1) Given the following equation of state give expressions for the enthalpy and entropy departure functions.

\[
\frac{PV}{RT} = 1 + \frac{P}{RT} \left(b - \frac{a}{T} \right) \quad H - H^\text{ig} = -\int_T^P \left(\frac{\partial Z}{\partial T} \right)_P dP \quad S - S^\text{ig} = -\int_T^P \left[(Z-1) + T \left(\frac{\partial Z}{\partial T} \right)_P \right] dP
\]

2) Ammonia is used in an industrial refrigeration cycle. Rather than a throttle, an expander is used to produce recoverable work in the gas expansion step. The gas vapor is initially at 230°C (503°K) and 8 MPa, the ammonia exits the expander at 1 MPa. If the expander has an efficiency of 85%,

- How much work is obtained per mole of ammonia? (List the PREOS.xls setup and solver steps)
- What is the final temperature of the ammonia? (List the solver steps)
- What is the temperature for a reversible expander?
- What is the temperature for a saturated vapor at 1 MPa? (List the solver steps)
- Show the four points, saturated vapor 1 MPa; reversible expander; 85% efficiency expander; and the initial condition on the following pressure-enthalpy chart for ammonia (Refrigerant 717).
Quiz 9
March 9, 2017

Answers

1) \[
\frac{H - H^{\alpha}}{RT} = - \int_0^p T \left(\frac{\partial^2}{\partial T^2} \right)_p \frac{dp}{p}
\]

\[z = 1 + \frac{\rho}{\lambda T} (b - \frac{a}{T}) \]

\[\left(\frac{\partial^2}{\partial T^2} \right)_p = \frac{p}{R} \left(- \frac{b}{T^2} + \frac{2a}{T^3} \right) \]

\[
\frac{H - H^{\alpha}}{RT} = \int_0^p \left(\frac{b}{RT} - \frac{2a}{RT^2} \right) dp
\]

\[
\frac{H - H^{\alpha}}{RT} = \frac{b\rho}{RT} + \frac{-2a\rho}{RT^2}
\]

\[H - H^{\alpha} = b\rho - \frac{2a\rho}{T} \]

\[
\frac{S - S^{\alpha}}{R} = - \int_0^p \left[(2-1) + T \left(\frac{\partial^2}{\partial T^2} \right)_p \right] \frac{dp}{p}
\]

\[= \int_0^p \left[\left(\frac{a}{RT^2} - \frac{b}{RT} \right) + \frac{1}{R} \left(\frac{b}{T} - \frac{2a}{T^2} \right) \right] dp \]

\[= \frac{a\rho}{RT^2} - \frac{b\rho}{RT} + \frac{b\rho}{RT} - \frac{2a\rho}{RT^2} \]

\[S - S^{\alpha} = \frac{p}{T} \left(\frac{a}{T} - \frac{2a}{T^2} \right) \]

\[S - S^{\alpha} = \frac{-Pa}{T^2} \]
2)
- Duplicate Props or Pys1(2)
- Set Cell of Pys1 & cp values to ammonia

- Pys set T to 503 K

- Set Ref. Nat. P to 8 mHa

- Pys1(2) set P to 1 mHa

- Set cell \(S^\circ \)
 \[S^\circ = k^9 + L^4 - Pys1K_{12} \]

- Add cell \(S^\circ \)
 \[S^\circ = I^9 + J^4 - Pys1I_{12} \]
 (see vapor phase react for Pys1(2))

- Solve cell \(S^\circ = 0 \)
 by vary \(TK \)

- \[T_2 = 307 \text{ K} \]
 \[\Delta H = -6120 \text{ J/mole} \]

- \[\Delta H = W_j = \Delta H \cdot 0.81 = -5200 \text{ J/mole} \]

- Solve cell \(\Delta H \) to reach \(-5200 \text{ J/mole}\)
 by vary \(TK \)

- \[T_2 = 330 \text{ K} \]
- Find saturation temperature

Solve fusion, ratio $= 1$

Very TK

$t_2 = 299^\circ C$