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4 Phase Behavior of Amorphous Polymer Systems.

Chapter 3, Section 3.2, 3.3 pp. 83-141

General Issues:

Flory  Huggins  equation  for  the  Gibbs  Free  Energy  of  Mixing,  ∆ G  is  given  by,

Equation 3.85 and 3.86 pp. 88 Strobl. φi is the volume fraction of component "i", Ni is the degree of polymerization, χ is the
Flory Huggins interaction parameter. The first two terms represent the combinatorial entropy of mixing while the
latter term represents the enthalpic component of the free energy change on mixing which should reflect only local
site-site  interactions  of  neighboring  mer  units.  The  interaction  parameter  in  this  form  is  given  by,

χ  has  an  inverse  temperature  dependence  and  since  this  is  the  only  place  in the free energy change expression

where  temperature  is involved the thermal dependence of miscibility can be written in terms of χ  or T. The first
derivative  of  free  energy  with  respect  to  composition  reflects  the  condition  of  equilibrium  through  equality  of
chemical potentials between coexisting phases. The second derivative reflects the condition for stability (spinodal)
of a system to small perturbations in composition and the third derivative reflects the critical point for miscibility.
From  these  thermodynamic  definitions  the  critical  point  for  a  polymer  mixture  and  the  spinodal  curve  in
composition  can  be  obtained.  The  critical  point  occurs  at  φ c  and  at  a  temperature  reflected  in  χ c ,

The spinodal curve for the Flory-Huggins equation is defined as,

Figure 3.14 (pp.  91)  shows the calculated Free energy change on mixing for  a  symmetric  blend,  NA = NB, as predicted by the Flory

Huggins equation. The above equations show that the critical composition for this situation is 0.5 and the critical χc is 2/N. Because of

this  dependence of  the critical  interaction parameter  on molecular  weight,  N,  physicists  often plot χN versus composition rather
than  T  versus  composition  in  constructing  a  phase  diagram  for  a  polymer  system,  lending  some  degree  of
universality to the plots.
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In Figure 3.14, the free energy change on mixing shows three behaviors which are reflected in the three derivatives
discussed above. At low χ  (high temperatures), there is a single minimum reflecting miscibility. At the critical χ,

χ N  =  2,  the  curve  becomes  markedly  flat  associated  with  a  transition  to  a  double  minima  curve  at  lower

temperatures. At large χ  (low temperature), two minima in the free energy change are observed. The bottom curve
represents a single phase system, the middle curve represents a critical system having a temperature just at which
phase  separation  begins  while  the  upper  curve  represents  a  system  where  phase  separation will occur, the two
phases which form corresponding in composition to the points where a line is tangent to both curves. The points of
tangent are the binodal points at that temperature. Another pair of points, where the free energy change goes from
concave down to concave up reflects the stability limit where spontaneous decomposition occurs. 

Figure 3.15 on pp. 93 shows these two sets of points for various χ N as a function of composition. The critical
point  is  where  all  of  these  derived  curves  meet.  In  this  case  the critical point,  which defines the limit of phase
miscibility, occurs at a low temperature similar to low molecular weight systems, i.e. you heat sugar to dissolve it
in water. Often polymer systems display the opposite behavior, phase separation on heating (PVME/PS system).
From  an  empirical  perspective  such  behavior  necessarily  involves  a  major  modification  of  the  definition of the
interaction parameter.

The  definition  of  χ ,  above,  is  of  the  form  B/T  reflecting  the  enthalpic  nature  of  this  parameter.  From  the
Flory-Huggins  equation  this  can  lead  only  to  systems  which  phase  separate  on  cooling  (upper critical solution
temperature, UCST, systems, figure 3.17 pp. 96) or systems which are always single phase (for negative B). In
order  to  obtain  phase  separation  on  heating  (LCST  systems  which  are commonly observed in polymers), there
must be a negative B and a positive temperature independent term, A, in χ which reflects an entropic component, χ
= A + B/T, figure 3.18 pp. 97. Such an entropic component of χ is termed a non-combinatorial entropy reflecting
the  combinatorial  (counting)  statistics  used  in  the  derivation  of  the  Flory-Huggins  equation.

Morphology of Phase Separation in Polymer Blends:

A LCST phase diagram is shown below:

A  quench  into  the  spinodal  regime  (in  this  case  raising  the  temperature  of  the  system)  leads  to  spontaneous
decomposition into two phases following concentration fluctuations in the system. A quench into the nucleation and
growth regime (NG) will only lead to phase separated structures in the presence of nuclei for phase growth (dirt).
The  growth will occur locally at these nucleation sites and will lead to spherical domains. The two situations are
shown  by Strobl in figure 3.21 on pp. 101. A single phase present in the spinodal regime is unstable  to small
concentration  fluctuations.  A  single  phase  present  in  the  binodal  (NG)  regime  is  meta-stable  to  small
concentration fluctuations but unstable to large concentration fluctuations such as presented by a nucleation site. 
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A common way to look at the difference between spinodal decomposition and nucleation and growth is to
consider  concentration for the system versus spatial arrangement, figure 3.24 pp. 104. In nucleation and growth
the nuclei is thermodynamically stable and represents a concentrated region. The phase of which the nuclei is rich is
depleted  from  the  local  vicinity  of  the  phase  to  produce  growth  in  the  phase.  This  depletion  leads  to  Fickian
(normal) diffusion down a concentration gradient.

For  spinodal  decomposition  the  thermodynamic  driving force is sufficient to force upward diffusion so that any
concentration  fluctuation,  no  matter  how  small,  will  grow  by  transport  up  the  concentration  gradient.  This
situation was first realized by Cahn and Hilliard in the 1950's. 

Critical Fluctuations and Spinodal Decomposition:

A  single  phase  system  such  as  a  blend  of  two  polymers  contains  fluctuations  in  concentration  due  to  random
thermal  motion of the blend components. (Some of these fluctuations are larger than others, particularly near the
average  coil  size  in  the  mixture.)  Thermal  fluctuations  are  dampened  by  the  nature  of  the  free  energy  curve
discussed  above.  For  example,  consider  an  average  concentration  < φ>  =  0.25  system  where  small  thermal
fluctuations exist as shown below,

A thermal fluctuation away from the average composition leads to two phases as indicated by the arrows, which
have a net higher free energy since the increasing free energy is much steeper than the decreasing free energy. This
means  that  the  free  energy  dampens  thermal  fluctuations  when  deep  in  the  single  phase  regime.

As  one  approaches  the  critical  point  the  free  energy  curve  flattens  out,  especially  in  the  vicinity  of  the  critical
composition so this damping effect is less pronounced and at the critical point and critical composition there is no
damping  at  all.  This  means  that  concentration  fluctuations  grow  as  one  approaches  the  critical  point.

Scattering of radiation (light, x-rays or neutrons) arises from concentration (contrast) fluctuations, 

S(q) = <δφq
2>/Vc,

where S(q)  is  proportional  to  the scattered intensity,  Vc is a lattice volume element from the Flory-Huggins approach for instance, and

δφq is the q wave vector component of the difference between a concentration value and the mean concentration in the system, 

δφq = φq − <φ>

<δφq>  = 0. φq involves breaking up essentially random thermal concentration fluctuations into Fourier components (a series of cosine

waves).  Fourier  theory is  based on the assumption that  these Fourier  components  can be treated independently. For a single Gaussian

polymer coil  <δφq
2 >/Vc can be calculated from the Gaussian statistics  function leading to the Debye scattering function for a single
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polymer coil,

where Q = q2 Nb2 /6 = q2Rg
2, Rg is the radius of gyration for the polymer coil and q is the wavenumber for concentration fluctuations

measured in  the scattering experiment as = 4π/λ sin(θ), where λ is the wavelength of the radiation and 2θ is the scattering

angle. q is also proportional to the inverse of the Bragg spacing, q = 2π/d.

The difference between scattering for light, x-rays and neutrons involves wavelength (size scale observed, light 0.6
µm,  neutrons  5  Å  and  x-rays  1.54Å),  and  contrast.  Light  is contrasted by polarizability or index of refraction,
x-rays by electron density and neutrons by neutron cross section. Neutron cross-section is different for deuterium
and  hydrogen  so  polymer  chains  can  be  tagged  by  deuteration.  Figure  3.26,  pp.  107,  demonstrates  the
enhancement of scattered intensity as the critical point is approached reflecting growth of concentration fluctuations.
The  typical  plot  is  1/Intensity  (1/S c) versus q2,  reflecting the q2 dependence of the Debye function above. The

divergence of the intensity extrapolated to q2 => 0 can be plotted as a function of 1/T to determine the critical point
(or spinodal point for off critical compositions), figure 3.26 pp. 107. 

The  scattering  function  for a single phase polymer blend is similar to the Debye function and is described by an
inverse  sum of scattering functions and the interaction parameter by the Random Phase Approximation, equation
3.165, pp. 115, whose derivation is described in Strobl (Appendix). 

The RPA equation above, describes the increase in 0-angle scattering SBlend(q=>0) as one approaches the critical
point (or spinodal point).  This function is commonly used to determine the value of the interaction parameter for
single phase blends. At the q=>0 limit the RPA equation can be rewritten using the Flory-Huggins equation (for a
symmetric blend) as, 

Strobl  equation  3.168  pp.  115,  indicating  that  the  deviation  from  the  spinodal  is  directly  measured  in  the
extrapolated zero-angle intensity.

Spinodal Decomposition:

Beyond  the  critical  point,  within  the  spinodal  regime,  phase  separation  is  spontaneous  for  all  composition
fluctuations.  This  is  because  of  the  shape  of  the  free  energy  curve  in  the  region  as  show  below,
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Any fluctuation away from the average concentration leads to a greater decrease in free energy for one of the two
phases  than  the  corresponding  increase  on  the  other  side  of  the  average  concentration.  This  means  that  any
concentration fluctuation leads to a lowering of the free energy. (in the nucleation and growth regime this is only
true for very large concentration fluctuations which go beyond the central peak.) 

Usually on a micron scale (light scattering) a peak is observed in the scattering for polymer systems under going
spinodal  decomposition.  The  peak  reflects  a  "wave-like"  fluctuation  in  the  composition  with  a  preferred
wavelength. The existence of a peak in the scattering is shown in figures 3.27 and 3.28 for SANS and SALS data
respectively.  The  peak  grows  indicating  an  increase  in  the  concentration  difference between phases as spinodal
decomposition proceeds. In Cahn-Hillard theory, which predicts such a peak, the peak position remains constant in
spinodally decomposing system and a bicontinuous, web-like structure is produced, figure 3.35 pp. 126. At
late stages of spinodal decomposition the peak position decays in "q" reflecting an increase the phase size, q Å 1/d.
This  is  termed  late  stage  spinodal  decomposition.  At  extremely  late  stages  the  web-like  structure  "ripens"  into
spherical domains due to surface energy in a process known as Oswald Ripening. The final product of Oswald
Ripening is indistinguishable from the structure of a nucleation and growth process. 

Spinodal decomposition also occurs for low molecular weight systems such as metals but on a much smaller size
scale (nanometer scale) and at a much more rapid rate (seconds rather than minutes for polymers). Cahn-Hilliard
theory  was  developed  for metals but has its major application in polymers due to the difficulty of study of early
stage spinodal decomposition in metals. For polymers both the time scale and size scale are extremely accessible for
study  and  spinodal  decomposition  has  been  one  of  the  major  areas  of  interest  to  polymer  morphologists.

To  consider  the  growth  of  phases  in  the  spinodal  regime  consider  the  free  energy  of  a  polymer  blend  of
composition φ,  which contains small concentration fluctuations, G(φ(r)),  as described by the "Ginzburg-Landau
Functional", Strobl equation 3.136 pp. 111 (and Hashimoto paper Macro 16, 641 equation II-1). 

g( φ(r))  is  the  free  energy  density as a function of concentration and  phase  size,  r ,  and the second term

contains  the  gradient  of  the  concentration.  The  term  β '  reflects  the  cost  associated  with  the  presence  of

concentration fluctuations associated with dφ/dr (or del φ in 3-d coordinates). This differs from a surface energy
term since a "surface" does not exist, see figure 3.24 pp. 104.

The  differential  operator,  del,  has  been  used  above.  The  divergence,  del(Scalar),  results  in  a
vector  composed  of  the  derivative  of  the  scalar  with  respect  to  the  three  Cartesian  coordinates.

The  Ginzburg-Landau  Functional  (function  of  arbitrary  functions)  simply  states  that  the  average  free  energy
associated with the blend reflects the sum of component free energy densities times volume plus the average free
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energy associated with fluctuations. There is no linear term in del φ because <δφ> = 0, so the second order term,

<(δφ)2> is the simplest approximation. The expression should also include higher, even-powered terms for large

concentration fluctuations. The term β' can be calculated for the specific system of interest, and for polymer blends
it is given by,

so is associated with a natural size-scale for fluctuations in the system associated with the coil size (equation 3.163
pp.  114  and  RT β "/2  =  β ' ,  pp.  112  below  3.148).  The  value  of  β '  is obtained by comparison of the Debye
scattering  function  with  the  scattering  function  obtained  from  the  Ginzburg-Landau  Functional  using
Flory-Huggins Theory. (This is done by Strobl on pp. 113-114.)

The  Ginzburg-Landau  Functional  introduces  an  expression  for  the  variation  of  free  energy  with
phase  size,  r .

In the study of phase separation we are dealing with the kinetic growth of phases so some kind of balance between
thermodynamics, as described by the Ginzburg-Landau Functional, and transport from Fick's laws in tensor form,
is needed. The growth of phases in spinodal decomposition is driven by the chemical potential difference between
two regions of differing composition, i.e. the two phases. The flux of one binary blend component, A, JA (which
also equals JB by incompressibility), is given by,

DAB is the translational diffusion coefficient for transport of A chains in an AB melt. This is a restatement of Fick's
first  law  with  the  chemical  potential  difference  replacing  the  concentration  gradient (activity), Hashimoto above
equation  II-2. If  the  Ginzburg-Landau  functional  is  used  to  calculate  the  chemical  potential,  then
the  expression  for  J A  has  a  size  dependence.  Fick's second law can then be used to describe the rate of
phase growth,

Hashimoto equation II-2. Here, the Ginzburg-Landau Functional has been used for the calculation of the chemical
potential  in  the  two  phases,  and this has been substituted in the expression for the change in concentration with
time.  The  substitution  of  the  Ginzburg-Landau  expression  implies  a  preferred  size  scale  and  a
size-scale  dependence  to  the  growth  of  concentration.  This  is  inherent  to  the  above  difference  in
the  density  gradient  terms.  

The differential operator,  del,  has been used above. The divergence, del(Scalar), results in a vector composed of
the derivative of the scalar with respect to the three Cartesian coordinates. Higher order derivatives, del2 and del4
also result in a vector. The divergence of a vector field, del dot vector, results in a scalar which is the sum of the
derivative of each vector component with respect to the Cartesian component axis. Del dot J,  is a measure of the
spatial  change  in  flux  from  an  infinitesimal  volume  element  and is a measure of the deviation from steady state
where in = out. This is therefore an equation  of  continuity . 

The equation for concentration growth rate reflects a balance between the change in the chemical potential (second
derivative  of  the  free  energy  density)  with  respect  to  concentration,  times  the  derivative  of  the  concentration
gradient in space, and  a factor which accounts for the energy cost associated with a concentration gradient, β', in
terms of an average size parameter for the system related to the radius of gyration for the component coils and the
concentrations.  The  chemical  potential  is  a  bulk  system  parameter,  i.e.  reflects the largest size scales so that an
infinite  ensemble  is  an  appropriate  approximation.  The  parameter,  β ' ,  indicates  that  the  system contains some
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natural  size-constant  which  you  might view as being similar to a time-constant  for a temporally oscillating
system.  i.e.  here  oscillations  are  in  concentration  rather  than  in  time  for  something  like  a  pendulum.  This  is
basically  what  Strobl  means  by  and  " equation  of motion" on the top of pp. 121. Depending on the relative
values of the derivative of the chemical potential and the parameter β', the system will select certain "frequencies"
in spatial size, r, which are preferred for growth. 

In  order  to  consider  such  a  system  where  the  growth  rate  depends  strongly  on  the  size-scale,
r ,  the  random  thermal  fluctuations  acting  on  the  system  need  to  be  decomposed  into  Fourier
components  of  different  wavelengths,  and  wavenumbers,  q  =  k  =  2 π/λ.  A  definition  of  such  a

Fourier  decomposition  is  that  independent  Fourier  components  at wave vector, q, i.e.  φq,  can be discussed,  from a

thermodynamic  and  kinetic  perspective,  independently.  A  deviation  in  concentration,  from  the  mean  value,  δφq ,  in  a  linear

approximation,  is  generated  by  a  chemical  potential  difference ,  Ψq.  This  response in  a  concentration fluctuation,  δφq,  is

described by the response coefficient, αq, 

It  can  be  shown,  Strobl  pp.  406,  that  the  intensity  scattered  at  q  =  4 π/λ  sin( θ /2),  is  proportional  to  α q ,

The solution to the differential equation of continuity, given above, reflects an exponential growth in concentration
with time which is governed by the free energy expression given by the Ginzburg-Landau Functional. 

φ(r, t) - <φ> = δφ(r, t) = Σ exp[t R(q)] {A(q) cos(q dot r) + B(q) sin(q dot r)}

Hashimoto equation II-3, where for isotropic scattering q => q.

where  R(q)  is  the  linear  growth  rate  for  phases  at  wavenumber  "q"  associated  with  wavelength  λ ,  given by,

The  term  in  brackets  above  reflects  the  applied  potential  so  the  observed  scattering  will  follow  an  exponential
growth in time (at early stages of spinodal decomposition),

S(q) = S(q, t = 0) exp[2 t R(q)]

where R(q) is given above.

δ2g/δφ2 is a measure of the direction of curvature of the free energy versus composition curve, i.e. in the nucleation and growth regime

the curve is  concave up so δ2g/δφ2 is positive and in the spinodal regime the curve is concave down and δ2g/δφ2 is negative. For the

nucleation and growth regime the growth rate, R(q), is negative (β' is a positive size-related parameter) and no growth occurs

spontaneously.  For  the  spinodal  regime  R(q)  can  be  positive  if  δ2 g / δφ2  >  2 β ' q 2 ,  implying  a  critical
(maximum) q for phase growth (or a minimum size for phase growth since λ = 2π/q). This value of
q is termed a critical q, qc,

qc = (-(δ2g/δφ2)/2β')1/2

The maximum growth occurs for dR(q)/dq = 0, or δ2g/δφ2 = -4 qmax
2 β',
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qmax = (-(δ2g/δφ2)/4β')1/2 = qc/Ã2

and

R(qmax) = -DAB (δ
2g/δφ2)/8β'

The  position  of  the maximum growth rate and the critical growth rate are governed by thermodynamics and size
alone, i.e. there is no transport term, while the rate at the maximum is governed by thermodynamics and transport.
The  presence  of  a  maximum  size  of  growth  reflects  a  balance  between  transport  and  thermodynamics.  The
expression for R(q) reflects this balance between thermodynamics and kinetics. At small q, q < qmax, or large size,

thermodynamics  favors  rapid decomposition while the rate term's transport prefactor leads to slower growth (q2

dependence of the prefactor). At large q, q > qmax, or small sizes, the thermodynamic term (in brackets) lowers the

rate due to the -2 β'q2 term.

The  expression  for  q max  and  R(q max )  can  be  used  to  explain  the  difficulty  of  kinetic  studies  of  spinodal
decomposition in metals and the relative ease of spinodal studies in polymers. Polymers are large molecules so the
term β '  is typically on the order of close to a micron in size, where as for metals it is of atomic dimensions. This
means  that  spinodal  decomposition,  for  thermally  similar  systems, will be studied with laser light scattering for
polymers and x-ray or neutron scattering for metals. Typically, a light scattering pattern can be easily collected in
seconds while x-ray or neutron scattering patterns require times on the order of hours. This size difference, coupled
with much higher transport coefficients, DAB,  for metals leads to decomposition rates on the order of seconds for
metals  and  on  the  order  of  minutes  for  polymers.  This  means  that  despite,  Cahn-Hillard  theory's  original
development  for  metals,  the  only  real  systems  where  spinodal  decomposition  can  be  studied  in-depth, without
special quenching procedures etc., are polymeric!

Since the terms DAB and (δ2g/δφ2) are  coupled in  the Cahn-Hillard approach,  these terms are  often referred to  as  the apparent

diffusion coefficient, Dapp, reflecting both thermodynamic and transport properties,

Dapp = DAB(δ2g/δφ2)

The apparent diffusion coefficient reflects the sharpness of the spinodal peak in small-angle scattering, 

It  can be obtained from a plot  of R(q)/q2 versus q2, following the equation for R(q) above, Dapp is the intercept at q2 = 0 (in the low-q

region where transport dominates). 

There is  a  great deal of self-consistency required by Cahn-Hillard theory in the function R(q). A plot of R(q)/q2 versus q2 yields Dapp as

the  low-q  intercept  and 2β '  as the slope. These can be used to calculate the growth rate at maximum, the q value at
maximum and the critical maximum q at which the growth rate goes to 0. This means that any two features of the
spinodal  growth rate curve will predict the entire curve! Demonstration of self-consistency in a spinodal curve is
therefore evidence that the Cahn-Hillard theory is appropriate for a data set. 

In addition to self-consistency within the R(q) curve several other requirements exist for an observation of spinodal
decomposition. Since Cahn-Hillard theory relies on thermodynamics, it is usually required that the phase separation
observed  is  reversible  on  annealing  in  the  single  phase  region.  Also,  it  is  usually  required  that  something
resembling a web-like, bicontinuous structure be observed microscopically. Finally, a basic requirement is that the
spinodal peak in the scattering curve remain at a single value of qmax during growth. The latter requirement is an
indication  that  no  real  interfaces  are  present in the system, since all theories for phase growth in size require an
interface term and an associated interfacial energy which is minimized. In Cahn-Hillard theory there is no interface,
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only a concentration gradient as seen in figure 3.24. 

The decay of qmax at "intermediate stages" of spinodal decomposition is an indication of the breakdown of the
Cahn-Hillard assumptions. Figure 3 of the Hashimoto paper (Macro 1 6 ,644) shows early and intermediate stage
spinodal  decomposition  data  from  Polystyrene/Polyvinylmethyl  ether  blends  (PS/PVME),  demonstrating  the
behavior of qmax.  "Late stage" spinodal decomposition involves the growth of phase size due to minimization of
surface  area  following Oswald Ripening ,  as will be discussed below. The final phase structure of a spinodal
decomposition  through  Oswald  Ripening  is  indistinguishable  from  that  of  a  nucleation  and  growth  process.

Application of the Flory-Huggins Equation to Cahn-Hilliard Theory.

The Flory-Huggins equation can be substituted for g(φ) in the Ginzburg-Landau Functional. For a simple system
of matched molecular weights this results in equation II-15 of Hahsimoto,

where Dc is the self-diffusion coefficient for translational diffusion which scales as N-2. R0 is the unperturbed coil

size, n1/2a. χ s  is  the interaction parameter  at  the spinodal.  From comparison with the general, Cahn-Hillard equation given above,

Since χ is proportional to 1/T, 

Plots for a Cahn-Hillard Analysis:

In order to perform a Cahn-Hillard analysis of small-angle light scattering from a spinodally decomposing blend a
series of scattering patterns (I versus q) are taken as a function of time (Figure 4 of Hashimoto paper and
Figure 3.33 pp. 124 of Strobl). The equation, 

S(q) = S(q, t = 0) exp[2 t R(q)]

suggests plots of ln(S(q,t)/S(q,t=0)) versus time, t,  to obtain the rate constant R(q). This is done for a series of q
values  as  shown  in  Hashimoto  Figure  5  and  Strobl  Figure  3.34 .  In  the  Strobl  figure  a  negative  rate
constant  is  observed  for  high-q,  above  q critical ,  as  expected.  (The  ln(S(q,t)/S(q,t=0)) versus t curve tails over
(Hashimoto Figure 5) as late stage spinodal decomposition is approached, see also Hashimoto Figure 4 where
the decay of the peak position at late stage is shown.)

R(q) versus q results obtained from these plots is then plotted as a function of q to obtain the q value at maximum
growth rate, qmax,  which should correspond to the location of the spinodal peak in the original scattering pattern,
Figure 6 of Hashimoto. 

In a plot of R(q)/q2 versus q2 for high-q values (beyond the peak in q) the intercept at R(q) => 0 yields the critical
q, qc. This value should equal Ã2 qmax. This is shown in Figure 7 of Hashimoto. 

Oswald Ripening and Deviations from Cahn-Hillard Predictions:
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As phase separation progresses, by a spinodal process, the scattering peak is observed to decay in qmax position.
This  process  is  usually  broken into two regimes, intermediate-stage  spinodal  decomposition ,  where
modifications of the Cahn-Hilliard approach are appropriate, and late-stage  decomposition  where a different
mechanism based on reduction of surface area is usually used. 

In  intermediate  stage  spinodal  decomposition,  account  can  be  made  of  a decay in qmax by normalization of the
ln(I/I(0)) versus q plot through the x-axis parameter, q/qmax.  Such a plot is shown in Strobl Figure 3.36, pp.
127.  Hashimoto  shows  the  decay  of  qmax  in  Figure  9 .  In  intermediate  stage  spinodal  decomposition,  the
substitution of q/qmax for q allows direct application of Cahn-Hilliard theory to the data. This approach ignores the
importance of the development of interfaces in the decomposition process. 

Scattering  offers  a  direct  interpretation  of  the  development  of  interfaces  through  Porod's  Law  which describes
high-q  scattering  from  a  system  which  displays  sharp  and  smooth  interfaces  (i.e.  oil  and  water  type  system).
Porod's law states that the scattered intensity, S(q) equals 2π ρ2S V,  where ρ  is a contrast factor such as electron
density for x-rays, and SV is the surface to volume ratio for a two phase system. In a log intensity versus log q plot
the Porod Regime  can be easily identified by marking off 4 decades in I and one decade in q and drawing a line
of slope -4. A Porod regime is observed in Figure 3.36 of Strobl, pp. 127. The decay in the prefactor to the
power-law decay in time, shown in the lower graph of Figure 3.36, shows that the surface area of the sample is
decreasing  as  a  result of Oswald ripening, i.e. phase growth driven by coalescence of small domains into larger
domains. 

A number  of  theories  have been proposed for late stage coalescence of phases. There remains significant debate
over the description of this growth. Since the process is largely decided by kinetics it is doubtful that a clear picture
of this process (especially compared to Cahn-Hilliard theory) will result. 

Block Copolymers:

One of the most active areas in polymer morphology has been in micro-phase structure of block copolymers. This
subject  is  reviewed  in  the  article  by  Bates  as well as in section 3.3 of Strobl. Block copolymers have, in some
sense, achieved the goal of mixed properties for mixtures of polymers which was hoped to be obtained in polymer
blends.  These  combined  properties  are  only  achieved  at  the  cost of specialized synthetic schemes using usually
anionic, living polymerization (extremely water sensitive). None the less, block copolymers have achieved a degree
of commercial success especially in the elastomer industry where the higher cost of these polymers can be offset by
their processability, i.e. they can be extruded and injection molded. 

Common types of block copolymers are styrene-b-butadiene 

(CH2-CH=CH-CH2)x-(CH2-CH(C6H5))y)

and styrene-b-isoprene

(CH2-CH=C(CH3)-CH2)x-(CH2-CH(C6H5))y)

Common topologies:
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Polymer  blends  undergo  phase  separation  point  the  interaction  parameter  reaches  a  critical  value.  In  block
copolymers a related transition occurs called the disordered to ordered transition. Block copolymers can never
reach  a  completely  homogeneous  state  because  of  the  connectivity  of  chains,  i.e.  there  will  always  be  large
correlations between A and B blocks in a diblock. Similarly, and for the same reason, block copolymers can not
achieve  macroscopic  phase  separation.  The  disorder  to  order  transition  is  characterized  by  the  formation  of
microphase separated domains. 

One way to look at this transition is in terms of the location of the connecting points between A and B blocks in a
diblock  copolymer.  In  the  disordered  state  these  connecting  points  are  randomly  arranged.  After  microphase
separation  these  connecting  points  become  ordered.  Because  of  this,  the  microphase separation point has some
similarities  to first order transitions such as the melting point.  One difference is that the ordered state (crystalline
lattice) can be tuned by the block copolymer composition. A second difference is that there is no change in density
on microphase separation.

The  connection  of  diblock  copolymer  segments  enhances  miscibility  over  an  analogous  blend.  The  critical
interaction parameter for a symmetric 50:50 blend is 2/N. For a similar block copolymer system (50:50 fractions)
the  critical  interaction  parameter  is  about  10.4/N.  Variants  of  the  RPA  equation  are  needed  to  determine  the
interaction parameter for these systems. 

The two most important characterization techniques for block copolymers are TEM and small-angle x-ray scattering
because structural transitions occur on the colloidal scale. The microphase separated state in a diblock systems is
characterized by a series of peaks. The lattice type can be determined by the sequence of these peaks in q. The first
peak  (brightest)  can  be  used  to  normalize  q,  then  the  orders  of  peaks  follow  the  sequence,

Lamellar (other than exactly 50:50)

1; 2; 3; 4;....
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Lamellar (exactly 50:50)

1; 3; 5;...

Hexagonal Rods (2-d arrangement)

1; 1.72; 2; 2.63; 3;...

Cubic Spheres (3-d arrangement)

SC: 1; 1.48; 1.72; 2; 2.22; 2.44; 2.86; 3.0; ...

BCC: 1; 1.48; 1.72; 2; 2.22; 2.44; 2.63; 2.86; ...

OBDD: 1; 1.22; 1.48; 1.72; 2.0; ...

RPA and Block Copolymers/Density Fluctuations:

Concentration Fluctuations in Polymer Solutions:

(Follows  Gert  Strobl  "The  Physics of Polymers 2'nd Ed. 1997 Appendix A4 but follows Doi section 2.2 fairly
closely)

A polymer in dilute solution is a single phase but contains concentration fluctuations related to chain connectivity
and  random  thermal  motion.  The  Flory-Huggins  approach  ignores  these  concentration  fluctuations  so  is  not
applicable  near  the  critical  point  where  fluctuations  are  high  and  is  really  not  appropriate  for  discussions  of
small-scale  features  except  in  an  average  sense. The Flory-Huggins statistical model uses an average interaction
energy  which  is  termed  a  "mean  field"  approach .  As  concentration  is  increased  in  a  polymer  solution,
screening leads to a reduction in the effect of connectivity based monomer density fluctuations. In a pure melt all
connectivity  based  segmental  fluctuations,  of  this  kind,  are  screened  leading  to  Gaussian  scaling.

Much of modern polymer theory is based on an understanding and description of concentration fluctuations. This is
because  a  description of such fluctuations are a natural way to describe random systems with statistical features.
Fluctuations in density can be described in terms of a series of wavelengths, that is, any distribution of density in
space  can  be  decomposed  into  a  series  of  sin  waves  of  different  magnitude.  For  each  wavelength  there  is  an
associated wave number, k = 2π/λ, associated with that type of fluctuation. The amplitude of a density fluctuation

at  wave  number  k  (and  wavelength  λ ) which contributes to the density profile of a sample in space, r,  can be

denoted φk. 

1)  Fluctuations  of  wavenumber  "k"  can  be  considered  independently  of  other  wavenumber  fluctuations.

2)  Incompressibility  is  an assumption of  almost  all  theoretical  approaches so φk refers  to  one component  of a mixture but the other

component  is  just  - φk, so fluctuations of component A are matched by opposing fluctuations of B in the opposite direction to yield an

average concentration for each wavenumber.

Density  fluctuations  of  φ k  follow  Boltzman  statistics  so  the  probability  of  a  fluctuation  of  size  φ k  is  given  by,

p(φk) Å exp(-ak φk
2/2kT)

where ak is the inverse of the response of the density, φk, to a potential field, Ψk,

φk = Ψk/ak = αk Ψk
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(The increase in free energy, δG associated with a concentration fluctuation, φk, is given by, 

δG = ak φk
2/2 = Ψk dφk)

The mean square value, < φk
2> = kT/ ak = kT αk

The  scattering  function  per  lattice  site  of  volume  V c ,  S c (q=k)  is  related  to  this  mean  square  fluctuation  by,

Sc(q) = kT αk/Vc

The calculation of  a  scattering function,  S c(q=k),  is  the equivalent  of  calculation of  response functions, α k.

Random Phase Approximation (RPA):

One of  the major  accomplishments of the density fluctuation approach described above was the calculation of the scattering function for
a  polymer/polymer  mixture  and  for  block  copolymers  in  the  single  phase state.  These scattering functions are  composed of  Debye
scattering functions which describe the coils  in a dilute solution at the theta temperature. Prior to the development of the random phase
approximation (early 1980's)  it  was not possible to directly determine the interaction parameter for polymer blends from scattering data.
This  is  now the primary method of  determination of the interaction parameter. Additionally, application of the RPA approach to block
copolymers  is  the  primary  method  of  determination  of  the  thermodynamics  of  these systems.  If  one were to  combine all  polymer
physics  papers  from the last  5  years  more than half  would involve in  some way use of  the RPA approach.  Despite the fact that this
approach is  exclusively used with scattering analysis, it is of pivotal importance to have some understanding of it in order to understand
recent literature as a whole.

The RPA approach is  an extension of the composition fluctuation ideas presented above. Consider an athermal mixture of two polymer

chains,  A and B.  Consider  that  the B chains have 0 contrast  so are  not  observable.  If  a  potential,  Ψk, is applied to this system that

on ly  acts  on  "A"  chains  and  which  leads  to  excitation  of  a  concentration fluctuation of  wave vector  "k",  φk,  we can write,

φk = αk
0 Ψk

where α k
0 is the collective response coefficient for lattice units of chain "A" under athermal conditions (hence the superscript

0)  in  a  mixture with chains "B".  Under  the discussion above,  α k
0 ,  is associated with the scattering from the mixture of "A" and "B"

chains.

A  fluctuation  of  concentration  in  "A"  leads  to  a  negative  fluctuation  of  "B"  due  to  incompressibility .

φk = φk
A = -φk

B

This  response of  "B" units  to  a  fluctuation in  "A" units reflects the internal induction of the system. "B" units respond as if they were

subjected to a potential Ψk even though "B" units do not respond to the external field which is applied. Ψk is called the
"internal field".

A-chains respond to both the internal field, Ψk, as well as to the external field Ψk. 

φk = αk
AA (Ψk + Ψk)

where α k
AA is the single-chain response coefficient of "A" units response to forces acting on other "A" units. This is different

than α k
0  which reflects  the response of  an "A" unit  to  an external field. For chains in a melt it is assumed that the Gaussian state is

displayed  due  to  screening  so  analytic  forms  based  on  the  Debye  scattering  function  apply  to  describe  the  single-chain  response

coefficients. That is, we already have an analytic form which describes scattering associated with αk
AA. 
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"B"  units  respond  only  to  the  internal  field,  Ψ k ,  since  the  external field, Ψk,  acts  only on "A" units  as  introduced.  Thus,

φk
B = -φk = αk

BB (Ψk)

The collective response coefficient, α k
0 ,  is  associated with the scattering from the mixture of  "A" and "B" chains. In order to

determine α k
0 from the known Debye functions for αk

AA and αk
BB, the induced field, Ψk, must be expressed as a function of

the known functions and the applied field, Ψk,

Ψk = Ψk αk
AA/( αk

AA + αk
BB)

Through  addition  of  the  two  expressions  above.  This  expression  can  then  be  used  in  the  expression  for  φk  above  to  yield,

φk = Ψk { αk
BB αk

AA/( αk
AA + αk

BB)}

and by comparison with the first expression of this section yields,

1/ αk
0 = 1/ αk

AA + 1/ αk
BB

The latter  implies  that  the inverse of  the scattering function for  a  polymer blend is  an inverse sum of the scattering functions for the
two components.

For  non-athermal systems ,  an external  potential  Ψk leads to  a  concentration wave φk which produces a molecular field, χ' φk,

where χ' = 2χkT/Vc. If χ' is positive the field is enhanced and if χ' is negative the external field is diminished. 

φk = αk
0 (Ψk + χ' φk)

This can be solved for φk to yield,

φk = αk
0 Ψk/(1 - χ' αk

0)

The non-athermal collective response coefficient ,  α k,  is associated with the scattering from a non-athermal polymer blend.

This  response  coefficient  can  be  directly  obtained  from  the  above  expression  by  comparison  with  the  definition  of  the  collective
response coefficient,

αk = φk/ Ψk = αk
0/(1 - χ' αk

0)

or

1/ αk = 1/ αk
0 - χ '

Using the previous expression for 1/ αk
0 we have,

1/ αk = 1/ αk
AA + 1/ αk

BB - 2χkT/Vc

(For a polymer solution αk
BB is a constant in k.)

Block Copolymers and the Random Phase Approximation:

For an athermal system composed of a block copolymer of A and B segments, the description of concentration fluctuations parallels that
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for  a  polymer blends except  that response coefficients related to the connectivity of A and B chains must be included. αk
AB reflects the

reaction of  A units  to  a  force acting on B units in the same chain (at wave vector k). A response coefficient αk
BA reflects the reaction

of B units to a force acting on A chains (at wave vector k). In parallel with the athermal blend derivation above, 

φk = αk
AA (Ψk + Ψk) + αk

AB Ψk

and

φk
B = -φk = αk

BB (Ψk) + αk
BA (Ψk + Ψk)

The  last  term representing a  force acting on an A unit  and the response of  a  B unit  so includes the internal  and external  fields.  The

internal  field,  Ψk,  can be removed by summation of the two equations under the assumption of incompressibility,

φk
B = -φk,

Ψk(αk
AA+ αk

AB + αk
BB + αk

BA) = -Ψk (αk
BA + αk

AA)

Ψk = -Ψk (αk
AA + αk

BA)/(αk
AA+ αk

AB + αk
BB + αk

BA)

This can be substituted in the expression for φk yielding,

φk = Ψk {αk
AA − [αk

AA + αk
AB] (αk

AA + αk
BA)/(αk

AA+ αk
AB + αk

BB + αk
BA)}

and,

αk
0 = φk/Ψk={αk

AA − [αk
AA + αk

AB] [αk
AA + αk

BA]/(αk
AA+ αk

AB + αk
BB + αk

BA)}

=  ( α k
AA  α k

AA  +  α k
AA  αk

AB + α k
AA  αk

BB + α k
AA  αk

BA -  α k
AA  αk

AA -  α k
AAα k

BA -  α k
ABα k

AA- α k
ABα k

BA)

(αk
AA+ αk

AB + αk
BB + αk

BA)

αk
0 = (αk

AA αk
BB - αk

ABαk
BA)/(αk

AA+ αk
AB + αk

BB + αk
BA)

The latter  representing the RPA for  athermal  block copolymers.  The thermal system can be calculated using the same approach as for
thermal blends given above, 

1/ αk = 1/ αk
0 - χ' = (αk

AA+ αk
AB + αk

BB + αk
BA)/(αk

AA αk
BB - αk

ABαk
BA) - 2kTχ/Vc

To obtain the scattering functions we substitute,

αk=q
AA = Vc φNASD(RAq)/kT

and

αk=q
BB = Vc (1 - φ) NBSD(RBq) /kT

where  N i  is  the  degree  of  polymerization  for  chains  of  type  "i",  φ,is  the  dilution  of  chains  A  in  the  block
copolymer, SD is the Debye scattering function for a polymer coil and Ri is the coil's Gaussian radius of gyration.
The Debye function is the Fourier-transform of the pair distribution function g(r) for the pairs of type AA or BB. 
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To calculate α k
AB we need the pair distribution functions for the probability of finding a B or A monomer at a distance r from each

other.  The latter  can be analytically solved as  a  function of  the single  chain structures.  One result of this is that αk
AB = αk

BA. The

functional form is,

αk=q
AB = Vc (NABSD(R0q) - φNASD(RAq) - (1 - φ) NBSD(RBq))/(2kT)

where NAB = NA + NB, and R0
2 = RA

2 + RB
2. 

Block copolymers display a "natural" correlation distance which is a result of segregation of A and B blocks in a
single phase melt. This "natural" distance of segregation is reflected in the athermal equation for instance. 

αk
0 = (αk

AA αk
BB - αk

ABαk
BA)/(αk

AA+ αk
AB + αk

BB + αk
BA)

Consider  the summation of  response coefficients  as  a  summation of Debye functions. For a 50/50 block copolymer NA = NB, and RA
Å RB,  then R0 is Ã2RA, i.e. R0 is bigger than RA. It can be easily verified that the subtraction of two Debye functions of differing R

yields  a  curve with a  correlation peak (see figure below).  Thus,  even in  the single phase melt, block copolymers display a correlation
peak.

Variation of  χ' in the thermal system leads to the determination of a critical point where the intensity becomes infinite
as shown below:
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For  symmetric diblock copolymers χ cNAB = 10.4.  This  is  the lowest  value for  χ critical ,  i.e.  other  compositions will  have

higher  values.  This  value should be compared with the critical  χ  for the same two polymers in a symmetric binary blend,

χ cN = 2.  The higher value for the critical point in a block copolymer reflects the connectivity of the polymer chains which suppresses

phase separation to a higher value of χ (lower temperature).

When phase separation occurs in a block copolymer the domain size is restricted by the connection of the A and B
chains. This leads to a variety of micro-phase separated structures. When one chain is much shorter than the other,
NA<<NB,  spherical domains form. For more closely matched molecular weights rods of the minor phase form.
When NA Å NB, the system forms lamellar domains. The size of these domains is governed by thermodynamics as
discussed below.

Domain Size in Phase Separated Block Copolymers:

The  size  and separation distance of lamellar domains (for example) can be predicted using thermodynamics. The
change  in  Gibbs  free  energy,  ∆ G,  for  the transition from a homogeneous system to the micro-phase separated

system is composed of an enthalpic term, ∆H, which has contributions from bulk, ∆Hbulk, and interface, ∆Hint, a

change in entropy associated with A-B junction points becoming located at the interface, ∆ Sint,  and a change in

entropy associated with stretching the chains, ∆ Sstr.  The bulk enthalpy change is given by Flory Huggins theory
as,

∆Hbulk = - kTχNABφA(1-φA)

The interfacial enthalpy is associated with an interfacial area, A, a transition layer thickness dt,
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∆Hint = + kT χ A dt/Vc

The loss in entropy by location of A-B junctions at the interface is given by,

∆Sint = k ln(dt/(dA + dB)) = k ln(dt/dAB)

where dA is the thickness of the A layer and dB is the thickness of the B layer and dAB is the repeat period for the
lamellae. The loss in entropy due to stretching of the chains is given by,

∆Sstr = -kβ2(dAB/R0)2

Also, the volume of a chain is given by Vc NAB = A dAB

∆G = ∆Hbulk + ∆Hint - T ∆Sint - T ∆Sstr

becomes,

∆G/kT = - χNABφA(1-φA) + χ A dt/Vc + ln(dt/dAB) + β2(dAB/R0)2

Setting the derivative with respect  to  "A" to  0,  neglecting the "ln"  term which does not have a significant derivative (using dAB = Vc
NAB / A in the last term),

(1/kT) d∆G/dA = χ dt/Vc - 2β2(Vc NAB /R0)2/A3 = 0

yields,

A Å Vc (2 NAB
2
 /( χ dt R0

2))1/3

using R0
2 = Vc

2/3 NAB

A3 Å Vc
7/3

 NAB/(χ dt)

and

dAB = NAB
2/3 Vc

2/9 (χ dt)
1/3

This molecular weight dependence has been observed experimentally.
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