Cross-linked Polymers and Rubber Elasticity
Chapter 9 (Sperling)

• Definition of Rubber Elasticity and Requirements
• Cross-links, Networks, Classes of Elastomers (sections 1-3, 16)
• Simple Theory of Rubber Elasticity (sections 4-8)
 – Entropic Origin of Elastic Retractive Forces
 – The Ideal Rubber Behavior
• Departures from the Ideal Rubber Behavior (sections 9-11)
 – Non-zero Energy Contribution to the Elastic Retractive Forces
 – Stress-induced Crystallization and Limited Extensibility of Chains
 (How to make better elastomers: High Strength and High Modulus)
 – Network Defects (dangling chains, loops, trapped entanglements, etc..)
 – Semi-empirical Mooney-Rivlin Treatment (Affine vs Non-Affine Deformation)
Definition of Rubber Elasticity and Requirements

• Definition of Rubber Elasticity:
 Very large deformability with complete recoverability.

• Molecular Requirements:
 – Material must consist of polymer chains.
 Need to change conformation and extension under stress.
 – Polymer chains must be highly flexible.
 Need to access conformational changes (not w/ glassy, crystalline, stiff mat.)
 – Polymer chains must be joined in a network structure.
 Need to avoid irreversible chain slippage (permanent strain).
 One out of 100 monomers must connect two different chains.
 Connections (covalent bond, crystallite, glassy domain in block copolymer)
Cross-links, Networks and Classes of Elastomers

• Chemical Cross-linking Process: Sol-Gel or Percolation Transition

• Gel Characteristics:
 – Infinite Viscosity
 – Non-zero Modulus
 – One giant Molecule
 – Solid Polymer Network

• Step Polymerization (isocyanates, oxirane)
• Chain Polymerization (styrene with divinylbenzene)
• Post-polymerization Reactions (vulcanization with sulfur)

• Cross-linked and Gels in the Food/Health Care Industry:
Globular protein example: the egg white! (S₂ bridges)
Jello®, contact lenses, liquid soaps, shampoos (proteins, polysaccharides)
Cross-links, Networks and Classes of Elastomers

• Differentiate Thermosets and Elastomers:
 Concerned only with Elastomers (Why \(T > T_g \))

• Historical Development:
 – Christopher Columbus, 1492
 – Gough, 1805
 • Stretching an elastomer leads to its … warming up
Cross-links, Networks and Classes of Elastomers

- Differentiate Thermosets and Elastomers: Concerned only with Elastomers (Why? $T > T_g$)

- Historical Development:
 - Christopher Columbus, 1492
 - Gough, 1805
 - Stretching an elastomer leads to its warming up
 - Under constant load, heating leads to shrinkage
Cross-links, Networks and Classes of Elastomers

• Differentiate Thermosets and Elastomers:
 Concerned only with Elastomers (Why? $T > T_g$)

• Historical Development:
 – Christopher Columbus, 1492
 – Gough, 1805
 • Stretching an elastomer leads to its …. warming up
 • Under constant load, heating leads to…. shrinkage
 • Stretching followed by cooling leads to loss of retractive power and density rise
Cross-links, Networks and Classes of Elastomers

• Differentiate Thermosets and Elastomers: Concerned only with Elastomers (Why? \(T > T_g\))

• Historical Development:
 – Christopher Columbus, 1492
 – Gough, 1805
 • Stretching an elastomer leads to its …. **warming up**
 • Under constant load, heating leads to…. **shrinkage**
 • Stretching followed by cooling leads to loss of **retractive** power and density **rise**
 – Raincoat story, ca. early 19th century
Cross-links, Networks and Classes of Elastomers

• Differentiate Thermosets and Elastomers: Concerned only with Elastomers (Why? $T > T_g$)

• Historical Development:
 – Christopher Columbus, 1492
 – Gough, 1805
 • Stretching an elastomer leads to its warming up
 • Under constant load, heating leads to shrinkage
 • Stretching followed by cooling leads to loss of retractive power and density rise
 – Raincoat story, ca. early 19th century
 – Goodyear, 1844
Cross-links, Networks and Classes of Elastomers

• Differentiate Thermosets and Elastomers: Concerned only with Elastomers (Why? $T > T_g$)

• Historical Development:
 – Christopher Columbus, 1492
 – Gough, 1805
 • Stretching an elastomer leads to its … warming up
 • Under constant load, heating leads to… shrinkage
 • Stretching followed by cooling leads to loss of retractive power and density rise
 – Raincoat story, ca. early 19th century
 – Goodyear, 1844

• Why cross-linking?
 – Dimensional stability, creep reduction is required in manufactured goods!!!!
Cross-links, Networks and Classes of Elastomers

• Sulfur Vulcanization:

• Electron or γ Irradiation

• Chain Polymerization with a Tetrafunctional Comonomer
Cross-links, Networks and Classes of Elastomers

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Diene elastomers</td>
<td></td>
</tr>
<tr>
<td>Polybutadiene</td>
<td></td>
</tr>
<tr>
<td>Polyisoprene</td>
<td></td>
</tr>
<tr>
<td>Polychloroprene</td>
<td></td>
</tr>
<tr>
<td>B. Acryliks</td>
<td></td>
</tr>
<tr>
<td>Poly(ethyl acrylate)</td>
<td></td>
</tr>
<tr>
<td>C. EPDM</td>
<td></td>
</tr>
<tr>
<td>D. Thermoplastic elastomers</td>
<td></td>
</tr>
<tr>
<td>Poly(styrene–block–butadiene–block–styrene)</td>
<td></td>
</tr>
<tr>
<td>Segmented polyurethanes</td>
<td></td>
</tr>
<tr>
<td>E. Inorganic elastomers</td>
<td></td>
</tr>
<tr>
<td>Silicone rubber</td>
<td></td>
</tr>
<tr>
<td>Polyphosphazenes</td>
<td></td>
</tr>
</tbody>
</table>

Commercial Products
- NBR, SBR
- Butyl Rubber & EPDM
 - ca. add 2% of diene.

Block and Segmented Copolymers
- Kraton®, Lycra®, Spandex®, Hytrel®

Caulking, gaskets, O-rings, high T elastomers
Cross-links, Networks and Classes of Elastomers

Segmented Copolymers:

Example: Hytrel® (DuPont)

Hard segment: \(m = 1, 2 \)
Soft segment: \(n = 40-60 \)
Cross-links, Networks and Classes of Elastomers

Table 9.8: Typical tire tread recipes (12)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>phr<sup>a</sup></th>
<th>Natural Rubber</th>
<th>SBR Synthetic</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoked sheet</td>
<td>100</td>
<td>—</td>
<td>103.1</td>
<td>Elastomer—extender masterbatch</td>
</tr>
<tr>
<td>Styrene–butadiene/oil masterbatch</td>
<td>—</td>
<td>20.0</td>
<td>103.1</td>
<td>Elastomer—extender masterbatch</td>
</tr>
<tr>
<td>Cis-polybutadiene</td>
<td>25</td>
<td>5.0</td>
<td>25</td>
<td>Special purpose elastomer</td>
</tr>
<tr>
<td>Oil-soluble sulfonic acid</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>Processing aid</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>Accelerator—activator</td>
</tr>
<tr>
<td>Zinc oxide</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>Accelerator—activator</td>
</tr>
<tr>
<td>Phenyl-β-naphthylamine</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>Antioxidant</td>
</tr>
<tr>
<td>Substituted (N,N'p)-phenylenediamine</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>Antiozonant</td>
</tr>
<tr>
<td>Microcrystalline wax</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Processing aid and finish</td>
</tr>
<tr>
<td>Mixed process oil</td>
<td>5.0</td>
<td>7.0</td>
<td>7.0</td>
<td>Softener</td>
</tr>
<tr>
<td>HAF carbon black</td>
<td>50</td>
<td>—</td>
<td>65</td>
<td>Reinforcing filler</td>
</tr>
<tr>
<td>ISAF carbon black</td>
<td>65</td>
<td>—</td>
<td>65</td>
<td>Reinforcing filler</td>
</tr>
<tr>
<td>Sulfur</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>Vulcanizing agent</td>
</tr>
<tr>
<td>Substituted benzothiazole-2-sulfonamide</td>
<td>0.5</td>
<td>1.5</td>
<td>1.5</td>
<td>Accelerator</td>
</tr>
<tr>
<td>(N)-nitrosodiphenylamine</td>
<td>0.5</td>
<td>—</td>
<td>0.5</td>
<td>Retarder</td>
</tr>
<tr>
<td>Total weight</td>
<td>173.5</td>
<td>220.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.12</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aParts per hundred parts of rubber, by weight.
Theory of Rubber Elasticity

- Thermodynamics, Statistical Mechanics and Chain Statistics (Kelvin, Kuhn, Guth, Mark, James, Treloar and Flory)

- Second Law of Thermodynamics:
 - **What happens if you release the stress applied to a cross-linked coil?**
 - A1: Deformation is a Constant Volume Process \((\nu \approx \frac{1}{2}) \)
 - A2: Helmholtz Free Energy \((F = A = U - TS) \) should be minimized
 - A3: Assume the Internal Energy \((U) \) is independent of deformation
 - Final Answer: **the Entropy must be maximized**….

- IN PLAIN LANGUAGE:
 - Releasing the stress applied to a cross-linked rubber, leads to the coiling back of extended chains, since a retraction allows the chains to adopt higher entropy conformations.
 - **RETRACTIVE FORCES ARE ENTROPIC IN NATURE IN RUBBERY MATERIALS**… What about metals?
Theory of Rubber Elasticity

- Approach and Results:
 - Consider the Gaussian statistics for the distribution of end to end distances.
 - Calculate S, the entropy per chain in terms of $<r_0^2>$.
 - Calculate ΔF, the free energy change due to deformation ($-T\Delta S$).
 - Assume local and macroscopic deformations are the same (affine deformation).
 - Assume the volume does not change during deformation.
 - Rubbery materials are non-Hookean

\[
F = U - TS = U - kT \ln \Omega(r, T)
\]

\[
f = \left(\frac{\partial F}{\partial r} \right)_{T,v} = -kT \left(\frac{\partial \ln \Omega(r, T)}{\partial r} \right)_{v,T} = \frac{3kTr}{\bar{r}_0^2}
\]

\[
\Delta F = -W = \frac{3nRT}{\bar{r}_0^2} \int \frac{r^2}{r_i^2} \, dr = \frac{nRT}{2} \frac{\bar{r}_i^2}{\bar{r}_0^2} \left(\alpha^2 + \frac{2}{\alpha} - 3 \right)
\]

\[
\sigma = \left(\frac{\partial \Delta F}{\partial \alpha} \right) = nRT \frac{\bar{r}_i^2}{\bar{r}_0^2} \left(\alpha - \frac{1}{\alpha^2} \right)
\]

\[
E = 3nRT \frac{\bar{r}_i^2}{\bar{r}_0^2}
\]

\[
G = \frac{E}{2(1+\nu)} = nRT \frac{\bar{r}_i^2}{\bar{r}_0^2}
\]

\[
\sigma = G \left(\alpha - \frac{1}{\alpha^2} \right)
\]

$n = \# \text{ active chains per unit volume}$
$\alpha: \text{ elongation ratio}$

Ideal Rubber Behavior
Theory of Rubber Elasticity
Comparison of Experiment and Theory

Figure 9.5: Stress-strain behavior of lightly cross-linked natural rubber at 50°C. Curve (a), experimental. Theoretical is equation (9.4). Curve (c) illustrates the reversible nature of the extension up to $\alpha = 5.5$. At higher elongations, curve (b), hysteresis effects become important. The theoretical curve has been fitted to the experimental data in the region of small extensions, with $nRT = 0.39$ N/mm² (37, 38).

Figure 14.6: Extension or compression ratio λ as a function of the tensile or compressive force f for a rubber vulcanize. Theoretical curve is derived from equation (14.21) using $G = 0.392$ MN m⁻². (From data by Treloar, 1944.)
Assume an elastomer of $0.1 \times 0.1 \times 10$ cm3 is stretched to 25 cm length at 35°C, a stress of 2×10^7 dynes/cm2 being required. What is the concentration of active network chains and what is the magnitude of the shear modulus?

$$n = \frac{\sigma}{RT \left(\alpha - \frac{1}{\alpha^2} \right)}$$

$$G = nRT$$

$n = 3.3 \times 10^{-4}$ mol/cm3 \hspace{1em} G = 0.86$ J/cm3 or $G = 0.86$ MPa
Theory of Rubber Elasticity

Ideal Rubber Equation of State

dU = dw + dq

\[dU = -pdV + fdL + TdS = fdL + TdS \]

\[F = U - TS \]

\[dF = dU - TdS - SdT \]

\[dF = fdL - SdT \implies f = \left(\frac{\partial F}{\partial L} \right)_{v,T} \]

\[f = \left(\frac{\partial F}{\partial L} \right)_{v,T} = \left(\frac{\partial U}{\partial L} \right)_{v,T} - T \left(\frac{\partial S}{\partial L} \right)_{v,T} - S \left(\frac{\partial T}{\partial L} \right)_{v,T} \]

\[dF = fdL - SdT \implies \left(\frac{\partial S}{\partial L} \right)_{v,T} = -\left(\frac{\partial f}{\partial T} \right)_{v,L} \]

\[f = \left(\frac{\partial U}{\partial L} \right)_{v,T} + T \left(\frac{\partial f}{\partial T} \right)_{v,L} \]

\[f_e = \left(\frac{\partial U}{\partial L} \right)_{v,T} \]

\[f_s = T \left(\frac{\partial f}{\partial T} \right)_{v,L} = -T \left(\frac{\partial S}{\partial L} \right)_{v,T} \]

Ideal Rubber EoS

\[f = T \left(\frac{\partial f}{\partial T} \right)_{v,L} \]

\[f_e = \left(\frac{\partial U}{\partial L} \right)_{v,T} = 0 \]
Theory of Rubber Elasticity

Rubber Thermoelastic Behavior

Stress required to achieve a given strain at a fixed temperature

Rubber sample at different percentage strains.

\[\sigma = nRT \frac{r_i^2}{r_0^2} \left(\alpha - \frac{1}{\alpha^2} \right) \]

\[f = f_e + f_s \]

\[f_s = T \left(\frac{\partial f}{\partial T} \right)_{L,V} \]

\[f_e = \left(\frac{\partial U}{\partial L} \right)_{T,V} = f - T \left(\frac{\partial f}{\partial T} \right)_{L,V} \]
Theory of Rubber Elasticity

• Is the behavior of a real elastomer truly ideal?
• How do we explain the observation made by Gough (strain leads to a rise in temperature)?

\[
f = f_e + f_S
\]

\[
f_S = T \left(\frac{\partial f}{\partial T} \right)_{L,V}
\]

\[
f_e = \left(\frac{\partial U}{\partial L} \right)_{T,V} = f - T \left(\frac{\partial f}{\partial T} \right)_{L,V}
\]

\[
\left(\frac{\partial T}{\partial L} \right)_{S,p} = -\left(\frac{\partial T}{\partial S} \right)_{L,p} \left(\frac{\partial S}{\partial L} \right)_{T,p} = \frac{T}{C_{p,L}} \left(\frac{\partial f}{\partial T} \right)_{L,p}
\]
Departure from Ideal Rubber Behavior

• Departures from the Ideal Rubber Behavior
 – Non-zero Energy Contribution to Elastic Retractive Forces
 (previous slide)

 – Stress-induced Crystallization

 – Limited Extensibility of Chains
 (better elastomers with high strength and high modulus can be obtained when bimodal networks with long and short chain segments are used)

 – Network Defects
 They must be accounted for in the calculation of the modulus. How do we get the true “n”?
Departure from Ideal Rubber Behavior

- Non-zero Energy Contribution to Elastic Retractive Forces

\[f_e = \left(\frac{\partial U}{\partial L} \right)_{T,V} = f - T \left(\frac{\partial f}{\partial T} \right)_{L,V} \]

\[\frac{f_e}{f} = \frac{1}{T} \frac{d \ln \langle r_o^2 \rangle}{dT} \]

\[[\eta] = \phi \left(\frac{\langle r_o^2 \rangle}{M} \right)^{3/2} M^a \]

\[\frac{d \ln \langle r_o^2 \rangle}{dT} = \frac{2}{3} \frac{d \ln [\eta]}{dT} \]

<table>
<thead>
<tr>
<th>Polymer</th>
<th>(f_e) / (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural rubber</td>
<td>0.12</td>
</tr>
<tr>
<td>t-poly(isoprene)</td>
<td>0.10</td>
</tr>
<tr>
<td>cis poly(butadiene)</td>
<td>0.17</td>
</tr>
<tr>
<td>poly(ethylene)</td>
<td>-0.42</td>
</tr>
<tr>
<td>poly(ethyl acrylate)</td>
<td>-0.16</td>
</tr>
<tr>
<td>poly(dimethyl siloxane)</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Departure from Ideal Rubber Behavior

- **Stress-Induced Crystallization**
 - One of the two possible reasons for up-swing of stress at high strains
 - Modulus increases rapidly as crystals act as new cross-links!
 - Only for crystallizable chains!
 - Melting point increases with stress (why?)

\[
\frac{1}{T_m} = \frac{1}{T_m^0} - \frac{R}{2N_u \Delta H_f^0} \left(\alpha^2 + \frac{2}{\alpha} - 3 \right)
\]
Departure from Ideal Rubber Behavior

• Limited Chain Extensibility

− As chains extend significantly, the Gaussian Statistics approximation no longer holds.

− Mooney-Rivlin-Saunders semi-empirical theory allows to extend the predicted stress-strain curves from low to moderate extensions (not high extensions, \(\alpha < 2.5 \) see fig. 9-18).

− How can we make better elastomers (high strengths, high modulus) ?

− \(C_1 = 2 – 6 \text{ kg/cm}^2, \ C_2 = 2 \text{ kg/cm}^2 \)

− \(2C_2/C_1 \) measures looseness of network (Flory)

\[\sigma = 2\left(\frac{C_1}{\alpha} + \frac{C_2}{\alpha} \right) \left(\alpha - \frac{1}{\alpha^2} \right) \]
Departure from Ideal Rubber Behavior

- **Network Defects**
 - Loose Chain Ends (A.), Intramolecular Loops (B.), Entangled Chain Loops (C.)
 - The quantity \(n \) in the Rubber Elasticity Theory is the true density of active chain sections between cross-links. It could be calculated from stress-strain curves.
 - This number can also be estimated from the extent of swelling. The larger \(n \), the lower the extent of swelling. Swelling is the isotropic expansion of the network as solvent molecules diffuse in the network.

\[
\sigma = n_c \left(1 - \frac{2M}{M_c} \right) + n_p \left[RT \frac{r_i^2}{r_0^2} \left(\alpha - \frac{1}{\alpha^2} \right) \right]
\]

Accounts qualitatively for the effect of chain ends and entanglements.
Swelling of Elastomers

Density of Active Network Chains
Swelling vs. Shear Modulus

Flory-Rehner Equation

\[\Delta G_{SWEL} = \Delta G_{MIX} + \Delta G_{ELAST} \]

\[\Delta G_{elas} = \frac{3}{2} nRT \left[\frac{1}{v_2^{2/3}} - 1 \right] \]

\[- \left(\ln[1 - v_2] + \chi_1 v_2^2 + v_2 \right) = nV_1 \left(\frac{v_2^{1/3} - v_2}{2} \right) \]

Flory-Rehner and Rubber Elasticity Theories

A: Constant
Q: Swelling Ratio

\[G = \frac{ART}{V_1Q^{5/3}} \]

\[Q = \frac{V}{V_0} = \frac{1}{v_2} \]