## 100528 Exam 3 Materials and Energy Balances ANSWERS ON SEPARATE SHEETS. NAME IN THE UPPER RIGHT CORNER OF EACH PAGE AND NUMBER THE PAGES. (LEAVE (TOP LEFT) ROOM FOR A STAPLE)

(Gas constant, g, Cox chart, Tables B2, B5 and B6, and periodic table are given at the end.)
1)* A liquid mixture containing 50 mole $\%$ propane, $30 \%$ n-butane, and $20 \%$ isobutene is stored in a rigid container at $77^{\circ} \mathrm{F}$. The container has a maximum allowable working pressure of 200 psig. The head-space above the liquid contains only vapors of the three hydrocarbons.
a) Show that the container is currently safe using the Cox chart.
b) Obtain a rough estimate of the temperature above which the maximum allowable pressure would be exceeded. Comment on the suitability of the container to store the given mixture.
*Modified from Question 6.54 of the R.M. Felder and R.W. Rousseau Text.
2)* Saturated steam at a gauge pressure of 2.0 bar is to be used to heat a stream of ethane. The ethane enters a heat exchanger at $16^{\circ} \mathrm{C}$ and 1.5 bar gauge at a rate of $795 \mathrm{~m}^{3} / \mathrm{min}$ and is heated at constant pressure to $93^{\circ} \mathrm{C}$. The steam condenses and leaves the exchanger as a liquid at $27^{\circ} \mathrm{C}$. The specific enthalpy of ethane at the given pressure is $941 \mathrm{~kJ} / \mathrm{kg}$ at $16^{\circ} \mathrm{C}$ and $1073 \mathrm{~kJ} / \mathrm{kg}$ at $93^{\circ} \mathrm{C}$.
a) Draw a flow diagram and do a degree of freedom analysis for this problem.
 $93^{\circ} \mathrm{C}$ ? (Write the energy balance and list all assumptions.)
c) Assuming that all the energy transferred from the steam goes to heat the ethane, at what rate in $\mathrm{m}^{3} / \mathrm{s}$ must steam be supplied to the exchanger? If the assumption is incorrect, would the calculated value be too high or too low?
d) Should the heat exchanger be set up for co-current or counter-current flow? Explain.
*Modified from Question 7.28 of the R.M. Felder and R.W. Rousseau Text.
3)* Humid air at $50^{\circ} \mathrm{C}$ and 1.0 atm with $2^{\circ} \mathrm{C}$ of superheat is fed to a condenser. Gas and liquid streams leave the condenser in equilibrium at $20^{\circ} \mathrm{C}$ and 1 atm .
a) Assume a basis of calculation of 100 mol inlet air, draw and label a flowchart (including Q in the labeling), and carry out a degree-of-freedom analysis to verify that all labeled variables can be determined.
b) Write in order the equations you would solve to calculate the mass of water condensed (kg) per cubic meter of air fed to the condenser. Circle the unknown variable for which you would solve each equation. Do not do any of the calculations.
c) Prepare and inlet-outlet enthalpy table, inserting labels for unknown specific enthalpies $\left(\hat{H}_{1}, \hat{H}_{2}, \ldots.\right)$. Write expressions for the labeled specific enthalpies. Then write an expression for the rate at which heat must be transferred from the unit (kJ) per cubic meter of air fed to the condenser.
d) Use a first order approximation ( $\mathrm{T}^{1}$ as the highest power) to solve for $\mathrm{kg} \mathrm{H}_{2} \mathrm{O}$ condensed $/ \mathrm{m}^{3}$ air fed and kJ transferred $/ \mathrm{m}^{3}$ air fed.
e) What cooling rate would be required ( $\mathrm{kW)}$ to process $250 \mathrm{~m}^{3}$ air fed $/ \mathrm{h}$ under this approximation?
*Modified from Question 8.46 of the R.M. Felder and R.W. Rousseau Text.


## THE GAS CONSTANT

| $8.314 \mathrm{~m} \cdot \mathrm{~Pa} /(\mathrm{mol} \cdot \mathrm{K})$ |
| :---: |
| $0.08314 \mathrm{~L} \cdot \mathrm{bar} /(\mathrm{mol} \cdot \mathrm{K})$ |
| $0.08206 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K})$ |
| $62.36 \mathrm{~L} \cdot \mathrm{~mm} \mathrm{Hg} /(\mathrm{mol} \cdot \mathrm{K})$ |
| $0.7302 \mathrm{ft} \cdot \mathrm{atm} /\left(\mathrm{lb}-\mathrm{mole} \cdot{ }^{\circ} \mathrm{R}\right)$ |
| $10.73 \mathrm{ft}^{3} \cdot \mathrm{psia} /\left(\mathrm{lb}-\mathrm{mole}^{\circ} \cdot{ }^{\circ} \mathrm{R}\right)$ |
| $8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ |
| $1.987 \mathrm{cal} /(\mathrm{mol} \cdot \mathrm{K})$ |
| $1.987 \mathrm{Btu} /\left(\mathrm{lb}-\mathrm{mole} \cdot \cdot{ }^{\circ} \mathrm{R}\right)$ |

6.2 The Gibbs Phase Rule 247


## 1960, p. 550.)

From Elementary Principles of Chemical Processes, 3'rd ed.; R.M. Felder and R.W. Rousseau.

Table B. 5 Properties of Saturated Steam: Temperature Table ${ }^{a}$

| $T\left({ }^{\circ} \mathrm{C}\right)$ | $P($ bar $)$ | $\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ |  | $\hat{U}(\mathrm{~kJ} / \mathrm{kg})$ |  | $\hat{H}(\mathrm{~kJ} / \mathrm{kg})$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Water | Steam | Water | Steam | Water | Evaporation | Stea |
| 0.01 | 0.00611 | 0.001000 | 206.2 | zero | 2375.6 | +0.0 | 2501.6 | 2501 |
| 2 | 0.00705 | 0.001000 | 179.9 | 8.4 | 2378.3 | 8.4 | 2496.8 | 2505. |
| 4 | 0.00813 | 0.001000 | 157.3 | 16.8 | 2381.1 | 16.8 | 2492.1 | 2508. |
| 6 | 0.00935 | 0.001000 | 137.8 | 25.2 | 2383.8 | 25.2 | 2487.4 | 2512. |
| 8 | 0.01072 | 0.001000 | 121.0 | 33.6 | 2386.6 | 33.6 | 2482.6 | 2516. |
| 10 | 0.01227 | 0.001000 | 106.4 | 42.0 | 2389.3 | 42.0 | 2477.9 | 2519. |
| 12 | 0.01401 | 0.001000 | 93.8 | 50.4 | 2392.1 | 50.4 | 2473.2 | 2523. |
| 14 | 0.01597 | 0.001001 | 82.9 | 58.8 | 2394.8 | 58.8 | 2468.5 | 2527.2 |
| 16 | 0.01817 | 0.001001 | 73.4 | 67.1 | 2397.6 | 67.1 | 2463.8 | 2530.9 |
| 18 | 0.02062 | 0.001001 | 65.1 | 75.5 | 2400.3 | 75.5 | 2459.0 | 2534.5 |
| 20 | 0.0234 | 0.001002 | 57.8 | 83.9 | 2403.0 | 83.9 | 2454.3 | 2538.2 |
| 22 | 0.0264 | 0.001002 | 51.5 | 92.2 | 2405.8 | 92.2 | 2449.6 | 2541.8 |
| 24 | 0.0298 | 0.001003 | 45.9 | 100.6 | 2408.5 | 100.6 | 2444.9 | 2545.5 |
| 25 | 0.0317 | 0.001003 | 43.4 | 104.8 | 2409.9 | 104.8 | 2442.5 | 2547.3 |
| 26 | 0.0336 | 0.001003 | 41.0 | 108.9 | 2411.2 | 108.9 | 2440.2 | 2549.1 |
| 28 | 0.0378 | 0.001004 | 36.7 | 117.3 | 2414.0 | 117.3 | 2435.4 | 2552.7 |
| 30 | 0.0424 | 0.001004 | 32.9 | 125.7 | 2416.7 | 125.7 | 2430.7 | 2556.4 |
| 32 | 0.0475 | 0.001005 | 29.6 | 134.0 | 2419.4 | 134.0 | 2425.9 | 2560.0 |
| 34 | 0.0532 | 0.001006 | 26.6 | 142.4 | 2422.1 | 142.4 | 2421.2 | 2563.6 |
| 36 | 0.0594 | 0.001006 | 24.0 | 150.7 | 2424.8 | 150.7 | 2416.4 | 2567.2 |
| 38 | 0.0662 | 0.001007 | 21.6 | 159.1 | 2427.5 | 159.1 | 2411.7 | 2570.8 |
| 40 | 0.0738 | 0.001008 | 19.55 | 167.4 | 2430.2 | 167.5 | 2406.9 | 2574.4 |
| 42 | 0.0820 | 0.001009 | 17.69 | 175.8 | 2432.9 | 175.8 | 2402.1 | 2577.9 |
| 44 | 0.0910 | 0.001009 | 16.04 | 184.2 | 2435.6 | 184.2 | 2397.3 | 2581.5 |
| 46 | 0.1009 | 0.001010 | 14.56 | 192.5 | 2438.3 | 192.5 | 2392.5 | 2585.1 |
| 48 | 0.1116 | 0.001011 | 13.23 | 200.9 | 2440.9 | 200.9 | 2387.7 | 2588.6 |
| 50 | 0.1234 | 0.001012 | 12.05 | 209.2 | 2443.6 | 209.3 | 2382.9 | 2592.2 |
| 52 | 0.1361 | 0.001013 | 10.98 | 217.7 | 2446 | 217.7 | 2377 | 2595 |
| 54 | 0.1500 | 0.001014 | 10.02 | 226.0 | 2449 | 226.0 | 2373 | 2599 |
| 56 | 0.1651 | 0.001015 | 9.158 | 234.4 | 2451 | 234.4 | 2368 | 2602 |
| 58 | 0.1815 | 0.001016 | 8.380 | 242.8 | 2454 | 242.8 | 2363 | 2606 |
| 60 | 0.1992 | 0.001017 | 7.678 | 251.1 | 2456 | 251.1 | 2358 | 2609 |
| 62 | 0.2184 | 0.001018 | 7.043 | 259.5 | 2459 | 259.5 | 2353 | 2613 |
| 64 | 0.2391 | 0.001019 | 6.468 | 267.9 | 2461 | 267.9 | 2348 | 2616 |
| 66 | 0.2615 | 0.001020 | 5.947 | 276.2 | 2464 | 276.2 | 2343 | 2619 |
| 68 | 0.2856 | 0.001022 | 5.475 | 284.6 | 2467 | 284.6 | 2338 | 2623 |

${ }^{a}$ From R. W. Haywood, Thermodynamic Tables in SI (Metric) Units, Cambridge University Press, London, 1968. $\hat{V}=$ specific volume, $\hat{U}=$ specific internal energy, and $\hat{H}=$ specific enthalpy. Note: $\mathrm{kJ} / \mathrm{kg} \times 0.4303=\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$.
(continued)

Table B. 5 (Continued)

| $T\left({ }^{\circ} \mathrm{C}\right)$ | $P($ bar $)$ | $\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ |  | $\hat{U}(\mathrm{~kJ} / \mathrm{kg})$ |  | $\hat{H}(\mathrm{~kJ} / \mathrm{kg})$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Water | Steam | Water | Steam | Water | Evaporation | Steam |
| 70 | 0.3117 | 0.001023 | 5.045 | 293.0 | 2469 | 293.0 | 2333 | 2626 |
| 72 | 0.3396 | 0.001024 | 4.655 | 301.4 | 2472 | 301.4 | 2329 | 2630 |
| 74 | 0.3696 | 0.001025 | 4.299 | 309.8 | 2474 | 309.8 | 2323 | 2633 |
| 76 | 0.4019 | 0.001026 | 3.975 | 318.2 | 2476 | 318.2 | 2318 | 2636 |
| 78 | 0.4365 | 0.001028 | 3.679 | 326.4 | 2479 | 326.4 | 2313 | 2639 |
| 80 | 0.4736 | 0.001029 | 3.408 | 334.8 | 2482 | 334.9 | 2308 | 2643 |
| 82 | 0.5133 | 0.001030 | 3.161 | 343.2 | 2484 | 343.3 | 2303 | 2646 |
| 84 | 0.5558 | 0.001032 | 2.934 | 351.6 | 2487 | 351.7 | 2298 | 2650 |
| 86 | 0.6011 | 0.001033 | 2.727 | 360.0 | 2489 | 360.1 | 2293 | 2653 |
| 88 | 0.6495 | 0.001034 | 2.536 | 368.4 | 2491 | 368.5 | 2288 | 2656 |
| 90 | 0.7011 | 0.001036 | 2.361 | 376.9 | 2493 | 377.0 | 2282 | 2659 |
| 92 | 0.7560 | 0.001037 | 2.200 | 385.3 | 2496 | 385.4 | 2277 | 2662 |
| 94 | 0.8145 | 0.001039 | 2.052 | 393.7 | 2499 | 393.8 | 2272 | 2666 |
| 96 | 0.8767 | 0.001040 | 1.915 | 402.1 | 2501 | 402.2 | 2267 | 2669 |
| 98 | 0.9429 | 0.001042 | 1.789 | 410.6 | 2504 | 410.7 | 2262 | 2673 |
| 100 | 1.0131 | 0.001044 | 1.673 | 419.0 | 2507 | 419.1 | 2257 | 2676 |
| 102 | 1.0876 | 0.001045 | 1.566 | 427.1 | 2509 | 427.5 | 2251 | 2679 |

Table B. 6 Properties of Saturated Steam: Pressure Tablea

| $P$ (bar) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ |  | $\hat{O}(\mathrm{~kJ} / \mathrm{kg})$ |  | $\hat{H}(\mathrm{~kJ} / \mathrm{kg})$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Water | Steam | Water | Steam | Water | Evaporation | Steam |
| 0.00611 | 0.01 | 0.001000 | 206.2 | zero | 2375.6 | +0.0 | 2501.6 | 2501.6 |
| 0.008 | 3.8 | 0.001000 | 159.7 | 15.8 | 2380.7 | 15.8 | 2492.6 | 2508.5 |
| 0.010 | 7.0 | 0.001000 | 129.2 | 29.3 | 2385.2 | 29.3 | 2485.0 | 2514.4 |
| 0.012 | 9.7 | 0.001000 | 108.7 | 40.6 | 2388.9 | 40.6 | 2478.7 | 2519.3 |
| 0.014 | 12.0 | 0.001000 | 93.9 | 50.3 | 2392.0 | 50.3 | 2473.2 | 2523.5 |
| 0.016 | 14.0 | 0.001001 | 82.8 | 58.9 | 2394.8 | 58.9 | 2468.4 | 2527.3 |
| 0.018 | 15.9 | 0.001001 | 74.0 | 66.5 | 2397.4 | 66.5 | 2464.1 | 2530.6 |
| 0.020 | 17.5 | 0.001001 | 67.0 | 73.5 | 2399.6 | 73.5 | 2460.2 | 2533.6 |
| 0.022 | 19.0 | 0.001002 | 61.2 | 79.8 | 2401.7 | 79.8 | 2456.6 | 2536.4 |
| 0.024 | 20.4 | 0.001002 | 56.4 | 85.7 | 2403.6 | 85.7 | 2453.3 | 2539.0 |
| 0.026 | 21.7 | 0.001002 | 52.3 | 91.1 | 2405.4 | 91.1 | 2450.2 | 2541.3 |
| 0.028 | 23.0 | 0.001002 | 48.7 | 96.2 | 2407.1 | 96.2 | 2447.3 | 2543.6 |
| 0.030 | 24.1 | 0.001003 | 45.7 | 101.0 | 2408.6 | 101.0 | 2444.6 | 2545.6 |
| 0.035 | 26.7 | 0.001003 | 39.5 | 111.8 | 2412.2 | 111.8 | 2438.5 | 2550.4 |
| 0.040 | 29.0 | 0.001004 | 34.8 | 121.4 | 2415.3 | 121.4 | 2433.1 | 2554.5 |
| 0.045 | 31.0 | 0.001005 | 31.1 | 130.0 | 2418.1 | 130.0 | 2428.2 | 2558.2 |
| 0.050 | 32.9 | 0.001005 | 28.2 | 137.8 | 2420.6 | 137.8 | 2423.8 | 2561.6 |
| 0.060 | 36.2 | 0.001006 | 23.74 | 151.5 | 2425.1 | 151.5 | 2416.0 | 2567.5 |
| 0.070 | 39.0 | 0.001007 | 20.53 | 163.4 | 2428.9 | 163.4 | 2409.2 | 2572.6 |
| 0.080 | 41.5 | 0.001008 | 18.10 | 173.9 | 2432.3 | 173.9 | 2403.2 | 2577.1 |
| 0.090 | 43.8 | 0.001009 | 16.20 | 183.3 | 2435.3 | 183.3 | 2397.9 | 2581.1 |
| 0.10 | 45.8 | 0.001010 | 14.67 | 191.8 | 2438.0 | 191.8 | 2392.9 | 2584.8 |
| 0.11 | 47.7 | 0.001011 | 13.42 | 199.7 | 2440.5 | 199.7 | 2388.4 | 2588.1 |
| 0.12 | 49.4 | 0.001012 | 12.36 | 206.9 | 2442.8 | 206.9 | 2384.3 | 2591.2 |
| 0.13 | 51.1 | 0.001013 | 11.47 | 213.7 | 2445.0 | 213.7 | 2380.4 | 2594.0 |
| 0.14 | 52.6 | 0.001013 | 10.69 | 220.0 | 2447.0 | 220.0 | 2376.7 | 2596.7 |
| 0.15 | 54.0 | 0.001014 | 10.02 | 226.0 | 2448.9 | 226.0 | 2373.2 | 2599.2 |
| 0.16 | 55.3 | 0.001015 | 9.43 | 231.6 | 2450.6 | 231.6 | 2370.0 | 2601.6 |
| 0.17 | 56.6 | 0.001015 | 8.91 | 236.9 | 2452.3 | 236.9 | 2366.9 | 2603.8 |
| 0.18 | 57.8 | 0.001016 | 8.45 | 242.0 | 2453.9 | 242.0 | 2363.9 | 2605.9 |
| 0.19 | 59.0 | 0.001017 | 8.03 | 246.8 | 2455.4 | 246.8 | 2361.1 | 2607.9 |
| 0.20 | 60.1 | 0.001017 | 7.65 | 251.5 |  |  |  |  |
| 0.22 | 62.2 | 0.001018 | 7.00 | 260.1 | 2459.6 | 260.1 | 23553.3 | 2609.9 2613.5 |
| 0.24 | 64.1 | 0.001019 | 6.45 | 268.2 | 2462.1 | 268.2 | 2348.6 | 2616.8 |
| 0.26 | 65.9 | 0.001020 | 5.98 | 275.6 | 2464.4 | 275.7 | 2344.2 | 2619.9 |
| 0.28 | 67.5 | 0.001021 | 5.58 | 282.7 | 2466.5 | 282.7 | 2340.0 | 2622.7 |
| 0.30 | 69.1 | 0.001022 | 5.23 | 289.3 | 2468.6 | 289.3 | 2336.1 | 2625.4 |
| 0.35 | 72.7 | 0.001025 | 4.53 | 304.3 | 2473.1 | 304.3 | 2327.2 | 2631.5 |
| 0.40 | 75.9 | 0.001027 | 3.99 | 317.6 | 2477.1 | 317.7 | 2319.2 | 2636.9 |
| 0.45 | 78.7 | 0.001028 | 3.58 | 329.6 | 2480.7 | 329.6 | 2312.0 | 2641.7 |
| 0.50 | 81.3 | 0.001030 | 3.24 | 340.5 | 2484.0 | 340.6 | 2305.4 | 2646.0 |
| 0.55 0.60 | 83.7 86.0 | 0.001032 | 2.96 | 350.6 | 2486.9 | 350.6 | 2299.3 | 2649.9 |
| 0.60 | 86.0 | 0.001033 | 2.73 | 359.9 | 2489.7 | 359.9 | 2293.6 | 2653.6 |
| 0.65 | 88.0 | 0.001035 | 2.53 | 368.5 | 2492.2 | 368.6 | 2288.3 | 2656.9 |
| 0.70 | 90.0 | 0.001036 | 2.36 | 376.7 | $249+5$ | 376.8 | 2283.3 | 2660.1 |
| 0.75 | 91.8 | 0.001037 | 2.22 | 384.4 | 2496.7 | 384.5 | 2278.6 | 2663.0 |
| 0.80 | 93.5 | 0.001039 | 2.087 | 391.6 | 2498.8 | 391.7 | 2274.1 | 2665.8 |
| 0.85 | 95.2 | 0.001040 | 1.972 | 398.5 | 2500.8 | 398.6 | 2269.8 | 2668.4 |
| 0.90 | 96.7 | 0.001041 | 1.869 | 405.1 | 2502.6 | 405.2 | 2265.6 | 2670.9 |
| 0.95 1.00 | 98.2 99.6 | 0.001042 0.001043 | 1.777 1.694 | 411.4 | 2504.4 | 411.5 | 2261.7 | 2673.2 |
| 1.00 1.01325 | 99.6 100.0 | 0.001043 0.001044 | 1.694 1.673 | 417.4 419.0 | 2506.1 2506.5 | 417.5 | 2257.9 | 2675.4 |
| (1 1 atm ) | 10.0 | 0.001044 | 1.673 | 419.0 | 2506.5 | 419.1 | 2256.9 | 2676.0 |

${ }^{a}$ From R. W. Haywood, Thermodynamic Tables in SI (Metric) Units, Cambridge University Press, London, 1968. $\hat{v}=$ specific volume, $\hat{U}=$ specific internal energy, and $\hat{H}=$ specific enthalpy. Note: $\mathrm{kJ} / \mathrm{kg} \times 0.4303=\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$.

Table B. 6 (Continued)

| $P($ bar $)$ | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ |  | $\hat{U}(\mathrm{~kJ} / \mathrm{kg})$ |  | $\hat{H}(\mathrm{~kJ} / \mathrm{kg})$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Water | Steam | Water | Steam | Water | Evaporation | Steam |
| 1.1 | 102.3 | 0.001046 | 1.549 | 428.7 | 2509.2 | 428.8 | 2250.8 | 2679.6 |
| 1.2 | 104.8 | 0.001048 | 1.428 | 439.2 | 2512.1 | 439.4 | 2244.1 | 2683.4 |
| 1.3 | 107.1 | 0.001049 | 1.325 | 449.1 | 2514.7 | 449.2 | 2237.8 | 2687.0 |
| 1.4 | 109.3 | 0.001051 | 1.236 | 458.3 | 2517.2 | 458.4 | 2231.9 | 2690.3 |
| 1.5 | 111.4 | 0.001053 | 1.159 | 467.0 | 2519.5 | 467.1 | 2226.2 | 2693.4 |
| 1.6 | 113.3 | 0.001055 | 1.091 | 475.2 | 2521.7 | 475.4 | 2220.9 | 2696.2 |
| 1.7 | 115.2 | 0.001056 | 1.031 | 483.0 | 2523.7 | 483.2 | 2215.7 | 2699.0 |
| 1.8 | 116.9 | 0.001058 | 0.977 | 490.5 | 2525.6 | 490.7 | 2210.8 | 2701.5 |
| 1.9 | 118.6 | 0.001059 | 0.929 | 497.6 | 2527.5 | 497.8 | 2206.1 | 2704.0 |
| 2.0 | 120.2 | 0.001061 | 0.885 | 504.5 | 2529.2 | 504.7 | 2201.6 | 2706.3 |
| 2.2 | 123.3 | 0.001064 | 0.810 | 517.4 | 2532.4 | 517.6 | 2193.0 | 2710.6 |
| 2.4 | 126.1 | 0.001066 | 0.746 | 529.4 | 2535.4 | 529.6 | 2184.9 | 2714.5 |
| 2.6 | 128.7 | 0.001069 | 0.693 | 540.6 | 2538.1 | 540.9 | 2177.3 | 2718.2 |
| 2.8 | 131.2 | 0.001071 | 0.646 | 551.1 | 2540.6 | 551.4 | 2170.1 | 2721.5 |
| 3.0 | 133.5 | 0.001074 | 0.606 | 561.1 | 2543.0 | 561.4 | 2163.2 | 2724.7 |
| 3.2 | 135.8 | 0.001076 | 0.570 | 570.6 | 2545.2 | 570.9 | 2156.7 | 2727.6 |
| 3.4 | 137.9 | 0.001078 | 0.538 | 579.6 | 2547.2 | 579.9 | 2150.4 | 2730.3 |
| 3.6 | 139.9 | 0.001080 | 0.510 | 588.1 | 2549.2 | 588.5 | 2144.4 | 2732.9 |
| 3.8 | 141.8 | 0.001082 | 0.485 | 596.4 | 2551.0 | 596.8 | 2138.6 | 2735.3 |
| 4.0 | 143.6 | 0.001084 | 0.462 | 604.2 | 2552.7 | 604.7 | 2133.0 | 2737.6 |
| 4.2 | 145.4 | 0.001086 | 0.442 | 611.8 | 2554.4 | 612.3 | 2127.5 | 2739.8 |
| 4.4 | 147.1 | 0.001088 | 0.423 | 619.1 | 2555.9 | 619.6 | 2122.3 | 2741.9 |
| 4.6 | 148.7 | 0.001089 | 0.405 | 626.2 | 2557.4 | 626.7 | 2117.2 | 2743.9 |
| 4.8 | 150.3 | 0.001091 | 0.389 | 633.0 | 2558.8 | 633.5 | 2112.2 | 2745.7 |
| 5.0 | 151.8 | 0.001093 | 0.375 | 639.6 | 2560.2 | 640.1 | 2107.4 | 2747.5 |
| 5.5 | 155.5 | 0.001097 | 0.342 | 655.2 | 2563.3 | 655.8 | 2095.9 | 2751.7 |
| 6.0 | 158.8 | 0.001101 | 0.315 | 669.8 | 2566.2 | 670.4 | 2085.0 | 2755.5 |
| 6.5 | 162.0 | 0.001105 | 0.292 | 683.4 | 2568.7 | 684.1 | 2074.7 | 2758.9 |
| 7.0 | 165.0 | 0.001108 | 0.273 | 696.3 | 2571.1 | 697.1 | 2064.9 | 2762.0 |
| 7.5 | 167.8 | 0.001112 | 0.2554 | 708.5 | 2573.3 | 709.3 | 2055.5 | 2764.8 |
| 8.0 | 170.4 | 0.001115 | 0.2403 | 720.0 | 2575.5 | 720.9 | 2046.5 | 2767.5 |
| 8.5 | 172.9 | 0.001118 | 0.2268 | 731.1 | 2577.1 | 732.0 | 2037.9 | 2769.9 |
| 9.0 | 175.4 | 0.001121 | 0.2148 | 741.6 | 2578.8 | 742.6 | 2029.5 | 2772.1 |
| 9.5 | 177.7 | 0.001124 | 0.2040 | 751.8 | 2580.4 | 752.8 | 2021.4 | 2774.2 |
| 10.0 | 179.9 | 0.001127 | 0.1943 | 761.5 | 2581.9 | 762.6 | 2013.6 | 2776.2 |
| 10.5 | 182.0 | 0.001130 | 0.1855 | 770.8 | 2583.3 | 772.0 | 2005.9 | 2778.0 |
| 11.0 | 184.1 | 0.001133 | 0.1774 | 779.9 | 2584.5 | 781.1 | 1998.5 | 2779.7 |
| 11.5 | 186.0 | 0.001136 | 0.1700 | 788.6 | 2585.8 | 789.9 | 1991.3 | 2781.3 |
| 12.0 | 188.0 | 0.001139 | 0.1632 | 797.1 | 2586.9 | 798.4 | 1984.3 | 2782.7 |
| 12.5 | 189.8 | 0.001141 | 0.1569 | 805.3 | 2588.0 | 806.7 | 1977.4 | 2784.1 |
| 13.0 | 191.6 | 0.001144 | 0.1511 | 813.2 | 2589.0 | 814.7 | 1970.7 | 2785.4 |
| 14 | 195.0 | 0.001149 | 0.1407 | 828.5 | 2590.8 | 830.1 | 1957.7 | 2787.8 |
| 15 | 198.3 | 0.001154 | 0.1317 | 842.9 | 2592.4 | 844.7 | 1945.2 | 2789.9 |
| 16 | 201.4 | 0.001159 | 0.1237 | 856.7 | 2593.8 | 858.6 | 1933.2 | 2791.7 |
| 17 | 204.3 | 0.001163 | 0.1166 | 869.9 | 2595.1 | 871.8 | 1921.5 | 2793.4 |
| 18 | 207.1 | 0.001168 | 0.1103 | 882.5 | 2596.3 | 884.6 | 1910.3 | 2794.8 |
| 19 | 209.8 | 0.001172 | 0.1047 | 894.6 | 2597.3 | 896.8 | 1899.3 | 2796.1 |
| 20 | 212.4 | 0.001177 | 0.0995 | 906.2 | 2598.2 | 908.6 | 1888.6 | 2797.2 |
| 21 | 214.9 | 0.001181 | 0.0949 | 917.5 | 2598.9 | 920.0 | 1878.2 | 2798.2 |
| 22 | 217.2 | 0.001185 | 0.0907 | 928.3 | 2599.6 | 931.0 | 1868.1 | 2799.1 |
| 23 | 219.6 | 0.001189 | 0.0868 | 938.9 | 2600.2 | 941.6 | 1858.2 | 2799.8 |
| 24 | 221.8 | 0.001193 | 0.0832 | 949.1 | 2600.7 | 951.9 | 1848.5 | 2800.4 |
| 25 | 223.9 | 0.001197 | 0.0799 | 959.0 | 2601.2 | 962.0 | 1839.0 | 2800.9 |
| 26 | 226.0 | 0.001201 | 0.0769 | 968.6 | 2601.5 | 971.7 | 1829.6 | 2801.4 |
| 27 | 228.1 | 0.001205 | 0.0740 | 978.0 | 2601.8 | 981.2 | 1820.5 | 2801.7 |
| 28 | 230.0 | 0.001209 | 0.0714 | 987.1 | 2602.1 | 990.5 | 1811.5 | 2802.0 |
| 29 | 232.0 | 0.001213 | 0.0689 | 996.0 | 2602.3 | 999.5 | 1802.6 | 2802.2 |
| 30 | 233.8 | 0.001216 | 0.0666 | 1004.7 | 2602.4 | 1008.4 | 1793.9 | 2802.3 |
| 32 | 237.4 | 0.001224 | 0.0624 | 1021.5 | 2602.5 | 1025.4 | 1776.9 | 2802.3 |
| 34 | 240.9 | 0.001231 | 0.0587 | 1037.6 | 2602.5 | 1041.8 | 1760.3 | 2802.1 |
| 36 | 244.2 | 0.001238 | 0.0554 | 1053.1 | 2602.2 | 1057.6 | 1744.2 | 2801.7 |
| 38 | 247.3 | 0.001245 | 0.0524 | 1068.0 | 2601.9 | 1072.7 | 1728.4 | 2801.1 |

Table B. 6 (Continued)

| $P$ (bar) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$ |  | $\hat{U}(\mathrm{~kJ} / \mathrm{kg})$ |  | $\hat{H}(\mathrm{~kJ} / \mathrm{kg})$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Water | Steam | Water | Steam | Water | Evaporation | Steam |
| 40 | 250.3 | (0.001252 | 0.0497 | 1082.4 | 2601.3 | 1087.4 | 1712.9 | 2800.3 |
| 42 | 253.2 | 0.0012.59 | 0.0473 | 1096.3 | $2(6) 0.7$ | 1111.6 | 1697.8 | 2799.4 |
| 44 | 256.0 | 0.001266 | 0.0451 | 1109.8 | 2599.9 | 1115.4 | 1682.9 | 2798.3 |
| 46 | 258.8 | 0.001272 | 0.0430 | 1122.9 | 2599.1 | 1128.8 | 1668.3 | 2797.1 |
| 48 | 261.4 | 0.001279 | 0.0412 | 1135.6 | 2598.1 | 1141.8 | 1653.9 | 2795.7 |
| 50 | 263.9 | 0.001286 | 0.0394 | 1148.0 | 2597.0 | 1154.5 | 1639.7 | 2794.2 |
| 52 | 266.4 | 0.001292 | 0.0378 | 1160.1 | 2595.9 | 1166.8 | 1625.7 | 2792.6 |
| 54 | 268.8 | 0.001299 | 0.0363 | 1171.9 | 2594.6 | 1178.9 | 1611.9 | 2790.8 |
| 56 | 271.1 | 0.001306 | 0.0349 | 1183.5 | 2593.3 | 1190.8 | 1598.2 | 2789.0 |
| 58 | 273.3 | 0.001312 | 0.0337 | 1194.7 | 2591.9 | 1202.3 | 1584.7 | 2787.0 |
| 60 | 275.6 | 0.001319 | 0.0324 | 1205.8 | 2590.4 | 1213.7 | 1571.3 | 2785.0 |
| 62 | 277.7 | 0.001325 | 0.0313 | 1216.6 | 2588.8 | 1224.8 | 1558.0 | 2782.9 |
| 64 | 279.8 | 0.001332 | 0.0302 | 1227.2 | 2587.2 | 1235.7 | 1544.9 | 2780.6 |
| 66 | 281.8 | 0.001338 | 0.0292 | 1237.6 | 2585.5 | 1246.5 | 1531.9 | 2778.3 |
| 68 | 283.8 | 0.001345 | 0.0283 | 1247.9 | 2583.7 | 1257.0 | 1518.9 | 2775.9 |
| 70 | 285.8 | 0.001351 | 0.0274 | 1258.0 | 2581.8 | 1267.4 | 1506.0 | 2773.5 |
| 72 | 287.7 | 0.001358 | 0.0265 | 1267.9 | 2579.9 | 1277.6 | 1493.3 | 2770.9 |
| 74 | 289.6 | 0.001364 | 0.0257 | 1277.6 | 2578.0 | 1287.7 | 1480.5 | 2768.3 |
| 76 | 291.4 | 0.001371 | 0.0249 | 1287.2 | 2575.9 | 1297.6 | 1467.9 | 2765.5 |
| 78 | 293.2 | 0.001378 | 0.0242 | 1296.7 | 2573.8 | 1307.4 | 1455.3 | 2762.8 |
| 80 | 295.0 | 0.001384 | 0.0235 | 1306.0 | 2571.7 | 1317.1 | 1442.8 | 2759.9 |
| 82 | 296.7 | 0.001391 | 0.0229 | 1315.2 | 2569.5 | 1326.6 | 1430.3 | 2757.0 |
| 84 | 298.4 | 0.001398 | 0.0222 | 1324.3 | 2567.2 | 1336.1 | 1417.9 | 2754.0 |
| 86 | 300.1 | 0.001404 | 0.0216 | 1333.3 | 2564.9 | 1345.4 | 1405.5 | 2750.9 |
| 88 | 301.7 | 0.001411 | 0.0210 | 1342.2 | 2562.6 | 1354.6 | 1393.2 | 2747.8 |
| 90 | 303.3 | 0.001418 | 0.02050 | 1351.0 | 2560.1 | 1363.7 | 1380.9 | 2744.6 |
| 92 | 304.9 | 0.001425 | 0.01996 | 1359.7 | 2557.7 | 1372.8 | 1368.6 | 2741.4 |
| 94 | 306.4 | 0.001432 | 0.01945 | 1368.2 | 2555.2 | 1381.7 | 1356.3 | 2738.0 |
| 96 | 308.0 | 0.001439 | 0.01897 | 1376.7 | 2552.6 | 1390.6 | 1344.1 | 2734.7 |
| 98 | 309.5 | 0.001446 | 0.01849 | 1385.2 | 2550.0 | 1399.3 | 1331.9 | 2731.2 |
| 100 | 311.0 | 0.001453 | 0.01804 | 1393.5 | 2547.3 | 1408.0 | 1319.7 | 2727.7 |
| 105 | 314.6 | 0.001470 | 0.01698 | 1414.1 | 2540.4 | 1429.5 | 1289.2 | 2718.7 |
| 110 | 318.0 | 0.001489 | 0.01601 | 1434.2 | 2533.2 | 1450.6 | 1258.7 | 2709.3 |
| 115 | 321.4 | 0.001507 | 0.01511 | 1454.0 | 2525.7 | 1471.3 | 1228.2 | 2699.5 |
| 120 | 324.6 | 0.001527 | 0.01428 | 1473.4 | 2517.8 | 1491.8 | 1197.4 | 2689.2 |
| 125 | 327.8 | 0.001547 | 0.01351 | 1492.7 | 2509.4 | 1512.0 | 1166.4 | 2678.4 |
| 130 | 330.8 | 0.001567 | 0.01280 | 1511.6 | 2500.6 | 1532.0 | 1135.0 | 2667.0 |
| 135 | 333.8 | 0.001588 | 0.01213 | 1530.4 | 2491.3 | 1551.9 | 1103.1 | 2655.0 |
| 140 | 336.6 | 0.001611 | 0.01150 | 1549.1 | 2481.4 | 1571.6 | 1070.7 | 2642.4 |
| 145 | 339.4 | 0.001634 | 0.01090 | 1567.5 | 2471.0 | 1591.3 | 1037.7 | 2629.1 |
| 150 | 342.1 | 0.001658 | 0.010 .34 | 1586.1 | 2459.9 | 1611.0 | 1004.0 | 2615.0 |
| 155 | 344.8 | 0.001683 | 0.00981 | 1604.6 | 2448.2 | 1630.7 | 969.6 | 2600.3 |
| 160 | 347.3 | 0.001710 | 0.00931 | 1623.2 | 2436.0 | 1650.5 | 934.3 | 2584.9 |
| 165 | 349.8 | 0.001739 | 0.00883 | 1641.8 | 2423.1 | 1670.5 | 898.3 | 2568.8 |
| 170 | 352.3 | 0.001770 | 0.00837 | 1661.6 | 2409.3 | 1691.7 | 859.9 | 2551.6 |
| 175 | 354.6 | 0.001803 | 0.00793 | 1681.8 | 2394.6 | 1713.3 | 820.0 | 2533.3 |
| 180 | 357.0 | 0.001840 | 0.00750 | 1701.7 | 2378.9 | 1734.8 | 779.1 | 2513.9 |
| 185 | 359.2 | 0.001881 | 0.00708 | 1721.7 | 2362.1 | 1756.5 | 736.6 | 2493.1 |
| 190 | 361.4 | 0.001926 | 0.00668 | 1742.1 | 2343.8 | 1778.7 | 692.0 | 2470.6 |
| 195 | 363.6 | 0.001977 | 0.00628 | 1763.2 | 2323.6 | 1801.8 | 644.2 | 2446.0 |
| 200 | 365.7 | 0.00204 | 0.00588 | 1785.7 | 2300.8 | 1826.5 | 591.9 | 2418.4 |
| 205 | 367.8 | 0.00211 | 0.00546 | 1810.7 | 2274.4 | 1853.9 | 532.5 | 2386.4 |
| 210 | 369.8 | 0.00220 | 0.00502 | 1840.0 | 2242.1 | 1886.3 | 461.3 | 2347.6 |
| 215 | 371.8 | 0.00234 | 0.00451 | 1878.6 | 2198.1 | 1928.9 | 366.2 | 2295.2 |
| 220 | 373.7 | 0.00267 | 0.00373 | 1952 | 2114 | 2011 | 185 | 2196 |
| 221.2 | 374.15 | 0.00317 | 0.00317 | 2038 | 2038 | 2108 | 0 | 2108 |
| (Critical point) |  |  |  |  |  |  |  |  |



