1) a) Compressive Stress

\[\frac{dF_1}{dA_1}, \quad \frac{dF_2}{dA_2}, \quad \frac{dF_3}{dA_3} \]

\[A_1 \text{ is normal to the force, } F_1. \]

\[\text{Compressive Stress is a Dilatational Stress (Changes Volume)} \]

Tensile Stress

\[\frac{dF_1}{dA_1} \]

Bending Stress

\[\text{Bending Stress is a complex Stress composed of four simple Stresses: Shear Stress } \frac{dF_1}{dA_2} \text{ parallel to the Load} \]

\[\text{Shear Stress } \frac{dF_2}{dA_2} \text{ perpendicular to the Load} \]

\[\text{Compressive Stress in the upper region } \frac{dF_1}{dA_1}, \frac{dF_2}{dA_2}, \frac{dF_3}{dA_3} \]

\[\text{Tensile Stress in the lower region } \frac{dF_2}{dA_2} \]
Shear Stresses: This is like a deck of cards.

Hydrostatic Stresses:
A form of compressive stress where
\[
\frac{dF_1}{dA_1} = \frac{dF_2}{dA_2} = \frac{dF_3}{dA_3}
\]

(b) Bi-axial Stress:
\[
\frac{dF_1}{dA_1} = 0
\]
Lateral tensile stresses have values\[
\frac{dF_1}{dA_1} = 0
\]
This occurs when you

(c) Compressive strain is composed of 3 components:
\[
\frac{du_1}{dx_1}, \frac{du_1}{dx_2}, \frac{du_1}{dx_3}
\]
\(u_1\) is the displacement in the direction 1.

Tensile strain:
\[
\frac{du_1}{dx_1}
\]

Bending strain: similar to bending shears.

Has 9 components: Shear 11 & 22: Compressive Tensile.
Shear Strain

\[
\frac{\partial u_2}{\partial x_1} = \frac{\partial u_2}{\partial x_2} = \frac{\partial u_3}{\partial x_1}
\]

Hydrostatic Strain

Volume Strain

\[
\frac{\partial u_1}{\partial x_1} = \frac{\partial u_2}{\partial x_2} = \frac{\partial u_3}{\partial x_3}
\]

d) **Tensile Modulus** \(E \)

\[
\sigma_{ii} = \frac{dF_i}{dA_i} = E \frac{\partial u_i}{\partial x_i} = E \epsilon_{ii}
\]

Shear Modulus \(G \)

\[
\sigma_{12} = \frac{dF_i}{dA_2} = G \frac{\partial u_i}{\partial x_2} = G \epsilon_{12}
\]

Compressibility

\[
\beta = -\frac{1}{V} \frac{dV}{dp}
\]

\(V \) is volume

\(\rho \) is the hydrostatic pressure

\(p \) is the hydrostatic pressure
c) Engineering Stress is the ratio of the applied force, \(F \), to the area it is applied to, \(A \),
\[
\sigma = \frac{F}{A}
\]
Engineering Strain is the change in length relative to the original length,
\[
\varepsilon = \frac{\Delta L}{L}
\]
True Stress and Strain are differential ratios,
\[
\sigma = \frac{dF}{dA}, \quad \varepsilon = \frac{dL}{L}
\]
so the denominator changes during stress.

2) a) A viscous material has no modulus; it doesn't hold together. Viscous materials follow Newton's Law for Flow
\[
\sigma_{12} = \eta \dot{\gamma}_{12}, \quad \nu = 0 \text{ in tension}
\]
Any fluid has a finite modulus that is important to its use. It is a viscoelastic.

b) An elastic material follows Hooker's Law
\[
\sigma_{11} = E \varepsilon_{11}, \quad \sigma_{12} = G \varepsilon_{12}
\]
Then if the viscosity is infinite, \(\nu = \infty \), so there is no response to rate differences.
A rubber band is a viscoelastic because it displays dependence on rate of strain. Brittle & Dachile relate to the mechanism of failure for materials. Brittle materials fail with a smooth sharp fracture like glass. Dachile materials fail in a rough surface like play dough. By this definition, Jello is brittle.

Jello is a viscoelastic material. It displays both elastic & viscous properties. It's not plastic because it does not display a permanent deformation after stress.

d) Thermoplastics – Processed in the melt & become solid (gloss or crystalline) on cooling

- Poly styrene
- Polyethylene
- Poly propylene
- PMMA
- Poly carbonate
- PVC

Thermoset – Processed as a liquid then cured to react/polymerize into a solid.

- Epoxy
- Rubber (Bakelite, Fibro sheets, Phenolic Resin)
Elastomer

A crosslinked polymer that would be a liquid at use temperature if it were not crosslinked. This is a viscoelastic solid.

Natural Rubber (polyisoprene)
Polybutadiene
Polydimethylsiloxane (silicone)
Jello
SBR Rubber
EPDM Rubber
Nitrile Rubber

e)

Chain Growth

Polymer by Chain Growth

Addition Polymerization

Condensation Polymerization

Step Growth

$O = C \equiv N - \overset{\ddagger}{C} - N = C = O + 14 C H _ 2 C H _ 2 O H \rightarrow \underset{H}{\overset{14}{C} - N - \overset{\ddagger}{C} - O - C - N = C = O - C - O - C - N = C = O}$

diisocyanate
3) a.)

\[M_n = \frac{\Sigma n_i M_i}{\Sigma n_i} = M_1 \]

\[M_w = \frac{\Sigma n_i M_i^2}{\Sigma n_i M_i} = \frac{M_2}{M_1} \]

\[2 \times \text{Av} \]

\[M_2 = \frac{\Sigma n_i M_i^3}{\Sigma n_i M_i^2} = \frac{M_2}{M_2} \]

\[\text{RDI} = \frac{M_{w0}}{M_n} = \frac{M_2}{M_1} \]

\[\sigma^2 = \frac{\Sigma n_i (M_i - M_1)^2}{\Sigma n_i} = \frac{\Sigma n_i M_i^2}{\Sigma n_i} - 2 \frac{M_1 \Sigma n_i M_i}{\Sigma n_i} + M_1^2 \]

\[= M_2 - M_1^2 = M_1^2 (\text{RDI} - 1) = M_2 (1 - \frac{1}{\text{RDI}}) \]

b.)

Diads are tactic or meso

(mixed) (same)

A random distribution correspond to

50% + 50% m

Atactic = Random Tacticity

Triads are

isotactic mm
heterotactic mr or rm
syndiotactic rr

Atactic: 25%

atactic 25%

atactic 50%
pentads are

\[\text{mmmm} \]

\[\text{rrrr} \]

\[\text{ee} \]

\[\text{mmrr} \]

\[\text{trmm} \]

\[\text{rrrr} \]

\[\text{trtm} \]

\[\text{mmrm} \]

\[\text{rmmr} \]

c) Chemical Crosslinks

Vulcanization with sulfur in polyisoprene

\[\text{mmmm} \rightarrow \text{X}_{n} \]

Glassy nature, SBR rubber,
d) Polyethylene
 Polypropylene
 Nylon
 polyethylene oxide
 polyvinyl alcohol

 crystals have the
 a good ratio of
 asked for

 e) Time-temperature superposition
2) Glass, Leather, Rubber, Flow

\[E \]

\[T \]
\[(T_m^2) \]

\[\text{crosslinked} \]

\[E \]

\[w_g \text{ of } T_g \]

\[\text{time (t)} \]

Low temperature + high energy made material glassy.