100528 Exam 3 Materials and Energy Balances

ANSWERS ON SEPARATE SHEETS. NAME IN THE UPPER RIGHT CORNER OF EACH PAGE AND NUMBER THE PAGES. (LEAVE (TOP LEFT) ROOM FOR A STAPLE) (Gas constant, g, Cox chart, Tables B2, B5 and B6, and periodic table are given at the end.)

- A liquid mixture containing 50 mole % propane, 30% n-butane, and 20% isobutene is stored in a rigid container at 77°F. The container has a maximum allowable working pressure of 200 psig. The head-space above the liquid contains only vapors of the three hydrocarbons.
 - a) Show that the container is currently safe using the Cox chart.
 - b) Obtain a rough estimate of the temperature above which the maximum allowable pressure would be exceeded. Comment on the suitability of the container to store the given mixture.

*Modified from Question 6.54 of the R.M. Felder and R.W. Rousseau Text.

- 2)* Saturated steam at a gauge pressure of 2.0 bar is to be used to heat a stream of ethane. The ethane enters a heat exchanger at 16°C and 1.5 bar gauge at a rate of 795 m³/min and is heated at constant pressure to 93°C. The steam condenses and leaves the exchanger as a liquid at 27°C. The specific enthalpy of ethane at the given pressure is 941 kJ/kg at 16°C and 1073 kJ/kg at 93°C.
 - a) Draw a flow diagram and do a degree of freedom analysis for this problem.
 - b) How much energy (kW) must be transferred to the ethane to heat it from 16°C to 93°C? (Write the energy balance and list all assumptions.)
 - c) Assuming that all the energy transferred from the steam goes to heat the ethane, at what rate in m³/s must steam be supplied to the exchanger? If the assumption is incorrect, would the calculated value be too high or too low?
 - d) Should the heat exchanger be set up for co-current or counter-current flow? Explain.
 *Modified from Question 7.28 of the R.M. Felder and R.W. Rousseau Text.
- 3)* Humid air at 50°C and 1.0 atm with 2°C of superheat is fed to a condenser. Gas and liquid streams leave the condenser in equilibrium at 20°C and 1 atm.
 - a) Assume a basis of calculation of 100 mol inlet air, draw and label a flowchart (including Q in the labeling), and carry out a degree-of-freedom analysis to verify that all labeled variables can be determined.
 - b) Write in order the equations you would solve to calculate the mass of water condensed (kg) per cubic meter of air fed to the condenser. Circle the unknown variable for which you would solve each equation. Do not do any of the calculations.
 - c) Prepare and inlet-outlet enthalpy table, inserting labels for unknown specific enthalpies

 $(\hat{H}_1, \hat{H}_2, ...)$. Write expressions for the labeled specific enthalpies. Then write an expression for the rate at which heat must be transferred from the unit (kJ) per cubic meter of air fed to the condenser.

- d) Use a first order approximation (T^1 as the highest power) to solve for kg H₂O condensed/m³ air fed and kJ transferred/m³ air fed.
- e) What cooling rate would be required (kW) to process 250 m³ air fed/h under this approximation?

*Modified from Question 8.46 of the R.M. Felder and R.W. Rousseau Text.

$g = 9.807 m/s^2$

	GROUP		PE	ERI	OD	OIC	TA	BL	E (DF	TH	EE						18 VIII
1	1 IA 1 1.0079				VE ATOMIC N		Me	ıtal 🍒	Semimetal	Nonme	etal	$\overline{\mathbf{N}}$		2://www.klj-	split.hr/per	iodni/en/		2 4.002 He
	HYDROGEN 3 6.941	2 IIA 4 9.0122					2 Alk	1 Alkali metal 16 Chalcogens element 2 Alkaline earth metal 17 Halogens element				· · · · · · · · · · · · · · · · · · ·	13 IIIA 5 10.811	14 IVA		16 VIA 8 15,999		HELIUM
2	Li	Be	5	YMBOL	BORON			Insition metal: Lanthanide Actinide	STAN	Noble	(25 °C; 101 k Fe - solid	(Pa)	BORON	C		O	F	Ne
3		12 24.305		ELEY	MENT NAME	/ _ /	1-7			- liquid	To - synthet	lic	13 26.982	14 28.086 Si	15 30.974 P	16 32.065	17 35.453	18 39.9
	SODIUM	Magnesium 20 40.078	3 IIIB 21 44.956	4 IVB		6 VIB		8 26 55.845	9	10		12 IIB 30 65,39	AI ALUMINIUM 31 69.723	SILICON 32 72.64	PHOSPHORUS 33 74.922	SULPHUR 34 78.96	CI CHLORINE 35 79.904	Ar ARGON 36 83.4
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
7	37 85.468	CALCIUM 38 87.62	39 88.906	40 91.224	VANADIUM 41 92.906	42 95.94	MANGANESE 43 (98)	IRON 44 101.07	COBALT 45 102.91	NICKEL 46 106.42	47 107.87	ZINC 48 112.41	GALLIUM 49 114.82	GERMANIUM 50 118.71	ARSENIC 51 121.76	SELENIUM 52 127.60	BROMINE 53 126.90	KRYPTO 54 131.
	RUBIDIUM 55 132.91	Sr STRONTIUM 56 137.33	Y	Zr ZIRCONIUM 72 178.49			TECHNETIUM	RUTHENIUM	Rhodium	Pd PALLADIUM 78 195.08	Ag SILVER 79 196.97	Cd CADMIUM 80 200.59	In INDIUM 81 204.38	Sn TIN 82 207.2	Sb ANTIMONY 83 208.96	Te TELLURIUM 84 (209)	IODINE 85 (210)	Xe xenon 86 (22
6	Cs	Ba	57-71 La-Lu Lanthanide	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
7	-	BARIUM 88 (226)	89-103	HAFNIUM 104 (261)	105 (262)	106 (266)	RHENIUM 107 (264)	OSMIUM 108 (277)	IRIDIUM 109 (268)	PLATINUM 110 (281)	GOLD 111 (272)	MERCURY 112 (285)	THALLIUM	LEAD 114 (289)	BISMUTH	POLONIUM	ASTATINE	RADON
1	FRANCIUM	Ra	Ac-Lr Actinide	IRI RUTHERFORDIUM	DUBNIUM	Sg	BOHRIUM	HASSIUM				UUID		UUQ				
		3. No. 4, 667-66	3 (2001)	LANTHANI 57 138.91	1	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26		98-2003 EniG.	1
ignifi uclid ndica	cantingures. Fo	ass is shown or elements have e enclosed in umber of the lon	brackets	La	Ce	Pr	Nd NEODYMIUM	Pm PROMETHIUM	Sm samarium	EUROPIUM		Tb TERBIUM	Dy Dysprosium	HOLMIUM	Er	Тт	Yb	LUTETIU
towe to ha	ver three such we a charact osition, and for	elements (Th, F eristic terrestria these an atomic	il isotopic	ACTINIDE 89 (227)			92 238.03					1		\	100 (257)		1	
			linx.com)	AC	Th	PROTACTINIUM	U		Pu			BK	Cí	Es	FIM	MID		

THE GAS CONSTANT

8.314 m³·Pa/(mol·K) 0.08314 L·bar/(mol·K) 0.08206 L·atm/(mol·K) 62.36 L·mm Hg/(mol·K) 0.7302 ft³·atm/(lb-mole·°R) 10.73 ft³·psia/(lb-mole·°R) 8.314 J/(mol·K)

1.987 cal/(mol·K) 1.987 Btu/(lb-mole·°R)

From Elementary Principles of Chemical Processes, 3'rd ed.; R.M. Felder and R.W. Rousseau.

		<i>Ŵ</i> (m ³	/kg)	Û(k	J/kg)	Ĥ(kJ/kg)				
<i>T</i> (°C)	P(bar)	Water	Steam	Water	Steam	Water	Evaporation	Steam		
0.01	0.00611	0.001000	206.2	zero	2375.6	+0.0	2501.6	2501.6		
2	0.00705	0.001000	179.9	8.4	2378.3	8.4	2496.8	2505.2		
4	0.00813	0.001000	157.3	16.8	2381.1	16.8	2492.1	2508.9		
6	0.00935	0.001000	137.8	25.2	2383.8	25.2	2487.4	2512.6		
8	0.01072	0.001000	121.0	33.6	2386.6	33.6	2482.6	2516.2		
10	0.01227	0.001000	106.4	42.0	2389.3	42.0	2477.9	2519.9		
12	0.01401	0.001000	93.8	50.4	2392.1	50.4	2473.2	2523.6		
14	0.01597	0.001001	82.9	58.8	2394.8	58.8	2468.5	2527.2		
16	0.01817	0.001001	73.4	67.1	2397.6	67.1	2463.8	2530.9		
18	0.02062	0.001001	65.1	75.5	2400.3	75.5	2459.0	2534.5		
20	0.0234	0.001002	57.8	83.9	2403.0	83.9	2454.3	2538.2		
22	0.0264	0.001002	51.5	92.2	2405.8	92.2	2449.6	2541.8		
24	0.0298	0.001003	45.9	100.6	2408.5	100.6	2444.9	2545.5		
25	0.0317	0.001003	43.4	104.8	2409.9	104.8	2442.5	2547.3		
26	0.0336	0.001003	41.0	108.9	2411.2	108.9	2440.2	2549.3		
28	0.0378	0.001004	36.7	117.3	2414.0	117.3	2435.4	2552.		
30	0.0424	0.001004	32.9	125.7	2416.7	125.7	2430.7	2556.4		
32	0.0475	0.001005	29.6	134.0	2419.4	134.0	2425.9	2560.0		
34	0.0532	0.001006	26.6	142.4	2422.1	142.4	2421.2	2563.6		
36	0.0594	0.001006	24.0	150.7	2424.8	150.7	2416.4	2567.2		
38	0.0662	0.001007	21.6	159.1	2427.5	159.1	2411.7	2570.8		
40	0.0738	0.001008	19.55	167.4	2430.2	167.5	2406.9	2574.4		
42	0.0820	0.001009	17.69	175.8	2432.9	175.8	2402.1	2577.9		
44	0.0910	0.001009	16.04	184.2	2435.6	184.2	2397.3	2581.5		
46	0.1009	0.001010	14.56	192.5	2438.3	192.5	2392.5	2585.1		
48	0.1116	0.001011	13.23	200.9	2440.9	200.9	2387.7	2588.6		
50	0.1234	0.001012	12.05	209.2	2443.6	209.3	2382.9	2592.2		
52	0.1361	0.001013	10.98	217.7	2446	217.7	2377	2595		
54	0.1500	0.001014	10.02	226.0	2449	226.0	2373	2599		
56	0.1651	0.001015	9.158	234.4	2451	234.4	2368	2602		
58	0.1815	0.001016	8.380	242.8	2454	242.8	2363	2606		
60	0.1992	0.001017	7.678	251.1	2456	251.1	2358	2609		
62	0.2184	0.001018	7.043	259.5	2459	259.5	2353	2613		
64	0.2391	0.001019	6.468	267.9	2461	267.9	2348	2616		
66	0.2615	0.001020	5.947	276.2	2464	276.2	2343	2619		
68	0.2856	0.001022	5.475	284.6	2467	284.6	2338	2623		

Table B.5 Properties of Saturated Steam: Temperature Table^a

^aFrom R. W. Haywood, *Thermodynamic Tables in SI (Metric) Units*, Cambridge University Press, London, 1968. $\hat{V} =$ specific volume, $\hat{U} =$ specific internal energy, and $\hat{H} =$ specific enthalpy. *Note:* kJ/kg × 0.4303 = Btu/lb_m.

(continued)

Table B.5 (Continued)

		<i>Ŷ</i> (m ³)	/kg)	Û(k	J/kg)	$\hat{H}(kJ/kg)$				
<i>T</i> (°C)	P(bar)	Water	Steam	Water	Steam	Water	Evaporation	Steam		
70	0.3117	0.001023	5.045	293.0	2469	293.0	2333	2626		
72	0.3396	0.001024	4.655	301.4	2472	301.4	2329	2630		
74	0.3696	0.001025	4.299	309.8	2474	309.8	2323	2633		
76	0.4019	0.001026	3.975	318.2	2476	318.2	2318	2636		
78	0.4365	0.001028	3.679	326.4	2479	326.4	2313	2639		
80	0.4736	0.001029	3.408	334.8	2482	334.9	2308	2643		
82	0.5133	0.001030	3.161	343.2	2484	343.3	2303	2646		
84	0.5558	0.001032	2.934	351.6	2487	351.7	2298	2650		
86	0.6011	0.001033	2.727	360.0	2489	360.1	2293	2653		
88	0.6495	0.001034	2.536	368.4	2491	368.5	2288	2656		
90	0.7011	0.001036	2.361	376.9	2493	377.0	2282	2659		
92	0.7560	0.001037	2.200	385.3	2496	385.4	2277	2662		
94	0.8145	0.001039	2.052	393.7	2499	393.8	2272	2666		
96	0.8767	0.001040	1.915	402.1	2501	402.2	2267	2669		
98	0.9429	0.001042	1.789	410.6	2504	410.7	2262	2673		
100	1.0131	0.001044	1.673	419.0	2507	419.1	2257	2676		
102	1.0876	0.001045	1.566	427.1	2509	427.5	2251	2679		

Table B.6	Properties of	Saturated Steam:	Pressure Table"
-----------	---------------	------------------	-----------------

		<i>Ŵ</i> (m ³ /	kg)	Û(kJ	/kg)	$\hat{H}(kJ/kg)$			
P(bar)	<i>T</i> (°C)	Water	Steam	Water	Steam	Water	Evaporation	Steam	
0.00611	0.01	0.001000	206.2	zero	2375.6	+0.0	2501.6	2501.6	
0.008	3.8	0.001000	159.7	15.8	2380.7	15.8	2492.6	2508.5	
0.010	7.0	0.001000	129.2	29.3	2385.2	29.3	2485.0	2514.4	
0.012	9.7	0.001000	108.7	40.6	2388.9	40.6	2478.7	2519.3	
0.014	12.0	0.001000	93.9	50.3	2392.0	50.3	2473.2	2523.5	
0.016	14.0	0.001001	82.8	58.9	2394.8	58.9	2468.4	2527.3	
0.018	15.9	0.001001	74.0	66.5	2397.4	66.5	2464.1	2530.6	
0.020	17.5	0.001001	67.0	73.5	2399.6	73.5	2460.2	2533.6	
0.022	19.0	0.001002	61.2	79.8	2401.7	79.8	2456.6	2536.4	
0.024	20.4	0.001002	56.4	85.7	2403.6	85.7	2453.3	2539.0	
0.026	21.7	0.001002	52.3	91.1	2405.4	91.1	2450.2	2541.3	
0.028	23.0	0.001002	48.7	96.2	2407.1	96.2	2447.3	2543.6	
0.030	24.1	0.001003	45.7	101.0	2408.6	101.0	2444.6	2545.6	
0.035	26.7	0.001003	39.5	111.8	2412.2	111.8	2438.5	2550.4	
0.040	29.0	0.001004	34.8	121.4	2415.3	121.4	2433.1	2554.5	
0.045	31.0	0.001005	31.1	130.0	2418.1	130.0	2428.2	2558.2	
0.050	32.9	0.001005	28.2	137.8	2420.6	137.8	2423.8	2561.6	
0.060	36.2	0.001006	23.74	151.5	2425.1	151.5	2416.0	2567.5	
0.070	39.0	0.001007	20.53	163.4	2428.9	163.4	2409.2	2572.6	
0.080	41.5	0.001008	18.10	173.9	2432.3	173.9	2403.2	2577.1	
0.090	43.8	0.001009	16.20	183.3	2435.3	183.3	2397.9	2581.1	
0.10	45.8	0.001010	14.67	191.8	2438.0	191.8	2392.9	2584.8	
0.11	47.7	0.001011	13.42	199.7	2440.5	199.7	2388.4	2588.1	
0.12	49.4	0.001012	12.36	206.9	2442.8	206.9	2384.3	2591.2	
0.13	51.1	0.001013	11.47	213.7	2445.0	213.7	2380.4	2594.0	
0.14	52.6	0.001013	10.69	220.0	2447.0	220.0	2376.7	2596.7	
0.15	54.0	0.001014	10.02	226.0	2448.9	226.0	2272.2	0.500	
0.16	55.3	0.001015	9.43	220.0	2440.9	220.0	2373.2	2599	
0.17	56.6	0.001015	8.91	236.9	2452.3	231.0	2370.0	2601	
0.18	57.8	0.001016	8.45	242.0	2453.9	230.9	2366.9	2603	
0.19	59.0	0.001017	8.03	246.8	2455.4	242.0	2363.9 2361.1	2605	
0.20	60.1	0.001017	7.65	251.5				2607	
0.22	62.2	0.001018	7.00	260.1	2456.9 2459.6	251.5	2358.4	2609	
0.24	64.1	0.001019	6.45	268.2	2459.0	260.1 268.2	2353.3	2613	
0.26	65.9	0.001020	5.98	275.6	2464.4	208.2	2348.6 2344.2	2616	
0.28	67.5	0.001021	5.58	282.7	2466.5	282.7	2344.2	2619	
0.30	69.1	0.001022	5.23	289.3	2468.6			2622	
0.35	72.7	0.001025	4.53	304.3	2408.0	289.3	2336.1	2625	
0.40	75.9	0.001027	3.99	317.6	2473.1	304.3 317.7	2327.2	2631	
0.45	78.7	0.001028	3.58	329.6	2477.1	317.7	2319.2	2636	
0.50	81.3	0.001030	3.24	340.5	2480.7	329.0	2312.0	2641	
0.55	83.7	0.001032	2.96				2305.4	2646	
0.60	86.0	0.001032	2.90	350.6 359.9	2486.9	350.6	2299.3	2649	
0.65	88.0	0.001035	2.53	368.5	2489.7 2492.2	359.9	2293.6	2653	
0.70	90.0	0.001036	2.35	308.5	2492.2 2494.5	368.6	2288.3	2656	
0.75	91.8	0.001030	2.30	376.7 384.4		376.8	2283.3	2660	
0.80	93.5				2496.7	384.5	2278.6	2663	
0.80	93.5 95.2	0.001039	2.087	391.6	2498.8	391.7	2274.1	2665	
0.85		0.001040	1.972	398.5	2500.8	398.6	2269.8	2668	
0.90	96.7 98.2	0.001041	1.869	405.1	2502.6	405.2	2265.6	2670	
1.00	98.2 99.6	0.001042	1.777	411.4	2504.4	411.5	2261.7	2673	
1.01325	99.6 100.0	0.001043 0.001044	1.694	417.4	2506.1	417.5	2257.9	2675	
1 atm)	100.0	0.001044	1.673	419.0	2506.5	419.1	2256.9	2676	

^aFrom R. W. Haywood, *Thermodynamic Tables in SI (Metric) Units*, Cambridge University Press, London, 1968. \hat{V} = specific volume, \hat{U} = specific internal energy, and \hat{H} = specific enthalpy. *Note:* kJ/kg × 0.4303 = Btu/lb_m.

(continued)

)

		Ŵ(m ³ /	kg)	$\hat{U}(\mathbf{k})$	l/kg)	Ĥ(kJ/kg)			
P(bar)	<i>T</i> (°C)	Water	Steam	Water	Steam	Water	Evaporation	Stea	
1.1	102.3	0.001046	1.549	428.7	2509.2	428.8	2250.8	2679	
1.2	104.8	0.001048	1.428	439.2	2512.1	439.4	2244.1	2683	
1.3	107.1	0.001049	1.325	449.1	2514.7	449.2	2237.8	2687	
1.4	109.3	0.001051	1.236	458.3	2517.2	458.4	2231.9	2690	
1.5	111.4	0.001053	1.159	467.0	2519.5	467.1	2226.2	2693	
1.6	113.3	0.001055	1.091	475.2	2521.7	475.4	2220.9	2696	
1.7	115.2	0.001056	1.031	483.0	2523.7	483.2	2215.7	2699	
1.8	116.9	0.001058	0.977	490.5	2525.6	490.7	2210.8	2701	
1.9	118.6	0.001059	0.929	497.6	2527.5	497.8	2206.1	2704	
2.0	120.2	0.001061	0.885	504.5	2529.2	504.7	2201.6	2706	
2.2	123.3	0.001064	0.810	517.4	2532.4	517.6	2193.0	2710	
2.4	126.1	0.001066	0.746	529.4	2535.4	529.6	2184.9	2714	
2.6	128.7	0.001069	0.693	540.6	2538.1	540.9	2177.3	2718	
2.8	131.2	0.001071	0.646	551.1	2540.6	551.4	2170.1	2721	
3.0	133.5	0.001074	0.606	561.1	2543.0	561.4	2163.2	2724	
3.2	135.8	0.001076	0.570	570.6	2545.2	570.9	2156.7	2727	
3.4	137.9	0.001078	0.538	579.6	2547.2	579.9	2150.4	2730	
3.6	139.9	0.001080	0.510	588.1	2549.2	588.5	2144.4	2732	
3.8	141.8	0.001082	0.485	596.4	2551.0	596.8	2138.6	273	
4.0	143.6	0.001084	0.462	604.2	2552.7	604.7	2133.0	2737	
4.2	145.4	0.001086	0.442	611.8	2554.4	612.3	2127.5	2739	
4.4	147.1	0.001088	0.423	619.1	2555.9	619.6	2122.3	2741	
4.6	148.7	0.001089	0.405	626.2	2557.4	626.7	2117.2	2743	
4.8	150.3	0.001091	0.389	633.0	2558.8	633.5	2112.2	274	
5.0	151.8	0.001093	0.375	639.6	2560.2	640.1	2107.4	274	
5.5	155.5	0.001097	0.342	655.2	2563.3	655.8	2095.9	275	
6.0	158.8	0.001101	0.315	669.8	2566.2	670.4	2085.0	275	
6.5	162.0	0.001105	0.292	683.4	2568.7	684.1	2074.7	275	
7.0	165.0	0.001108	0.273	696.3	2571.1	697.1	2064.9	276	
7.5	167.8	0.001112	0.2554	708.5	2573.3	709.3	2055.5	276	
8.0	170.4	0.001112	0.2403	720.0	2575.5	709.5	2035.5	2764 2767	
8.5	172.9	0.001118	0.2268	720.0	2577.1	720.9	2037.9	276	
9.0	175.4	0.001121	0.2148	741.6	2578.8	742.6	2029.5	270	
9.5	177.7	0.001124	0.2040	751.8	2580.4	752.8	2021.4	277	
10.0	179.9	0.001127	0.1943	761.5	2581.9	762.6	2013.6	277	
10.5	182.0	0.001130	0.1855	770.8	2583.3	772.0	2005.9		
11.0	182.0	0.001133	0.1774	779.9	2583.5	772.0	1998.5	2773 277	
11.5	186.0	0.001136	0.1700	788.6	2585.8	789.9	1998.5	278	
12.0	188.0	0.001130	0.1632	797.1	2586.9	798.4	1991.3	278	
12.5	189.8	0.001141	0.1569	805.3	2588.0	806.7	1977.4	278	
13.0	191.6	0.001144	0.1511	813.2	2589.0	814.7	1970.7	278	
14	195.0	0.001149	0.1407	828.5	2590.8	830.1	1957.7	278	
15	198.3	0.001154	0.1317	842.9	2592.4	844.7	1945.2	278	
16	201.4	0.001159	0.1237	856.7	2593.8	858.6	1945.2	278	
17	204.3	0.001163	0.1166	869.9	2595.1	871.8	1933.2	279	
18	207.1	0.001168	0.1103	882.5	2596.3	884.6	1921.5	279	
19	209.8	0.001172	0.1047	894.6	2597.3	896.8	1899.3	279	
20	212.4	0.001177	0.0995	906.2	2598.2	908.6	1888.6		
21	214.9	0.001181	0.0949	917.5	2598.2	908.0	1878.2	279 279	
22	217.2	0.001185	0.0907	928.3	2599.6	920.0	1868.1	279	
23	219.6	0.001189	0.0868	938.9	2600.2	931.0	1858.2	279	
24	221.8	0.001193	0.0832	949.1	2600.2	951.9	1848.5	279	
25	223.9		0.0799						
25 26	223.9	0.001197 0.001201	0.0799 0.0769	959.0	2601.2	962.0	1839.0	280	
20	228.0	0.001201	0.0769	968.6 078.0	2601.5	971.7	1829.6	280	
28	228.1	0.001205	0.0740	978.0	2601.8 2602.1	981.2	1820.5	280	
29	230.0	0.001209	0.0714	987.1 996.0		990.5 999 5	1811.5	280	
					2602.3	999.5	1802.6	2802	
30	233.8	0.001216	0.0666	1004.7	2602.4	1008.4	1793.9	2802	
32 34	237.4	0.001224	0.0624	1021.5	2602.5	1025.4	1776.9	2802	
74	240.9	0.001231	0.0587	1037.6	2602.5	1041.8	1760.3	2802	
36	244.2	0.001238	0.0554	1053.1	2602.2	1057.6	1744.2	2801	

(continued)

Table B.6 (Continued)

		Ŵ(m ³ /	kg)	<i>Û</i> (kJ/	kg)	Ĥ(kJ/kg)			
P(bar)	<i>T</i> (°C)	Water	Steam	Water	Steam	Water	Evaporation	Stean	
40	250.3	0.001252	0.0497	1082.4	2601.3	1087.4	1712.9	2800.	
42	253.2	0.001259	0.0473	1096.3	2600.7	1101.6	1697.8	2799.	
44	256.0	0.001266	0.0451	1109.8	2599.9	1115.4 1682.9			
46	258.8	0.001272	0.0430	1122.9	2599.1	1128.8	1668.3	2797.	
48	261.4	0.001279	0.0412	1135.6	2598.1	1141.8	1653.9	2795.	
50	263.9	0.001286	0.0394	1148.0	2597.0	1154.5	1639.7	2794.	
52	266.4	0.001292	0.0378	1160.1	2595.9	1166.8	1625.7	2792.	
54	268.8	0.001299	0.0363	1171.9	2594.6	1178.9	1611.9	2790.	
56	271.1	0.001306	0.0349	1183.5	2593.3	1190.8	1598.2	2789.	
58	273.3	0.001312	0.0337	1194.7	2591.9	1202.3	1584.7	2787.	
60	275.6	0.001319	0.0324	1205.8	2590.4	1213.7	1571.3	2785.	
62	275.0	0.001325	0.0313	1205.8	2588.8	1213.7	1558.0	2783.	
64	279.8	0.001332	0.0302	1227.2	2587.2	1235.7	1544.9	2782.	
66	281.8	0.001338	0.0292	1237.6	2585.5	1235.7	1531.9	2780.	
68	283.8	0.001345	0.0292	1247.9	2583.7	1240.5	1518.9	2775.	
70	285.8	0.001351	0.0274	1258.0	2581.8	1267.4	1506.0	2773.	
72	287.7	0.001358	0.0265	1267.9	2579.9	1277.6	1493.3	2770.	
74	289.6	0.001364	0.0257	1277.6	2578.0	1287.7	1480.5	2768.	
76 79	291.4	0.001371	0.0249	1287.2	2575.9	1297.6	1467.9	2765.	
78	293.2	0.001378	0.0242	1296.7	2573.8	1307.4	1455.3	2762.	
80	295.0	0.001384	0.0235	1306.0	2571.7	1317.1	1442.8	2759.	
82	296.7	0.001391	0.0229	1315.2	2569.5	1326.6	1430.3	2757.	
84	298.4	0.001398	0.0222	1324.3	2567.2	1336.1	1417.9	2754.	
86	300.1	0.001404	0.0216	1333.3	2564.9	1345.4	1405.5	2750.	
88	301.7	0.001411	0.0210	1342.2	2562.6	1354.6	1393.2	2747.	
90	303.3	0.001418	0.02050	1351.0	2560.1	1363.7	1380.9	2744.	
92	304.9	0.001425	0.01996	1359.7	2557.7	1372.8	1368.6	2741.	
94	306.4	0.001432	0.01945	1368.2	2555.2	1381.7	1356.3	2738.	
96	308.0	0.001439	0.01897	1376.7	2552.6	1390.6	1344.1	273	
98	309.5	0.001446	0.01849	1385.2	2550.0	1399.3	1331.9	273	
100	311.0	0.001453	0.01804	1393.5	2547.3	1408.0	1319.7	272	
105	314.6	0.001470	0.01698	1414.1	2540.4	1429.5	1289.2	271	
110	318.0	0.001489	0.01601	1434.2	2533.2	1450.6	1258.7	270	
115	321.4	0.001507	0.01511	1454.0	2525.7	1471.3	1228.2	269	
120	324.6	0.001527	0.01428	1473.4	2517.8	1491.8	1197.4	268	
125	327.8	0.001547	0.01351	1492.7	2509.4	1512.0	1166.4	267	
130	330.8	0.001567	0.01280	1511.6	2500.6	1532.0	1135.0	266	
135	333.8	0.001588	0.01213	1530.4	2491.3	1551.9	1103.1	265	
140	336.6	0.001611	0.01150	1549.1	2481.4	1571.6	1070.7	264	
145	339.4	0.001634	0.01090	1567.5	2471.0	1591.3	1037.7	262	
150	342.1	0.001658	0.01034	1586.1	2459.9	1611.0	1004.0	261	
155	344.8	0.001683	0.00981	1604.6	2439.9	1630.7	969.6	260	
160	347.3	0.001710	0.00931	1623.2	2436.0	1650.5	934.3	258	
165	349.8	0.001739	0.00883	1641.8	2423.1	1670.5	898.3	256	
170	352.3	0.001770	0.00837	1661.6	2409.3	1691.7	859.9	255	
175	354.6		0.00793	1681.8		1713.3			
175		0.001803 0.001840			2394.6		820.0	253	
180	357.0 359.2	0.001840	0.00750 0.00708	1701.7	2378.9	1734.8	779.1	251	
185	359.2 361.4		0.00708	1721.7 1742.1	2362.1	1756.5	736.6	249	
190	363.6	0.001926 0.001977	0.00668	1742.1	2343.8 2323.6	1778.7	692.0 641.2	247	
						1801.8	644.2	244	
200	365.7	0.00204	0.00588	1785.7	2300.8	1826.5	591.9	241	
205	367.8	0.00211	0.00546	1810.7	2274.4	1853.9	532.5	238	
210	369.8	0.00220	0.00502	1840.0	2242.1	1886.3	461.3	234	
215	371.8	0.00234	0.00451	1878.6	2198.1	1928.9	366.2	229	
220	373.7	0.00267	0.00373	1952	2114	2011	185	219	
221.2	374.15	0.00317	0.00317	2038	2038	2108	0	210	

								$a + bT + cT^{2}$ a + bT + cT		T · · • • • • • • • • • • • • • • • • •	
Example	$e: (C_p)_{acetone(g)}$			10.	(10-5)	T - (1)	2.78×10^{-3}	$T^{2} + (34.7)$	$6 \times 10^{-2})I^{-}$, where	T is in °C.	0-300
Note: The fo	ormulas for g	ases are str	ictly ap	plica	ble at p	pressui	res low eno	ugh for the	ideal gas equation of	state to upp	Range
110101 2	No.	28.0.	8								(Units
		Mo			-	Tem		$b \times 10^4$	$c \times 10^{8}$	$d \times 10^{12}$	of T)
Compound	Formula	w W	t. S	tate	Form	Un		1.28			-30-60
Magnacum chi	CH ₃ CO	CH ₃ 58.	08	1	1	°C		18.6	-12.78	34.76	0-1200
Acetone	CH3CO	CITY		g	1	°C			-5.033	18.20	0-1200
Acetylene	C_2H_2	26.		g	1	°(0.0101	-1.965	0-150
Air		29	.0	g	1 1	k		9 0.196	5 0.4799	-1.965	273–180 0–120
	NUT	17	.03	g g	1	°(0.4421	-6.686	275-328
Ammonia	$(NH_3)_2$			С	1	ŀ	K 215.9				6-67
Ammonium sulfat	C_6H_6		.11	1	1	°(-25.20	77.57	0-120
Benzene	0.0110			g	1	°(10	-18.91	49.87	0-120
Isobutane	C4H10		3.12	g	1 1		C 89.4 C 92.3	11	-15.47	34.98	0-120
n-Butane	C4H10		3.12 5.10	g g	1		C 82.		-17.27	50.50	0-120 298-720
Isobutene	C_4H_8		4.10	e c	2		K 68.		-8.66×10^{10}	_	273-103
Calcium carbide	e CaC ₂		0.09	с	2		K 82.		5 -12.87×10^{10}		276-37
Calcium carbonat Calcium hydroxid		3	4.10	с	1		K 89.		-4.52×10^{10}		273-11
Calcium oxide	CaO	5	6.08	С	2		K 41. K 11.			0	273-13
Carbon	С		2.01	c	2 1		°C 36.		3 -2.887	7.464	0–15 0–15
Carbon dioxide	CO ₂		4.01 8.01	g g	1		°C 28	.95 0.41	.10 0.3548	-2.220	0-15 273-34
Carbon monoxid	e CO ride CCl ₄		3.84	g 1	1		K 93	.39 12.98	1 607	6.473	0-12
Carbon tetrachlo	ride CCl ₄ Cl ₂		0.91	g	ic Fd			.60 1.36 .76 0.61		0.775	273-13
Chlorine	Cu	(53.54	С	1		K 22				
Copper Cumene		100.10	14	0101	1		0.5 30		ard Edition. C	.974, Table E.	1. Adapted
(Isopropyl benzene)	C ₉ H ₁₂	120.19	g		1	°C	139.2	53.76	-39.79	120.5	0–1
Cyclohexane	C ₆ H ₁₂	84.16	8		1	00	0.1.1.	4233	-5-881 -1		
Cyclopentane	$C_{6}H_{12}$ $C_{5}H_{10}$	70.13	g		1 1	°C °C	94.14		-31.90	80.63	0-1
Ethane	C_2H_6	30.07	g g		1	°C	73.39 49.37	39.28	-25.54	68.66	0-1
Ethyl alcohol	C ₂ H ₅ OH		g 1		1	°C	103.1	13.92	-5.816	7.280	0-1
(Ethanol)	30-2	0.07	1		1	°C	158.8				0
			g		1	°C	61.34	15.72	-8.749	19.83	100
Ethylene	C_2H_4	28.05	g		1	°C	+40.75	11.47	-6.891	19.85	0-12 0-12
erric oxide	Fe ₂ O ₃	159.70	c		2	K	103.4	6.711	-17.72×10^{10}		273-10
ormaldehyde	CH ₂ O	30.03	g		1	°C	34.28	4.268	0.0000	-8.694	0-12
Ielium	He	4.00	g		1	°C	20.8			01051	0-12
-Hexane	C ₆ H ₁₄	86.17	1		1	°C	216.3				20-10
Iydrogen	ц	2.016	g		1	°C	137.44	40.85	-23.92	57.66	0-12
Iydrogen bromide	H ₂ HBr	2.016 80.92	g		1	°C	28.84	0.0076		-0.8698	0-15
lydrogen chloride	HCl	36.47	g		1 1	°C °C	29.10	-0.0227		-4.858	0-12
lydrogen cyanide	HCN	27.03	g g		1	°C	29.13 35.3	-0.1341	0.9715	-4.335	0-12
lydrogen sulfide	H ₂ S	34.08	g		1	°C	33.51	2.908 1.547	-1.092	2 202	0-12
lagnesium chloride	MgCl ₂	95.23	c b		1	K	72.4	1.547	0.3012	-3.292	0-15
lagnesium oxide	MgO	40.32	с		2	K	45.44	0.5008	-8.732×10^{10}		273-99
lethane	CH ₄	16.04	g		1	°C	34.31	5.469	0.3661	-11.00	0-12
			g		1	Κ	19.87	5.021	1.268	-11.00	273-15
lethyl alcohol	CH ₃ OH	32.04	1		1	°C	75.86	16.83		11100	0-65
Methanol)	CII	00.10	g		1	°C	42.93	8.301	-1.87	-8.03	0-70
lethyl cyclohexane lethyl cyclopentane	C_7H_{14}	98.18	g		1	°C	121.3	56.53	-37.72	100.8	0-12
itric acid	C ₆ H ₁₂ NHO ₃	84.16 63.02	g		1	°C	98.83	45.857	-30.44	83.81	0-12
itric oxide	NO NO	30.01	l		1	°C °C	110.0	0.0102	0.0005		25
and a state of the state		50.01	g		1		29.50	0.8188	-0.2925	0.3652	0-35
rogen	N ₂	28.02	g	1		°C	29.00	0.2199	0.5723	-2.871	0–150 0–120
	NO ₂	46.01	g	1		°C	36.07	3.97	-2.88	7.87	0-120
TOB	N_2O_4	92.02	g	1		°C	75.7	12.5	-11.3 -2.694	10.57	0-120
	N ₂ O	44.02	g	1		°C	37.66	4.151	-2.694 -0.6076	1.311	0-120
ygen	O ₂	32.00	g	1		°C	29.10	1.158 43.68	0.0070	1011	0-36
Pentane	C5H12	72.15	1	1			155.4 114.8	43.08 34.09	-18.99	42.26	0-120
	C II	11.00	g	1 1		°C	68.032	22.59	-13.11	31.71	0-120
opane	C_3H_8	44.09 42.08	g o	1		°C	59.580	17.71	-10.17	24.60	0-120
opylene	C_3H_6 Na ₂ CO ₃	42.08	g c	1		K	121	1-1-16			288-371
dium carbonate	Na_2CO_3 Na_2CO_3	286.15	c	1		K	535.6				298
dium carbonate ecahydrate	$\cdot 10H_2O$	200.13		0		NOT Y					070.00
lfur	S	32.07	с	1		Κ	15.2	2.68			273-368
inui	6688	(Rho	ombic)					1443			368 20
		2 0 00	с	1	los or	Κ	18.3	1.84			368–39
		(Mon	oclinic					15.50			10-45
Ilfuric acid	H_2SO_4	98.08	1	1		°C	139.1	15.59	2 104	8.606	10–43 0–15
ılfur dioxide	SO ₂	64.07	g	1		°C	38.91	3.904	-3.104	32.40	0-13
ılfur trioxide	SO ₃	80.07	g	1		°C	48.50	9.188	-8.540	52.40	0-10
oluene	C_7H_8	92.13	1		1	°C	148.8	32.4	-27.86	80.33	0-12
	S B B B	10.011	g		1	°C	94.18 75.4	38.00	21.00	00.00	0-10
later	H ₂ O	18.016	1		1	°C	12.4				0-15