The suitability of a monomer can be predicted from the strength of the electron withdrawing group.

Initiator
- Water

Nucleophilicity of the Initiator
- CN
- NO_2
- Methyl methacrylate
- CN

For the less electron-withdrawing groups, a stronger initiator is needed (for the bottom row, lithium reagents are necessary). A strong initiator is a highly nucleophilic initiator.
Solvants

Solvants for anionic polymerization must be dry and air-free (teflon stir bars cannot be used, glass stir bars must be used).

Solvants

diethyl ether \(\text{Benzene} \) pentane THF

cyclohexane hexane \(\text{This may react as a more reactive carbon ion} \)

Generally, a lithium reagent and sodium napthalene are used.

Termination

Termination does not occur in many systems.
Example

Polymerize \(\Phi \) using \(Li \) in THF

\[DP = 1000 \]

\[\Phi \xrightarrow{THF} PS \]

10 grams of \(\Phi \) (0.1 moles)
Add THF until the solution is 200 mL
\[[M_3] = 0.5 \text{ M} \]
Add 0.1 millimoles of \(Li \)
\[[M_3] = 0.0005 \text{ M} \]
\[\frac{[M_3]}{[M_3]} = 1000 \]

We react in THF \(\circ \) at 25\(^\circ\)C

\[R_P = (k_+ \overset{\text{Ion Pair}}{\text{[PSL]}} [M_3] + (k_- \overset{\text{FReation}}{\text{[PS]}} [M_3]) \]

We wish to know which term, \(\overset{\text{A}}{\text{or}}\overset{\text{B}}{\text{is most important.}} \]

we have,

\[[PSL] \approx [M_3] \]

\[K_0 = \frac{[C.0][PS^{-3}]}{[M_3]} = \frac{[PS^{-3}]}{[M_3]} \]

we have

\[[PS^{-3}] = \left(K_0 [M_3] \right)^{1/2} \]