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Chapter 2, Transport Phenomena

Tadmor Chapter 5

Chapter 5 of Tadmor is an overview of rheology that basically summarizes the first few chapters

of "Transport Phenomena" by Bird, Stewart, Lightfoot which is the standard Chemical
Engineering text on this subject. The development begins with a discussion of equations of
continuity in simple terms, then reviews vectors and tensors and applies these to continuity in

flow. Application of typical assumptions in vector form and development of the Reynold's
Equation follow. A brief discussion of the Lubrication Approximation is given in the context of
the Reynold's Equation.

Balance Equation
(Equation of Continuity)

Kinetic processes, i.e. a process that is characterized by rates and non-equilibrium (non-
thermodynamic) features, are described by equations based on the simplist laws of the world as

we know it, laws of conservation of mass, energy and momentum. The principle of conservation
simply states that
1) if one constructs a box around a part of the universe,



2) then one can consider that within the box the total amount of mass, for instance, is conserved,

i.e. mass is not created out of nothing in normal life (this does not necessarily apply to the
begining of the universe for instance). Mass can be formed, but in some predictable way
governed by equations that may be empirical or fundamental.

The use of such equations of continuity, then, require you to consider the part of the universe you
are interested in, and to construct a closed set of borders around which you will perform a
mathematical balance of mass, energy or momentum. The construction of the box is the crucial

step in this process since the mathematics is simply a form of bookkeeping.

Consider, for instance, the population of Cincinnati. Of the many possible results for this
question all require that you define, at the first step 1) what it is that you mean by "Cincinnati";

2) what it is that you mean by "population". The usefullness of the result is strongly dependent
on your formulation of the question. If population is defined as number of living people at a
given time on a scale of seconds then it will be necessary to determine the rate of traffic on all

interstates in and out of the city, the rate of air traffic, birth rates, death rates. Some estimate of
the total population at a given instant of time would be necessary. Additionally, a border needs to
be defined that could include only downtown or could include the I-275 boundary, or regions

with population density more than 2,000 per square mile for instance (the box). If the population
were defined as voting age adults, a much more complicated algorithm would be necessary and
political boundaries would probably be appropriate. From this example it should be clear that the

problems associated with equations of continuity mainly involve your view of the problem
including definition of terms and construction of a box. The math involved in summing rates is
fairly trivial although it can appear imposing when tensoral forms are included.

Features of Continuity Equations (CE's):

1. CE's can be written for energy, mass, or momentum. They assume either energy, mass or
momentum are conserved and are thus based on the basic principles of physics. Each of

these three types can be specified further, e.g. the mass of water in a boiling pot, the
momentum of planets in the solar system (doesn't include space ships for instance).

2. CE's use constitutive equations and constitutive constants as well as basic laws of

physics to account for loss and gain.

3. CE's become mathematically complicated since transport can occur in 3-d space, i.e. CE's
naturally involve vectors and tensors.

4. The concept of a CE is very simple, it involves a black box approach to a process,

IN = OUT + CHANGE



e.g. for mass in a continuous process (flow process),

Rate of Mass In = Rate of Mass Out + (Rate of Change of Mass)

5. The last term is 0 for steady state.

6. Consider a box with flow only on two sides, vy = vz = 0 :

Rate of Mass In - Rate of Mass Out = Rate of Change in mass

-δ(ρvx)/ δx = δρ/ δt

Takeing a partial derivative on the left and rearranging:

δρ/ δt + vx δρ/ δx = - ρ δvx/ δx

δvx/ δx is the elongational strain rate (remember δγ/δt = δvx/ δy)

7. Even for the simple scenario of #6 the definition of δγ/δt is not sufficient, i.e. for vx we

have at least 3 components: δvx/ δx, δvx/ δy, δvx/ δz . There are 9 components to the

velocity gradient tensor if vx, vy and vz have values.

8. Often the diagonal components of this 9 component tensor are zero, i.e. there is no
elongation associated with steady state.

9. Similarly, the simple definition of the shear stress,

τxy = dFx/dAy

is insufficient. The tensile stress is τxx for instance.

The total stress tensor π, has 9 components

10. The diagonal components of the total stress tensor are the tensile stress components. For
an incompressible fluid (usually assumed) the sum of the diagonal components is 0

(constant hydrostatic pressure).

11. The main point is that it is necessary to talk of the tensoral nature of stress and strain
even in the simplest situations. This becomes even more important for non-Newtonian

fluids.



Review of Vector and Tensor Math Operations.

1. The dot product of two vectors is given by:

v . w = vw cosφvw (a scalar)

The dot product is a projection of one vector on another times the second vector's
magnitude.

2. The cross product of two vectors is given by:

v x w = nvwvw sinφvw (a vector)

nvw is a vector normal to the vw plane and has magnitude of 1

v x w = δ1 δ2 δ3

The cross product is the area created by two vectors and has the direction of the normal to
the plane created by the two vectors using the right-hand rule.

3. The del-operator is given by

∇ = δ1 (δ/δx1) + δ2 (δ/δx2) + δ3 (δ/δx3) 



ωηερε δi αρε υνιτ οπερατορσ, ανδ δ1 = 1 for i=1 and = 0 for i not equal to 1.

4. The substantial derivative is given by:

D/Dt = δ/δt + v . ∇

5. The gradient of a scalar is a vector: ∇ (scalar).

6. The divergence of a vector is a scalar: ∇.(v) or div(v).

7. The curl of a vector is a vector: ∇x(v) or curl(v).

8. The Diadic Product of a vector is a tensor: ∇v or curl(v).

Equation of Continuity Using Tensor Math

The simple equation of continuity for unidirectional flow, δρ/ δt = - δ/δx1(ρ v1) can be easily

converted to tensor form,

δρ/ δt = -(∇ . ρ v)

Similarly, the short hand form for:

δρ/ δt + v1 δρ/δx1 = -ρ δv1/δx1, is given by:

 Dρ/Dt = - ρ(∇ . v) (= 0 for incompressible fluid)

Velocity Gradient Tensor, ∇v

(pp. 115 in Tadmor)

The velocity gradient tensor is given by:



∇v contains two easily distinguishable tensoral components

1. The rate of strain tensor:

δγ/δt = ∇v + ∇vt

where ∇vt is the transpose of the velocity gradient tensor

δγ/δt gives rise to the net directional flow in a process. This is the useful flow.

2. The vorticity tensor:

∇ω = ∇v - ∇vt

ω gives rise to rotational flow which wastes energy but gives no net flow.

We are usually interested in the Net flow so δγ/δt is of primary interest. The velocity gradient

tensor is defined in terms of the rate of strain tensor and the vorticity tensor by:

∇v = 1/2(δγ/δt + ω)

Total Stress Tensor, π 
(pp. 110 in Tadmor)

The total stress tensor is given by,



Some features of the total stress tensor are given below:

1. πij = πji

i.e. the matrix is symmetric so the tensor has only 6 unique components.

2. The total stress tensor can be broken down into two natural components.

i. Hydrostatic pressure, δ P

P 0 0
0 P 0

0 0 P

The hydrostatic pressure is an isotropic matrix not associated with net flow.

ii. Shear Stress Tensor τ,

τ = π - Pδ 

The shear stress tensor is a symmetric tensor associated with net flow.

3. The total stress tensor is given by:

π = Pδ + τ

Tensor Invariants

The components of a tensor matrix, such as the total stress tensor, change with the choice of
coordinate system. That is if Cartesian coordinates are used for pipe flow, different tensor matrix



components will result than if cylindrical coordinates are used. Additionally, if the reference

frame even using Cartesian coordinates is rotated then the matrix will completely change. If the
tensor itself does not change then there are some features of the tensor that can be calculated
from any coordinate system that remain unchanged on change of coordinate system. These

features are called the tensor invariants.

Several features of invariants are given below:

1. Vectors have one derived value which doesn't change with coordinate system, the

magnitude. 3x3 Tensors have 3 invariants , i.e. derived values which do not change with
coordinate system.

2. Invariants are scalars that are intimately related to a vector or tensor.

3. While the constituent values of a 3x3 tensor changes with coordinate system. There are
some derived values which are coordinate system invariant , i.e. the hydrostatic pressure
for example. The three invariants for a 3x3 tensor can be defined in several ways. One

accepted way is:

• I = Σi τii

• II = Σi Σj τijτji alternatively written II = τ:τ

• III = Σi Σj Σk τijτjkτki

4. The shear rate is (IIδγ/δt)
1/2/2 = 1/2 {(δγ/δt) : (δγ/δt)}1/2

Newtonian Fluid
(Constitutive Equation)

For a fluid with a viscosity that does not change with shear rate we can write as a constitutive
equation:

τ = η δγ/δt - (2/3 η − κ) (∇.v) δ

where κ is the dilatational viscosity. For an incompressible fluid, (∇.v) = 0 .

The Navier-Stokes Equation is the equation of continuity for Newtonian fluids of constant



viscosity and constant density,

ρ Dv/Dt = -∇P + η ∇2v + ρg

where ∇2 is ∇.∇

For creeping flows (polymers) viscosity dominates over inertia (∇2v) and the Navier-Stokes

equation becomes:

ρ dv/dt = -∇P + ∇. τ+ ρg

Common Assumptions

In solving the Navier-Stokes equation for a given rheological system several common limiting

conditions and assumptions are made:

1. No Slip at Wall: The fluid next to a wall moves at the same velocity as the wall.

2. Liquid/Liquid Interface

i. No Slip

ii. Continuous Stress

iii. Normal stresses and surface forces balance through interface curvature.

3. Steady State: No change in response with time, In=Out, in general: δ/δt = 0

4. Constant Properties in T & P

Heat conductivity, K
Heat Capacity Cp

Density ρ 

1) You will know if this fails=> Melt Fracture, Stick-slip (eraser behavior)

2) P1 - P0 = γ (1/Rx - 1/Ry) Pressure difference is related to two dimensions of surface curvature.



Lubrication Approximation
(Reynolds Equation)

A low viscosity fluid in a thin gap is equivalent to a high viscosity fluid in a wide gap since the

Reynolds number, Re, is the same,

Re = R ρ V/η

where R is the gap size, ρ is the density, V is the velocity. If Re is bigger than 2000 the flow

becomes turbulent

For two systems with the same Reynolds number the flow is said to be similar, i.e. a polymer
melt in and extruder is like a lubricating oil in a narrow gap.

Some assumptions on which the Lubrication Approximation (Reynolds Equation) is based are
given below:

1. Laminar Flow:

i. This is flow which is like shearing a deck of cards.

ii. Flow is in one direction only , x.

iii. Flow is a continuous function of y (i.e. no discontinuities, i.e. no slip)

2. Steady State

i. In = Out

ii. Isothermal: Heat in = heat out

iii. Incompressible: Mass in=Mass out

3. Newtonian (Viscosity is constant in δγ/δt): τ = η δγ/δt . (For non-Newtonian η = f(δγ/δt)

.)

4. Viscosity dominates over inertia (Creeping Flow), i.e. a couette viscometer is flow of two
flat plates.

5. Taking Navier-Stokes, ρ Dv/Dt = -∇P + η ∇2v + ρg, for these conditions,



∇P = η ∇2v and for velocity only in the x direction, δP/δx = η δ2vx/δy2

which on integration yields:

vx(y) = Vx(1 - y/H) + H/2η (δP/δx) y(y/H -1)

where v = Vx at y = 0 and v = 0 at y = H. The pressure driven velocity is maximum in the

middle. The first term in this form of the Reynolds Equation is linear and the second is
parabolic. The sum gives a skewed parabolic profile.

6. For Reynolds flow between 2 plates, integration over y yields:

qx = VxH/2 +H3/12η (-δP/δx)

Details of Reynold's Equation.html

Details of Reynold's Equation.pdf

Hydrostatic Pressure and Normal Stresses

As discussed in chapter 1, polymers subject to shear will develop pressures normal to the

direction of flow. These forces are termed normal forces. Normal forces act in the same direction
as the components of hydrostatic pressure discussed in this section. Then it is important draw a
distinction between hydrostatic pressure and normal forces in the sense that they are considered

in polymer flow. This is natural to do in the framework of the total stress tensor, hydrostatic
pressure and shear stress tensor discussed above. The total stress tensor is given by:



where the hydrostatic pressure is represented by P.

Since each of the diagonal components contains the hydrostatic pressure it is not possible to
independently measure the normal stress. One can only consider differences between the 3

diagonal components of the matrix, defining two independent normal stres differences:

1'st normal stress difference = Ψ1 = τ11− τ22 = π11− π22

2'nd normal stress difference = Ψ2 = τ22− τ33 = π22− π33

(Shear stress = τ12)
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