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Chapter 3: Specific Relaxations

There are many types of relaxation processes that can occur in polymers. The identification of
the details of these processes and how they relate to chemical structureis of primary interest in
dynamic measurements. Generally, the specific relaxation processes are observed to display
fairly discrete regions of activity in frequency. If severa identifiable regimes are observed they
are conventionally labeled by Greek letters starting from the highest temperature, lowest
frequency or rate, 1/t. Typically, the glasstransition is the a-absorption process, for example,
reflecting relatively slow, long range motion observed at low frequency and relatively high
temperature. Higher frequency transitions might involve side-group motions or conformational
changesin side groups. These transitions, b and g are usually observed in the glassy state and
correspond to low-temperature transitions. 1n some materials new transitions occur when
polymers are confined to crystalline structures or when chains absorb to filler material for
instance.

Figure 5.7 from Strobl p. 214 shows the behavior of a simple activated g-transition in an acrylic
polymer with a cyclohexane side-group in terms of the loss tangent, tan d (w)= G” (w)/G’ (w).
The side-group can display a conformational transition between a chair and a boat ring
conformation. This gtransition process is thermally activated, does not depend on the molecluar
weight of the polymer and is seen for different main chain polymers that possess this
cyclohexane side-group. For these reasonsit is a nice candidate to demonstrate the behavior of a
polymeric transition. The—60°C curve in figure 5.7 displays the symmetry (on the log w axis)
characteristic of a Debye-Process discussed in chapter 2. The width at half-height is about 2
decades in frequency (greater than the 1.2 limit for relaxation processes.
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The dependence of the frequency of maximum relaxation on temperature indicates that the
process may be thermally activated. A simple, thermally activated process will follow an
Arrhenius behavior,

t = Kexp5

KT

where E, is the activation energy, or energy barrier, for the transition from chair to boat
conformation for the cyclohexane group. K istherelaxationtimefor T => ¥, i.e. the relaxation
time in the absence of energy barriers, t,. The relaxation time can be obtained from the
frequency of the maximum in the curvesin figure 5, t = 1/w,,.. Taking thelog of the above
equation for the Arrhenius relaxation time we have, log(t) = log(K) + (E/k) (1/T). Soalog-
linear plot of t (or w) versus /T should yield aline whose intercept is log(K) and whose slopeis
(E/K). Suchaplot isshown in Strobl’s figure 5.8, from which E, = 47 kJ/mole.
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Figure 5.9 (Strobl) shows the temperature dependence of tan d for different frequencies.

Because of the Arrhenius relationship, given above, there is a strong correspondence between the
frequency and the temperature plots. This correspondence between time (frequency) and
temperature is known as time-temper ature superposition and is a basic characteristic of thermally
activated relaxation (Debye-type) processes. Dynamic properties of Debye-processes depend on
wt as afree parameter. If the processisthermally activated such asin an Arrhenius form, then
there is adirect relationship between relaxation time or measurement frequency and temperature
through an exponential function. For the complex compliance, J*(log wt), we have, log wt =log
w + logt, + E, log e/kT. Equivalent changesin J*(log wt) can then be achieved by variation in
frequency, w, or variation in temperature, T.
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Time-temperature superposition indicates that the curvesin figure 5.8 or figure 5.9 have the
same values at corresponding positions, i.e. at the peak position tan d should have the same
value. Thisisroughly followed for the tan d curves of this g-transition. The curvesin figure 5.8
or 5.9, then can be shifted along the corresponding x-axis by a shift-factor, a; or a,, so that the
curves from different conditions overlap. Thiswas done by Strobl in figure 5.10 for G’ and G”.
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Figure 5.10 also shows a comparison with asimple, single-relaxation time Debye-Process (lower
plot). The measured relaxation shows some broadening indicating a more complex system than
asimple Debye-process. Only broadening of such apeak is possible for arelaxation process, i.e.
the peak can not be narrower than the Debye-processiif it corresponds to a relaxation
phenomena.

Calculation of the shift-factor, a;, for the construction of a master-curve such as that shown in
figure 5.10 will be discussed after we consider the characteristic features of polymer systems
near the glass transition temperature.

Characteristic Features of Polymer Creep Compliance, Tensile and Shear Modulus Near
Ty

Strobl’ s figure 5.12 shows the characteristic features of compliance, J, for apolymer asa
function of time = 1/w. Such a curve might be constructed from a series of dynamic mechanical
scans after shifting of the curves to form amaster curve, figure 5.11. The compliance typically
varies over 10° orders in compliance and over 20 ordersintime! The creep complianceis very
small (10° m%N) and constant at short times (high frequency) reflecting the glassy state. Thisis

followed in time by the a-process at the glass-transition where the features of a Debye-like

5



relaxation process are shown. For relatively high-molecular weights a molecular weight
dependent plateau region is observed (10° m?/N) associated with an entanglement network that
does not have timeto relax. At longest times linear behavior is seen indicating viscous flow,

dJ /dt =dg,,(t)/dt (Us ,) = Uh,
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The composite curves shown in Strobl’ s figure 5.11, below,
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Strobl’ s figure 5.14 shows a similar plot for the tensile modulus of polyisobutylene. The same
regimes discussed for the creep compliance curve, above, exist in this curve.
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Simple Empirical Modelsfor Polymer Transitions:

Polymer transitions involve more than one relaxation time as indicated by the comparison with a
simple, Debye-processin figure 5.10. Thisisalso true for the a-transition or glass-transition.
The time dependent modulus, E(t), in a stress relaxation measurement follows  E(t) = E, +DE
exp(-t/t) for asingle relaxation time Debye-process. One way to empirically broaden this
transition behavior isto arbitrarily raise the timeratio in the exponential to a power, b, lessthan
1,

i
E(t) = E + DEexpi - ¢
|

where this Williams-Watt Function depends on two parameters, atime scale, t, and the power, b.
Thiskind of function is called a stretched-exponential for obvious reasons. For the glass
transition temperature b istypically 0.5 (Strobl p. 222). The Williams-Watt Function describes
the “knee” part of the modulus curve shown in figure 5.14 of Strobl (short time or high
frequency). Thelog-log plot of figure 5.14 shows a linear region following this knee that can not



be described by an exponential decay. This power-law regimeis empirically described by the
function E(t) =K t". Typically it isobserved that n = 1/2.

Following the glass transition exponential and power law regimesin timeis the plateau regime
for uncrosslinked polymers. This plateau is related to an entanglement network and is only
observed for polymers above the entanglement molecular weight. Figure 5.15 of Strobl shows
that this plateau regime grows in extent with molecular weight.
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Following the plateau regime a second power law regime is observed in the log-log plot of figure
5.15. Thedopeinthisregimeis 2 for afrequency plot and -2 for atime plot, G’ (w) = K’ ,, w? or

E(t) =K, t2



