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In this tutorial, we give an introduction to the principles of X-ray and neutron reflectivity.
For applications of X-ray and neutron reflectivity to organic thin films, see [1,2]. For further
technical details see the list of references.

1 Optical Effects at the Interface

When an X-ray beam impinges on the surface of a sample, similar considerations apply as
for optics with visible light, i.e. the index of refraction n is the relevant parameter. For
X-rays, i.e. electromagnetic radiation with a wavelength λ around 1 Å, we find [1,3, 4]

n = 1 − δ + iβ (1)

with

δ =
λ2

2π
reρe (2)

and

β =
λ

4π
µx. (3)

re = 2.818 × 10−15m is the classical electron radius, ρe is the electron density of the
material, and µx is the absorption length. With δ > 0 we find that n < 1, which leads
to the phenomenon of so-called total external reflection for incident angles αi below the
critical angle αc =

√
2δ.

Typical values for δ are 10−5 . . . 10−6, and thus αc is in the range of 0.1◦ . . . 0.5◦. For
simplicity, β, which is usually even smaller, will be ignored here. Our considerations apply
irrespective of the atomic-scale structure of the material and only the average electron
density enters the equations.

We note that an analogous description of the index of refraction applies to the case of
neutrons, namely

δ =
λ2

2π
bρn and β =

λ

4π
µn. (4)
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Generally, the order of magnitude for δ and β is similar to the X-ray case. However, since
the scattering length b of the nuclei varies non-monotonously across the periodic table, as
opposed to the case of X-rays, the contrast between two given elements is different for X-
rays and for neutrons. Thus, X-ray and neutron reflectivity can be used in a complementary
fashion. Moreover, for neutrons a contrast even between different isotopes of one and the
same chemical element can be obtained. The most famous example is the large difference
in b between 1H and 2D, i.e. hydrogen with protons or deuterons as nuclei. Since hydrogen
is ubiquitous in organic matter, deuteration is a frequently applied method to obtain
contrast between different organic materials, which for X-rays, i.e. in terms of their electron
densities, have very little or no contrast [5].

2 Reflectivity

We discuss the reflectivity for various experimental situations and how it is analyzed. With
the exception of Sec. 2.4, we are only concerned with the specular part, i.e. the incident
angle αi and exit angle αf are equal. In this case the momentum transfer ~Q = ~kf − ~ki is

along the surface normal, which is chosen to be the z coordinate ( ~Q = Qz~ez). For a given
wavelength λ momentum transfer is derived to be

Qz =
4π

λ
sin αi (5)

Figure 1: Geometry for specular reflectivity. The initial and the final wave vector ~ki and ~kf

define the scattering plane.

2.1 Ideal Surface: Fresnel-Reflectivity

The complex reflection coefficient of the electrical field for an ideal, sharp interface as first
calculated by Fresnel writes [1]

r =
kz − k′z
kz + k′z

. (6)

The reflected intensity is then RF = |r|2. kz and k′z are the vertical component of, respec-
tively, the incident and transmitted wave.
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Close to the critical angle k′z is strongly affected by refraction effects. We find

k′z = k
√

αi − αc (7)

which means that for αi < αc it is purely imaginary

k′z = ik
√

αc − αi. (8)

Figure 2: Specular Fresnel-reflectivity from Si02 surface with different roughness according to
equation (9).

Above the critical angle, where k′z is not very different from kz, the reflected intensity
falls off rapidly (RF ∝ 1/α4

i ). Uncorrelated surface roughness σ may be included by

rrough = rideal e
−2kzk′

zσ2

. (9)

A classical example is the reflectivity from the surface of water, for which deviations from
RF (αi) can be traced to thermally excited capillary waves, which always lead to a finite
roughness [6].

2.2 Multiple Interfaces: Parratt-Formalism

If the sample has more than one interface (e.g., like a film on a substrate), the scattering
from all interfaces has to be taken into account. Parratt developed a recursion formal-
ism [7], which relates the reflected and transmitted amplitude, Rj and Tj, respectively,
via [1]

Xj =
Rj

Tj

= e−2ikz,jzj
rj,j+1 + Xj+1e

2ikz,jzj

1 + rj,j+1Xj+1e2ikz,jzj
, (10)
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Figure 3: Reflectivity from different films on Silicon according to Parratts algorithm. The
Kiessig-fringes depend on the different parameters.

where

rj,j+1 =
kz,j − kz,j+1

kz,j + kz,j+1

(11)

is the Fresnel coefficient of interface j. The recursion is solved using T1 = 1 (incident
wave normalized to unity) and RN+1 = 0 (no reflection from the substrate, i.e., from below
the substrate surface).

Due to the interference of waves, which are reflected from different interfaces within
a system, intensity oscillations in the reflecticity can be observed. The periodicity in
Qz of these so-called Kiessig-fringes can be related to the thickness d of the film via
2π/d. Roughness of the interfaces can be taken into account in the same fashion as

above, i.e. by including a term e−2kz,jkz,j+1σ2
j,j+1 in the Fresnel coefficients, provided that

the roughnesses are small compared to thicknesses of the layers involved. We should

4



note that the Parratt formalism takes into account multiple scattering effects, i.e. it is
“dynamical”.

2.3 The Master-Formula

For αi � αc, using kinematical approximation, the reflectivity of an arbitrary electron
density profile ρe(z) can be described by the so-called “Master-Formula”

R(Qz) = RF

∣∣∣∣∣ 1

ρe(z →∞)

∫ dρe

dz
eiQzz dz

∣∣∣∣∣
2

. (12)

While this formalism in general does not properly take into account the effects around
the critical angle, it is fairly good for higher angles and has the important advantage of a
closed-form equation. It is also very transparent in that it relates the scattering to spatial
changes in the electron density, i.e. only points with non-zero dρ/dz contribute to the
Fourier transform.

Figure 4: Fit to experimental reflectivity data using the Master-Formula

An example of the structural and thermal analysis of organic light-emitting materials
using this straight-forward formalism can be found in Ref. [8]. Another useful application of
the master-formula is for graded interfaces [4]. For a systematic investigation of deviations
of the “Master-formula” from the more elaborate Parratt formalism and various other
approximations, see Ref. [9].

2.4 Rough Surfaces: Diffuse Scattering

As shown above, interface roughness reduces the specularly reflected intensity. The missing
intensity is scattered into other (non-specular) directions. Whereas the specular reflectivity
is only sensitive to the structure projected to the surface normal, i.e. the electron density
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profile ρe(z), the non-specularly reflected (i.e. diffuse) intensity is sensitive to the in-plane
correlations of the interface, since it has a non-zero component of the momentum transfer
in the plane.

Figure 5: Geometry for non-specular reflectivity

For a statistically meaningful description of the surface, it is customary to introduce the
height-difference function

g(~r) = 〈[h(~r ′)− h(~r ′′)]2〉 (13)

and the height-height correlation function

C(~r) = 〈h(~r ′)h(~r ′′)〉 (14)

which are related via
g(r) = 2σ2 − 2C(r). (15)

~r = ~r ′ − ~r ′′ is a difference coordinate in the plane of the surface, which we assume to be
isotropic. 〈. . .〉 denotes the average over the entire surface. C(r) can be parametrized in
various ways. A very flexible form is

C(r) = σ2 e−(r/ξ)2H

(16)

which yields for the limiting cases

lim
r→∞

C(r) = 0 and lim
r�ξ

C(r) = σ2 − 1

2
r2H . (17)

ξ is a typical length scale for the correlations in the plane, and H is the so-called Hurst
parameter. For H � 1 the surface is very “jagged”, whereas for H → 1 it is varying more
smoothly.

Sinha et al. have shown how to relate the lateral correlations to the diffuse scattering [10].
In the kinematical approximation, i.e. sufficiently far away from αc, it can be written as

Idiffuse =
∆ρe

Q2
z

e−Q2
zσ2

∫
[ eQ2

zC(r) − 1 ] ei ~Q||·~r d~r. (18)
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Figure 6: Simulation of non-specular reflectivity. Taken from Ref. [4]
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For Q2
zC(r) � 1, i.e. for small roughnesses, the integrand can be expanded and further

simplified to yield

Idiffuse = ∆ρe e−Q2
zσ2

∫
C(r) ei ~Q||·~r d~r. (19)

In this limit the diffuse scattering corresponds directly to the Fourier transform of the
height-height correlation function C(r). For a more detailed discussion, see Ref. [1, 3].

3 Experimental considerations

Since the reflectivity falls off rapidly with Qz, a high incident intensity is required for
measurements up to relatively high Qz. For laboratory sources typically one can detect
reflectivities down to about 10−6. At synchrotron sources, however, a larger dynamic range
is accessible as well as the detection of the diffuse scattering to high angles.

Figure 7: Experimental setup at a synchrotron source (ANKA, Karlsruhe)
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