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    Chapter 2 Polymer Physics
    Concentrated Solutions and Melts

Chapter 1 discussed the statistical thermodynamics of an isolated polymer chain in a solvent.  The
conformation of an isolated polymer coil in solution is governed by maximization of entropy for
the coil which, in the absence of interaction, leads to Gaussian scaling between the coil radius of
gyration and the persistence length.  The introduction of interactions can lead to two effects
depending on whether the interactions are "short-range" or "long-range".  Short range interactions
lead to changes in the persistence length.  Scaling is not effected by short range interactions except
that the regime of scaling is broadened or diminished.  Through increase or decrease in the
persistence length, the coil can change sizes with goodness of solvent.  This is reflected in the
characteristic ratio, C = <R2

θ>/nl2, where <R2
θ> is the measured size of the coil in the theta

state (Gaussian State).  (For this calculation "n" is the number of bonds of length "l", so for a vinyl
polymer "n" is twice the degree of polymerization and "l" is 1.54Å for a C-C bond.)  The
characteristic ratio is the conventional measure of short-range interactions, although, direct
measurement of the persistence length is probably a more appropriate description of short-range
effects such as bond rotation, bond angle, steric hindrances to bond rotation and steric hindrances
due to solvent interaction.  The measured size of a polymer coil in a non-theta solvent reduced by
the theta state is historically described by the coil expansion factor, α2 = <R2>/<R2

θ>.  The
coil expansion factor includes long-range effects which lead to a discrete change in scaling due to
the normal good solvent conditions.  The coil expansion factor, changes continuously in figure 1.6
pp. 16 across the range of temperatures, although there is a discrete change in scaling at small
shifts from the theta condition.  Explanation of this inconsistency remained unsolved from the time
Flory and Krigbaum predicted the good solvent scaling transition in 1972 and the development of
the "Blob" concept by Edwards and de Gennes in the 1980's.

The picture of a single coil as it goes from the theta state to the expanded coil state involves an
accommodation of changes in solvent conditions in two ways, 1) a discrete change in coil scaling
and 2) a continuous variation in the size range over which this scaling is applicable.  These two
mechanisms lead, together, to the observed behavior of continuous coil expansion with
temperature and the theoretical prediction of a discrete transition in scaling.  

Some feeling for this problem can be given by a simple calculation in the absence of the "Blob"
approach.  Because the transition to expanded coil scaling is theoretically discrete, while the coil
expansion is continuous, the implication in the absence of a "Blob" approach is that upon leaving
the theta condition there is a predicted discrete change in the persistence length which
accommodates the expanded condition.  That is, at a position just slightly away from the theta-
condition the coil will have a coil expansion factor, α, approximately equal to 1 despite the fact that
any degree of good solvent will lead to a discrete transition in scaling to df = 1.67 from df = 2 for
the theta condition.  Equation 1.45 on pp. 12 states that the coil-size will scale with the number of
persistence units by R* = b*n*3/5, in the expanded state.  This can be set approximately equal to Rθ

= bθnθ
1/2, near the theta-temperature, leading to an approximate description of a predicted transition

in structure at the theta to good-solvent transition region,

b* = bθ nθ
1/2/ n*3/5

An added constraint on the system is that the primitive path for the coil remains unchanged, that is,

n*b* = nθbθ

so,
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n* = nθbθ/b*

which yields,

b* = bθ/nθ
1/4, (Incorrect formula in the absence of the "Blob" concept)

at the theta to expanded transition.  For a degree of polymerization between 100 and 1000 b* is
incorrectly projected to be 1/3 to 1/6 of b in the theta condition, immediately following the
transition from Gaussian to expanded scaling.  The projected change is discrete and strongly
molecular weight dependent!  The latter is completely contrary to the description of "b" as
depending on short-range interactions.  A discrete transition in "b" is not observed experimentally
and, experimental measurements show a very low, and completely continuous thermal contraction
of "b" that can be explained in terms of bond rotations as was done for a number of polymers in
Flory's second book.  The persistence length, "b", can be measured by a number of different
experiments ranging from rheological measurements, dynamic light scattering, and static neutron
or x-ray scattering measurements.  The thermal dependence never shows this discrete transition.

    Blobs:   

A mass-fractal scaling regime is defined by a power law relationship between size of observation
and mass as well as by two size limits.  It was the latter issue of size limits to mass-fractal regimes
which lead to a resolution of the thermal coil expansion issues discussed above as well as the
current understanding of semi-dilute solutions.  

The native state for polymer coil in dilute solution is the fully expanded coil (self-avoiding walk)
with a mass-fractal dimension of 5/3.  Consider such a coil, reflected in the high temperature end
of figure 1.6 on pp. 16.  The persistence length for this coil is "b" which has an extremely weak
temperature dependence and can be considered fixed across the temperature range considered in
figure 1.6.  Between the coil diameter and the persistence length a single scaling regime is
observed in an experiment such as scattering.  As the temperature is dropped the diameter of the
coil is reduced, while the persistence length remains unchanged and the dimension, at some size
scales, remains 5/3.  The coil thermally contracts because there is insufficient thermal energy to
overcome a net long-range attraction between chain segments.  This long-range attraction will
eventually balance excluded volume to yield a Gaussian coil just before the coil collapses (left side
of figure 1.6).  It was the proposition of Edwards and de Gennes that the spatial range of this
effective attraction between chain elements was not homogeneous, that is, this attraction first is
observed on cooling at short spatial distances.  Such an explanation is consistent with potentials
such as the Leonard-Jones potential which decays with separation distance.  The figure below
shows a coil state intermediate between the fully expanded and the theta condition.
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According to the "Blob" approach, the coil at an intermediate state of contraction between fully
expanded and theta can be described as a polymer of nblob  blobs which displays 5/3 dimension.
Within the blob the thermal repulsion of segments have been overcome by the net attraction
between segments leading to a Gaussian state with a coil dimension of 2.  As the temperature is
dropped the transition between Gaussian (at small sizes) and good solvent (at large sizes) shifts to
larger and larger sizes (smaller q) until the entire coil is in the theta state at the theta temperature.
The size of transition between good-solvent scaling and Gaussian scaling is called the correlation
length or the "Blob" size.  The persistence length remains unchanged while the overall coil size, as
reflected in Rg, decreases as larger and larger range of size reaches the higher dimension (more
compact).   

If the Flory radius of the coil is written,

RF = aF n
3/5

for the fully expanded coil and,

RFτ = aF n
1/2

for the theta coil, then the intermediate state can be written,
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RF = ξ nξ
3/5 and ξ = aF (n/ nξ)

1/2 = aF z
1/2

and,

RF = aF n
1/2 nξ

1/10 = RFτ nξ
1/10 = RFτ (aF/ξ)1/5n1/10

This description of coil expansion is consistent with all theoretical predictions and is supported by
some experiments although the transition in scaling which is expected is difficult to directly verify.
The approach is termed the "Thermal Blob" approach.  It will be seen that a similar approach
can be used to describe concentration effects, termed the "Concentration Blob" approach.

Similarly, although of less general interest to polymer scientists is the theta to collapsed transition
which occurs on lowering the temperature from the theta state in figure 1.6 pp. 16.  This transition
is of critical importance to proteins since the collapsed state represents the state of typical enzymes
in biology which display tertiary structure.  There is a wealth of recent literature on this subject,
however, the coil to globule transition involves extremely complicated mathematical calculations
which are far beyond the scope of this course.  Generally, the transition involves local (short
spatial distance) collapse of the Gaussian state to a more compact state which is governed by the
local arrangement of mer units.  

    Concentration        Effects:   

Figure 2.1 shows a schematic model for what is expected as the concentration of a polymer
solution is increased from the dilute condition which was discussed above to what has been termed
the "Semi-Dilute" regime.  As concentration is increased coils reach a point where, on average
they just begin to overlap.  This concentration is known as the "Overlap concentration".  The
overlap concentration, c*, can be calculated from,

c* ≈ N/Rg
3 = N1-3ν = Ν−4/5

On pp. 37 Doi discusses the scaling features of a polymer coil in the semi-dilute regime.  For
concentrations above c* the polymer coil can be considered to be composed of c/c* chains in a
volume which is occupied by one dilute chain.  For a dilute chain in a good solvent the chain
experiences repulsive interactions between chain elements which lead to excluded volume and good
solvent scaling.  As the concentration is increased beyond the overlap concentration the repulsive
interactions that lead to good solvent scaling are screened by the presence of other chains within
the coil.  

The concept of screening can be seen in many physical systems and the idea was developed in
electrostatics to describe concentrated charge systems, Debye-Huckel screening length.  A simple
system where the effect of screening can be observed is one where it is desired to determine the
direction "west" in a forest at sunset.  For a thin forest the sun shines through the trees so the
direction of "west" can be easily determined.  As the forest becomes denser the trees begin to
shield the sun and the observer can only see a faint glow at sunset with no associated direction.
The faint glow is a "mean field" which lacks direction.  The net effect of this mean field in terms
of determining the direction "west" is zero.  

If one considers that the forest has a sharp edge then there is some distance from the edge of the
forest where the direction "west" can still just be determined.  This distance gets smaller and
smaller as the density (concentration) gets higher and higher.  For the forest this distance to the
edge is the screening length, ξ.  At high forest density the screening length approaches the size
of a tree.  At low forest density it approaches the size of the forest.
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For a polymer solution, screening "turns off" the repulsive interaction which leads to excluded
volume and good solvent scaling.  When excluded volume is turned off the coil takes on Gaussian
scaling.  This occurs at large spatial distances where the potential becomes a mean field, just as at
long distances from the edge of the forest the sunset becomes a faint, uniform glow.  At small
spatial distances the coil retains good-solvent scaling in the semi-dilute regime.  The concentrated
regime is concentrations above that where the screening length equals the statistical segment length.

The scaling behavior in terms of the "concentration blob" is inverse to that of the "thermal
blob", that is at large spatial distances (small q) the coil is Gaussian, and at small spatial distances
(high q) the coil displays good solvent scaling.  The situation can be considered, also, from the
other  the concentration spectrum.  That is, a solid polymer melt is entirely Gaussian.  As this
polymer melt is swollen in a good solvent it is first, short spatial distances which display good
solvent scaling.  As more solvent is added, the range of sizes where good solvent scaling is
observed increases until a dilute condition is reached.  

As with the thermal blob, the concentration blob can be used to calculate the size of a polymer coil,

RF = ξ nξ
1/2

This reflects a Gaussian distribution of blobs of size ξ. ξ should be a function of concentration.

Also, at the overlap concentration ξ is approximately equal to RF0 so,

ξ = RF0 f(c/c*), where,

RF0 ≈ aF N
3/5

Since the concentration blob involves subunits of the coil which are governed in size by the
thermodynamics of interaction, it should be clear that ξ can not have a molecular weight

dependence.  c* = N/ RF0
3 = Ν-4/5, so c/c* is proportional to N4/5 and to remove the molecular

weight dependence,

ξ = RF0 (c/c*)-3/4

The latter expression has been verified experimentally.

Within a concentration blob good solvent scaling is followed so ξ = aF (N/nξ)
3/5, so nξ is equal to

(c/c*)5/4, and,

RF = ξ nξ
1/2 = RF0 (c/c*)-3/4 (c/c*)5/8 = RF0 (c/c*)-1/8

The latter being equation 2.84 of Doi, pp. 38.

    Flory        Huggins        Theory:               Section       2 .1 .1

Flory-Huggins theory has already been derived in Intro to Polymers.  The Flory-Huggins Equation
describes the Helmholtz mixing free energy per lattice site, kTfm(φ) for a Polymer/Solvent system

in terms of the volume fraction polymer, φ, the degree of polymerization, N, and the Flory-
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Huggins interaction parameter, χ = (z/2kT) [εpp  + εss - 2εps], where z is the coordination number
for the lattice,

fm(φ) = φ lnφ / N + (1-φ) ln(1- φ) + χ φ (1- φ)

The features of this equation should be familiar to you.  The Helmholtz (Volumetric) free energy
change on mixing for a given system is given by the above expression times the number of lattice
sites in the system, Ω, Fm(Ω,φ) = Ω kT fm(φ).

    Chemical        Potential       and        Osmotic        Pressure:

The chemical potential, here µp or µs, for one component of a mixture is the derivative of the
Gibbs free energy for the system with respect to the number of moles of that component.  The
Gibbs free energy is related to the Helmholtz free energy by, G = F +PV.  For the Flory lattice
system the volume equals the number of lattice sites time the volume of one site, V = ΩVc, where

Ω = ns + nPN and N is the degree of polymerization.  Changing the number of moles of one
component in the Flory lattice model, while retaining the number of moles of the other component
will result in a change in the lattice size, Ω and the volume fraction φ, and system volume, V.  This
means,

µs: np, T, P constant (φ, P, T) - µ0
s(T) = (δF/δΩ)φ,T(δΩ/δns)np  +(δF/δφ) Ω,T (δφ/δns) np + PVc

=

Where µ0
s(T) is the chemical potential of the pure solvent.

From the definition of Ω,  (δΩ/δns)np  = 1; and given that φ = npN/(np N + ns) = npN/Ω, so

(δφ/δΩ)np  = -npN/Ω2.  (δφ/δns)np  = (δφ/δΩ)np (δΩ/δns)np = -npN/Ω2 = -φ/Ω. (δF/δΩ)φ,T = kT fm (φ),

and (δF/δφ) Ω,T = Ω kT (δfm/δφ) Ω,T , so,

µs: np, T, P constant (φ, P, T) = µ0
s(T) + kT (fm (φ) - φ (δfm/δφ) Ω,T )+ PVc

and through a similar approach,

µp: ns, T, P constant (φ, P, T) = µ0
p(T) + kT (fm (φ) - (1-φ) (δfm/δφ) Ω,T )+ PVc

    Osmotic        Pressure:

The osmotic pressure is the excess pressure needed to make a solution with a polymer have the
same chemical potential as a pure solvent phase at the same temperature,

µs: (φ, P+Π, T) = µs(φ=0, P, T)

At φ = 0 fm = 0 so µs(φ=0, P, T) = µ0
s(T) + PVc, and using the above expression,

µs(φ, P+Π, T) = µ0
s(T) + kT (fm (φ) - φ (δfm/δφ) Ω,T )+ (P+Π)Vc,
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so,

PVc = kT (fm (φ) - φ (δfm/δφ) Ω,T )+ PVc + Π Vc

and

Π = (kT/Vc) (φ (δfm/δφ) Ω,T - fm (φ))

fm(φ) = φ lnφ / N + (1-φ) ln(1- φ) + χ φ (1- φ)

(δfm/δφ) Ω,T = lnφ/N + 1/N - (1+φ)/(1-φ) - ln (1-φ) + χ(1 - 2φ)

so,

φ (δfm/δφ) Ω,T - fm (φ) = φ/N - ln(1- φ) - φ (1-φ)/(1-φ) + χ {φ(1 - 2φ)- φ (1- φ)}
= φ/N - ln(1- φ) - φ - χ φ2

for φ<1, ln(1-φ) = -{φ + φ2/2 + φ3/3 + φ4/4 +...} and,

Π = (kT/Vc) [φ/Ν + (1/2 - χ) φ2 + φ3/3 + φ4/4 +... ]

This is a viral expansion with (1/2 - χ) being the second viral coefficient.  For small

concentrations, φ << 1,

Π = (kT/(NVc))φ = np kT/Vc (van't Hoff's law)

This is valid when φ << 1/{N(1/2 - χ)}, so for very low concentrations for high molecular weight,

N.  For large N the first term drops out and Π ≈ (kT/Vc) (1/2 - χ) φ2, which is independent of
molecular weight and follows a power 2 in volume fraction polymer.  The schematic below shows
the expected behavior of log (Π/C) in log C, (see Doi figure 2.2 pp. 25),
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At the θ condition χ = 1/2, and the second viral coefficient goes to 0.  The derivation of the value

of χ at the theta point will be discussed next.

    Phase        Separation:

The Flory-Huggins equation, with χ=0, yields a free energy curve as shown below with a single
minimum.  

f m
(φ

)

φ0 1

For a polymer of N = 100 and χ from 0 to 2 in 0.5 increments the Flory-Huggins equation yields:
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Which means that phases will separate into an almost pure solvent phase and a mixed phase that is
mostly polymer (see Doi pp. 27).  The critical point occurs between χ = 0.5 and χ = 1.0, where

the curvature of the free energy of mixing begins to curve upwards.  Increasing χ corresponds

with lowering of the temperature since χ = k/T.  The critical point can be found from the value of φ
where the first and second derivatives of fm with φ go to 0.  

The first derivative was calculated above,

(δfm/δφ) = lnφ/N + 1/N - (1+φ)/(1-φ) - ln (1-φ) + χ(1 - 2φ)

and,

(δ2fm/δφ2) = 1/( φ N) - 1/(1-φ) - 2 χ = 0

(δ3fm/δφ3) = -1/( φ2 N) + 1/(1-φ)2 = 0

The latter yields φc = 1/(1 + √N) , and using this value in the second derivative yields:

so,  χc ≈ 1/2 (1 + 1/√N)
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    Concentration        Fluctuations       in        Polymer        Solutions:
(Follows Gert Strobl "The Physics of Polymers 2'nd Ed. 1997 Appendix A4 but follows Doi
section 2.2 fairly closely)

A polymer in dilute solution is a single phase but contains concentration fluctuations related to
chain connectivity and random thermal motion.  The Flory-Huggins approach ignores these
concentration fluctuations so is not applicable near the critical point where fluctuations are high and
is really not appropriate for discussions of small-scale features except in an average sense.  The
Flory-Huggins statistical model uses an average interaction energy which is termed a "mean
field" approach.  As concentration is increased in a polymer solution, screening leads to a
reduction in the effect of connectivity based monomer density fluctuations.  In a pure melt all
connectivity based segmental fluctuations, of this kind, are screened leading to Gaussian scaling.

Much of modern polymer theory is based on an understanding and description of concentration
fluctuations.  This is because a description of such fluctuations are a natural way to describe
random systems with statistical features.  Fluctuations in density can be described in terms of a
series of wavelengths, that is, any distribution of density in space can be decomposed into a series
of sin waves of different magnitude.  For each wavelength there is an associated wave number, k =
2π/λ, associated with that type of fluctuation.  The amplitude of a density fluctuation at wave

number k (and wavelength λ) which contributes to the density profile of a sample in space, r, can

be denoted φk.  

1)  Fluctuations of wavenumber "k" can be considered independently of other wavenumber
fluctuations.

2)  Incompressibility is an assumption of almost all theoretical approaches so φk refers to one

component of a mixture but the other component is just - φk, so fluctuations of component A are
matched by opposing fluctuations of B in the opposite direction to yield an average concentration
for each wavenumber.

Density fluctuations of φk follow Boltzman statistics so the probability of a fluctuation of size φk is
given by,

p(φk) ≈ exp(-ak φk
2/2kT)

where ak is the inverse of the response of the density, φk, to a potential field, Ψk,

φk = Ψk/ak = αk Ψk

(The increase in free energy, δG associated with a concentration fluctuation, φk, is given by,

δG = ak φk
2/2 = Ψk dφk)

The mean square value, < φk
2> = kT/ ak = kT αk

The scattering function per lattice site of volume Vc, Sc(q=k) is related to this mean square
fluctuation by,

Sc(q) = kT αk/Vc
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The calculation of a scattering function, Sc(q=k), is the equivalent of calculation of

response functions, αk.

Random Phase Approximation (RPA):

One of the major accomplishments of the density fluctuation approach described above was the
calculation of the scattering function for a polymer/polymer mixture and for block copolymers in
the single phase state.  These scattering functions are composed of Debye scattering functions
which describe the coils in a dilute solution at the theta temperature.  Prior to the development of
the random phase approximation (early 1980's) it was not possible to directly determine the
interaction parameter for polymer blends from scattering data.  This is now the primary method of
determination of the interaction parameter.  Additionally, application of the RPA approach to block
copolymers is the primary method of determination of the thermodynamics of these systems.  If
one were to combine all polymer physics papers from the last 5 years more than half would involve
in some way use of the RPA approach.  Despite the fact that this approach is exclusively used with
scattering analysis, it is of pivotal importance to have some understanding of it in order to
understand recent literature as a whole.

The RPA approach is an extension of the composition fluctuation ideas presented above.  Consider
an athermal mixture of two polymer chains, A and B.  Consider that the B chains have 0 contrast
so are not observable.  If a potential, Ψk, is applied to this system that only acts on "A" chains

and which leads to excitation of a concentration fluctuation of wave vector "k", φk, we can write,

φk = αk
0 Ψk

where αk
0 is the collective response coefficient for lattice units of chain "A" under athermal

conditions (hence the superscript 0) in a mixture with chains "B".  Under the discussion above,
αk

0, is associated with the scattering from the mixture of "A" and "B" chains.

A fluctuation of concentration in "A" leads to a negative fluctuation of "B" due to
incompressibility.

φk = φk
A = -φk

B

This response of "B" units to a fluctuation in "A" units reflects the internal induction of the system.
"B" units respond as if they were subjected to a potential      Ψ         k     even though "B" units do not respond

to the external field which is applied.       Ψ         k     is called the "internal field".

A-chains respond to both the internal field,      Ψ         k    , as well as to the external field Ψk.  

φk = αk
AA (     Ψ         k     + Ψk)

where αk
AA is the single-chain response coefficient of "A" units response to forces acting on

other "A" units.  This is different than αk
0 which reflects the response of an "A" unit to an external

field.  For chains in a melt it is assumed that the Gaussian state is displayed due to screening so
analytic forms based on the Debye scattering function apply to describe the single-chain response



12

coefficients.  That is, we already have an analytic form which describes scattering associated with
αk

AA.  

"B" units respond only to the internal field,      Ψ         k    , since the external field, Ψk, acts only on "A" units
as introduced.  Thus,

φk
B = -φk = αk

BB (     Ψ         k    )

The collective response coefficient, αk
0, is associated with the scattering from the mixture of "A"

and "B" chains.  In order to determine αk
0 from the known Debye functions for αk

AA and αk
BB, the

induced field,      Ψ         k    , must be expressed as a function of the known functions and the applied field,

Ψk,

     Ψ         k     = Ψk αk
AA/( αk

AA + αk
BB)

Through addition of the two expressions above.  This expression can then be used in the
expression for φk above to yield,

φk = Ψk { αk
BB αk

AA/( αk
AA + αk

BB)}

and by comparison with the first expression of this section yields,

1/ αk
0 = 1/ αk

AA + 1/ αk
BB

The latter implies that the inverse of the scattering function for a polymer blend is an inverse sum
of the scattering functions for the two components.

For non-athermal systems, an external potential Ψk leads to a concentration wave φk which

produces a molecular field, χ'  φk, where χ' = 2χkT/Vc.  If χ' is positive the field is enhanced and

if χ' is negative the external field is diminished.  

φk = αk
0 (Ψk + χ'  φk)

This can be solved for φk to yield,

φk = αk
0 Ψk/(1 - χ'  αk

0)

The non-athermal collective response coefficient, αk, is associated with the scattering
from a non-athermal polymer blend.  This response coefficient can be directly obtained from the
above expression by comparison with the definition of the collective response coefficient,

αk = φk/ Ψk = αk
0/(1 - χ'  αk

0)

or
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1/ αk = 1/ αk
0 - χ'

Using the previous expression for 1/ αk
0 we have,

1/ αk = 1/ αk
AA + 1/ αk

BB - 2χkT/Vc

(For a polymer solution αk
BB is a constant in k.)

    Block        Copolymers       and       the        Random        Phase        Approximation:

For an athermal system composed of a block copolymer of A and B segments, the description of
concentration fluctuations parallels that for a polymer blends except that response coefficients
related to the connectivity of A and B chains must be included. αk

AB reflects the reaction of A units

to a force acting on B units in the same chain (at wave vector k).  A response coefficient αk
BA

reflects the reaction of B units to a force acting on A chains (at wave vector k).  In parallel with the
athermal blend derivation above,

φk = αk
AA (     Ψ         k     + Ψk) + αk

AB      Ψ         k    

and

φk
B = -φk = αk

BB (     Ψ         k    ) + αk
BA (     Ψ         k     + Ψk)

The last term representing a force acting on an A unit and the response of a B unit so includes the
internal and external fields.  The internal field,      Ψ         k    , can be removed by summation of the two

equations under the assumption of incompressibility, φk
B = -φk,

     Ψ         k    (αk
AA+ αk

AB + αk
BB + αk

BA) = -Ψk (αk
BA + αk

AA)

     Ψ         k     = -Ψk (αk
AA + αk

BA)/(αk
AA+ αk

AB + αk
BB + αk

BA)

This can be substituted in the expression for φk yielding,

φk = Ψk {αk
AA − [αk

AA + αk
AB] (αk

AA + αk
BA)/(αk

AA+ αk
AB + αk

BB + αk
BA)}

and,

αk
0 = φk/Ψk={αk

AA − [αk
AA + αk

AB] [αk
AA + αk

BA]/(αk
AA+ αk

AB + αk
BB + αk

BA)}

=    (       α        k    
AA           α               k    

AA           +               α        k    
AA           α               k    

AB           +               α        k    
AA           α               k    

BB           +               α        k    
AA           α               k    

BA          -               α        k    
AA           α               k    

AA    -                α        k    
AA    α               k    

BA    -                α        k    
AB    α               k    

AA   -               α        k    
AB    α               k    

BA   )          

   (αk
AA+ αk

AB + αk
BB + αk

BA)

αk
0 = (αk

AA αk
BB - αk

ABαk
BA)/(αk

AA+ αk
AB + αk

BB + αk
BA)

The latter representing the RPA for athermal block copolymers.  The thermal system can be
calculated using the same approach as for thermal blends given above,
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1/ αk = 1/ αk
0 - χ' = (αk

AA+ αk
AB + αk

BB + αk
BA)/(αk

AA αk
BB - αk

ABαk
BA) - 2kTχ/Vc

To obtain the scattering functions we substitute,

αk=q
AA = Vc φNASD(RAq)/kT

and

αk=q
BB = Vc (1 - φ) NBSD(RBq) /kT

where Ni is the degree of polymerization for chains of type "i", φ, is the dilution of chains A in the
block copolymer, SD is the Debye scattering function for a polymer coil and Ri is the coil's
Gaussian radius of gyration.  The Debye function is the Fourier-transform of the pair distribution
function g(r) for the pairs of type AA or BB.  

To calculate αk
AB we need the pair distribution functions for the probability of finding  a B or A

monomer at a distance r from each other.  The latter can be analytically solved as a function of the
single chain structures.  One result of this is that αk

AB = αk
BA.  The functional form is,

αk=q
AB = Vc (NABSD(R0q) - φNASD(RAq) - (1 - φ) NBSD(RBq))/(2kT)

where NAB = NA + NB, and R0
2 = RA

2 + RB
2.  

Block copolymers display a "natural" correlation distance which is a result of segregation of A and
B blocks in a single phase melt.  This "natural" distance of segregation is reflected in the athermal
equation for instance.  

αk
0 = (αk

AA αk
BB - αk

ABαk
BA)/(αk

AA+ αk
AB + αk

BB + αk
BA)

Consider the summation of response coefficients as a summation of Debye functions.  For a 50/50
block copolymer NA = NB, and RA ≈ RB, then R0 is √2RA, i.e. R0 is bigger than RA.  It can be
easily verified that the subtraction of two Debye functions of differing R yields a curve with a
correlation peak (see figure below).  Thus, even in the single phase melt, block copolymers display
a correlation peak.
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Variation of χ' in the thermal system leads to the determination of a critical point where the
intensity becomes infinite as shown below:
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For symmetric diblock copolymers χcNAB = 10.4.  This is the lowest value for χcritical, i.e. other

compositions will have higher values.  This value should be compared with the critical χ for the

same two polymers in a symmetric binary blend, χcN = 2.  The higher value for the critical point in
a block copolymer reflects the connectivity of the polymer chains which suppresses phase
separation to a higher value of χ (lower temperature).

When phase separation occurs in a block copolymer the domain size is restricted by the connection
of the A and B chains.  This leads to a variety of micro-phase separated structures.  When one
chain is much shorter than the other, NA<<NB, spherical domains form.  For more closely matched
molecular weights rods of the minor phase form.  When NA ≈ NB, the system forms lamellar
domains.  The size of these domains is governed by thermodynamics as discussed below.

    Domain        Size       in        Phas      e        Separated        Block        Copolymers:

The size and separation distance of lamellar domains (for example) can be predicted using
thermodynamics.  The change in Gibbs free energy, ∆G, for the transition from a homogeneous

system to the micro-phase separated system is composed of an enthalpic term, ∆H, which has

contributions from bulk, ∆Hbulk, and interface, ∆Hint, a change in entropy associated with A-B

junction points becoming located at the interface, ∆Sint, and a change in entropy associated with

stretching the chains, ∆Sstr.  The bulk enthalpy change is given by Flory Huggins theory as,



17

∆Hbulk = - kTχNABφA(1-φA)

The interfacial enthalpy is associated with an interfacial area, A, a transition layer thickness dt,

∆Hint = + kT χ A dt/Vc

The loss in entropy by location of A-B junctions at the interface is given by,

∆Sint = k ln(dt/(dA + dB)) = k ln(dt/dAB)

where dA is the thickness of the A layer and dB is the thickness of the B layer and dAB is the repeat
period for the lamellae.  The loss in entropy due to stretching of the chains is given by,

∆Sstr = -kβ2(dAB/R0)
2

Also, the volume of a chain is given by Vc NAB = A dAB

∆G = ∆Hbulk + ∆Hint - T ∆Sint - T ∆Sstr

becomes,

∆G/kT = - χNABφA(1-φA) + χ A dt/Vc + ln(dt/dAB) + β2(dAB/R0)
2

Setting the derivative with respect to "A" to 0, neglecting the "ln" term which does not have a
significant derivative (using dAB = Vc NAB / A in the last term),

(1/kT) d∆G/dA = χ dt/Vc - 2β2(Vc NAB /R0)
2/A3 = 0

yields,

A ≈ Vc (2 NAB
2

 /( χ dt R0
2))1/3

using R0
2 = Vc

2/3 NAB

A3 ≈ Vc
7/3

 NAB/(χ dt)

and

dAB = NAB
2/3 Vc

2/9 (χ dt)
1/3

This molecular weight dependence has been observed experimentally.


