Quiz 6 Polymer Physics 11/2/00

a) The storage and loss curves for a polymer as a function of frequency are typically plotted on a log-log plot. There are several reasons for this.

-Explain how the range of values typically observed for G' leads to the use of a log scale.
-Explain how the functional form of J" for a single relaxation time Debye transition indicates the use of a log frequency axis.

b) Show that the Arrhenius temperature dependence indicates the use of a log frequency scale by
 -Writing the Arrhenius function for the relaxation time

-converting this to a log function

-discussing the relationship between the relaxation time and frequency for a simple Debye transition at two temperatures, T_1 and T_2 .

c) -Sketch a typical time dependent modulus versus time and time dependent compliance versus time curve.

-Give a function that describes time dependent compliance as a function of time at very long times in the terminal region.

-Give a function that describes the time dependent modulus as a function of time at very long times.

-If you used a log axis for the time scale in your sketch explain why based on the functions you gave and the typical range of time involved for a full curve.

d) **-Show** how the Arrhenius shift factor a_T can be obtained form the Arrhenius temperature dependence function.

-Compare this shift factor with the WLF shift factor. Under what condition is the WLF equation the same as the Arrhenius equation.

e) The WLF function for the -transition contains a constant, C₂, that is a temperature 30 to 70 degrees below T_g.

-What is special about the glass transition that requires this temperature when compared to other lower temperature transitions such as - or -transitions?

-Is it possible to observe the glass transition below C_2 at very long times or very low frequencies?

-**Is it possible** to observe - or -transitions at very low temperatures well below the normal transition temperature for long times or very low frequencies?

Answers Quiz 6 Polymer Physics 11/2/00

- a) -Typically G' spans 9 orders of magnitude. If a log scale were not used the low values would be swamped in a plot and only the high modulus end could be observed.
 For a single relaxation time Debye transition J" = J /(1 + ²) = J/(10^{-log()} + 10^{log()}) so the loss peak will be symmetric in log().
- b) = $_{0} \exp(-E_{a}/kT)$ taking a log of both sides log = log $_{0} E_{a}/kT$ In the equations for a simple Debye relaxation and always appear as a pair so for observation at two temperatures, T_{1} and T_{2} , the measurement at T_{2} can be converted to an equivalent frequency at T_{1} by using log($_{1}$) = log($_{0}$) - E_{a}/kT_{1} that gives the Arrhenius shift factor equation, on a low frequency scale, $\ln a_{T} = (E_{a}/k)(1/T_{2} - 1/T_{1})$.

At long times J(t) = t/, and $G(t) = J_e^0 \int_0^2 t^2$. The log time scale is used because the time range is 20 orders and the functions at long times in the terminal zone are power-law functions that are naturally presented on a log-log plot to make the power-law regions appear linear.

d) For two temperatures, T_1 and T_2 , we can write $log(_1) = log(_0) - E_a/kT_1$ and $log(_2) = log(_0) - E_a/kT_2$. Subtracting the second from the first we obtain, $log(a_T) = log(_2) - log(_1) = (-E_a/k)(1/T_2 - 1/T_1)$. The WLF function is $log(a_T) = -C_1 (T - T_0)/(C_2 + T - T_0)$, the difference between the two equations involves the second parameter C_2 . The two functions are identical when $C_2 = log(-1) - log(-1) log(-1) -$

e) The glass transition has a finite temperature limit when it is considered a true second order transition. That is, below C_2 the -transition can not occur. This is not true of simple Arrhenius transitions such as - or -transitions. For these simple transitions the transitions occur for all temperatures above absolute 0. When viewed as a true second order transition it is not possible to observe the - transition below C_2 . It is possible to observe the - or -transitions for all temperatures above absolute 0 by looking at very long times or very low frequencies.