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Abstract 

For many years, an important objective in the field of polymer science has been to 

develop relationships between structure and measurable physical properties of polymers. 

This is of practical interest because rheological properties are sensitive to certain aspects 

of the structure such as branching.1, 2 Such rheological properties include the critical 

molecular weight (Mc) and the entanglement molecular weight (Me) of a polymer. In the 

past, several studies3-8 have tried to relate Me or Mc to local structural properties such as 

Kuhn length (lk) or persistence length (lp) and the overall radius of gyration (Rg) of a 

polymer chain. These studies3-8 however, were limited to their discussion of linear 

polymers due to the lack of data pertaining to structural properties of branched polymers. 

Thus currently there is a lack of understanding of a direct relationship between chain 

structure and physical properties of branched polymers. Owing to the sensitivity of 

rheological behavior to branching in polymers, there is a need to relate the structural 

response to branching with physical properties of the polymer.  

 

1. Introduction 

The basic idea of entanglement is that the polymer molecules in a melt are surrounded by 

other very long molecules that greatly restrict their motion in response to an imposed 

deformation. The physical properties most often associated with the entanglement 
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phenomena are the critical molecular weight (Mc) and the entanglement molecular weight 

(Me). Essentially, Mc is the molecular weight at which the viscosity of the polymer starts 

increasing more rapidly with increasing molecular weight M, due to the presence of 

entanglements. Me is defined as the molecular weight between entanglements. These 

properties are described in detail in the subsequent section.   

The quantities such as persistence length and radius of gyration are used to describe 

the chain dimensions of a polymer.  The persistence length (lp) of a polymer chain is 

defined as the distance along the molecule at which the orientation of one segment loses 

its correlation with the orientation of another. In other words, if we consider tangent 

vectors T(0) and T(L) to the polymer at position 0 (origin of reference) and at a distance 

L from position 0 respectively, the persistence length is described by the auto-correlation 

function of the tangent vectors as 

        (1) 

The radius of gyration (Rg) of a polymer chain is the root-mean-square distance of the 

mass elements of the chain from its center of gravity. Both these quantities can be 

measured using techniques such as small-angle scattering. Theoretical models3-8 in the 

past have tried to relate lp and Rg of linear polymers to their Me or Mc. Three such models 

are discussed in this review, namely 

1. Binary contacts per chain model3 

2. Packing model4 

3. Binary contacts per pervaded volume model7 

It is aimed to extend the applicability of these models to branched polymer systems. 
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A logical step forward would then be to study the effect of branching on the chain 

dimensions and relate their response to the physical properties of the polymer such as Me 

and Mc. Branching in polymers can be classified as regular or random branching. 

Regularly branched polymers include architectures such as star polymers (Fig. 1b), where 

the branches are obtained in a controlled manner. In randomly branched polymers (Fig. 

1c), the incorporation of the branches are statistical in nature. Further, branches in 

polymers can also be classified as short chain (SCB) or long chain branches (LCB) as 

seen in Fig. 1c. Though, the choice of length for a long branch is a topic of debate, this 

review considers that a branch is long when it is indistinguishable from the main chain. 

This provides a clear distinction between short and long chain branches. Recently, it has 

been suggested9 that the structural response of a chain to short chain branching is an 

increase in lp. These studies are based entirely on computer simulations. Such a response 

has been observed experimentally10 for the first time in short chain branched 

polyethylene (Fig 2a). The presence of long chain branches (LCB) is not expected to 

affect lp since the number of long chain branch sites is few. But it is expected to decrease 

Rg since the presence of LCB’s causes the molecule to occupy a volume smaller than a 

linear molecule of the same molecular weight. This can be seen from the schematic 

shown in Fig. 2b and Fig. 2c.11 Hence, by estimating the change in lp and Rg with 

branching using techniques such as small-angle scattering, and then utilizing a suitable 

theoretical model7, it would be possible to relate the chain structure to the entanglement 

behavior in polymers.  

Before discussing the three models mentioned earlier, a brief overview of the 

theory of entanglements is discussed here. 
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Figure 1: Schematics of (a)Linear polymer, (b) Star polymer (regularly branched) 
and (c)  Randomly branched polymer 
 
 
 
 

 

         (a)     (b)            (c) 

 
Figure 2: (a) Change in lp with SCB [From ref. 10], (b) Rg of a linear polymer and (c) 
Rg of a branched polymer of equal molecular weight [Based on ref. 11] 
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2. Theory of entanglements 

In the theory of linear viscoelasticity, the viscosity is independent of the shear rate. This 

behavior is expected at very low shear rates and the limiting low shear-rate value of 

viscosity is called the zero-shear viscosity η0. Experimental observations12 have shown 

that η0 is proportional to the molecular weight M for low molecular weight polymer 

melts. However, η0 of monodisperse melts increases with molecular weight much more 

rapidly when the molecular weight exceeds a critical value Mc known as the critical 

molecular weight. In fact, in the higher molecular weight region, η0 was found12 to be 

proportional to M raised to a much higher power that is usually in the neighborhood of 

3.4.  The behavior (Fig. 3a) can be summarized as 

        (2) 

        (3) 

       

   (a)      (b) 

Figure 3: (a) Variation of η0 with molecular weight of polymer and (b) 
Entanglements in polymer (dots indicate site of entanglements). [Based on ref. 13] 
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This steeper dependence of η0 on M is due to entanglements. In high molecular 

weight polymers, flexible polymer molecules are invariably entangled i.e. the motion of a 

polymer chain in a melt is significantly impeded by the topological constraints imposed 

by the neighboring chains. These constraints are referred to as entanglements. Fig. 3b 

shows a polymer chain entangled in a mesh of other polymer chains. As the molecular 

weight increases above Mc, the chain has even greater difficulty in escaping the 

entanglements and this leads to increase in zero shear viscosity.  

The entanglement molecular weight Me is defined as the molecular weight 

between entanglements. The classical theory of rubber elasticity13 provides an expression 

for Me via. 

         (4)  

where ρ is the density of the polymer melt and  is the plateau modulus. It has also 

been well established experimentally that Mc≈2Me for a wide range of polymers.13 To 

visualize the entanglement phenomena in a molecular level, a model called the tube 

model13 has been described in literature. 

 

2.1 Tube model 

A highly entangled state for a polymer can be treated by an effective model named the 

tube model13. The model assumes that, the motion of such a polymer chain is essentially 

confined to tube-like region made of other surrounding polymers, due to steric 

constraints. The idea of the tube model originally was proposed in studying the problem 

of rubber elasticity13. A rubber can be described as a huge molecular network formed 

when a polymeric liquid crosslinked by chemical bonds. An important problem in the 



 7 

theory of rubber elasticity is the calculation of entropy, which essentially is the number of 

allowed conformations of the chains constituting the rubber. Steric constraints are an 

important factor influencing such a problem. For a better understanding, let us try to 

visualize the tube model. Consider a lightly crosslinked rubber which consists of long 

strands of polymers between crosslinks (Fig 4a). The strand can be placed on a plane and 

the cross-section of the other can be represented as dots, as shown in Fig 4b.  Due to 

steric constraints, the strand cannot cross the dots, hence the number of conformations 

becomes much less than in free space. Suppose we assume that the other chains are 

frozen, then the dots can be regarded as fixed obstacles. One can then see that, the 

allowed conformation of the strand is confined to a tube-like region, as shown by the 

dashed lines in Fig 4b.  The axis of the tube can be defined as the shortest path 

connecting the two ends of the strand with the same topology as the strand itself relative 

to the obstacles. Such a path, which does not violate the steric constraints, is called the 

primitive path.   

 

Figure 4: (a) A strand in a rubber. A and B denote the crosslinks, (b) Schematic 
picture of (a): the strand under consideration is placed on a plane and the other 
strands intersecting the plane are shown by dots and (c) the tube model. [From ref. 
13]  
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2.2 Reptation Model 

Starting from the tube model and considering the motion of the confined chains, Doi and 

Edwards13 devised a theory which became well-known as the reptation model. Under the 

constraints imposed by the tube, the chain motion can thought as being in the direction of 

the reptation tube. This process leads to the disentangling of the chain.  The path of the 

reptation tube is termed the primitive path, which was explained earlier in the tube model. 

Both the actual chain and the primitive path represent random coils and hence 

display Gaussian scaling. Since the end-to-end distances are equal for the polymer chain 

and the primitive path, 

         (5) 

where lpr is the contour of the tube/primitive path, apr is the persistence length of the 

primitive path which characterizes the stiffness of the primitive path, NR is the number of 

Rouse subsections of the chain and aR the length of each subsection. The process of 

disentangling in the reptation model is shown in Fig 5. The motion of the chain in the 

primitive path is described as diffusion along the contour. The associated diffusion 

coefficient can be derived from the well known Einstein relationship.  

          (6) 

where D' is the diffusion coefficient for the chain within the tube along the primitive 

path, and ζp is the friction factor for the chain. By definition there are no entanglements 

within the tube, so 

          (7) 

where ζR is the friction factor of a chain subsection. 
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Introducing eq. 7 in eq. 6 

          (8) 

The time for the chain to completely diffuse out of the reptation tube is called the 

"reptation time" τd. Such random diffusion is governed by laws for Brownian motion so, 

          (9) 

Combining this with eq. 5 and eq. 8, we obtain 

          (10) 

The reptation model predicts that the relaxation time (and viscosity) scales with the 

molecular weight to the power 3. As mentioned previously, the power 3.4 is observed 

experimentally. Thus the reptation model comes close to predicting the right molecular 

weight dependence. 

 

Figure 5: The reptation model. [From ref. 13] 

Having discussed the theory of entanglements in polymers, the models mentioned in the 

introductory chapter are discussed below. 
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2.3 Binary Contact Model 

Fig. 3b illustrates a schematic of the entanglement phenomena. The tortuous path taken 

by the chain due to presence of surrounding chains can be described by entanglement 

junctions where two or more chains come into contact with each other. Wu3 proposed 

that the binary contacts (two chains come into contact) are much more populous than the 

higher order ones and hence it is safe to assume that the entanglement junctions consist 

only of binary contacts. Fig. 6 shows the three different types of binary interchain 

contacts. The plain contacts are too numerous and occur even at molecular weights lower 

than Me and hence are not expected to form entanglement junctions. Thus it is expected 

that some kind of hooking geometry is then involved in the formation of entanglements. 

Wu3 showed that the geometry of binary contact hooking seemed to best describe the 

formation of entanglement junctions. 

The binary contact model3 identifies the onset of entanglement by a fixed number 

of binary contacts between Kuhn segments along an entangled length. The number of 

Kuhn segments per unit volume is3 

          (11) 

where ρ is the polymer density, C∞ is the characteristic ratio and M0 is the monomer 

molecular weight. 

The number of binary contacts per unit volume is given by this concentration, multiplied 

by the probability of finding another Kuhn segment in the immediate neighborhood of the 

segment. This probability is proportional to cKlK
3
 . The number of binary contacts per unit 

volume is3 

          (12) 
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The number of entangled lengths per unit volume is3 

          (13)  

Using eq. 12 and 13, the number of binary contacts Nbc per entangled length is3 

         (14) 

The model postulates that Nbc will remain a constant for the onset of entanglement 

irrespective of the species of the polymer. 

 

       (a)               (b)       (c) 

Figure 6: Types of interchain contacts- (a) Plain, (b) Single hooking and (c) Binary 
contact hooking. [From ref. 3] 
 

2.4 Packing model 

The packing model was first introduced by Witten14 in modeling the interfacial tension 

between two immiscible polymers. This model was extended to describe the process of 

entanglement and various packing models have been proposed in literature.4-6  In 

particular, Fetters et al.4 discuss a packing model to correlate Me with the degree of 

entanglement and then with the size of the molecular coils. They introduce a parameter 
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called the “packing length” p which reflects the degree to which molecules interpenetrate 

each other’s space. 

Packing models4-6 assume that a strand becomes entangled when its ratio of 

pervaded over occupied volume reaches a critical value. The schematic of the packing 

model is given in Fig. 7. Motion is unhindered at the segmental level, but as the length of 

a strand increases, the number of available conformations is increasingly restricted by 

neighboring chains. The volume occupied by a strand of molecular weight M is  

          (15) 

The volume pervaded by a molecule, Vsp, as that of the smallest sphere that can 

completely contain a molecule, is proportional to the cube of the root-mean-square radius 

of gyration Rg, we have 

         (16) 

where A is a geometrical factor equal to one for flexible polymers. 

The measure of the degree of entanglement will be the number Nsp of chains of length M 

that would completely fill the volume Vsp. This is the ratio of Vsp to Vc. 

    (17) 

Fetters et al.4 proposed that when Nsp = 2, there are two chains occupying the space 

pervaded by each one, and hence this could be used as the criterion for onset of 

entanglement. The molecular weight at the threshold of entanglement was identified as 

the entanglement molecular weight Me which can be expressed as 
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       (18) 

where 

,  and packing length,  

 

 

Figure 7: Schematic of the packing model. [Based on ref. 4] 

There are some drawbacks to the packing model. Essentially, the assumption that 

the onset of entanglement is dictated by the ratio Nsp = 2 is arbitrary. The ratio defines the 

number of chains occupying the space pervaded by one chain. This would mean that even 

plain and single-hooking will contribute towards the entanglements (Fig. 7). As explained 

by Wu3, plain hooking occurs even in molecular weights below the entanglement 

molecular weight and thus do not contribute to entanglements. Moreover, unlike the 

persistence length lp, the so called “packing length” p defined in this model is not a 

physical property of the chain that can be measured directly. It is just the ratio of the 

occupied volume over mean square end-to-end distance and has the dimensions of length, 

but physically does not represent anything. Essentially, we see that the packing model 
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overestimates the structural geometry involved in entanglements and hence cannot be 

used as an appropriate model to treat entanglements.   

 

2.5 Colby and Rubenstein model (Binary contact per pervaded volume model)  

Colby et al.7 combined the binary contact and packing concepts, suggesting that an 

entanglement is determined by a critical number of binary contacts in the volume 

pervaded by the entangled reference strand (Fig. 8). This number is obtained by 

multiplying the number of binary contacts per unit volume (Eq. 12) to the pervaded 

volume, proportional to <Rg>3/2 (Eq. 16) giving, 

         (19) 

The model postulates that nv will remain a constant for the onset of entanglement 

irrespective of the species of the polymer. By combining the concepts of packing model 

and the binary contact model, the Colby Rubenstein model7 seems to overcome the 

inadequacies of the packing model. 

 

Figure 8: Schematic of the Colby and Rubenstein model. [Based on ref.7] 
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Having discussed the models that relate chain dimensions like lp and Rg to Me, we 

will review how small angle scattering is utilized to evaluate lp and Rg simultaneously for 

branched polymers. 

 

3. Analysis of branching in polymers by small-angle scattering 

Local scattering laws like the Guinier’s law15, 

        (20)            

 where I(q) is the scattered intensity, scattering vector q = 4πsin(θ/2)/λ, θ is the scattering 

angle, λ is the wavelength of radiation, Rg
 is the coil radius of gyration and G is defined 

as Npnp
2 where Np is the number of polymer coils in given volume and np is a contrast 

factor equal to the electron density difference between the polymer coil and the solvent 

for x-ray scattering; and the power law, describing a mass-fractal object of dimension 

df,15  

  for 1 ≤ df < 3.        (21)            

 where Bf is the power law prefactor, give an account of local features like size and 

surface/mass scaling. 

Studies conducted on fractal analysis of power law behavior in small angle 

scattering15 have made it apparent that a number of materials display at least two 

observable power-law scaling regime. Polymers for example, contain two structural 

levels, the overall radius of gyration Rg and the substructural persistence length lp. 

Polymer melts display Gaussian scaling and show a mass-fractal dimension of 2. For 

polymer chains in solution that are swollen or slightly collapsed, due to either good or 

poor solvent conditions, a deviation from a mass-fractal dimension of 2 is expected. 
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Several studies15, 16 have observed power-law regimes for such systems, exhibiting 

structural limits at both high q and low q. These limits are visible as regimes of 

exponential decay as seen in Fig. 10. This behavior can be interpreted as mass-fractal 

scattering from a large-scale structure at low q power-law regime and mass-fractal 

scattering from small-scale substructures in the high q power-law regime. The unified 

equation described by Beaucage15 describes a complex morphology over a wide range of 

q in terms of structural levels. This approach has proven useful in describing mass fractal 

systems.17 A major contribution of this approach has been in describing the transition 

regime between structural levels in small-angle scattering. In the unified approach, small-

angle scattering is described by a structurally-limited summation of scattering laws from 

each level of structure. A level of structure corresponds to a Guinier regime and a 

structurally limited power-law regime. A power-law of -2 is expected for the Gaussian 

regime and a power-law of -1 for the persistence regime. To resolve the persistence 

length, lp, a log-log plot of I(q) versus q can be made and the two power-law regimes 

matched with lines of slopes -2 and -1. The intersection of these two lines in q is related 

to the persistence length through 6/(пqintersection) =  lp.  

Beaucage11, 17 also applied the unified approach to quantify the branch content by 

considering aggregates formed from smaller primary particles (Fig. 9). Such a description 

can be extended to polymers by considering the primary particles to be Kuhn steps. 

Further, such a structure could be considered to be linear or branched, as shown in Fig. 9. 

The open circles, p, in Fig. 9b represent the minimum path through the aggregate. A 

scaling relationship between the degree of aggregation z, the minimum path p, and the 

overall structural size R2 and size of the primary particle R1 can be given as17,  
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                   (22) 

where c is known as the connectivity dimension, which is equal to 1 for a linear chain and 

df for regular objects. A second scaling relationship between the above terms could be 

expressed in terms of the minimum dimension dmin 17 as, 

                    (23) 

where dmin represents the mass fractal dimension of the minimum path (Fig. 9b). 

  

Figure 9. a) Linear aggregate, b) Branched aggregate; composed of primary 
particles. The open circles in b) represent minimum path, p, through an aggregate. 
[From ref. 11] 
 

Beaucage17 showed that one could obtain branch content from eq. 22 and eq. 23 as 

follows, 

                (24) 

The parameter dmin could be calculated from the modified power law prefactor equation 

to account for branched structures and expressing it as, 
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                   (25) 

where G2 is the Guinier prefactor for the aggregate, Rg2 is the aggregate radius of 

gyration, df is the mass fractal dimension and dmin is defined in eq. 25. Thus small angle 

scattering offers a unique tool for simultaneous observation of Rg and lp of branched 

structures. The overall size of a polymer is displayed at a lower scattering angle, while 

the persistence length is observed at high angles as seen in Fig. 10.  

 

Figure 10: Small-angle scattering data. A power-law of -2 is seen for the Gaussian 
regime and a power- law of -1 for the persistence regime. [From ref. 16] 
 

Proposed work 

The proposed work will focus on evaluating the structural parameters such as persistence 

length lp and radius of gyration Rg of a wide range of linear and branched polymers that 

can be obtained from small-angle neutron scattering experiments. The physical properties 

such as Me, Mc and can then be estimated from a suitable model. As discussed earlier, 

the packing model4 has some drawbacks in its approach, while the Colby Rubenstein 
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model7 seems to overcome the inadequacies of the packing models and is expected to 

give better estimates of the physical properties. 

The model7 can be used initially for estimating nv (critical number of binary 

contacts in the volume pervaded by the entangled reference strand) from rheological data 

available in literature for linear polymers and chain dimensions that can be measured 

from small-angle scattering. The estimated nv can then be used to calculate the physical 

properties of branched polymers. The results from such an approach can then be verified 

with data obtained from rheological experiments on branched polymers. The packing 

model4 will also be applied to obtain Me. This would confirm its inadequacy in describing 

the entanglement behavior correctly. Further, it is intended to correlate the data pertaining 

to branching in polymers ( br) obtained from neutron scattering studies with these 

physical properties to gain a better understanding of the effects of  branch content on the 

entanglement behavior of polymers. 
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