in m³/kg.
- **Internal Energy (\(u \))**: Measured in kJ/kg.
- **Enthalpy (\(h \))**: Measured in kJ/kg.

Analysis

The table provides a comprehensive list of properties for water at various temperatures, indicating how these properties change with temperature. This information is crucial for various applications, including thermodynamics, chemical engineering, and environmental science.
III. Superheated Steam

<table>
<thead>
<tr>
<th>$P = 0.01$MPa</th>
<th>$P = 0.05$MPa</th>
<th>$P = 0.10$MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(\degree C)$</td>
<td>$V(m^3/kg)$</td>
<td>$U(kJ/kg)$</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>45.8</td>
<td>14.6701</td>
<td>2432.2</td>
</tr>
<tr>
<td>50.0</td>
<td>14.9159</td>
<td>2443.3</td>
</tr>
<tr>
<td>55.0</td>
<td>15.1774</td>
<td>2481.4</td>
</tr>
<tr>
<td>60.0</td>
<td>15.4790</td>
<td>2538.1</td>
</tr>
<tr>
<td>65.0</td>
<td>15.7967</td>
<td>2593.4</td>
</tr>
<tr>
<td>70.0</td>
<td>16.1286</td>
<td>2650.9</td>
</tr>
<tr>
<td>75.0</td>
<td>16.4761</td>
<td>2711.7</td>
</tr>
<tr>
<td>80.0</td>
<td>16.8401</td>
<td>2773.4</td>
</tr>
<tr>
<td>85.0</td>
<td>17.2112</td>
<td>2836.8</td>
</tr>
<tr>
<td>90.0</td>
<td>17.5893</td>
<td>2899.8</td>
</tr>
<tr>
<td>95.0</td>
<td>17.9744</td>
<td>2962.9</td>
</tr>
<tr>
<td>100</td>
<td>18.3675</td>
<td>3026.1</td>
</tr>
<tr>
<td>105</td>
<td>18.7686</td>
<td>3089.8</td>
</tr>
<tr>
<td>110</td>
<td>19.1787</td>
<td>3153.9</td>
</tr>
<tr>
<td>115</td>
<td>19.5985</td>
<td>3218.4</td>
</tr>
<tr>
<td>120</td>
<td>20.0284</td>
<td>3283.5</td>
</tr>
</tbody>
</table>

Note: The table continues with similar entries for different pressures and temperatures.
ANSWERS: Chemical Engineering Thermodynamics
Quiz 1 January 14, 2016

1)

P1.1. Estimate the average speed (mph) of hydrogen molecules at 200 K and 3 bars.

\[\text{H}_2 \text{ is } 2.02 \text{ g/mole} \]
\[\text{R } = 8.314 \text{ J/(K mole)} \]
\[\text{Joule } = \text{ kg} \text{ m}^2/\text{s}^2 \]
\[2.24 \text{ mph}/(\text{m/s}) \]

You can assume you know the temperature and pressure to 10% accuracy or you can make some other assumption concerning the accuracy of these values (state your assumption).

Energy = \(\frac{3}{2} kT = \frac{1}{2} mv^2 \)

So \(v \sim (3RT/M_w)^{1/2} = 3500 \text{ mph} \) if you assume 10% accuracy in the temperature and you assume an ideal gas. The ideal gas assumption is probably not very good at 3 bar. You don’t need the pressure if you assume an ideal gas. The book answer seems to be wrong.

2)

1.12. The gas phase reaction \(A \rightarrow 2R \) is conducted in a 0.1 m\(^3\) spherical tank. The initial temperature and pressure in the tank are 0.05 MPa and 400 K. After species A is 50% reacted, the temperature has fallen to 350 K. What is the pressure in the vessel?

\[\text{R } = 8.314 \text{ cm}^3 \text{ MPa/(K mole)} \]

Initially assume you are at pure “A”

Use the ideal gas law you can get the initial moles of “A”

\[n_{A,i} = \frac{PV}{RT} = 0.05 \text{ MPa} \times 0.1 \times 10^6 \text{ cm}^3/(8.314 \text{ (cm}^3 \text{ MPa/(K mole)) 400K}) \]

= 1.5 moles of A initially

Then 50% reacts so you have 0.75 moles of A and 1.50 moles of R so you have 2.25 moles total. Again assume an ideal gas (doesn’t matter the type of atom for an ideal gas)

\[P = \frac{n_{\text{total}}RT}{V} = 2.25 \text{ moles} \times 8.314 \text{ (cm}^3 \text{ MPa/(K mole)) 400K/0.1 \times 10^6 \text{ cm}^3 = 0.075 MPa} \]

assuming 10% accuracy in the initial values. He gets 0.065 in the book answer after a bit more complicated calculation.

3)

1.17. Determine the temperature, volume, and quality for one kg water under the following conditions:

- **a.** \(U = 3000\text{ kJ/kg, P} = 0.3 \text{ MPa} \)
- **c.** \(U = 2500\text{ kJ/kg, P} = 0.3 \text{ MPa} \)
Assume 10% accuracy in the P and U values so you have 1.1 m³/kg (you can make other assumptions concerning the accuracy but need to state that.) It asks for one kg of water so the answer is 1.1 m³ and 420°C.

Again, assume 10% accuracy in values he specifies for U and P so, T = 130°C, q = 0.98, and it is for 1 kg so 0.59 m³.