100608 Final Exam Materials and Energy Balances

 ANSWERS ON SEPARATE SHEETS. NAME IN THE UPPER RIGHT CORNER OF EACHPAGE AND NUMBER THE PAGES. (LEAVE (TOP LEFT) ROOM FOR A STAPLE)
(Gas constant, g, Cox chart, Tables B1, B2, B5, B6, B8, B9, and periodic table at the end.)
1)* A mixture of methane and air can be ignited at mole percentages of methane between 5% and 15%.
a) Why might this the case, i.e. what happens at lower or higher concentrations?
b) For a mixture of 9.0 mole $\%$ methane at flow rate of $700 . \mathrm{kg} / \mathrm{h}$ needs to be diluted below the flammability limit. Calculate the required flow rate of air in mole $/ \mathrm{h}$.
c) Calculate the concentration of oxygen in percent by mass in the product gas.
*Modified from Question 3.23 of the R.M. Felder and R.W. Rousseau Text.
2)* When a fireplace is used, a draft is induced that causes the hot gases to flow up the stack. The theoretical draft, $\mathrm{D}\left(\mathrm{N} / \mathrm{m}^{2}\right)$ is the difference in the hydrostatic head in the stack and ant the furnace inlet. The actual draft takes in to account pressure losses in the flowing gasses. Let $T_{s}(K)$ be the average temperature in a stack of height $L(m)$ and T_{a} the ambient temperature and let M_{s} and M_{a} be the average molecular weights of the gases inside and outside the stack. Assume that the pressures inside and outside the stack are both equal to atmospheric pressure, $\mathrm{P}_{\mathrm{a}}\left(\mathrm{N} / \mathrm{m}^{2}\right)$.
a) Use the ideal gas law to obtain an expression for the theoretical draft as a function of $P_{a}, L, g, R, M_{a}, T_{a}, M_{s}$ and T_{s}.
b) Describe 3 other methods/equations, discussed in class, that could be used to give a better expression for the theoretical draft.
c) Suppose the gas in a $53-\mathrm{m}$ stack has an average temperature of $655^{\circ} \mathrm{K}$ and contains 18 mole $\% \mathrm{CO}_{2}, 2 \% \mathrm{O}_{2}$, and $80 \% \mathrm{~N}_{2}$ with barometric pressure of 755 mm Hg and outside temperature $294^{\circ} \mathrm{K}$. Calculate the theoretical draft (mm Hg) induced in the furnace.
d) How could the draft be improved?
*Modified from Question 5.28 of the R.M. Felder and R.W. Rousseau Text.
3)* Saturated steam at a gauge pressure of 2.0 bar is to be used to heat a stream of ethane. The ethane enters a heat exchanger at $16^{\circ} \mathrm{C}$ and 1.5 bar gauge at a rate of $795 \mathrm{~m}^{3} / \mathrm{min}$ and is heated at constant pressure to $93^{\circ} \mathrm{C}$. The steam condenses and leaves the exchanger as a liquid at $27^{\circ} \mathrm{C}$. The specific enthalpy of ethane at the given pressure is $941 \mathrm{~kJ} / \mathrm{kg}$ at $16^{\circ} \mathrm{C}$ and $1073 \mathrm{~kJ} / \mathrm{kg}$ at $93^{\circ} \mathrm{C}$.
a) Draw a flow diagram and do a degree of freedom analysis for this problem.
b) How much energy (kW) must be transferred to the ethane to heat it from $16^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$? (Write the energy balance and list all assumptions.)
c) Assuming that all the energy transferred from the steam goes to heat the ethane, at what rate in $\mathrm{m}^{3} / \mathrm{s}$ must steam be supplied to the exchanger? If the assumption is incorrect, would the calculated value be too high or too low?
d) Should the heat exchanger be set up for co-current or counter-current flow? Explain.
*Modified from Question 7.28 of the R.M. Felder and R.W. Rousseau Text.
4)*

Hydrogen is produced in the steam reforming of propane:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{v}) \rightarrow 3 \mathrm{CO}(\mathrm{~g})+7 \mathrm{H}_{2}(\mathrm{~g})
$$

The water-gas shift reaction also takes place in the reactor, leading to the formation of additional hydrogen:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{v}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

The reaction is carried out over a nickel catalyst in the tubes of a shell-and-tube reactor. The feed to the reactor contains steam and propane in a $6: 1$ molar ratio at $125^{\circ} \mathrm{C}$, and the products emerge at $800^{\circ} \mathrm{C}$. The excess steam in the feed assures essentially complete consumption of the propane. Heat is added to the reaction mixture by passing a hot gas over the outside of the tubes that contain the catalyst. The gas is fed at $4.94 \mathrm{~m}^{3} / \mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{8}$, entering the unit at $1400^{\circ} \mathrm{C}$ and 1 atm and leaving at $900^{\circ} \mathrm{C}$. The unit may be considered adiabatic.

Calculate the molar composition of the product gas, assuming that the heat capacity of the heating gas is $0.040 \mathrm{~kJ} /\left(\mathrm{mol}^{\circ}{ }^{\circ} \mathrm{C}\right)$.
*Question 9.37 of the R.M. Felder and R.W. Rousseau Text.

PERIODIC TABLE OF THE ELEMENTS

THE GAS CONSTANT

$8.314 \mathrm{~m} \cdot \mathrm{~Pa} /(\mathrm{mol} \cdot \mathrm{K})$
$0.08314 \mathrm{~L} \cdot \mathrm{bar} /(\mathrm{mol} \cdot \mathrm{K})$
$0.08206 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K})$
$62.36 \mathrm{~L} \cdot \mathrm{~mm} \mathrm{Hg} /(\mathrm{mol} \cdot \mathrm{K})$
$0.7302 \mathrm{ft} \cdot \mathrm{atm} /\left(\mathrm{lb}-\mathrm{mole} \cdot{ }^{\circ} \mathrm{R}\right)$
$10.73 \mathrm{ft}^{3} \cdot \mathrm{psia} /\left(\mathrm{lb}-\mathrm{mole} \cdot{ }^{\circ} \mathrm{R}\right)$
$8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$1.987 \mathrm{cal} /(\mathrm{mol} \cdot \mathrm{K})$
$1.987 \mathrm{Btu} /\left(\mathrm{lb}-\mathrm{mole} \cdot \cdot{ }^{\circ} \mathrm{R}\right)$

| Table B.1 Selected $\mathrm{Physical} \mathrm{Property} \mathrm{Data}^{a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| |

Table B. 1 (Continued)

Compound	Formula	Mol. Wt.	$\begin{gathered} \text { SG } \\ \left(20^{\circ} / 4^{\circ}\right) \end{gathered}$	$T_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)^{b}$	$\begin{gathered} \Delta \hat{H}_{\mathrm{m}}\left(T_{\mathrm{m}}\right)^{\mathrm{c},} \\ \mathrm{~kJ} / \mathrm{mol} \end{gathered}$	$T_{\mathrm{b}}\left({ }^{\circ} \mathrm{C}\right)^{d}$	$\Delta \hat{H}_{\mathrm{v}}\left(T_{\mathrm{b}}\right)^{\mathrm{c}}$ $\mathrm{kJ} / \mathrm{mol}$	$T_{\mathrm{c}}(\mathrm{K})^{f}$	$P_{\text {c }}(\mathrm{atm})^{g}$	$\left(\Delta \hat{H}_{\mathrm{f}}{ }^{\circ}\right)^{h, j}$ $\mathrm{kJ} / \mathrm{mol}$	$\left(\Delta \hat{H}_{\mathrm{c}}{ }^{\circ}\right)^{i, j}$ $\mathrm{kJ} / \mathrm{mol}$	
Chloroform	CHCl_{3}	119.39	1.489	-63.7	-	61.0		536.0	54.0	-131.8(1)	-373(1)	
Copper	Cu	63.54	8.92	1083	13.01	2595	304.6	-		0(c)		
Cupric sulfate	CuSO_{4}	159.61	$3.606^{15^{\circ}}$	Decomposes $>600^{\circ} \mathrm{C}$						$\begin{aligned} & -769.9(\mathrm{c}) \\ & -843.1(\mathrm{aq}) \end{aligned}$	-	
Cyclohexane	$\mathrm{C}_{6} \mathrm{H}_{12}$	84.16	0.779	6.7	2.677	80.7	30.1	553.7	40.4	-843.1(aq)	-3919.9(l)	
Cyclopentane	$\mathrm{C}_{5} \mathrm{H}_{10}$	70.13	0.745	-93.4	0.609	49.3	27.30	511	44.	-123.1(g)	-3953.0(g)	
										-77.2(g)	-3290.9(1)	
n-Decane	$\mathrm{C}_{10} \mathrm{H}_{22}$	142.28	0.730	-29.9	-	173.8	-	619.0	20.8	-249.7(1)	-6778.3(1)	
Diethyl ether	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	74.12	$0.708^{25^{\circ}}$	-116.3	7.30	34.6	26.05	467	35.6	-272.8(1)	-6829.7(g)	
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	30.07	-	-183.3	2.859	-88.6	14.72	305.4	35.6 48.2	$\begin{aligned} & -272.8(1) \\ & -84.67(\mathrm{~g}) \end{aligned}$	$\begin{aligned} & -2726.7(\mathrm{I}) \\ & -1559.9(\mathrm{~g}) \end{aligned}$	
Ethyl acetate	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	88.10	0.901	-83.8	-	77.0	-	523.1	37.8	-463.2(1)	$-2246.4(1)$	
Ethyl alcohol (Ethanol)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	46.07	0.789	-114.6	5.021	78.5	38.58	516.3	63.0	$\begin{aligned} & -277.63(\mathrm{l}) \\ & -235.31(\mathrm{~g}) \end{aligned}$	$\begin{aligned} & -1366.91(\mathrm{l}) \\ & -1409.25(\mathrm{~g}) \end{aligned}$	
Ethyl benzene	$\mathrm{C}_{8} \mathrm{H}_{10}$	106.16	0.867	-94.67	9.163	136.2	35.98	619.7	37.0	-12.46(1)	-4564.9(1)	
Ethyl bromide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	108.98	1.460	-119.1	-	38.2	-	50		+29.79(g)	-4607.1(g)	
Ethyl chloride	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	64.52	$0.903^{15^{\circ}}$	-138.3	4.452	13.1	24.7	460.4	52.0	$-54.4(\mathrm{~g})$ $-105.0(\mathrm{~g})$	-	
3-Ethyl hexane	$\mathrm{C}_{8} \mathrm{H}_{18}$	114.22	0.717	-	-	118.5	34.27	567.0	26.4	$\begin{aligned} & -250.5(\mathrm{l}) \\ & -210.9(\mathrm{~g}) \end{aligned}$	$\begin{aligned} & -5407.1(\mathrm{l}) \\ & -5509.8(\mathrm{~g}) \end{aligned}$	
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	28.05	-	-169.2	3.350	-103.7	13.54	283.1	50.5	+52.28(g)	$\begin{aligned} & -5509.8(\mathrm{~g}) \\ & -1410.99(\mathrm{~g}) \end{aligned}$	
Ethylene glycol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$	62.07	$1.113^{19^{\circ}}$	-13	11.23	197.2	56.9	-	-	$\begin{aligned} & -451.5(1) \\ & -387.1(\mathrm{~g}) \end{aligned}$	-1179.5(1)	
Ferric oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	159.70	5.12							-822.2(c)		
Ferrous oxide	FeO	71.85	5.7	-	-	-	-	-	-	-266.5(c)	-	
Ferrous sulfide	FeS	87.92	4.84	1193	-	-	-	-	-	-95.1(c)	-	
Formaldehyde	$\mathrm{H}_{2} \mathrm{CO}$	30.03	0.815^{-20}	-928.30	-	-19.3	24.48	-	-	-115.90(g)	$\begin{aligned} & -563.46(\mathrm{~g}) \\ & -262.8(\mathrm{l}) \end{aligned}$	
Formic acid	$\mathrm{CH}_{2} \mathrm{O}_{2}$	46.03	1.220		12.68	100.5	22.25	-	-	-409.2(1)		
Glycerol	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$	92.09	1.260^{50}	18.20	18.30	290.0	-	-	-	$-362.6(\mathrm{~g})$ $-665.9(\mathrm{l})$	-1661.1(1)	
Helium	He	4.00	-	-269.7	0.02	-268.9	0.084	5.26	2.26	$0(\mathrm{~g})$,	
n-Heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100.20	0.684	-90.59	14.03	98.43	31.69	540.2	27.0	$\begin{aligned} & -224.4(\mathrm{l}) \\ & -187.8(\mathrm{~g}) \end{aligned}$	$\begin{aligned} & -4816.9(1) \\ & -4853.5(\mathrm{~g}) \end{aligned}$	
n-Hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	86.17	659	-95.32	13.03	68.74	28.85	507.9	29.9	$\begin{aligned} & -198.8(\mathrm{l}) \\ & -167.2(\mathrm{~g}) \end{aligned}$	$\begin{aligned} & -4163.1(\mathrm{l}) \\ & -4194.8(\mathrm{~g}) \end{aligned}$	
Hydrogen	H_{2}	2.016	-	-259.19	0.12	-252.76	0.904	33.3	12.8	$0(\mathrm{~g})$ $-36.23(\mathrm{~g})$	$-285.84(\mathrm{~g})$ -	
Hydrogen	HBr	80.92	-	-86	-	-67						
bromide Hydrogen	HCl	36.47		-114.2	1.99	-85.0	16.1	324.6	81.5	-92.31(g)	-	
Hydrogen chloride	HCl	36.47	-	-14			-	-	-	+130.54(g)	-	
Hydrogen cyanide	HCN	27.03	-	-14	-	26	-	503.2	-	$-268.6(\mathrm{~g})$		
Hydrogen fluoride	HF	20.0	-	-83	-	20	-	503.2	-	$\begin{gathered} -268.6(\mathrm{~g}) \\ -316.9(\mathrm{aq}, \\ 200) \end{gathered}$	-	
	$\mathrm{H}_{2} \mathrm{~S}$	34.08	-	-85.5	2.38	-60.3	18.67	373.6	88.9	-19.96(g)	-562.59(g)	
sulfide	H_{2}						-	826.0	-	0 (c)	-	
Iodine	I_{2}	253.8 55.85	4.93 7.7	$\begin{gathered} 113.3 \\ 1535 \end{gathered}$	15.1	2800	354.0	82	-	0 (c)	-	
Iron	Fe Pb	55.85 207.21	$1.1337^{720 / 20^{\circ}}$	1535 327.4	5.10	1750	179.9	-		O(c)	-	
Lead oxide	PbO	223.21	9.5	886	11.7	1472	213	-	-	-219.2(c)	-	
Magnesium	Mg	24.32	1.74	650	9.2	1120	131.8 136.8	-	-	-641.8(c)	-	
Magnesium chloride	MgCl_{2}	95.23	$2.325^{25^{\circ}}$	714	43.1	1418	136.8	-	-	-		
Magnesium	$\mathrm{Mg}(\mathrm{OH})_{2}$	58.34	2.4		Decomposes at $350^{\circ} \mathrm{C}$			-				
hydroxide		40.32	3.65	2900	77.4	3600	-	-	-	-601.8(c)	-	
Magnesium oxide	MgO	40.32	3.65						-	0(c)	-	
Mercury	Hg	200.61	13.546	-38.87	$\overline{0.94}$	-356.9 -161.5	$\overline{8.179}$	190.70	45.8	-74.85(g)	-890.36(g)	
Methane	CH_{4}	16.04	33	-182.5	0.94	- 57.1			46.30	-409.4(1)	-1595(1)	
Methyl acetate	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	74.08	0.933	-98.9	-	57.1	-	513.20	78.50	$-238.6(1)$	726.6 (1)	
Methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$	32.04	0.792	-97.9	3.167	64.7	35.27	513.20	78.50	$-201.2(\mathrm{~g})$	$-764.0(\mathrm{~g})$	
(Methanol)		31.06	$0.699^{-11^{\circ}}$	-92.7	-	-6.9	-	429.9	73.60	-28.0(g)	-1071.5(1)	
Methyl amine	$\mathrm{CH}_{5} \mathrm{~N}$							416.1	65.80	-81.92(g)	-	
Methyl chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	50.49	-	-97.9	-	-24	-	416.1	65.80	-81.92(g)		

Table B. 1 (Continued)

Table B. 1 (Continued)

Compound	Formula	Mol. Wt.	$\begin{gathered} \text { SG } \\ \left(20^{\circ} / 4^{\circ}\right) \end{gathered}$	$T_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)^{b}$	$\begin{gathered} \Delta \hat{H}_{\mathrm{m}}\left(T_{\mathrm{m}}\right)^{c, j} \\ \mathrm{~kJ} / \mathrm{mol} \end{gathered}$	$T_{\mathrm{b}}\left({ }^{\circ} \mathrm{C}\right)^{d}$	$\begin{gathered} \Delta \hat{H}_{\mathrm{v}}\left(T_{\mathrm{b}}\right)^{e, j} \\ \mathrm{kJJ} / \mathrm{mol} \end{gathered}$	$T_{\mathrm{c}}(\mathrm{K})^{f}$	$\mathrm{P}_{\mathrm{c}}(\mathrm{atm})^{g}$	$\left(\Delta \hat{H}_{\mathrm{f}}^{\circ}\right)^{h, j}$ $\mathrm{kJ} / \mathrm{mol}$	$\left(\Delta \hat{H}_{\mathrm{c}}{ }^{\circ}\right)^{i,}$ $\mathrm{kJ} / \mathrm{mol}$
Sodium	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	158.11	1.667	-	-	-	-	-	-	-1117.1(c)	-
thiosulfate											-
Sulfur (rhombic)	S_{8}	256.53	2.07	113	10.04	444.6	83.7	-	-	0 (c)	-
Sulfur	S_{8}	256.53	1.96	119	14.17	444.6	83.7	-	-	+0.30 (c)	-
(monoclinic)											
Sulfur dioxide	SO_{2}	64.07	-	-75.48	7.402	-10.02	24.91	430.7	77.8	-296.90(g)	-
Sulfur	SO_{3}	80.07	-	16.84	25.48	43.3	41.80	491.4	83.8	-395.18(g)	-
trioxide											
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	98.08	$1.834^{18^{\circ}}$	10.35	9.87	Decomp	ses at $340^{\circ} \mathrm{C}$	-	-	$\begin{aligned} & -811.32(\mathrm{l}) \\ & -907.51(\mathrm{aq}) \end{aligned}$	-
Toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	92.13	0.866	-94.99	6.619	110.62	33.47	593.9	40.3	+12.00(1)	-3909.9(1)
										+50.00(g)	-3947.9(g)
Water	$\mathrm{H}_{2} \mathrm{O}$	18.016	$1.00^{4^{\circ}}$	0.00	6.0095	100.00	40.656	647.4	218.3	$-285.84(1)$	-
										-241.83(g)	
m-Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	106.16	0.864	-47.87	11.569	139.10	36.40	619	34.6	$-25.42(1)$	$\begin{aligned} & -4551.9(1) \\ & -45045(\sigma) \end{aligned}$
o-Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	106.16	0.880	-25.18	13.598	144.42	36.82	631.5	35.7	-24.44(1)	-4552.9(1)
o-Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$									+18.99(g)	-4596.3(g)
p-Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	106.16	0.861	13.26	17.11	138.35	36.07	618	33.9	-24.43(1)	-4552.91(1)
p-Xylene										17.95 (g)	-4595.2(g)
Zinc	Zn	65.38	7.140	419.5	6.674	907	114.77	-	-	0 (c)	-

	Form 2: $C_{p}\left[\mathrm{~kJ} /\left(\mathrm{mol} \cdot{ }^{\circ} \mathrm{C}\right)\right]$ or $[\mathrm{kJ} /(\mathrm{mol} \cdot \mathrm{K})]=a+b T+c T^{-2}$
Example: $\left(C_{p}\right)_{\text {acetone }(\mathrm{g})}=0.07196+\left(20.10 \times 10^{-5}\right) T-\left(12.78 \times 10^{-8}\right) T^{2}+\left(34.76 \times 10^{-12}\right) T^{3}$, where T is in ${ }^{\circ} \mathrm{C}$.	

From Elementary Principles of Chemical Processes, 3'rd ed.; R.M. Felder and R.W. Rousseau.

Table B. 5 Properties of Saturated Steam: Temperature Table ${ }^{a}$

$T\left({ }^{\circ} \mathrm{C}\right)$	P (bar)	$\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$		$\hat{U}(\mathrm{~kJ} / \mathrm{kg})$		$\hat{H}(\mathrm{~kJ} / \mathrm{kg})$		
		Water	Steam	Water	Steam	Water	Evaporation	Steam
0.01	0.00611	0.001000	206.2	zero	2375.6	+0.0	2501.6	2501.6
2	0.00705	0.001000	179.9	8.4	2378.3	8.4	2496.8	2505.2
4	0.00813	0.001000	157.3	16.8	2381.1	16.8	2492.1	2508.9
6	0.00935	0.001000	137.8	25.2	2383.8	25.2	2487.4	2512.6
8	0.01072	0.001000	121.0	33.6	2386.6	33.6	2482.6	2516.2
10	0.01227	0.001000	106.4	42.0	2389.3	42.0	2477.9	2519.9
12	0.01401	0.001000	93.8	50.4	2392.1	50.4	2473.2	2523.6
14	0.01597	0.001001	82.9	58.8	2394.8	58.8	2468.5	2527.2
16	0.01817	0.001001	73.4	67.1	2397.6	67.1	2463.8	2530.9
18	0.02062	0.001001	65.1	75.5	2400.3	75.5	2459.0	2534.5
20	0.0234	0.001002	57.8	83.9	2403.0	83.9	2454.3	2538.2
22	0.0264	0.001002	51.5	92.2	2405.8	92.2	2449.6	2541.8
24	0.0298	0.001003	45.9	100.6	2408.5	100.6	2444.9	2545.5
25	0.0317	0.001003	43.4	104.8	2409.9	104.8	2442.5	2547.3
26	0.0336	0.001003	41.0	108.9	2411.2	108.9	2440.2	2549.1
28	0.0378	0.001004	36.7	117.3	2414.0	117.3	2435.4	2552.7
30	0.0424	0.001004	32.9	125.7	2416.7	125.7	2430.7	2556.4
32	0.0475	0.001005	29.6	134.0	2419.4	134.0	2425.9	2560.0
34	0.0532	0.001006	26.6	142.4	2422.1	142.4	2421.2	2563.6
36	0.0594	0.001006	24.0	150.7	2424.8	150.7	2416.4	2567.2
38	0.0662	0.001007	21.6	159.1	2427.5	159.1	2411.7	2570.8
40	0.0738	0.001008	19.55	167.4	2430.2	167.5	2406.9	2574.4
42	0.0820	0.001009	17.69	175.8	2432.9	175.8	2402.1	2577.9
44	0.0910	0.001009	16.04	184.2	2435.6	184.2	2397.3	2581.5
46	0.1009	0.001010	14.56	192.5	2438.3	192.5	2392.5	2585.1
48	0.1116	0.001011	13.23	200.9	2440.9	200.9	2387.7	2588.6
50	0.1234	0.001012	12.05	209.2	2443.6	209.3	2382.9	2592.2
52	0.1361	0.001013	10.98	217.7	2446	217.7	2377	2595
54	0.1500	0.001014	10.02	226.0	2449	226.0	2373	2599
56	0.1651	0.001015	9.158	234.4	2451	234.4	2368	2602
58	0.1815	0.001016	8.380	242.8	2454	242.8	2363	2606
60	0.1992	0.001017	7.678	251.1	2456	251.1	2358	2609
62	0.2184	0.001018	7.043	259.5	2459	259.5	2353	2613
64	0.2391	0.001019	6.468	267.9	2461	267.9	2348	2616
66	0.2615	0.001020	5.947	276.2	2464	276.2	2343	2619
68	0.2856	0.001022	5.475	284.6	2467	284.6	2338	2623

${ }^{a}$ From R. W. Haywood, Thermodynamic Tables in SI (Metric) Units, Cambridge University Press, London, 1968. $\hat{V}=$ specific volume, $\hat{U}=$ specific internal energy, and $\hat{H}=$ specific enthalpy. Note: $\mathrm{kJ} / \mathrm{kg} \times 0.4303=\mathrm{Btu} / \mathrm{l}_{\mathrm{m}}$.

Table B. 5 (Continued)

$T\left({ }^{\circ} \mathrm{C}\right)$	$P($ bar $)$	$\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$		$\hat{U}(\mathrm{~kJ} / \mathrm{kg})$		$\hat{H}(\mathrm{~kJ} / \mathrm{kg})$		
		Water	Steam	Water	Steam	Water	Evaporation	Steam
70	0.3117	0.001023	5.045	293.0	2469	293.0	2333	2626
72	0.3396	0.001024	4.655	301.4	2472	301.4	2329	2630
74	0.3696	0.001025	4.299	309.8	2474	309.8	2323	2633
76	0.4019	0.001026	3.975	318.2	2476	318.2	2318	2636
78	0.4365	0.001028	3.679	326.4	2479	326.4	2313	2639
80	0.4736	0.001029	3.408	334.8	2482	334.9	2308	2643
82	0.5133	0.001030	3.161	343.2	2484	343.3	2303	2646
84	0.5558	0.001032	2.934	351.6	2487	351.7	2298	2650
86	0.6011	0.001033	2.727	360.0	2489	360.1	2293	2653
88	0.6495	0.001034	2.536	368.4	2491	368.5	2288	2656
90	0.7011	0.001036	2.361	376.9	2493	377.0	2282	2659
92	0.7560	0.001037	2.200	385.3	2496	385.4	2277	2662
94	0.8145	0.001039	2.052	393.7	2499	393.8	2272	2666
96	0.8767	0.001040	1.915	402.1	2501	402.2	2267	2669
98	0.9429	0.001042	1.789	410.6	2504	410.7	2262	2673
100	1.0131	0.001044	1.673	419.0	2507	419.1	2257	2676
102	1.0876	0.001045	1.566	427.1	2509	427.5	2251	2679

Table B. 6 Properties of Saturated Steam: Pressure Tablea

P (bar)	$T\left({ }^{\circ} \mathrm{C}\right)$	$\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$		$\hat{O}(\mathrm{~kJ} / \mathrm{kg})$		$\hat{H}(\mathrm{~kJ} / \mathrm{kg})$		
		Water	Steam	Water	Steam	Water	Evaporation	Steam
0.00611	0.01	0.001000	206.2	zero	2375.6	+0.0	2501.6	2501.6
0.008	3.8	0.001000	159.7	15.8	2380.7	15.8	2492.6	2508.5
0.010	7.0	0.001000	129.2	29.3	2385.2	29.3	2485.0	2514.4
0.012	9.7	0.001000	108.7	40.6	2388.9	40.6	2478.7	2519.3
0.014	12.0	0.001000	93.9	50.3	2392.0	50.3	2473.2	2523.5
0.016	14.0	0.001001	82.8	58.9	2394.8	58.9	2468.4	2527.3
0.018	15.9	0.001001	74.0	66.5	2397.4	66.5	2464.1	2530.6
0.020	17.5	0.001001	67.0	73.5	2399.6	73.5	2460.2	2533.6
0.022	19.0	0.001002	61.2	79.8	2401.7	79.8	2456.6	2536.4
0.024	20.4	0.001002	56.4	85.7	2403.6	85.7	2453.3	2539.0
0.026	21.7	0.001002	52.3	91.1	2405.4	91.1	2450.2	2541.3
0.028	23.0	0.001002	48.7	96.2	2407.1	96.2	2447.3	2543.6
0.030	24.1	0.001003	45.7	101.0	2408.6	101.0	2444.6	2545.6
0.035	26.7	0.001003	39.5	111.8	2412.2	111.8	2438.5	2550.4
0.040	29.0	0.001004	34.8	121.4	2415.3	121.4	2433.1	2554.5
0.045	31.0	0.001005	31.1	130.0	2418.1	130.0	2428.2	2558.2
0.050	32.9	0.001005	28.2	137.8	2420.6	137.8	2423.8	2561.6
0.060	36.2	0.001006	23.74	151.5	2425.1	151.5	2416.0	2567.5
0.070	39.0	0.001007	20.53	163.4	2428.9	163.4	2409.2	2572.6
0.080	41.5	0.001008	18.10	173.9	2432.3	173.9	2403.2	2577.1
0.090	43.8	0.001009	16.20	183.3	2435.3	183.3	2397.9	2581.1
0.10	45.8	0.001010	14.67	191.8	2438.0	191.8	2392.9	2584.8
0.11	47.7	0.001011	13.42	199.7	2440.5	199.7	2388.4	2588.1
0.12	49.4	0.001012	12.36	206.9	2442.8	206.9	2384.3	2591.2
0.13	51.1	0.001013	11.47	213.7	2445.0	213.7	2380.4	2594.0
0.14	52.6	0.001013	10.69	220.0	2447.0	220.0	2376.7	2596.7
0.15	54.0	0.001014	10.02	226.0	2448.9	226.0	2373.2	2599.2
0.16	55.3	0.001015	9.43	231.6	2450.6	231.6	2370.0	2601.6
0.17	56.6	0.001015	8.91	236.9	2452.3	236.9	2366.9	2603.8
0.18	57.8	0.001016	8.45	242.0	2453.9	242.0	2363.9	2605.9
0.19	59.0	0.001017	8.03	246.8	2455.4	246.8	2361.1	2607.9
0.20	60.1	0.001017	7.65	251.5				
0.22	62.2	0.001018	7.00	260.1	2459.6	260.1	23553.3	2609.9 2613.5
0.24	64.1	0.001019	6.45	268.2	2462.1	268.2	2348.6	2616.8
0.26	65.9	0.001020	5.98	275.6	2464.4	275.7	2344.2	2619.9
0.28	67.5	0.001021	5.58	282.7	2466.5	282.7	2340.0	2622.7
0.30	69.1	0.001022	5.23	289.3	2468.6	289.3	2336.1	2625.4
0.35	72.7	0.001025	4.53	304.3	2473.1	304.3	2327.2	2631.5
0.40	75.9	0.001027	3.99	317.6	2477.1	317.7	2319.2	2636.9
0.45	78.7	0.001028	3.58	329.6	2480.7	329.6	2312.0	2641.7
0.50	81.3	0.001030	3.24	340.5	2484.0	340.6	2305.4	2646.0
0.55 0.60	83.7 86.0	0.001032	2.96	350.6	2486.9	350.6	2299.3	2649.9
0.60	86.0	0.001033	2.73	359.9	2489.7	359.9	2293.6	2653.6
0.65	88.0	0.001035	2.53	368.5	2492.2	368.6	2288.3	2656.9
0.70	90.0	0.001036	2.36	376.7	$249+5$	376.8	2283.3	2660.1
0.75	91.8	0.001037	2.22	384.4	2496.7	384.5	2278.6	2663.0
0.80	93.5	0.001039	2.087	391.6	2498.8	391.7	2274.1	2665.8
0.85	95.2	0.001040	1.972	398.5	2500.8	398.6	2269.8	2668.4
0.90	96.7	0.001041	1.869	405.1	2502.6	405.2	2265.6	2670.9
0.95 1.00	98.2 99.6	0.001042 0.001043	1.777 1.694	411.4	2504.4	411.5	2261.7	2673.2
1.00 1.01325	99.6 100.0	0.001043 0.001044	1.694 1.673	417.4 419.0	2506.1 2506.5	417.5	2257.9	2675.4
(1 1 atm)	10.0	0.001044	1.673	419.0	2506.5	419.1	2256.9	2676.0

${ }^{a}$ From R. W. Haywood, Thermodynamic Tables in SI (Metric) Units, Cambridge University Press, London, 1968. $\hat{v}=$ specific volume, $\hat{U}=$ specific internal energy, and $\hat{H}=$ specific enthalpy. Note: $\mathrm{kJ} / \mathrm{kg} \times 0.4303=\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$.

Table B. 6 (Continued)

$P($ bar $)$	$T\left({ }^{\circ} \mathrm{C}\right)$	$\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$		$\hat{U}(\mathrm{~kJ} / \mathrm{kg})$		$\hat{H}(\mathrm{~kJ} / \mathrm{kg})$		
		Water	Steam	Water	Steam	Water	Evaporation	Steam
1.1	102.3	0.001046	1.549	428.7	2509.2	428.8	2250.8	2679.6
1.2	104.8	0.001048	1.428	439.2	2512.1	439.4	2244.1	2683.4
1.3	107.1	0.001049	1.325	449.1	2514.7	449.2	2237.8	2687.0
1.4	109.3	0.001051	1.236	458.3	2517.2	458.4	2231.9	2690.3
1.5	111.4	0.001053	1.159	467.0	2519.5	467.1	2226.2	2693.4
1.6	113.3	0.001055	1.091	475.2	2521.7	475.4	2220.9	2696.2
1.7	115.2	0.001056	1.031	483.0	2523.7	483.2	2215.7	2699.0
1.8	116.9	0.001058	0.977	490.5	2525.6	490.7	2210.8	2701.5
1.9	118.6	0.001059	0.929	497.6	2527.5	497.8	2206.1	2704.0
2.0	120.2	0.001061	0.885	504.5	2529.2	504.7	2201.6	2706.3
2.2	123.3	0.001064	0.810	517.4	2532.4	517.6	2193.0	2710.6
2.4	126.1	0.001066	0.746	529.4	2535.4	529.6	2184.9	2714.5
2.6	128.7	0.001069	0.693	540.6	2538.1	540.9	2177.3	2718.2
2.8	131.2	0.001071	0.646	551.1	2540.6	551.4	2170.1	2721.5
3.0	133.5	0.001074	0.606	561.1	2543.0	561.4	2163.2	2724.7
3.2	135.8	0.001076	0.570	570.6	2545.2	570.9	2156.7	2727.6
3.4	137.9	0.001078	0.538	579.6	2547.2	579.9	2150.4	2730.3
3.6	139.9	0.001080	0.510	588.1	2549.2	588.5	2144.4	2732.9
3.8	141.8	0.001082	0.485	596.4	2551.0	596.8	2138.6	2735.3
4.0	143.6	0.001084	0.462	604.2	2552.7	604.7	2133.0	2737.6
4.2	145.4	0.001086	0.442	611.8	2554.4	612.3	2127.5	2739.8
4.4	147.1	0.001088	0.423	619.1	2555.9	619.6	2122.3	2741.9
4.6	148.7	0.001089	0.405	626.2	2557.4	626.7	2117.2	2743.9
4.8	150.3	0.001091	0.389	633.0	2558.8	633.5	2112.2	2745.7
5.0	151.8	0.001093	0.375	639.6	2560.2	640.1	2107.4	2747.5
5.5	155.5	0.001097	0.342	655.2	2563.3	655.8	2095.9	2751.7
6.0	158.8	0.001101	0.315	669.8	2566.2	670.4	2085.0	2755.5
6.5	162.0	0.001105	0.292	683.4	2568.7	684.1	2074.7	2758.9
7.0	165.0	0.001108	0.273	696.3	2571.1	697.1	2064.9	2762.0
7.5	167.8	0.001112	0.2554	708.5	2573.3	709.3	2055.5	2764.8
8.0	170.4	0.001115	0.2403	720.0	2575.5	720.9	2046.5	2767.5
8.5	172.9	0.001118	0.2268	731.1	2577.1	732.0	2037.9	2769.9
9.0	175.4	0.001121	0.2148	741.6	2578.8	742.6	2029.5	2772.1
9.5	177.7	0.001124	0.2040	751.8	2580.4	752.8	2021.4	2774.2
10.0	179.9	0.001127	0.1943	761.5	2581.9	762.6	2013.6	2776.2
10.5	182.0	0.001130	0.1855	770.8	2583.3	772.0	2005.9	2778.0
11.0	184.1	0.001133	0.1774	779.9	2584.5	781.1	1998.5	2779.7
11.5	186.0	0.001136	0.1700	788.6	2585.8	789.9	1991.3	2781.3
12.0	188.0	0.001139	0.1632	797.1	2586.9	798.4	1984.3	2782.7
12.5	189.8	0.001141	0.1569	805.3	2588.0	806.7	1977.4	2784.1
13.0	191.6	0.001144	0.1511	813.2	2589.0	814.7	1970.7	2785.4
14	195.0	0.001149	0.1407	828.5	2590.8	830.1	1957.7	2787.8
15	198.3	0.001154	0.1317	842.9	2592.4	844.7	1945.2	2789.9
16	201.4	0.001159	0.1237	856.7	2593.8	858.6	1933.2	2791.7
17	204.3	0.001163	0.1166	869.9	2595.1	871.8	1921.5	2793.4
18	207.1	0.001168	0.1103	882.5	2596.3	884.6	1910.3	2794.8
19	209.8	0.001172	0.1047	894.6	2597.3	896.8	1899.3	2796.1
20	212.4	0.001177	0.0995	906.2	2598.2	908.6	1888.6	2797.2
21	214.9	0.001181	0.0949	917.5	2598.9	920.0	1878.2	2798.2
22	217.2	0.001185	0.0907	928.3	2599.6	931.0	1868.1	2799.1
23	219.6	0.001189	0.0868	938.9	2600.2	941.6	1858.2	2799.8
24	221.8	0.001193	0.0832	949.1	2600.7	951.9	1848.5	2800.4
25	223.9	0.001197	0.0799	959.0	2601.2	962.0	1839.0	2800.9
26	226.0	0.001201	0.0769	968.6	2601.5	971.7	1829.6	2801.4
27	228.1	0.001205	0.0740	978.0	2601.8	981.2	1820.5	2801.7
28	230.0	0.001209	0.0714	987.1	2602.1	990.5	1811.5	2802.0
29	232.0	0.001213	0.0689	996.0	2602.3	999.5	1802.6	2802.2
30	233.8	0.001216	0.0666	1004.7	2602.4	1008.4	1793.9	2802.3
32	237.4	0.001224	0.0624	1021.5	2602.5	1025.4	1776.9	2802.3
34	240.9	0.001231	0.0587	1037.6	2602.5	1041.8	1760.3	2802.1
36	244.2	0.001238	0.0554	1053.1	2602.2	1057.6	1744.2	2801.7
38	247.3	0.001245	0.0524	1068.0	2601.9	1072.7	1728.4	2801.1

Table B. 6 (Continued)

P (bar)	$T\left({ }^{\circ} \mathrm{C}\right)$	$\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$		$\hat{U}(\mathrm{~kJ} / \mathrm{kg})$		$\hat{H}(\mathrm{~kJ} / \mathrm{kg})$		
		Water	Steam	Water	Steam	Water	Evaporation	Steam
40	250.3	(0.001252	0.0497	1082.4	2601.3	1087.4	1712.9	2800.3
42	253.2	().0012.59	0.0473	1096.3	20000.7	11101.6	1697.8	2799.4
44	256.0	(0.001266	0.0451	1109.8	2599.9	1115.4	1682.9	2798.3
46	258.8	0.001272	0.0430	1122.9	2599.1	1128.8	1668.3	2797.1
48	261.4	0.001279	0.0412	1135.6	2598.1	1141.8	1653.9	2795.7
50	263.9	0.001286	0.0394	1148.0	2597.0	1154.5	1639.7	2794.2
52	266.4	0.001292	0.0378	1160.1	2595.9	1166.8	1625.7	2792.6
54	268.8	0.001299	0.0363	1171.9	2594.6	1178.9	1611.9	2790.8
56	271.1	0.001306	0.0349	1183.5	2593.3	1190.8	1598.2	2789.0
58	273.3	0.001312	0.0337	1194.7	2591.9	1202.3	1584.7	2787.0
60	275.6	0.001319	0.0324	1205.8	2590.4	1213.7	1571.3	2785.0
62	277.7	0.001325	0.0313	1216.6	2588.8	1224.8	1558.0	2782.9
64	279.8	0.001332	0.0302	1227.2	2587.2	1235.7	1544.9	2780.6
66	281.8	0.001338	0.0292	1237.6	2585.5	1246.5	1531.9	2778.3
68	283.8	0.001345	0.0283	1247.9	2583.7	1257.0	1518.9	2775.9
70	285.8	0.001351	0.0274	1258.0	2581.8	1267.4	1506.0	2773.5
72	287.7	0.001358	0.0265	1267.9	2579.9	1277.6	1493.3	2770.9
74	289.6	0.001364	0.0257	1277.6	2578.0	1287.7	1480.5	2768.3
76	291.4	0.001371	0.0249	1287.2	2575.9	1297.6	1467.9	2765.5
78	293.2	0.001378	0.0242	1296.7	2573.8	1307.4	1455.3	2762.8
80	295.0	0.001384	0.0235	1306.0	2571.7	1317.1	1442.8	2759.9
82	296.7	0.001391	0.0229	1315.2	2569.5	1326.6	1430.3	2757.0
84	298.4	0.001398	0.0222	1324.3	2567.2	1336.1	1417.9	2754.0
86	300.1	0.001404	0.0216	1333.3	2564.9	1345.4	1405.5	2750.9
88	301.7	0.001411	0.0210	1342.2	2562.6	1354.6	1393.2	2747.8
90	303.3	0.001418	0.02050	1351.0	2560.1	1363.7	1380.9	2744.6
92	304.9	0.001425	0.01996	1359.7	2557.7	1372.8	1368.6	2741.4
94	306.4	0.001432	0.01945	1368.2	2555.2	1381.7	1356.3	2738.0
96	308.0	0.001439	0.01897	1376.7	2552.6	1390.6	1344.1	2734.7
98	309.5	0.001446	0.01849	1385.2	2550.0	1399.3	1331.9	2731.2
100	311.0	0.001453	0.01804	1393.5	2547.3	1408.0	1319.7	2727.7
105	314.6	0.001470	0.01698	1414.1	2540.4	1429.5	1289.2	2718.7
110	318.0	0.001489	0.01601	1434.2	2533.2	1450.6	1258.7	2709.3
115	321.4	0.001507	0.01511	1454.0	2525.7	1471.3	1228.2	2699.5
120	324.6	0.001527	0.01428	1473.4	2517.8	1491.8	1197.4	2689.2
125	327.8	0.001547	0.01351	1492.7	2509.4	1512.0	1166.4	2678.4
130	330.8	0.001567	0.01280	1511.6	2500.6	1532.0	1135.0	2667.0
135	333.8	0.001588	0.01213	1530.4	2491.3	1551.9	1103.1	2655.0
140	336.6	0.001611	0.01150	1549.1	2481.4	1571.6	1070.7	2642.4
145	339.4	0.001634	0.01090	1567.5	2471.0	1591.3	11037.7	2629.1
150	342.1	0.001658	$0.01(1) 34$	1586.1	2459.9	1611.0	1004.0	2615.0
155	344.8	0.001683	0.00981	1604.6	2448.2	1630.7	969.6	2600.3
160	347.3	0.001710	0.00931	1623.2	2436.0	1650.5	934.3	2584.9
165	349.8	0.001739	0.00883	1641.8	2423.1	1670.5	898.3	2568.8
170	352.3	0.001770	0.00837	1661.6	2409.3	1691.7	859.9	2551.6
175	354.6	0.001803	0.00793	1681.8	2394.6	1713.3	820.0	2533.3
180	357.0	0.001840	0.00750	1701.7	2378.9	1734.8	779.1	2513.9
185	359.2	0.001881	0.00708	1721.7	2362.1	1756.5	736.6	2493.1
190	361.4	0.001926	0.00668	1742.1	2343.8	1778.7	692.0	2470.6
195	363.6	0.001977	0.00628	1763.2	2323.6	1801.8	644.2	2446.0
200	365.7	(0).00204	0.00588	1785.7	2300.8	1826.5	591.9	2418.4
205	367.8	0.00211	0.00546	1810.7	2274.4	1853.9	532.5	2386.4
210	369.8	0.00220	0.00502	1840.0	2242.1	1886.3	461.3	2347.6
215	371.8	0.00234	0.00451	1878.6	2198.1	1928.9	366.2	2295.2
220	373.7	0.00267	0.00373	1952	2114	2011	185	2196
221.2	374.15	0.00317	0.00317	2038	2038	2108	0	2108
(Critical point)								

Table B. 8 Specific Enthalpies of Selected Gases: SI Units

$$
\hat{H}(\mathrm{~kJ} / \mathrm{mol})
$$

Reference state: Gas, $P_{\text {ref }}=1 \mathrm{~atm}, T_{\text {ref }}=25^{\circ} \mathrm{C}$

T	Air	O_{2}	$\mathrm{~N}_{2}$	H_{2}	CO	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$
$\mathbf{0}$	-0.72	-0.73	-0.73	-0.72	-0.73	-0.92	-0.84
$\mathbf{2 5}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\mathbf{1 0 0}$	2.19	2.24	2.19	2.16	2.19	2.90	2.54
$\mathbf{2 0 0}$	5.15	5.31	5.13	5.06	5.16	7.08	6.01
$\mathbf{3 0 0}$	8.17	8.47	8.12	7.96	8.17	11.58	9.57
$\mathbf{4 0 0}$	11.24	11.72	11.15	10.89	11.25	16.35	13.23
$\mathbf{5 0 0}$	14.37	15.03	14.24	13.83	14.38	21.34	17.01
$\mathbf{6 0 0}$	17.55	18.41	17.39	16.81	17.57	26.53	20.91
$\mathbf{7 0 0}$	20.80	21.86	20.59	19.81	20.82	31.88	24.92
$\mathbf{8 0 0}$	24.10	25.35	23.86	22.85	24.13	37.36	29.05
$\mathbf{9 0 0}$	27.46	28.89	27.19	25.93	27.49	42.94	33.32
$\mathbf{1 0 0 0}$	30.86	32.47	30.56	29.04	30.91	48.60	37.69
$\mathbf{1 1 0 0}$	34.31	36.07	33.99	32.19	34.37	54.33	42.18
$\mathbf{1 2 0 0}$	37.81	39.70	37.46	35.39	37.87	60.14	46.78
$\mathbf{1 3 0 0}$	41.34	43.38	40.97	38.62	41.40	65.98	51.47
$\mathbf{1 4 0 0}$	44.89	47.07	44.51	41.90	44.95	71.89	56.25
$\mathbf{1 5 0 0}$	48.45	50.77	48.06	45.22	48.51	77.84	61.09

Table B. 9 Specific Enthalpies of Selected Gases:
American Engineering Units

$\hat{H}(\mathrm{Btu} / \mathrm{lb}-\mathrm{mole})$ Reference state: Gas, $P_{\text {ref }}=1 \mathrm{~atm}, T_{\text {ref }}=77^{\circ} \mathrm{F}$							
T	Air	O_{2}	N_{2}	H_{2}	CO	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$
32	-312	-315	-312	-310	-312	-394	-361
77	0	0	0	0	0	0	0
100	160	162	160	159	160	206	6
200	858	875	857	848	859	1132	996
300	1563	1602	1558	1539	1564	2108	1818
400	2275	2342	2265	2231	2276	3129	2652
500	2993	3094	2976	2925	2994	4192	3499 4359
600	3719	3858	3694	3621	3720	6429	4359
700	4451	4633	4418	4319	4454	6429	5233
800	5192	5418	5150	5021	5195	7599	6122
900	5940	6212	5889	5725	5945	8790	7025
1000	6695	7015	6635	6433	6702	10015	7944
1100	7459	7826	7399	7145	7467	11263	8880
1200	8230	8645	8151	7861	8239	12533	9831
1300	9010	9471	8922	8581	9021	13820	10799
1400	9797	10304	9699	9306	9809	15122	11783
1500	10590	11142	10485	10035	10606	16436	12783
1600	11392	11988	11278	10769	11409	17773	137981
1700	12200	12836	12080	11509	12220	19119	14831
1800	13016	13691	12888	12254	13036 13858	20469	16941
1900	13837	14551	13702 14524	13003 13759	13858 14688	23211	18019
2000	14663	15415	14524	13759	14680		

