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Foreword by P.G. de Gennes

The idea of atoms goes back to the Greeks: but for them it was really
just a formal postulate, avoiding the intricacies of infinitely small objects.
More than 2000 years were required to transform this into a reality. To
show that the usual forms of matter around us are made with atoms, and
clumps of atoms which we call molecules. The first determination of the
size of a molecule is probably due to Benjamin Franklin: he knew (again
from the Greeks) that a small amount of oil suppresses the waves on the
sea. He then went to a pond in Clapham Common, choosing a day with a
light wind, where the surface of the pond showed ripples. He then poured a
spoonful of oil on the water, and measured the area upon which the ripples
had disappeared: this area turned out to be huge. In our modern parlance,
he had constructed a very thin monolayer of oil molecules. Dividing the
volume (a spoonful) by the area, he could measure the size of a molecule
(in this case, something like 2 nanometers).

Unfortunately, Franklin did not perform this calculation himself — it
was done only a hundred years later by Lord Rayleigh (as explained in
a beautiful book by C. Tanford1). But this experiment was a historical
landmark: for the first time, molecules were not a figment of a philosopher’s
imagination. They became a physical object, with a well defined number,
measuring their size!

A second step concerned the giant molecules which are the topic of this
book. Many things around us (wood, cloth, food, our own body. . .) are
made of macromolecules, or polymers — as we call them now. But the
concept of macromolecules emerged very slowly. During the 19th century,
many chemists synthesized new polymers and threw them down the sink! In
these days, the chemical dogma was to make a new substance, to purify it as

1C. Tanford, “Ben Franklin stilled the waves”, Duke University Press, 1980.
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much as possible, and to test the purity by measuring a property such as the
melting point: if the melting point was sharp, the product was considered
as “good.” But macromolecules, unfortunately, do not have a sharp melting
point (for reasons which are, to a certain extent, explained in the present
book). They were thus considered as “dirty,” and rejected. Ultimately,
around 1920, H. Staudinger proved conclusively the existence of long chain
molecules to the community of chemists. Physicists then entered the game:
Kuhn first, who understood the flexibility of many polymers, the role of
entropy in these systems, and the resulting elasticity of rubber. Again
here, we have a great book describing the story2. Then came P. Flory, who
mastered most of the physical properties of polymers, using very simple,
but deep, ideas. The next step was due to S.F. Edwards, who pointed out a
profound similarity between the conformation of a chain and the trajectory
of a quantum mechanical particle. This allowed for fifty years of theoretical
know-how, accumulated in quantum physics, to be transposed to polymer
science!

The present book describes the final state of this evolution. The two
Russian authors have had the talent of writing it in a simple style — avoid-
ing most of the heavy formalism which is beloved in countries of strong
mathematical bias, such as Russia or France.

The final product is accessible for university students and to research
engineers. I am convinced that it will play a very useful role in this context.
Giant molecules are important in our everyday life. But, as pointed out
by the authors, they are also associated with a culture. What Bach did
with the harpsichord, Kuhn and Flory did with polymers. We owe a lot of
thanks to those who now make this music accessible.

P.G. de Gennes
March 1996

2H. Morawetz, “Polymers: the Origins and Growth of a Science”, John Wiley & Sons
(USA), 1985.
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From the Reviews of the First Edition

“Giant Molecules is a beautiful book on polymer science which is written by
two of the leaders in the field who are also tremendously skilled at putting
the science in both historical and scientific contexts. The book is actually
a marvelous introduction to polymer physics . . . which is scientifically accu-
rate but can also be read as a wonderfully articulate and amusing history
of the subject. The book must be on the shelf of all polymer scientists and
will go a long way in explaining this sub-discipline to the broad public.”

Philip Pincus
University of California

Santa Barbara
(from the review of the manuscript, 1996)

“Giant molecules is one of the hottest topics in science today. This book,
written by two brilliant physicists, will guide readers through this new fron-
tier of polymer science . . . and the authors make the topic equally applicable
to any curious reader. The authors are skilled story-tellers, which makes
this scientifically relevant book entertaining as well as informative. Giant
Molecules will be of use to all levels of science enthusiasts who are curious
about the newest developments in polymer science. This book is not to be
missed!”

Toyoichi Tanaka (1946-2000)
Massachusetts Institute of Technology

(from the review of the manuscript, 1996)

“Who would have thought a pair of theorists would produce a very readable
and perceptive monograph of polymer physics? Yet this is exactly what

ix
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Alexander Y. Grosberg and Alexei R. Khokhlov have done in this attractive
book. . . . The explanations . . . are about clearest I have read anywhere.”

Edwin L. Thomas
Department of Materials Science and Engineering

Massachusetts Institute of Technology
(Nature, v. 388, p. 842, 1997)

“. . . it might seem almost impossible to write a book on macromolecules
. . . using almost no maths. However, the authors have succeeded in writing
an accurate and precise book. . . . I never found a place where simplification
led to scientifically questionable description . . . This makes it a valuable
book for both the scientifically interested layreader and non-expert student,
as well as for the experienced scientist . . .

I noted with pleasure the citations from classic literature at the start
of each chapter which hint at some surprising parallels in thinking between
scientists and the cited authors . . . ”

Kurt Kremer
Director of Max Planck Institute for Polymer Research

Mainz, Germany
(Physics World, December 1997, p. 49)

“The book reviews the fundamental concepts of polymer physics and dis-
cusses some of the modern frontiers of the subject, particularly in biol-
ogy. The overall level is suitable for an advanced undergraduate in physics,
chemistry or chemical engineering . . . Practitioners will also find this book
stimulating . . . ”

Thomas Halsey
Exxon Research and Engineering

Annandale, New Jersey
(Physics Today, February 1998, p. 73)

“. . . this is an easy read and readers with a desire to learn more about
the biology and physics of polymers will find Giant Molecules friendly and
welcoming.”

Bernd Eggen
University of Sussex

(New Scientist, August 16, 1997, p. 41)
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From the Reviews of the First Edition xi

“As a scientific text it is without doubt one of the easiest to read I have ever
encountered. Despite this, it remains, highly informative. . . . The authors
have managed, without compromising their scientific contents, to include a
number of interesting anecdotes that place the science in its true context
. . . I would commend this book to anyone with an interest in polymer sci-
ence, whether established experts or complete newcomers — it really is an
excellent starting point for the subject.”

Simon Biggs
The University of Leeds

(Molecules, v. 3, p. 142, 1998)

“I am a physics professor working on semiconductor materials. Polymer is
not my area . . . I can’t believe this great book hasn’t been reviewed yet.
Yes, it is written by two Russian scientists. But who said Russians can only
write rigorous math books? This book is not a monograph . . . it explains
a lot of phenomena in a clear, concise and humorous language. There is a
little math, not hard at all. Freshmen level calculus would be su�cient to
understand the book.”

A reader’s review on Amazon.com web site
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(IMAGINARY) EDITOR (sceptically): Oh, not you again. . .

AUTHORS (bashfully): Well, you see, we’ve written a book on
giant molecules. . .

EDITOR: What molecules?

AUTHORS: giant ones. (Getting more excited) Just listen to this
bit here!

EDITOR (impatiently): Oh, no, I haven’t time to listen to it.
Anyway, you’ve already published a book on them3, so what’s
the point?

AUTHORS: Yes, but that was for experts, while this one. . .

EDITOR (losing his temper): And this one is for housewives,
presumably! Look, why don’t you leave the preface with me,
and I’ll see what I can do.

AUTHORS: Here it is!

Preface

The very nature of the genre suggests the question that ought to be
answered in the preface: For whom is this book intended?

We hope that this book may interest anyone with general curiosity about
the world. And this is not just because we think too highly of ourselves!
Rather, what really gives us hope is the unique position of this field. It
is right at the crossroads of so very many paths of contemporary devel-
opment and ardent interest. It is about all kinds of things, e.g. modern

3A.Y. Grosberg, A.R. Khokhlov, “Statistical Physics of Macromolecules”, AIP Press,
1994.
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materials (including really fascinating “smart” materials), and the famous
DNA which is not just enthralling in its own right, but is already becoming
a tool which is used, for example, in criminology and as a “computer in a
glass of water”. Polymer physics is also about modern medicines, and lots
more. To sum up, many things that people talk about every day have their
roots in our science.

That is why we decided that it was time to write a clear, comprehensible
story about giant molecules.

A college or university student should be able to read our book from
cover to cover and get a superficial but coherent idea of the subject. A
scientist, whether a physicist, a chemist, a materials engineer or a molecular
biologist, may be interested to see how we approach familiar topics avoiding
the complexities of scientific language.

Very frequently, sophisticated science is treated with rather ambitious
mathematics. And the experience indicates that this aspect is the most
scary for many students. Indeed, mathematical methods become necessary
when and if a student wants to become professional and to build new inroads
into science. We keep the use of mathematics at bay, our mathematics is
restricted to simple algebra and never goes beyond the typical high school
curriculum. At the same time, our physics is at times quite sophisticated.

Last but not least, we hope that any reader may just browse through
the book and find out what is meant by “molecular architecture”, what will
happen if you chop up a cauliflower, or who used to be called the queen of
the world and her shadow.

Just one more thing. There is a well-known saying by Dostoevsky,
“beauty will save the world”. While one can interpret these words in dif-
ferent ways, there is no doubt that the intellectual beauty is one of the
most astonishing features of science. Indeed, why does the most e↵ective
so frequently happen to be the most beautiful as well? We do not know,
but it seems to be a fact! In this book we have tried to demonstrate the
beauty of polymer and biopolymer science.

For the present edition, we have modified the text in many places and
have written new chapters on polymer synthesis, protein folding, polymer
knots and new sections on molecular motors, semi-flexible and worm-like
polymers, and several others. We have included many new figures. Overall,
about 50% of the book is new.

Previous edition included the CD ROM with computer simulations of
polymers. We decided not to include it in this edition, because, as it turned
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Preface xv

out, this part was getting obsolete too fast. We are working now on the
ways to disseminate the corresponding material in a more e�cient form.

All color figures in the book are grouped in three places: (i) pages 81–85,
(ii) pages 215–221 and (iii) pages 277–281. References to them are labeled
with letter “C”, like Fig. C2.4 etc.

We have tried to make this book both interesting and useful. Whether
we have succeeded or not is for our readers to decide.

The Authors

EDITOR (murmuring to himself ): Well, if they are not lying,

perhaps it is interesting after all. . . It sounds like, apart from

the general reader, the book may interest people in (counting

on his fingers) the APS, ACS, MRS, BPS . . . I think we ought

to publish it.
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Chapter 1

Introduction: Physics in the World of
Giant Molecules

Molecules are supposed to be small, aren’t they? Quite apart from anything
else, even the very word molecule comes from a Latin phrase that literally
means “a tiny mass of something”. Nevertheless, what would you say about
a molecule about 1 meter long? Or another one that weighs almost 1
kilogram? There are many molecular giants of the kind. They are called
polymers; perhaps you have heard this word. Thus, our book is about
polymers. The world of polymers.

The world of polymers. . . Are polymers really so diverse and numerous
that they make up a whole world? Is this not an exaggeration?

Well, what are polymers? The first things that come to mind may be
plastic bags, and other common plastics. You may also think of rubber and
all its products. Then, synthetic fibres and fabrics, as well as natural ones,
of course. In fact, the list is endless: for example, cellulose (which makes
up both timber and paper), the shell of a space probes traveling to Venus
or Mars, and artificial valves implanted into a human heart. . . Polymers are
used for all sorts of purposes. Huge quantities of them are made these days
throughout the world. In fact, the volume of polymers produced already
exceeds that of metals (although metals still win by weight).

The applications alone are a good enough reason to study polymers.
This is just the same as with semiconductors, for example. However, it is
not only their applications that make polymers so fascinating. The greatest
incentive to do polymer science is life itself. Even a schoolchild knows these
days that our so called “genetic blueprint” (that is, what one is born to
be, a dog or a cat, a boy or a girl, and what color of skin, hair, and eyes
one is to have, etc.) is contained in molecules of a special polymer, DNA
(deoxyribonucleic acid). Modern biology regards a living cell as a kind of
factory, finely tuned, and controlled by DNA. Meanwhile, all the working

1
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devices in this factory (be they chemical, electrical, mechanical, optical, or
whatever) are based on another type of polymer called proteins. In addition
to this, polymers make hooves and horns, hair, and lots more!

It is not just that polymers are found in abundance in nature, they
actually play a crucial role. So M.D. Frank-Kamenetskii was not really
joking when he called his popular book on DNA “The Most Important
Molecule” (Ref. [45] in the list at the end of the book).

You may say, “All right, I believe you, polymers are important. Perhaps
one can even talk about the world of polymers if one wants. But why
physics?” Good question. We shall try to answer it in a minute, but before
that let’s make one more comment.

We would hate to sound like totally boring people who believe in doing
only useful things. In fact, sometimes it is a good idea just to pursue
whatever takes your fancy! At least, it works very well in scientific research.
After all, it is seldom clear from the start what use you can make of a
discovery or idea. What is fortunate is that good scientists usually have
well developed “taste”: what they like and want to do, tends to be also
useful.

Well, let’s go back to the question. Why study the physics of polymers?
We can now give one good reason. It is merely very interesting! And
it has a lot to o↵er. Beautiful e↵ects, fundamental analogies with other
areas, and clear physical principles explaining complex phenomena. These
are just what we shall try to give a feel for in this little book. As for
various applications, there are other people who can write a better story
on those. Chemists could talk with confidence about synthetic polymers.
And molecular biologists know a lot about biological polymers. However,
even in these areas, physicists have no reasons to feel too much out of place.
Without physics, one can hardly reach a proper understanding of polymer
chemistry or molecular biology. This is why all polymer scientists know
the physics of polymers, and all use it to some extent in their work. Quite
often the combination proves very fruitful.

There was even a period, in the 1940s and 1950s, when polymer physics
was developed mainly by professional chemists. The most notable among
them was Paul Flory (1908–1982), an American physical chemist who went
down in scientific history chiefly due to his pioneering work in polymer
physics. He received a Nobel prize for this in 1974.

However, science tends to become more and more specialized. So it
is not surprising that polymer physics has eventually grown into an inde-
pendent field of research. This was helped by some eminent physicists,
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such as I.M. Lifshitz in Russia, S.F. Edwards in England, and P.G. de
Gennes in France, who in the middle of the 1960s turned towards the study
of polymers. They revealed basic analogies between problems in polymer
physics and some of the most burning and tantalizing questions of general
physics. Polymers emerged on to the pages of the world’s main physics
journals and at major international conferences. Rather rapidly, a harmo-
nious system of simple models and qualitative ideas formed about the basic
physical properties of polymers at a molecular level. All these concepts
have been used successfully both in physical chemistry and in molecular
biology. This brought also some terminology simplification. For example,
we shall frequently follow physics tradition and call the units of polymer
chain “monomers,” not the “monomer units,” as chemists prefer.

If you know about the physics of polymers you will understand why
they are so widely used in everyday life and in industry, as well as how they
work in biology.
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Chapter 2

What Does a Polymer Molecule Look
Like?

L’essentiel est invisible pour les yeux.
(What is essential is invisible to the
eye.)

Antoine de Saint-Exupéry,
Le Petit Prince

2.1 Polymers are Long Molecular Chains

There used to be a time when in scientific essays all substances were de-
scribed just in terms of how human senses perceived them. Even now one
may come across this way of presenting things in some textbooks; for exam-
ple: “Water is a liquid which has no color, no taste, and no smell”. These
days such a description could also include information obtained from vari-
ous measuring instruments, such as the spectrum or a material parameter.
However, it would not be an exaggeration to say that modern scientists —
be they physicists, chemists, or biologists — who study a substance should
first of all have some image of a molecule of the substance.

This is why we shall start with what we can call portraits of polymer
molecules. Polymers are substances consisting of long molecular chains,
so-called macromolecules. A helpful image is some sort of long, entangled,
three-dimensional thread, chain, rope or wire.

What could be the chemical structure of such a macromolecule? Figure
2.1 a shows schematically the structure of the simplest polymer chain, a
polyethylene macromolecule. One can see that the macromolecule consists
of indefinitely repeating identical CH

2

groups which are connected by co-
valent chemical bonds to form a chain. Other polymers (e.g., polystyrene

5
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CH2 CH2 CH2 CH2... ...
a a’

CH2 CH2CH CH... ...

b b’

Cl Cl

CH2 CH2CH CH... ...

c c’

n

ClClClCl

Fig. 2.1 Chemical structure of (a) polyethylene, (b) polystyrene, (c) polyvinyl chloride. To
illustrate various ways to present such structures, panels (a’), (b’), and (c’) show the same
polymers in various other notations. For instance, hydrogen atoms are usually not shown,
carbon atoms may not be explicitly shown as well (a’ and c’), and only one repeat unit can
be shown instead of the chain (b’).

or polyvinyl chloride) are still organized into a chain of repeating units,
although units themselves may have very di↵erent atomic structures (Fig-
ure 2.1 b, c). In this book, we will call the elementary units of polymer
chains as monomer units, or simply monomers1.

To be considered as a polymer, a molecule must consist of a great num-
ber of units, N � 1. Molecules of the types shown in Figure 2.1, if artifi-
cially synthesized in a chemical laboratory or industrial process, normally
contain from hundreds up to tens of thousands units: N ⇠ 102÷104. Natu-
ral polymer chains can be even longer than such “synthetic” polymers. The
longest known polymers are DNA molecules. The number of monomer units
in DNA can reach a billion (N ⇠ 109) or even ten billion (N ⇠ 1010).
It is just because they can be so long that polymer molecules are called
macromolecules (“macro” is the Greek for large).

1We must warn the reader of the terminological subtleties on this point. In chemical
literature, the term monomers is frequently reserved for the relatively small molecules
employed as the initial building blocks in purposeful making, or preparation, of polymer
chains. In this language, the units of a polymer, or “links” of a polymer chain, are
sometimes referred to as monomer residues (because monomers typically loose some
chemical groups, such as OH, when combined into chains). We will discuss these issues
in somewhat more details in Chapter 3, but mostly we will follow the tradition of physics
literature and use the simple word monomer for the units of already prepared molecular
chains.
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The fact that polymer molecules consist of long chains of monomers was
not originally realized. At the beginning of the 20th century it was finally
proved that matter consists of atoms and molecules. Yet no one attempted
to look at polymers from a molecular point of view, even though some nat-
ural polymers (such as rubber, cellulose, silk, and wool) were widely used.
At that time, the predominant opinion about polymers was that they were
a sort of complex colloid system. It was not until the early 1920s that sem-
inal works by the German physical chemist Hermann Staudinger appeared.
He suggested, after analyzing many experimental results, that polymer
molecules are chains. The idea met with some scepticism at first, and even
with a fair amount of mockery in scientific circles. Once, for instance, at a
seminar, Staudinger was asked the question: “So what kind of length are
your molecules after all — the size of a nail, or of a finger?” All those present
thought it was very funny, and burst out into gu↵aws. Of course, from the
modern point of view, there was nothing to joke about — DNA macro-
molecules, measured along the chain, can be as long as a few centimeters.

Although his hypothesis was not accepted at once, Staudinger stuck to
it, and went on accumulating more and more experimental evidence. As
a result, by the beginning of the 30s, the concept of the chain structure
of macromolecules became generally established. It is sometimes reckoned
that looking at the evolution of any scientific idea one can discern three
di↵erent stages — at the beginning people say: “It’s impossible!”, then:
“There may be something in it!”, and eventually: “Oh well, but that’s
a well-known fact!” The concept that macromolecules are long molecular
chains went through these three stages over a period of just ten years.
Remarkably, Staudinger had to wait for about quarter of a century until
eventually Nobel Prize in chemistry was awarded to him in 1953 (“for his
discoveries in the field of macromolecular chemistry”).

2.2 Flexibility of Polymer Chains

The work by Staudinger prepared the ground for physics to intrude into the
“Polymer World” — it had become possible to explain physical properties
of various polymers by taking into account the chain structure of their con-
stituent molecules. But first, polymer scientists had to discern the specific
shapes, or conformations, of molecular chains for di↵erent polymers.

For example, let’s consider a polymer molecule diluted in some ordinary
solvent (say, in water). What kind of shape does the molecule’s chain have?
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a b

Fig. 2.2 (a) Rectilinear conformation of a
polymer chain; (b) conformation of an entan-
gled coil.

Judging from the linear structure of the polymer chains (Figure 2.1), at
first glance it seems reasonable to assume that the chain looks vaguely like
a straight line (Figure 2.2 a). But this is not true; as a matter of fact,
it gets tangled up into a random loose three-dimensional coil (Figure 2.2
b). This is simply a result of the chain’s flexibility. Let’s emphasize: it is
not the result of any particular specific chemical structure, it is the general
physical consequence of the linear chain structure of the molecules.

Generally speaking, the idea of flexible polymer chains may appear
rather surprising. At school one is taught that the atoms in a molecule
are joined together by covalent bonds in some specific order. Therefore
their positions in space with respect to each other must be fixed too — just
following from the chemical formula for the structure. And if one looks at
a small strand of the chain only, this argument will be quite correct.

For example, Figure 2.3 shows the spatial structure of a little segment
of a polyethylene macromolecule. One can see that the main chain is a
sequence of carbon atoms connected with covalent bonds, and that each
carbon atom is also joined to two hydrogen atoms. So in complete agree-
ment with the naive chemical concept, the atoms of each monomer unit as
well as the atoms of neighboring units are located in a well determined way
with respect to each other2. And although the main chain bonds form a
zigzag pattern, Figure 2.3 seems to suggest that overall chain shape should
be more or less like a straight rod, as in Figure 2.2 a.

There is even a separate branch of research called conformational analy-
sis of polymers. It deals with the geometry of atoms’ positions in reasonably
short chain segments, for much more complex structures than polyethylene,
of course. An example is depicted in Figure C2.4: a strand of a DNA double
helix. (We shall talk about DNA structure in more detail in Sections 5.5

2For the moment, we ignore the fact that the conformation of a polyethylene segment
shown in Figure 2.3 is not the only possible one. A few di↵erent conformations can be
realized because there are several rotational isomers of the molecule (see later). By the
way, this is the main reason for the flexibility of polyethylene chains.
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Fig. 2.3 Spatial structure of a polyethylene chain segment in the most energetically fa-
vorable configuration.

and 5.6.) The “portrait” of double helix is really one of the cultural icons
of our time, it is found everywhere, from calendars and T-shirts to some ar-
chitectural designs. The very fact that it is so easily recognizable indicates
that each atom really does occupy a particular place.

At the same time, in reality, of course, the atoms of a molecule are not
strictly fixed in their equilibrium positions. Indeed, if we think physically,
the atoms may be pushed away from their equilibrium positions by a force
or a kick, resulting, say, from thermal collisions between a given macro-
molecule and molecules of the solvent. Left alone after the kick, the atoms
may also oscillate around these equilibrium positions. In a real system,
changes in atoms’ positions occur, firstly, because the bond angles (i.e. the
angles between adjacent chemical bonds) can be deformed. Secondly, parts
of the molecule can rotate with respect to each other, around the axes of sin-
gle covalent bonds (but not around double ones). This rotation is sometimes
expressed in terms of a molecule having a few di↵erent “rotational-isomeric
forms”. But the oscillations hardly ever alter the lengths of covalent bonds.

Thus, in many cases, you can regard a molecule as a construction of
rigid rods, a bit like a miniature imitation of the Ei↵el tower. The rods,
representing covalent bonds, swing slightly from side to side, about the
atoms, with angles between bonds changing. The amplitude of such bond-
angle oscillations, as well as the probability of various rotational-isomeric
forms, depends on the temperature. For example, at room temperature
(T ⇡ 300 K) the oscillation amplitude of the bond angles � for typical
molecules normally varies from one to ten degrees: (��)

T = 300 K

⇠ 1� ÷
10�. Obviously, for an ordinary small molecule such oscillations would not
appear too significant. Indeed, Ei↵el tower also undulates a little bit, with
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its top swinging by several meters in a windy weather, which does not
seem like much when you either look at the tower from afar or sit in the
famous restaurant on top. Similarly, in a short segment of a polymer chain
only low-amplitude fluctuations occur. This is why the chain’s flexibility
is hardly noticeable at such a small scale, and short chain segments can
indeed be depicted in the way shown in Figures 2.3 and C2.4.

At larger scales, however, all the small angle deformations add up along
the chain and eventually result in the chaotic coiling of the polymer (Fig-
ure 2.2 b). Exactly how long the chain should be in order for the local
fluctuations to result in global tangling up depends on the specifics of a
particular chemical structure, but if the chain is long enough, then the
coiling is inevitable.

2.3 Flexibility Mechanisms

As we have seen, any su�ciently long molecular chain does indeed have
some flexibility, just because of its linear structure and considerable length.
However, the nature of this flexibility may be di↵erent for di↵erent kinds of
polymers. For example, the majority of the most commonly used synthetic
polymers (including all those in Figure 2.1), as well as all protein molecules,
have single C–C chemical bonds along their main chains. Such molecules
appear flexible basically due to rotational isomerism, that is, because parts
of a molecule may rotate around the single bonds. The main contribution to
the discovery and study of this type of polymer flexibility was made by the
physicist M.V. Volkenstein (1912–1992) and his group from St. Petersburg
(at that time Leningrad).

A classic example of a polymer with a di↵erent flexibility mechanism
is a DNA double helix (Figure C2.4). Since it consists of two entwined
“threads”, rotations in one of them are prevented by the other. So the only
remaining way in which the chain can flex is by deformation of the angles
between the bonds. Each bond angle gets distorted slightly, and so the
flexibility is distributed fairly uniformly along the double helix. Nowhere
may there be a kink or a right-angle bend, for example. DNA therefore looks
like an elastic wormlike thread as shown in Figure 2.5 a. A model chain
in Figure 2.5 is called a worm-like chain and is used to describe flexibility
of this sort (sometimes it is also called Kratky–Porod model, after the
researchers who introduced it in 1949). The fact that double helical DNA
is well represented by a worm-like chain model is nearly obvious upon a
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a b

Fig. 2.5 A worm-like polymer chain (a)
and a freely jointed polymer chain (b) — two
simple and most common models of polymer
chain flexibility.

single glance on Fig. C2.4; but for a while this fact seemed abstract, remote
of any practical use. This view changed when in 1992, C. Bustamante and
his co-workers at the University of Oregon performed a completely new
type of experiment — they were able to measure elasticity of a single DNA
molecule! Their results turned out possible to understand in terms of worm-
like flexibility.

Yet another, and maybe the simplest, model for a polymer’s flexibility
is the so-called freely jointed chain. This is a sequence of rigid rods, each of
length `, joined together with freely rotating hinges as sketched in Figure
2.5 b. Such hinges hardly ever occur in a real polymer. However, as long
as one is only interested in large-scale properties of a polymer coil, then
the particular nature of the chain flexibility ceases to be important. (In
Section 6.5, we are going to discuss why this independence of the details
holds in most cases, and why it sometimes fails.) Therefore, for the sake
of simplicity, we shall use the freely jointed model in this book to explain
some concepts and results.

2.4 A “Portrait” of a Polymer Chain

A typical conformation of a freely jointed chain consisting of a great number
of units is shown in Figure 2.6. You can easily create a similar pattern
yourself; if you have access to a personal computer, it is also a good exercise
in programming! However, if you only have a sheet of paper we suggest the
following routine. Draw a straight line of unit length, let’s say, 1 centimeter.
Then choose some random direction; you can do this, for example, by
depicting a kind of a “wind-rose” (i.e. a diagram of the relative frequency
of wind directions at a place) with six directions, numbering them in order
from 1 to 6, and then tossing a die. (On a computer, instead of a die, you
would simply use a random number generator.) Now, starting at the end of
your straight line, draw a new one of the same length in the chosen direction,
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Fig. 2.6 A typical
conformation
of a polymer coil. The
freely-jointed chain of
106 segments has been
simulated
computationally in
three-dimensional
space.
Two-dimensional
projection shown could
have appeared as a
Gaussian random walk
on the plane,
except the length of
each step on the two-
dimensional projection
is not constrained to
be unity. The figure
is courtesy of
S. Buldyrev.

and repeat this operation many times (i.e. choose a random direction again,
independently from the previous one, add another straight line, etc). As a
result, you get a “portrait” of a polymer chain, just like the one in Figure
2.6. Actually, this figure was indeed obtained by a very similar procedure
(on a computer); the only di↵erence is that the “wind-rose” had many more
than six di↵erent directions, and it was situated in three-dimensional space
rather than on a plane.

Looking at Figure 2.6 you might think that you have already seen some-
thing similar when studying molecular physics. You would not be wrong,
although there is no chapter on polymers yet in most textbooks on molec-
ular physics. However, Brownian motion is included in all of them. They
often show a photograph, made with a microscope, of the random path of
a tiny dust particle suspended in a fluid and bu↵eted chaotically by nu-
merous molecules. Such a random walk and the polymer conformation in
Figure 2.6 are as alike as two peas in a pod. Why should this be the case?
We are going to find out in Chapter 6.

Figure 2.6 also makes it clearer how a polymer chain tangles up into a
random coil due to its flexibility (as we have already discussed, see Figure
2.2 b). One can reproduce the same kind of pattern using any model for a
chain’s flexibility, it does not have to be a freely jointed one.
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Having read all this you may be wondering why at the very beginning
of our polymer story we started talking about such things as bending and
the shape of polymer chains. In fact, bending of chains (or, in other words,
their conformation) plays a key role in the properties of polymers. Nearly
all of this book is a collection of examples of this, but here we shall give
only one simple illustration. DNA molecules in human chromosomes are
almost about a meter long (there is quite a lot to be recorded there, hence
the considerable length!) If DNA chains were not flexible but rigid like
spokes, how could they be packed and kept in a cell nucleus as small as one
micron, or 10�6 m? As Figure C2.7 suggests, this is the problem even for a
bacteria: once outer shell of bacteria is destroyed, DNA spills out; it must
have been very dense inside given how much gets out!

2.5 Heteropolymers, Branched Polymers, and
Charged Polymers

You now know that what is special about polymers is their chain structure,
great length, and flexibility. These are common features of all polymers.
They cannot explain everything though. One complication is that each
monomer unit has a particular chemical structure; besides that, there are
three major physical facts which make things more intricate, as we shall
now discuss.

2.5.1 Heteropolymers

Simple polymer chains, such as the ones in Figure 2.1, consist entirely of
identical monomer units and are sometimes referred to as homopolymers.
However, some macromolecules are built of monomer units of a few di↵erent
sorts. They are known as heteropolymers, or copolymers as chemists say
(we shall use both terms interchangeably)3. Most interesting and important

3Once again, there is a terminological subtlety, largely due to historically di↵erent
chemistry and physics cultural traditions. Chemists pay much attention to the fact that
some polymers (including all examples of the Figure 2.1) have only carbon atoms in
their main chains, while main chains of other polymers include the so-called hetero-
atoms, that is, atoms other than carbon, such as nitrogen, oxygen, etc. Practically
important examples include most plastics, cellulose, biopolymers of DNA and proteins,
etc. There is special name for the latter type of compounds — heterochain polymers, but
chemists sometimes also call them heteropolymers. As always, we in this book stick to
the simplified terminology, which in this case also universally adopted not only in physics,
but also in biophysics: by our definition, heteropolymers are the same as copolymers —
chains of more than one type of monomers.
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among them are biopolymers such as DNA (having four di↵erent types of
monomer), and proteins (20 di↵erent types). The sequence of monomers
along the chain forms the primary structure of this chain. One can compare
the primary structure of a biopolymer to a sequence of letters in a long line
of very interesting and informative book written in a language which we do
not yet completely understand.

Some heteropolymers are not biological, but are artificially synthesized.
Their primary structures, in the spirit of our previous comparison, resem-
ble a book that a monkey would have created if it were allowed to use a
typewriter. It would either be a totally random sequence of characters (i.e.,
a statistical copolymer) or a number of blocks of repeating identical letters,
such as “BBBBBZZZCCCC” (i.e., a block-copolymer) or maybe a simple
periodic sequence, such as “ABABABABABABABAB” (the latter can be
also treated as a homopolymer whose repeating units, or monomers, are AB
each). Lack of “sense” in their primary structures, by the way, does not
prevent random and block-copolymers from having some very interesting
physical properties, or from being widely used in applications.

2.5.2 Branched Polymers

Together with simple linear chains, polymer science also deals with
branched macromolecules. They can have the shape of combs (Figure 2.8
a), stars (Figure 2.8 b), or an even more complicated structure (Figure 2.8
c). Another species of this kind is a macroscopic polymer network (Figure
2.8 d) which takes the idea of branching to its extreme. This huge molecule
emerges when lots of entangled polymer chains are chemically connected,

Fig. 2.8 Branched
macromolecules: (a)
a comb, (b) a star,
(c) a randomly
branched chain; (d)
a polymer network. ba

dc
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or cross-linked, with each other (see Section 3.5). It can be many centime-
ters across. Scientists have a special word for it: a gel. Meanwhile, chefs,
who may not even suspect that they are talking about polymer networks,
use the same word in a slightly di↵erent form: jelly! So, when you are
eating your favorite jell-o, you hold in your hands a single molecule: isn’t
it a giant molecule?! (Well, a rigorist would say that jell-o is not really
a single molecule, for there are many small molecules of water and others
inside. . . The rigorist is, as always, right, but we are right, too: at least one
of the molecules in jell-o is big.)

2.5.3 Charged Polymers

None of the polymers depicted in Figure 2.1 contains electrically charged
monomers. However, there are some polymers whose monomers may lose
low molecular weight ions and become charged. Polymers of this sort are
called polyelectrolytes, and the ions which break o↵ are usually known as
counterions.

The simplest of the polyelectrolytes are polyacrylic and polymethacrylic
acids (Figure 2.9). When in solution in water, if an alkali is added, the
monomers of these polymers dissociate and become negatively charged.
Biopolymers, such as DNA and proteins, are also polyelectrolytes in their
natural aqueous environment — DNA’s chain has a large negative charge,
whereas the monomers in proteins can be neutral or carry a positive or

a
... ...CH2

CH

C
OH O OH O

O- O O-
Na+ Na+

O

c
... ...CH2

C

CH3

C

b
... ...CH2

CH

C

d
... ...CH2

C

CH3

C

Fig. 2.9 A
monomer unit
of polyacrylic (a,b)
and polymethacrylic
(c,d) acids in the
neutral (a,c) and
charged (b,d) forms.
The way a unit gets
an electric charge
is by dissociation in
water solution if you
add an alkali (e.g.,
NaOH; in this case
the role of counteri-
ons for the charged
units (b) and (d) is
played by the Na+

ions).
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negative charge, depending on the type of monomer and composition of
the solvent. By the way, such chains containing both positive and negative
monomers also have special name, they are called polyampholytes.

2.6 Ring Macromolecules and Topological E↵ects

Some polymer molecules can have the shape of a loop or a ring (Figure
2.10 a). Studying these, it is important to remember that parts of such
closed chains cannot go through each other (Figure 2.11) in the way that
ghosts, or phantoms, would do. In other words, as they sometimes say in
scientific literature, the chains are “not phantom”. Hence, the number of
conformations in which a ring molecule can appear in its thermal motion is
restricted. Anything that one can obtain from the original shape by various
movements and deformations is allowed, but not the passing of the chain
through itself. The mathematical properties of such objects are studied in
a course on topology and are therefore called topological properties.

However, we do not even need to know topology to understand that a
ring molecule can be tied into a knot of some sort (Figure 2.10 b). A few
rings can form various entanglements with each other (Figure 2.10 c). A

Fig. 2.10 An un-
knotted (a) and
knotted (b) ring
macromolecule. The
link of two ring macro-
molecules (c). An
Olympic gel (d). The
tangling of two
complementary
strands into a double
helix (e).

a

e

b c

d

Fig. 2.11 An impossible type of motion:
two chains or two segments of the same
chain cannot go through each other.
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200 nm

Fig. 2.12 Rings of DNA about 3,000 base pairs long. The sample was prepared at very
low concentration of salt in water, this led to very strong electrostatic repulsion between
negatively charged phosphate groups on the opposite DNA strands, which is why double
helix was unwound in several places indicated by the arrows. Electron microscopy image is
courtesy of D. Cherny. Another image of a DNA ring, Figure 11.3, having a knot, will be
discussed later in Chapter 11.

peculiar thing about Figure 2.10 c is that the molecules are not connected
with chemical bonds, yet cannot be easily separated. Even such a thing as
the so-called Olympic gel (Figure 2.10 d) can in principle exist. It looks like
a kind of molecular chainmail, and obviously acquired its name due to its
resemblance to the coupled rings of the Olympic emblem. Of course, there
are the same sort of topological constraints in polymer networks too (See
Figure 2.8 d).

We will discuss more about polymer knots in Chapter 11, but cannot
postpone mentioning one of the reasons why topological e↵ects are of special
interest: natural DNA molecules normally, and perhaps even always, have
a ring shape (Figure 2.12). The two strands of the double helix form a
link of a very high order as shown in Figure 2.10 e. You may get some
idea of how important the topology is from the following fact. Living cells
have “provided” themselves with special topological enzymes which can do
rather intricate jobs. They can, for instance, break one of the strands of a
ring-shaped DNA molecule, then use some energy to “rearrange” the double
helix by twisting it a particular extra number of times, and finally “heal”
the break. Obviously, this is not just accidental, but is done for some good
reason.
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We should also mention in passing that some organisms, called kine-
toplasts, have their genomes in the form of Olympic gel type construct of
many DNA rings.

Linear polymer chains (of an open rather than a closed shape) are cer-
tainly not topologically constrained in the same sense. They can always
come together or move apart. On the other hand, you have probably some-
times had to wrestle with a bundle of entangled ropes or cables. We all
know how time-consuming this is. And the knowledge that, in theory, ropes
can be separated does not really help! So, based on this mundane experi-
ence, we may expect that systems of densely entangled linear chains should
exhibit rather interesting and unusual dynamic behavior. We shall talk
about this in Chapter 12.
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Chapter 3

How are Polymers Made?

Mein Märchen ist aus, dort lauft eine
Maus, wer sie fängt, darf sich eine große
Pelzkappe daraus machen.
(My tale is done, there runs a mouse,
whosoever catches it, may make himself
a big fur cap out of it.)

Grimm Brothers,
Hänsel and Grethel

We have talked about di↵erent types of polymer molecules. Now it seems
the right time to ask how all these various types are actually made, ranging
from the simplest linear polymer chain to a polymer network of a complex,
densely entangled structure.

In a living cell, chains of biopolymers (DNA, RNA, proteins, polysac-
charides) are built by special systems in an enzyme-mediated process called
biosynthesis. This is a very robust process. Su�ces it to say that if we fully
stretch all DNA macromolecules synthesized in the human body during
the life period the total length turns out to be of astronomical scale: two
light-years! And all the macromolecules forming this way are practically
identical.

The synthesis of artificial polymers is much less robust. This is a major
task of polymer chemistry. This book, however, is meant to concentrate on
physics, so we shall not discuss this question in any great detail. Never-
theless, it might help to have some general idea of the methods of polymer
synthesis. It would allow us to understand physical properties of polymers
better and more profoundly.

19
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Long polymer chains are synthesized from low molecular weight com-
pounds that are monomers. There are two main methods of synthesis:
polymerization and polycondensation.

3.1 Polymerization

During polymerization, monomers are joined successively (one-by-one) to
the main chain, according to the rule A

N

+ A ! A
N+1

. For example,
polystyrene (Figure 2.1 b) is obtained through polymerization of styrene:

 
(3.1)

It would be natural to ask here what conditions are needed for a chain to
start growing. And how does the process stop? A reaction like (3.1) cannot
begin of its own accord. To start such a reaction the active center (it may
be a free radical, cation or anion) should be produced first, for this purpose
chemists are normally using the so-called initiators — special substances
which can generate active species. In a simple example the initiators eas-
ily decompose and form free radicals, i.e. molecules containing unpaired
electrons; the reaction initiated this way is called free-radical polymeriza-
tion. Typical initiators for free radical polymerization are compounds with
a labile bond, e.g. peroxide �O�O�; hydrogen peroxide is the most well-
known example, but most widely used in the reactions of the type (3.1) are
organic peroxides, e.g. di-tert-butyl peroxide:

 
(3.2)

The free radicals are usually highly reactive, because of unpaired elec-
trons. In particular, they can react with the double bond in the compounds
like styrene. In such bond one electron pair is held securely between the two
carbon atoms (�-bond). The other is more loosely held (⇡-bond). When
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the free radical is approaching to styrene molecule, another stable �-bond
is formed instead of a ⇡-bond, but the unpaired electron is transferred
to monomer unit, as it is shown in the following reaction of di-tert-butyl
peroxide with styrene:

 (3.3)

The resulting free radical can react with another styrene monomer; the
location of the radical is transferred to it, etc. In this way polymerization
continues by itself with no outside help, making the chain longer and longer.
The free radical is always located at the growing chain end. This process
is called chain propagation.

From this example we can discern the main features of the polymeriza-
tion process. First, to enable this kind of synthesis, a monomer molecule
has to have a double (or triple) chemical bond. Second, the whole process
is merely a rearrangement of chemical bonds between the molecules (e.g.,
a double bond transforms into two single ones). This is why no byprod-
ucts are normally created during polymerization, and the growing molecule
in most cases consists of exactly the same atoms as the initial compounds.
Third, from each free radical one polymer chain can emerge, therefore to get
longer chains one should normally decrease the concentration of initiator
and increase the concentration of a monomer.

If an active center at the end of a chain ceases to exist (say, unpaired
electron of a free radical becomes passivated), then the chain stops grow-
ing. It is said that in this case polymerization terminates. The termination
process can happen spontaneously (if, for example, the ends of two indepen-
dently growing chains meet together and react forming a combined chain),
but it can also be deliberately stimulated by special substances called in-
hibitors. An active center can also be transferred from one macromolecule
to another (so called transfer reaction); in this case the macromolecule loses
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its capability to propagate and stops to grow, but simultaneously the new
active chain appears and its propagation starts. Obviously, the chain will
also stop growing upon the exhaustion of monomer supply. In one way or
another, the chain propagates and eventually grows into a macromolecule,
for instance, like polystyrene shown in Figure 2.1 b.

Polymerization is used to obtain most common polymers shown in 2.1.
Polymerization of styrene (3.1) goes on at rather mild conditions (around
100�C, normal atmospheric pressure, benzene or toluene used as a sol-
vent). However, for polymerization of ethylene more extreme conditions
are needed (300�C and 2, 000 atm).

Heteropolymers can also be synthesized in this way, but, of course, there
should be di↵erent types of monomers in the mixture.

3.2 Polycondensation

Polycondensation is rather di↵erent than polymerization: segments of a
polymer chain, with functional groups at the ends, gradually join on to each
other: a�A

N

�b + a�A
M

�b ! a�A
N+M

�b + a�b. Polycondensation can
be visualized if one thinks of a group of people holding hands to form a
human chain: each person has two hands, and they correspond to two
reactive functional groups in polymer language.

An example of such a process is the reaction between terephthalic acid
(HOOC�C

6

H
4

�COOH) and ethylene glycol (HO�C
2

H
4

�OH). At certain
conditions COOH and OH groups of these molecules can react, forming
ester COO bond:

HOOC�C
6

H
4

�COOH + HO�C
2

H
4

�OH

! HOOC�C
6

H
4

�COO�C
2

H
4

�OH

+ H
2

O . (3.4)

The resulting compound will grow further, because there are potentially
reactive functional groups COOH and OH at the ends of it. It is clear
that in this process the chain segments of di↵erent lengths will be formed,
and these segments can further join each other with the formation of a
new ester bond and a longer united chain having the following structure
of repeat monomer unit: �CO�C

6

H
4

�COO�C
2

H
4

�O�. This polymer is
called polyethylene terephthalate. Everyone knows this polymer very well
from ordinary life, since plastic containers for cold beverages are made of
it. Also, when you buy clothes and want to check the fraction of synthetic
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fibers in the fabric, this is normally designated “polyester x%”. In this case
polyester is just another word for polyethylene terephthalate (this is a class
of polymers to which this macromolecule belongs).

During polycondensation low molecular weight substances are normally
produced as a by-product. (For instance, in the reaction (3.4) it happens
to be water.) This is why, in contrast to polymerization, the composition
of a growing molecule changes compared to that of the initial compounds.
Another special feature of polycondensation is that long chains can form
only if most of functional groups (like COOH and OH groups in the example
(3.4)) have been involved in reaction. However to achieve this result the
monomers should be taken in equal amounts. Otherwise we will end up
with short fragments (oligomers) of polyethylene terephthalate chains. In
the analogy with human chain, the situation with slight excess of one of the
reactants corresponds to a chain of men and women in which every man
can only hold hands with a woman, and vice versa. It is clear that in this
case the excess of either men or women will lead to finite chains, and the
more is the excess the smaller is the average chain length.

Sometimes it is necessary to deliberately ensure lower length of the
obtained polymer (for example, for better processibility). For the reactions
similar to (3.4) one of the methods to reach this aim is to add one of the
reactants in slight excess. The polycondensation will then proceed up to
a point when one reactant is completely used up and all the chain ends
possess the same functional group (either COOH or OH). Another method
to achieve desired chain length at polycondensation is the addition of a small
amount of a monomer with only one functional group (chain terminator).

It is interesting to mention that the first truly synthetic (not based
on natural products) polymer material was bakelite obtained in 1907 via
polycondensation of phenol and formaldehyde. This material had good di-
electric properties and was used mainly as an electrical insulator. The most
famous polycondensation polymer is probably nylon belonging to the class
of polyamides. Other common classes of polycondensation polymers are
polyesters (like polyethylene terephthalate), polysiloxanes, polycarbonates,
polysulfides, polyethers and polyimides.

3.3 Catalysts for Polymer Synthesis

An important aspect of polymer synthesis is the use of di↵erent catalysts
to facilitate polymerization and polycondensation. For example, in the
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so-called coordination polymerization monomer can add to a growing chain
end only if it forms a complex with the organometallic active center. The
most famous catalysts for coordination polymerization were discovered by
Karl Ziegler (1898–1973) and Giulio Natta (1903–1979) in the 1950s (Nobel
Prize in 1963), they are based on titanium tetrachloride and methylalumi-
noxane. By the use of these catalysts it was possible, for example, to obtain
polypropylene macromolecules which are much longer, not branched and
stereoregular (i.e. not atactic — see Section 4.2 for more details). Another
important class of catalysts for polymerization are metallocenes; the reader
wishing to learn more about those has to consult the books on polymer
chemistry.

We would like to add here only one remark on the catalysis for poly-
merization processes in living nature. For example synthesis of DNA is
catalyzed by the protein called DNA polymerase. Contrary to the systems
mentioned above, this proceeds at room temperatures, normal pressures,
and does not involve metals. This is another testimony to the fact that Na-
ture in the course of molecular evolution has done a great job and scientists
have still a long way before them to improve their methods.

3.4 Polydispersity, Living Polymerization

It would seem that polymer chains constructed from monomers as a result
of random chemical reactions should have a rather wide distribution in
their lengths. This is indeed true, and the name for this phenomenon when
chains of various lengths coexist in a polymer substance is polydispersity.
Polydispersity has to be borne in mind when analyzing polymer properties.
In practice, there are some ways to reduce polydispersity by separating
chains with di↵erent length.

An interesting method to obtain polymers with relatively narrow poly-
dispersity without additional separation processes is based on the so-called
living polymerization. This is a polymerization for which the ability of a
growing chain end to terminate or to transfer its active species to another
molecule has been removed. To reduce polydispersity the rate of chain
initiation should be much larger than the rate of chain propagation. As
a result practically all the chains grow simultaneously at a more or less
constant rate until the monomer is exhausted. Living polymerization is a
popular method for synthesizing block copolymers (see Sections 2.5 above
and 4.7 below), since growing chain ends remain active after the process
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with initial monomer is completed (no chain termination). Therefore, at
this stage it is possible to add another monomer, and a new chain block
will start to grow.

First example of living polymerization was discovered by Michael Szwarc
(1909–2000) in 1956 in the anionic polymerization of styrene in special cat-
alytic system. In this type of polymerization active chain end is negatively
charged which prevents most of termination processes.

Anionic and later cationic polymerization gave most of examples of liv-
ing polymerization systems until recently, when more sophisticated methods
of manipulation with free-radical polymerization processes become avail-
able. These methods are based on the use of the compounds which re-
versibly react with propagating radical and convert it to the so-called “dor-
mant species”. When the equilibrium between the active and dormant
species is regulated by special catalysts based on a transition metal, this
process is called atom transfer radical polymerization (ATRP). If this equi-
librium is provided by stable radicals such as nitroxides, the process is
called stable free-radical polymerization (SFRP). In the case when dor-
mant species are formed via a chain transfer rather than reversible ter-
mination reactions, this process is referred to as reversible addition frag-
mentation chain transfer (RAFT) polymerization. All these techniques
allow to produce macromolecules of desired architecture and molecular
masses.

3.5 Branched Polymers

Let’s now talk briefly about branched polymers. If, say, polycondensation
is going on, and initial monomers have only two functional groups each,
then we shall end up with linear polymer chains (with a small proportion
of loops). However, if the monomers have three or more functional groups,
a branched macromolecule can be synthesized (see Figure 2.8 c). Given
plenty of “multifunctional” monomer units at the start, one can even obtain
a polymer network (Figure 2.8 d).

Branched macromolecules and polymer networks can also be formed by
the cross-linking of linear chains. There are various chemical ways of cross-
linking. Sometimes chemically active cross-linking agents are used; they
establish covalent bonds between di↵erent chain strands. Alternatively,
ionization in a polymer system can be stimulated by radiation, etc. The
simplest everyday life example of cross-linking is vulcanization — during
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this process viscous natural rubber becomes a highly elastic polymer net-
work (see Chapter 7 for more details).



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

Chapter 4

What Kinds of Polymer Substances
are There?

. . . they knew how to weave stu↵s of
the most beautiful colors and elaborate
patterns . . .

Hans Christian Andersen,
The Emperor’s New Clothes

4.1 “Traditional” States of Matter and Polymers

We now can easily visualize polymer molecules — they are long chains
tangled up into coils. However, even knowing the molecular structure of
a substance, it may still be hard to predict for sure all its properties. For
example, water, consisting always of the same well-known molecules H

2

O,
depending on the conditions can be a liquid, a solid (ice), or a gas (steam).
So what about polymer substances? How do they look, and what states
can they exist in?

Everyone is familiar with the three simplest ordinary states of matter:
solid (crystal), liquid and gaseous. There is also a fourth one, a plasma.
Normally it emerges at extremely high temperatures when thermal motion
is so intense that it leads to the ionization of the atoms. If a polymer is
heated up to such a temperature, its molecular chains will merely fall apart.
So the substance will not be polymeric any longer, or, in other words, the
destruction of the polymer will occur. Thus, the state of a high-temperature
plasma is not possible for polymers.

It seems we are left with the three “traditional” states of matter after
all. This sounds too small a number though, if we try to imagine all the
diversity of polymer substances in everyday life: there are plastics and

27



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

28 Giant Molecules: Here, There, and Everywhere

rubber, fibers and fabrics, timber and paper, polymer films and varnishes,
dyes and paints, not to mention the various polymers found in nature! You
would be right to suspect therefore that the common concept of the three
states of matter is not quite applicable to polymers, especially as two of the
three states, a gas and a crystal, are not really typical for polymers.

Indeed, if one wanted to create a polymer gas, one would have to make
long heavy molecules (like the ones in Figure 2.1) “fly” around. This would
only be possible if there were no gravity, and also if you could maintain
a low pressure in the container (i.e. you would have to provide a high
vacuum there). Obviously, such exotic conditions are very hard to achieve;
this is exactly why polymer gases have not been heard of so far.

ba c

Fig. 4.1 A cartoon of molecular arrangements in typical polymeric substances: (a) a liquid;
(b) a perfect crystal; (c) a partially crystallized polymer.

Perfect single crystals (see Figure 4.1) cannot be obtained from polymers
for another reason. Let’s experiment with a liquid of polymer molecules
(Figure 4.1 a). If we cool it down to below the crystallization tempera-
tures, then the perfect crystal (Figure 4.1 b) will be energetically the most
favorable state. It cannot be formed straightaway, though. Crystallization
goes on totally independently in di↵erent parts of the system. So what ap-
pears at the start is a number of crystalline “nuclei” randomly orientated
with respect to each other. Clearly, when the nuclei grow big enough the
entire structure becomes somewhat “frozen”. (This is because, in the crys-
talline phase, in order to move with respect to each other polymer chains
have to overcome enormous energetic barriers.) Hence, further evolution
towards the perfect structure of Figure 4.1 b appears hardly possible. This
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is why crystallizing polymers normally form a semi-crystalline phase so that
crystalline regions are separated by amorphous layers (Figure 4.1 c). Some-
times perfect single crystals of a polymer can still be obtained by special
techniques, but they have not found any broad practical use.

4.2 Possible States of Polymer Substances

Do we have to class all polymers as liquids, now we know that they can be
neither gases nor, except rarely, crystals?! In the broad sense, we would —
if we only regard a liquid as a dense substance that has no long-scale or-
der in the atoms’ positions. However, this definition would not be terribly
informative. This is why there is another, more fruitful way to classify poly-
mers’ phases. A distinction is normally made between a semi-crystalline
state, a polymer glass, an elastic, and a viscous polymer. Which of the four
phases occurs depends on the kind and strength of interactions between the
monomers.

We have already talked about semi-crystalline polymers. Let’s now de-
scribe in brief the other three states. A polymer in a viscous state is purely
a liquid of macromolecules as sketched in Figure 4.1 a. Long chains all
mingle together, but, in thermal motion, they can rather easily move with
respect to each other. If an external stress is applied, some overall motion
of the molecules occurs, i.e. the polymer starts to flow. The flow develops
quite slowly, due to a great number of entanglements. This explains why
the viscosity of polymeric liquids is normally rather high. Naturally, this
state of a polymer is called viscous; another name for it is a polymer melt.

Let’s now see what will happen if molecular chains of a polymer melt
are joined together with covalent chemical bonds (cross-links) to form a
network (see Figure 2.8 d). (We talked about di↵erent techniques of how
to synthesize a polymer network in Chapter 3.) Clearly, the chains will no
longer be able to move long distances relative to each other (simply because
they will all be tied together into a network). Thus it becomes impossible
for the polymer to flow. Meanwhile, on a smaller scale (i.e. shorter than an
average distance between two neighboring cross-links) the mobility of the
chains will not be constrained by the cross-links. This is why, if you apply
tension to a polymer network, its chains, which were originally coiled up
(Figure 2.8 d), stretch quite considerably, resulting in exceptionally large
elastic reversible deformations. This state of a polymer is called elastic.
Rubber is, obviously, a well-known example of it.
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Cross-linking of chains in an elastic polymer does not necessarily have
to be caused by covalent bonds between neighboring molecules, however.
The role of e↵ective cross-links can be performed by nuclei of a crystalline
phase (Figure 4.1 c), or by topological entanglements (Figure 2.10 c and
d). It can also be played by some small regions where, due to particular
local conformations of the chains, there are comparatively high potential
barriers for the chains to move with respect to each other (“glassy” or
“frozen” regions). Thus, an elastic polymer substance can in principle be
produced without chemical cross-linking.

If the temperature decreases, many polymers tend to change from a
melt to a semi-crystalline state. However, far from all polymers crystallize
when they are cooled. The crystal formation begins when little crystalline
seeds start developing. This happens when, on the one hand, the crystalline
phase is thermodynamically favorable but, on the other hand, the thermal
motion is enough to enable the rearrangement of the polymer chains to form
seeds. If the cooling is fast enough, we can easily avoid that stage, and so a
crystal does not form. This statement is also true for substances with low
molecular weights. The new thing for polymers is that the “fast” cooling
does not necessarily have to be very fast in the usual sense of the word. As
you can see from Figure 4.1 c, it takes much more time to form a crystalline
seed for heavily entangled chains than for atoms or small molecules which
are not chained together.

Moreover, some polymers cannot be crystallized even in principle. In-
deed, crystallization may only appear if there is long-scale order in the
molecules’ positions (as in Figure 4.1 b). However, say, for a statistical
copolymer whose chains consist of two types of units, A and B, long-scale
order is impossible. (This is simply because the sequences of A and B along
the chains are totally random.) Such copolymers can never crystallize on
cooling.

The same e↵ect is observed for homopolymers whose monomers, al-
though chemically identical, may appear in a few di↵erent spatial configu-
rations, with high barrier for the inter-conversion between these states. As
an example, Figure 4.2 shows two possible configurations of the repeat unit
of propylene. If the synthesis is carried out under usual conditions, these
two configurations will be present in roughly equal proportions, and will
alternate randomly along the chains. This kind of polypropylene is called
atactic; obviously, it cannot crystallize. Yet there is a special technique for
synthesizing the so-called isotactic polypropylene instead, whose monomers
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Fig. 4.2 Two possible configurations
of the monomer unit of propylene.

are all arranged in only one of the two possible configurations. Crystalliza-
tion is then quite straightforward.

There are many other polymers that, like polypropylene, are atactic
(i.e. unable to crystallize) if synthesized under normal conditions. This
includes, for instance, polystyrene, polymethyl methacrylate (perspex), and
polyvinyl chloride (PVC), to mention but a few from everyday life.

So crystallization does not happen, but what kind of processes do hap-
pen in the “noncrystallizable” polymers if the temperature is reduced?
Since thermal motion becomes less, energy barriers for relative motion of
the molecules grow e↵ectively higher and higher. Gradually, this motion
becomes “frozen out”, first of all at the largest scale, and then at increas-
ingly smaller ones. In the end, any thermal motion at any scale larger than
the size of a monomer ceases to exist. Polymers in such a “frozen” state are
known as polymeric glasses, and the process that we have just described is
called a glass transition. It normally occurs in a rather narrow temperature
range around the “glass transition temperature” T

g

.
Thus, polymers which are unable to crystallize tend to become a glass

at low temperatures. You may be quite familiar with those more or less
transparent glasses made from the atactic polymers already mentioned —
polystyrene, perspex and PVC. (For the first two of them T

g

� 100�C,
whereas for the last one T

g

� 80�C.) However, ordinary silicate glasses
(used for windows, for example) are not polymeric; they are made of
low molecular weight compounds such as silicon dioxide, oxides of boron,
sodium and calcium. Such a mixture forms a glass on cooling, roughly in
the same way as polymers.

The very term “glass” leaves no doubt that the substances are mainly
used as transparent partitions. You may wonder why the majority of
polymeric glasses are actually transparent, whereas semi-crystalline poly-
mers are normally not. The reason is that the structure shown in
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Figure 4.1 c has a great number interfaces between the crystalline and
amorphous phases. Light gets reflected by the interfaces many, many times,
and eventually gets totally “lost” between them. As a result, the sample
does not let light out, hence the lack of transparency. Meanwhile, so-called
acrylic glasses, say, have a much more uniform structure, or at least the
scale of inhomogeneities is much smaller than the wavelengths of visible
light. Therefore, light can penetrate through such substances without be-
ing scattered — which is why some nice tableware is made of this material.

4.3 Plastics

All four states of polymers are very important from the practical point of
view. Rubber substances are used in their elastic state, for example; we
shall talk about them in detail in Chapter 7.

In this section we are going to look at plastics, the materials that we
know very well from everyday life. Over the last few decades they have
become widely used in industry too. The worldwide yearly production of
plastics exceeds now 150 million tons. We hardly imagine life without these
materials: what else can we use to make pens or water bottles? At the same
time, plastics are endangering the environment: about 10 million tons of
them are now floating in the Ocean alone, and no one knows how to deal
with that. Concentrate on usefulness or on dangers — one thing is clear:
we have to understand plastics. Thus, what are they?

By definition, plastics are those polymers which whilst being processed
are either elastic or viscous, whereas the materials in the actual use have
to be either glasses or semi-crystalline substances. How can a polymer be
transformed from one state into another? In many cases, it is done by
changing the temperature: A polymer can be processed at elevated tem-
peratures, where it is a viscous liquid, and afterwards cooled to become
glassy or semi-crystalline. Materials produced in such a way are called
thermosoftening plastics. However, some polymers tend to show the op-
posite behavior — they become solid with increasing temperature. For
instance, epoxy resin mixed up with a hardener very quickly becomes solid
if heated up. This is simply because cross-links are formed more rapidly at
higher temperatures. Such materials are sometimes called thermosetting
plastics.

Thus, all four states of polymers share “responsibility” for the properties
of plastics. Some of them are involved at the production stage, and others
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come into play when the plastic is put to practical use. We should also
point out in what way the properties of glassy and semi-crystalline plastics
di↵er from each other. Semi-crystalline thermosoftening materials (such as
polyethylene, terylene, nylon, and teflon) are much more deformable and
elastic, and much less fragile, than polymeric glasses. Normally they are
not transparent either, but, in contrast to rubber, they tend to retain their
shape under moderate deformation.

The extent to which solid materials can be deformed is described in
physics by Young’s modulus, E. It is defined in the following way. Let’s
imagine that we are stretching a cylindrical rod of length ` and cross-
sectional area S, applying a force f along the axis. As the English scientist
Robert Hooke noticed as early as 1660, the deformation �` of the rod
(i.e. variation of its length) is proportional to the force (provided that �`

is not too big),

� =
f

S
= E

�`

`
. (4.1)

In this formula � is the stress, i.e. it is the force per unit cross-sectional
area, and E is Young’s modulus. The value of E depends on the material
of the rod, but not on its shape or size.

Let’s now look at some materials that we are going to talk about later
in this chapter, and see what sort of values of E they have at room tem-
perature. As a point of reference, it makes sense to choose the hardest
inorganic substances, such as steel, cermet alloys, etc. Their Young’s mod-
uli range from 1011–1012 Pa1 Inorganic glasses (as used in windows) have
E in the range of 1010–1011 Pa. Meanwhile, for polymeric glasses typical
values are E � 109–1010 Pa which means that their deformability is two
orders of magnitude higher than that of steel. As we have already said,
semi-crystalline plastics are even more easily deformed; indeed, they have
E � 108–109 Pa. As for various sorts of rubber, as well as other polymers
which are normally used in their elastic state, their Young’s moduli tend
to be exceptionally low: E < 106 Pa.

How can we account for such a great di↵erence in values of E for di↵er-
ent polymeric materials? Thermal motion in an elastic polymer is intense
enough to enable the chains to move freely with respect to each other. How-
ever, long-distance movements of the chains (i.e. flow) are much harder to
1As formula (4.1) indicates, E has units of pressure — force per unit area. This is why

we express it in Pascals. Let’s remind that the unit Pa is defined as one Newton per
m2, and that normal atmospheric pressure is very close to 105 Pa. Since we are going to
understand the molecular world, it is also useful to realize that one MPa (megaPascal)
can be thought of as 1 pN

nm2 , where pico Newton is 1 pN = 10�12 N and 1 nm = 10�9 m.
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perform because of the cross-links. Under an external tension, the chains
can be easily stretched — this explains very low values of Young’s modulus.

In contrast, in polymeric glasses, relative motion of the chains is hardly
possible even on scales as small as the size of a monomer. This is why
their Young’s moduli are significantly higher. A detail to notice here is
that for polymeric glasses room temperature values of E are still an order
of magnitude lower than those for inorganic glasses. It shows that at room
temperature motion is not as “frozen” in polymers as in silicate glasses;
there is still some freedom for the chains to rearrange their conformations
locally — this increases deformability and reduces the value of E.

Finally, in a semi-crystalline polymer there are amorphous partitions
between regions of crystalline phase (Figure 4.1 c). For many materials
these partitions are not completely in the glassy state at room tempera-
ture. So what we really have is a mixture of solid crystal “islets” separated
by a kind of “grout” made from a rubber-like polymer. Clearly, such ma-
terial should be less fragile, with lower values of Young’s modulus, than a
polymeric glass.

4.4 Polymeric Fibers

We have described possible states of polymers, and have discussed how the
most commonly used materials, plastics and rubber, come into the picture.
However, there is another class of polymeric materials that we have missed
so far, namely, fibers. Fibers are by no means any less important, one good
reason being that nearly all our clothes are produced from fibers. So what
are they, and what state of matter do they represent?

First of all, we should note that polymeric fibers can be either of nat-
ural origin, or produced in a chemical laboratory or a factory. Cellulose,
for instance, is the most widespread natural fiber. Molecular chains of cel-
lulose form the walls of biological cells in most plants; they are also the
chief constituent of timber. Natural cellulose fibers are obtained from flax,
cotton, hemp, etc. Other well-known kinds of natural fiber are wool and
silk. They, of course, have “animal” origin: Wool is given to us by sheep,
goats, and camels, whereas silk is produced by a caterpillar (silkworm) with
a Latin name Bombyx mori. (It is amazing that just a single thread of fiber
made by a silkworm is about a kilometer long!) Chemically, silk and wool
consist of polymer chains of particular proteins, called keratin (wool) and
fibroin (silk).
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The fibers obtained in a factory or a chemical laboratory are called
chemical fibers. There are two types: artificial fibers which are made from
natural threads, but modified in order to improve their properties, and syn-
thetic fibers which are synthesized from some simple chemical compounds.

Artificial fibers are mainly obtained from various kinds of natural cel-
lulose. For example, timber cellulose is used to make viscous rayon, and
also the so-called acetate and triacetate fibers can be produced from cotton
cellulose.

Among the most interesting synthetic fibers are nylon and its various
brands (they are called polyamide fibers as they are built from polyamide
molecular chains), terylene (polyether fibers), and lastly orlon and acrylon
(polyacryl nitrile fibers).

The particular physical state of polymeric fibers in which they are actu-
ally used, depends on the purpose they serve. Obviously, the fibers have to
be reasonably tough and should not stretch significantly under the influence
of longitudinal forces which occur in the fiber during its use2. This imme-
diately rules out the viscous and the elastic states. As for the other two,
the fibers can be either semi-crystals (cellulose fibers, nylon, and terylene)
or polymeric glasses (orlon). There is, however, something special about
the structure of the fibers in these states.

Are semi-crystalline fibers arranged in the same way as in Figure 4.1 c,
and polymeric glasses as in Figure 4.1 a? In fact, if they were, such mate-
rials would be of rather poor quality. They would not be strong enough,
but would be quite easily stretched (you may see this if you just compare
the values of the elastic modulus given above, for typical polymers in the
two states). Experiments on semi-crystalline natural fibers have revealed,
however, that their crystalline regions are not orientated randomly (as in
Figure 4.1 c), but are mainly parallel to the axis of the fiber (Figure 4.3 a).
This is just the kind of structure, with the chains predominantly parallel
to the axis of the fiber, that is aimed at when chemical fibers are produced
(both semi-crystals and polymeric glasses, Figure 4.3 b). Thus, polymer
fibers are always anisotropic because polymer chains have a preferential
orientation along the axis of the fiber. The higher is the anisotropy, the

2By the way, for the fibers used in the making of clothes, the limiting factor is not the
stress caused by the wearing of the clothes. When making cloth from fibers, the fibers
are first spun into thread, and then the thread is woven or knitted to form the final
product. In mass fabrication, stresses occur during the spinning and weaving or knitting
stages. These stresses are normally much higher than those that arise during the use of
the finished fabric.
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greater is Young’s modulus for longitudinal deformations, and the stronger
is the fiber.

How can we explain this? Why should a fiber become stronger when its
anisotropy increases? In order to answer this question, let’s look once again
at the perfect polymer crystal shown in Figure 4.1 b. Let’s see what happens
if we start stretching the sample along the direction of the polymer chains’
orientation. The stretching will be hindered by the covalent bonds that
hold the monomers together in the long chains. Say, the chains have carbon
“backbones” (which is true for many important polymers, e.g. polyethylene
and polyvinyl chloride). In this case the covalent bonds which are in charge
of building up the chains are obviously C�C bonds. We can estimate their
deformability if we remember that diamond whose crystalline structure is
also formed by C�C bonds has Young’s modulus E � 1012 Pa. Naturally,
for the crystal shown in Figure 4.1 b the order of magnitude of E should be
the same. The breaking strength for the two materials should be reasonably
similar too (but only, of course, if the tension is applied to the sample in
Figure 4.1 b along the polymer chains).

On the other hand, we know that for disordered semi-crystalline poly-
mers E � 108–109 Pa because of the amorphous layers between the crys-
talline areas. If the crystalline areas start getting ordered in a particular
direction (in other words, if the structure in Figure 4.1 c starts trans-
forming into the structure in Figure 4.3 a), then more and more chains
appear to be stretched along the axis of the fiber. Such chains take most of
the strain arising from the deformation; they make the fibers considerably
stronger, and the Young’s modulus increases. Certainly, one cannot achieve
the strength of diamond in such a way. Yet it is quite possible to improve
the mechanical properties of the material by 1.5 to 2 orders of magnitude,

a b

Fig. 4.3 Cartoon representation of
the structures of orientated semi-
crystalline (a), and amorphous (b)
fibers.
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due to an increase in the anisotropy of the fiber. Exactly the same idea is
used to strengthen glassy fibers — pushing towards the transition from the
structure shown in Figure 4.1 c to the ones presented in Figure 4.3 b and
then preferably in the direction of Figure 4.3 a.

So far we have talked about the final structure of fibers when ready for
use. In the fibers obtained from natural products (e.g. from cotton or
wool), nature itself has provided the right structure. Indeed, these fibers,
though semi-crystalline, are highly anisotropic (as in Figure 4.3 a). But
what about chemical fibers? You may ask, first of all, how they are made,
and, secondly, how the necessary degree of anisotropy is provided.

The usual strategy is as follows. Take a polymer from which you want
to make a fiber, and convert it to a viscous state. This can be done by
heating it up (if the polymer has a reasonably low melting point, like nylon
or terylene). Otherwise, for refractory polymers in particular, polymers
can be diluted in a good solvent; as a result, one gets a concentrated fluid
solution of the polymer, called a spinning solution. Then the fiber is made
by squeezing the solution (or the melt) through little holes, spinnerets, into
a medium which helps to solidify the polymer in the shape of thin fibers.
If the fibers are formed from a melt, the medium can just be cold air. On
the other hand, if a solution of a polymer is used, the solvent has to be
removed from the fibers after passing through the spinnerets. The solvent
can be evaporated by placing the fibers in a jet of hot air. Alternatively,
the threads can be treated in a so-called precipitating bath, which contains
a special medium that makes it energetically favorable for the polymer to
shrink and squeeze out the solvent.

However, the fiber obtained in such a way is not yet su�ciently aligned.
Its structure looks like that in Figure 4.1 a or c. In order to make structures
like the one in Figure 4.3 b, or to push it even towards Figure 4.3 a, one
has to stretch the solid fiber at a temperature which is high enough for the
polymer not to form a glass. This process, called orientational stretching,
causes the polymer chains become more aligned.

Figure 4.4 shows a typical dependence of the stress � on the relative
elongation �`/` for a semi-crystalline polymer material. If � is not too
big, Hooke’s law (Equation 4.1) is valid; the deformation in this case is
elastic (reversible) — the fiber starts going back to its initial state after
the force has stopped acting. However, when the stress becomes as high
as �

0

(see Figure 4.4) the situation changes dramatically. The deformation
starts increasing of its own accord whereas the stress remains the same or
even decreases slightly. During this process a sort of a “neck” develops in
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Fig. 4.4 Stress-strain diagrams of
a typical polymeric material (a) and,
for comparison, for steel (b). The
scheme of the experiment is shown
in the inset in the lower figure: one
takes a sample of given dimensions
and pulls on it with a measured force
f . The stress � is defined as the ra-
tio of force to the initial, undeformed

cross-sectional area of the sample,
A0: � = f /A0. This is called engi-

neering stress, it is easier to measure
in practice, because to determine the
true stress f /A, one needs to mea-
sure both f and A. Stress has di-
mension of pressure and here it is
presented in the units of megaPascal
(a useful reminder for the book on
molecules: 1 MPa= 1 pN

nm2 ). Strain
is presented as unitless relative elon-
gation of the sample �`/`0. Panel
(a) presents data for an isotropic
semi-crystalline polymeric material,
specifically — low density polyethy-
lene film. The inset presents a wider
interval of strains. Notice that at low
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strain the deformations for both polymeric material and steel obey the usual Hook’s law, i.e.,
stress is linear in strain, as shown by the straight lines. At larger �`/`0 deformation for these
materials usually becomes irreversible. The curve for engineering stress in many materials
goes through a maximum when neck develops in the sample (see Figure 4.5); interestingly
true stress keeps increasing because actual cross-sectional area becomes substatially smaller
than A0. The reader should also realize that while overall shape of the stress-strain curve is
somewhat similar for steel and polymeric film, the relevant scales are vastly di↵erent: at more
than an order of magnitude lower strains steel develops more than an order of magnitude
higher stress. At the same time the reader should realize that while these plots are quite
typical, specific materials may di↵er from one another quite substantially. Measurements for
this figure were performed at room temperature, film thickness 60 microns, the strip width
2 mm and length 10 mm. The plots are based on the data courtesy of A. Askadskii.
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1 mm

1 mm

1 mm

a

b

c

Fig. 4.5 The
development of a
“neck” during the
stretching of a stripe
of polymer film. Pan-
els (a), (b), and (c)
represent three suc-
cessive stages of neck
development. The
photographs were
taken using polarized
light. The images are
courtesy of A. Askad-
skii.

the fiber; it lengthens, and eventually runs the whole length of the sample
(Figure 4.5). As a result, the fiber may stretch by a factor of about two
or even more. Naturally, the deformations occurring in the fiber after the
“neck” has been formed are irreversible.

Here is a very simple experiment which you can easily do yourself to
show that the processes described really do take place in polymer fibers.
Cut carefully a strip of polyethylene film, 10 cm long and 1 cm wide (a piece
of a plastic bag would work OK). Stretch it, and you will see that, after a
certain amount of deformation, a very elongated zone appears in the middle
of the strip. It spreads along the whole strip with further deformation. This
zone is similar to the “neck” developing on a stretched polymer fiber — as
soon as it emerges the deformation becomes irreversible.

At a molecular level, the development of the “neck” means that the
stress applied to the fiber is apparently rather high; therefore it leads to
the break up of the semi-crystalline structure with random orientation of
the crystallites (i.e. the one shown in Figure 4.1 c). In the “neck” zone the
structure rearranges since polymer chains align on stretching. As a result,
the chains are eventually orientated as shown in Figure 4.3 a. So the fiber
becomes anisotropic and therefore stronger.

The strengthening is also helped by one more thing. When Figure 4.1
c is transformed into Figure 4.3 a, the degree of crystallization increases
(quantitatively, there in an increase in the volume fraction of crystalline re-
gions in the semi-crystalline fiber). This happens because some preliminary
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orientation of the chains paves the way for further crystallization. The lat-
ter proceeds much more smoothly than in an isotropic sample because all
the crystalline domains are already orientated roughly along the axis of the
fiber. Such orientation helps the growth of the domains, and smaller ones
can more easily join up with each other. It explains the higher degree of
crystallization of the fiber and, therefore, its better mechanical properties.

In the end, one obtains some truly fantastic materials. For instance,
the airbags which allow for soft landing of spacecraft on Mars are made
of liquid crystalline polymeric fiber called vectran. This must be a truly
special material!

4.5 Polymeric Liquid Crystals and Super-Strong Fibers

We have now described how chemical fibers are produced. In many respects,
such man-made fibers are no worse than natural ones. They are often
used these days in the textile industry. Nevertheless, typical values of the
breaking strength or the Young’s modulus of polymeric fibers are one or two
orders of magnitude lower than those of steel. So the question arises: Could
we use the same physical idea as we have just described, but take it further
to try to remove the di↵erence? Is it possible to produce polymeric fibers of
nearly the same strength as steel? Of course, the problem of creating such
super-strong fibers is of great importance. There are many applications
where light but strong materials are needed.

You can indeed make a super-strong fiber, even stronger than steel,
from a polymer, but the polymer must be converted into a special liquid-
crystalline state which is really a variety of the viscous state. If you
think of a viscous polymer as of some “polymeric liquid”, then a liquid-
crystalline polymer can be regarded as an “anisotropic polymeric liquid”.
The anisotropy occurs spontaneously, with no help from outside (such as
orientating fields, mechanical stresses or whatever).

Let’s look at the simplest example (Figure 4.6) to see how this sponta-
neous orientation may appear. Just throw a bunch of randomly oriented
matches onto a surface (Figure 4.6 a). Now start reducing the area cov-
ered by the matches, but make sure that they are still orientated in the
same random way. We gradually come to the situation in Figure 4.6 b.
At this stage it becomes impossible to decrease the area any further while
retaining the orientational disorder. Does this mean that we have already
reached a close-packed arrangement of the matches? Certainly not, they



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

What Kinds of Polymer Substances are There? 41

a b c

Fig. 4.6 Experimenting with
matches on a surface. If the
surface area available is large,
matches do not interfere with
each other, and distribute in a
random isotropic fashion (a).
If, on the other hand, the
available surface is small, then
matches have no choice but to
order their orientations (c).

can be crammed into a much smaller square (Figure 4.6 c). However, their
orientations would no longer be random; all the matches would be facing
in the same direction. Hence, we conclude that the system of matches can
be confined to a smaller area than in Figure 4.6 b, but the system would
then be anisotropic.

Now let’s imagine that, instead of matches, we have a system (a so-
lution) of molecules with an elongated shape. What will happen if we
gradually raise the concentration of the solution? At lower concentrations
we shall observe the pattern shown in Figure 4.6 a — the distribution of
the molecules’ orientations will be isotropic. Then, while the concentration
grows, we shall eventually reach the threshold regime as in Figure 4.6 b. Ob-
viously, at higher concentrations the solution can only be anisotropic. This
anisotropy occurs for no external reason, but spontaneously, just because a
dense enough system of elongated particles cannot possibly be arranged in
any isotropic way.

This is exactly what a liquid-crystalline state is — an anisotropic state
that spontaneously develops in a solution of elongated molecules at higher
concentrations. Starting from some degree of asymmetry of the molecules
(i.e. the ratio of length to diameter), the liquid-crystalline state can appear
in a melt as well.

The name “liquid crystal” reflects the duality of such materials; accord-
ing to their properties they could be placed somewhere in between ordinary
liquids and crystalline solids. Like liquids, liquid crystals lack long-range or-
der in the positions of their molecules; most liquid crystals are indeed fluid.
At the same time, just like solid crystals, liquid crystals are anisotropic as
their molecules are orientated in an anisotropic way.

It is clear from Figure 4.6 that the liquid-crystalline state should be more
typical for substances whose molecules have an elongated shape. Moreover,
the greater the asymmetry of the molecules, the lower the critical concen-
tration of the solution at which the molecules start to align spontaneously.
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This suggests that solutions of sti↵ polymer chains should become liquid
crystals rather easily, in quite a broad range of concentrations. Indeed,
on larger scales such molecules are tangled up into coils. Therefore their
asymmetry is determined by the ratio of the longest chain segment ` which
can still be regarded as approximately straight (i.e. the Kuhn segment;
see Section 6.5) to the characteristic diameter d of the chain. For rod-like
polymer chains the ratio `/d can be rather high; in the case of aromatic
polyamides, for instance, it can even reach a few hundred. This means
that even when the volume fraction of an aromatic polyamide is only a few
percent, such a solution should still be liquid-crystalline; in other words, its
molecular chains should be aligned predominantly along the axis of spon-
taneous orientation.

Now let’s go back to the problem of how to produce super-strong fibers.
A natural strategy is to use the inherent anisotropy of a liquid-crystalline
solution, and to form the fiber directly from this solution. If we do this, we
shall end up with a highly oriented fiber immediately after the moulding,
extra stretching, and expulsion of the solvent. The orientational order will
be much higher than you normally achieve by orientational stretching alone.
In practice, this technique allows liquid-crystalline solutions of aromatic
polyamides to be converted into really amazing fibers whose strength and
Young’s modulus are of the same order of magnitude as those of steel.
Such fibers were first created about 1970s, and now they are widely used
in various areas of industry.

4.6 Polymer Solutions

So far when talking about various states of polymers, we have usually
meant substances consisting purely of polymer molecules, although when
discussing polymer fibers, we did mention that they are often formed from
solutions of polymers.

Polymer solutions are, obviously, liquid mixtures of long polymer chains
and small, light solvent molecules. They play a very important role in
polymer physics; this is why it makes sense to give here a brief description of
them. We shall discuss two qualitatively di↵erent uniform states of polymer
solutions.

These states are illustrated in Figure 4.7; polymer chains are shown
with solid lines, and small molecules of a solvent are not depicted at all.
Figure 4.7 a corresponds to a dilute polymer solution; macromolecules are
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ba c d e

Fig. 4.7 A sketch of concentration regimes of a polymer solution: (a) dilute polymer
solution — coils do not overlap, c ⌧ c

?; (b) cross-over between a dilute and a semi-dilute
solution — coils (depicted by dashed lines to guide the eye) are on the brink of overlapping,
c ' c

?; (c) semi-dilute solution — coils strongly overlap, but concentration is still low,
c

? ⌧ c ⌧ cmelt; (d) concentrated solution c ⇡ cmelt; (e) liquid-crystalline solution.

separated by large distances and hardly interact with each other at all. The
properties of such solutions are governed merely by the properties of the
individual macromolecules. For instance, from light scattering or viscosity
measurements, we can judge the shape and size of the polymer coils. So a
dilute polymer solution is, in a way, the most basic polymer system, because
as we study it we actually learn about the properties of the individual
macromolecules. In this sense, it is similar to a low-density gas of ordinary
small molecules. Commonly, in more complex polymer systems the chains
are highly entangled, and strongly interact with each other; therefore, it is
much harder to discern the contributions of individual macromolecules. To
find out about the individual chains, you would have to look at data for
dilute solutions.

With increasing concentration, the polymer coils sooner or later start to
overlap; then we eventually get to the picture of densely entangled coils as
shown in Figure 4.7 c. Obviously, the intermediate regime between Figures
4.7a and c will be when the coils do not yet overlap, but just touch each
other (as in Figure 4.7 b). This means that the critical concentration c?

corresponding to the intermediate regime is the same order of magnitude
as the concentration of monomers in each coil. It is useful to know how
to calculate this value, or at least to estimate it. It would help us to un-
derstand which concentration regimes are realistic or typical for a polymer
solution under di↵erent conditions. In Section 6.6 we shall come back to
this question and find an approximation for c?.
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4.7 Polymer Blends and Block-Copolymers

Polymer chains can, of course, mix not only with solvent molecules but also
with other polymers. This is how polymer blends are formed. However,
there are not that many pairs of di↵erent polymers that can blend in any
proportion. A mixture of two polymers A and B typically will tend to
separate into nearly pure phases of A and B. This happens even if the
repulsion between the monomers of A and B is so weak that they would be
able to mix if they were not linked into a chain.

An interesting thing occurs when immiscible polymers A and B form
one chain (Figure 4.8 a). This is what we call a block-copolymer (see

A
Ba

c

b

e

f

dd

Fig. 4.8 Panel (a): A block-copolymer chain,
consisting of two blocks, A (black) and B (white);
panels (b — f): several types of microstructure
in block-copolymer melts. Gray refers to the
regions where black monomers dominate, white
monomers dominate in white regions.
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Section 2.5). In this case the blocks A and B try to separate from each
other. However, a macroscopic phase separation is impossible because the
A and B blocks are tightly linked to each other within the chains. As a
result, we get a pattern of micro-domains which contain mainly A blocks
or B blocks, separated by fairly thin interphase regions (Figures 4.8 and
C4.9). This e↵ect is known as microphase separation in block-copolymers,
and the structure that emerges is called a micro-domain structure.

Depending on the relative lengths of A and B blocks, micro-domains
can take di↵erent shapes. In particular, they can look like little spheres
(micelles) of A, fitted onto a regular three-dimensional lattice submerged
into the “sea” of B (Figure 4.8 b). This happens ifA blocks are much shorter
than B ones. Increasing the length of A blocks changes this picture, and
we end up with cylindrical A domains in a “sea” of B units (Figure 4.8 c).
When the two blocks have roughly the same lengths, there are alternating
A and B layers (Figure 4.8 d). Finally, for shorter B blocks, cylindrical
(Figure 4.8 e) and spherical (Figure 4.8 f) B “islands” appear in the “sea”
of A units.

Spherical micelles, cylindrical micelles, and lamellas (layers) are not the
only possible microphase segregated structures. For instance, the character-
istic feature of micelles is this: imagine a small molecule which can di↵use
through one of the phases (say, A), but not soluble in, and cannot enter the
other phase (B). Such molecule can travel arbitrarily far in the inverted
micelles case (4.8 e or f), but will be locked in direct micelles (4.8 b or c).
By the way of analogy, we can imagine a city and two di↵erent persons:
one can walk in the streets, but cannot enter any building, while the other
is inside a building and cannot exit from it. Obviously, the former person
can walk very far, while the latter cannot. In the city, and in general in
two dimensions, one cannot imagine two separate sets of non-intersecting
streets. Interestingly, in three dimensions such a situation is perfectly pos-
sible, and the corresponding phase is called bicontinuous. Along with other
microphase segregated states it is illustrated in Figure C4.9. It does not
show polymer chains explicitly (unlike Figure 4.8), and the reader should
imagine them going from the region of one color to the other.

Thus, there is a rich variety of very interesting structures even for the
simple diblock-copolymer. And we have a simple tool for controlling the
microstructure of a block-copolymer melt. All you need to do is to vary
the length ratio between A and B blocks. Even richer variety of structures
exist in three-block copolymers — it is actually too rich to discuss in this
book.



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

46 Giant Molecules: Here, There, and Everywhere

4.8 Ionomers and Associating Polymers

A rich variety of nano-scale structures and inhomogeneities is very typical of
polymers. Fully uniform states are the exception rather than the rule. Now
we shall explore yet another peculiarity of polymer structure, by looking at
the so-called ionomers.

We have already discussed polyelectrolytes in Section 2.5. They are
formed when small ions, called counterions, break o↵ from the chain. They
leave behind monomer units of the opposite charge. If a counterion escapes
and sets out on a “journey” on its own, the whole chain acquires an electrical
charge, and becomes a polyelectrolyte (Figure 4.10 a). However, this is
not the only scenario. Thermal motion may not be strong enough for
the counterion to tear itself away from the ionized monomer. Instead,
the two form an “ion pair”. The counterion stays in the vicinity of the
charged monomer (at an average distance a), the two charges making a
dipole (Figure 4.10 b). If all the counterions tend to stay in such pairs, the
chain is called an ionomer.

Can we tell exactly when each of these two cases, a polyelectrolyte
(Figure 4.10 a) and an ionomer (Figure 4.10 b), would occur? Assume
that the charges of the dissociated monomer and the counterion are the
same in magnitude, and equal to the electronic charge e. Suppose also the
dielectric constant of the medium is ". Then the energy of the Coulomb
interaction3 of the ions in a pair is e2/"a. If this energy is much less than
the characteristic energy of thermal motion k

B

T , where k
B

is Boltzmann’s
constant, and T is the absolute temperature (see Section 7.6 below for a
more detailed discussion of characteristic thermal energy), i.e.

e2

"ak
B

T
� 1 , (4.2)

then counterions break o↵ the chain. Thus we get the polyelectrolyte
regime. Conversely, if

e2

"ak
B

T
� 1 , (4.3)

3Throughout this book, we use the so-called Gauss system of units as far as electrical
and magnetic quantities are concerned. These units are in fact the most convenient
ones in all respects, except they do not agree with the tradition accepted in electrical
engineering, such as the unit of Ampere for the current. Since we will not deal with
any technical aspects anyway, we stick to the Gauss units, in which, for instance, the
expression for Coulomb energy does not have the annoying coe�cient 1/4⇡"0. If you,
the reader, feel more comfortable with some unit system of your choice, we encourage
you to repeat all our simple calculations using your preferred units and see for yourself
that the results stay unchanged.
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Here, we have to digress and explain the signs ⌧ and � and their
usage. Formally, they mean “much less” and “much greater”,
respectively. Of course, one may ask — how much is “much”?
In other words, if x � y , does it mean x should be twice larger
than y , or ten times larger, or what? The general answer has
to do not so much with the specific numerical values of x and
y , but rather with dependencies of things on x and y when they
change. Let’s illustrate this rather abstract point with the specific
example of Equations (4.2) and (4.3). Formula (4.2) says that
we have polyelectrolyte regime if the ionization energy is much

smaller than thermal energy kBT ; the meaning of it is as follows:
the smaller the value of dimensionless parameter e2/("akBT ), the
more complete ionization, and the more accurate polyelectrolyte
concept. Similarly, formula (4.3) states that ionomer regime occurs
if the ionization energy is much larger than thermal energy kBT ,
which means: the larger the ratio of energies e

2
/("akBT ), the

more accurate the ionomer model. Qualitatively then, portraying
the situation in imprecise impressionists strokes, we can say we
deal with either a polyelectrolyte or an ionomer regime.

Quite similarly, we discussed in Section 4.6 the regimes of dilute
and semi-dilute solutions, realized at concentrations c such that
c ⌧ c

? (Figure 4.7 a) and c � c

? (Figure 4.7 c), respectively.
Of course, such a description leaves a “gray zone”, an inter-

mediate regime, or a cross-over, when parameter is neither big nor
small. However, when parameters, such as concentration or ioniza-
tion energy, change by many orders of magnitude, the “gray zone”
is in many cases insignificant: yes, it is possible that a system is
neither really a polyelectrolyte nor an ionomer, neither dilute nor
semi-dilute, but something in between, but if we understand well
both limits, we are usually not scared by the intermediates, too.
This is why, in this book, as it is customary everywhere in modern
physics, we will consider the limiting regimes, delineated by “strong
inequalities”, ⌧ and �; moreover, we shall frequently simply write
< instead of ⌧ and > instead of �, pretending silently that the
cross-over “gray zone” is rather narrow and not interesting to us.
With this in mind, let’s return to ionomers and polyelectrolytes.
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then the thermal motion cannot break up the ion pairs, and the chain is an
ionomer.

We have already said that proteins, DNA, and polyacrylic and poly-
methacrylic acids are all polyelectrolytes when dissolved in water (see Sec-
tion 2.5). We emphasize that the solvent should be water. Why is this
so essential? The dielectric constant of water is extremely high (" � 80).
Therefore, the ratio e2/("ak

B

T ) is relatively small, and inequality (4.2)
holds. However, if you use other solvents, with much smaller values of "
(usually between 2 and 20), then inequality (4.3) holds instead, and the
polymer is an ionomer rather than a polyelectrolyte. This is why poly-
electrolyte regime is typical for polymers dissolved in water, including the
biopolymers, while ionomer regime is typical for polymers dissolved in or-
ganic solvents.

Ion-containing polymer chains in a melt (in the absence of a solvent)
are also typically in the ionomer regime. This is because the dielectric
constant of a pure polymer tends to be rather low. What is the structure
of such an “ionomer” melt? Ionomer chains contain some (usually small)
proportion of monomers in the form of ion pairs (see Figure 4.10 b). They
interact strongly with each other, since they are electric dipoles. The other
monomers have no electrical charge. Dipoles always arrange themselves in
such a way that the interaction between them is attractive (see inset in the
Figure 4.10). This is why ion pairs are strongly attracted to each other.

+

+ +

+ +

+

+ +
a b

+

++ +

A B

Fig. 4.10 A polyelectrolyte (a): all the counterions are free and not attached to the
polymer chain; an ionomer (b): counterions are “condensed” on the charges of the chain
and form ion pairs. Inset: Dipoles (ion pairs) are free to choose any orientation with respect
to each other. The one they prefer is (B), since it gives the lower energy than (A). It
corresponds to attraction.



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

What Kinds of Polymer Substances are There? 49

+

+
+

+

+
++

+

+

+
+

+

- - -

-
-

-

-

-

-

-

-

-

a b

Fig. 4.11 (a): A cartoon of multiplet structure in a melt of ionomers. Strongly interacting
ion pairs are shown explicitly. Multiplets are circled and shaded. (b): A sketch of a solution
of an associating polymer. Strongly interacting monomers are depicted as big empty circles.
Associates are circled and shaded. In contrast to Figure (a), the space between associates
is mainly taken up by the solvent molecules — the volume fraction occupied by monomer
units of the chains is rather small.

However, they are part of a polymer chain, so they cannot be separated
into a distinct phase. As a result, small islands emerge in a sea of neutral
monomers (Figure 4.11 a). Such aggregates are called ionomer multiplets.

Compare Figure 4.11 a and Figure 4.8 b. You may notice that the
multiplets in a polymer melt somewhat resemble the spherical domains in
a block-copolymer melt that form when one of the blocks is much longer
than the other. This similarity is not surprising. The structure in Figure
4.11 a can be obtained from Figure 4.8 b by letting the shorter block tend to
one monomer, and increasing the attractive force between the monomers.
As a matter of fact, it is quite a common pattern in polymer structure when
small spherical multiplets (“associates”) are formed by strongly attracting
monomers, whatever the nature of their attraction. Such polymers are
called associating.

Associating polymers have many practical uses. Let’s give the simplest
example. Suppose we wanted to increase the viscosity of a liquid substan-
tially. Can we do it by adding just a little bit of some other substance?
If yes, then how to choose the substance? As you might have guessed, an
associating polymer consisting of two di↵erent types of monomers (Figure
4.11 b) can play this role. Let’s see how it works. The greater part of the
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monomers easily dissolve in the liquid. However, a small fraction of the
monomers try to avoid the solvent. Any contact with the liquid molecules
is extremely energetically unfavorable for them. Such strongly associat-
ing monomers join together to form aggregates (multiplets). The structure
of the resulting solution is shown in Figure 4.11 b. It looks like a polymer
network (a gel). The special thing about it is that the role of covalent cross-
links is played by associates of strongly interacting monomers. This is not
a real network (like the ones described in Section 2.5). The associates can
dissociate from time to time, as well as appear in a new place. Therefore, if
we apply shear stress to such liquid, it will start flowing, together with the
associating polymer that is dissolved in it. Nevertheless, the viscosity of
the liquid is substantially increased because dissociation of such associates
is relatively rare. Even a very small amount of an associating polymer is
enough to increase the viscosity of the liquid substantially.

4.9 Conductive Polymers

Our story about polymer materials would not be complete if we did not
mention here that some of them may be electric conductors. In Section 3.1
we touched upon the di↵erence between covalent bonds of �- and ⇡-types.
Within the context of electrical conductivity, further di↵erence is that �-
electrons (i.e., participating in a �-bond) are strongly localized between the
two connected atoms, they cannot move, and thus do not contribute to the
electrical conductivity of the material. On the other hand, in the case of
⇡-bonds the electrons are much more delocalized and therefore may exhibit
much higher ability to move from place to place.

Still, if a polymer material is pure (undoped), its electrical conductivity
is very low — normally between 10�10 to 10�8 S/cm even if it is rich with
⇡-bonds (for comparison, conductivity of sea water is close to 0.02 S/cm)4.
The reason is that ⇡-electrons are present essentially on every bond, there-
fore, any particular one of them cannot move anywhere because of Pauli
exclusion principle — all states around are occupied by other ⇡-electrons.
The situation changes after doping. For polymer systems doping normally
means oxidation, i.e. removal of some of the delocalized ⇡-electrons, this

4S/cm (Siemens over centimeter) is the commonly used unit of electric conductivity.
Siemens is the unit of conductance (inverse resistance), it is equal ohm�1. Conductance
of a sample of length L and cross-sectional area A equals �A/L, therefore, conductivity
�, which is the property of a material, must have the dimension of conductance divided
by length.
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process is analogous to the formation of “holes” in semiconductors. In this
case, even at low values of doping (< 1%) electrical conductivity can in-
crease several orders of magnitude, up to values around 0.1 S/cm. Highest
conductivity in polymers reported up to now is 8 � 104 S/cm for highly
doped polyacetylene. These materials were obtained in 1980s; in 2000, No-
bel Prize in Chemistry was awarded to Alan Heeger, Alan Mac Diarmid
and Hideki Shirakawa “for the discovery and development of conductive
polymers”.

Main classes of conductive polymers include polyacetylenes,
polypyrroles, polythiophenes and polyanilines. All these polymers are rich
with ⇡-electron bonds. There are numerous attempts to use these polymers
to design organic solar cells, organic light-emitting diodes, electrochromic
materials, electroluminescent materials, super-capacitors etc. The biggest
advantage to use polymers instead of inorganic materials is normally their
processability, good mechanical properties, and low cost.

With this we conclude our brief review of the kinds of states in which
the simplest polymers can exist. Of course, we did not cover the whole
variety of polymer systems. A few more examples will be found further on
in this book, as well as in some other popular books listed in the Suggested
Further Readings.
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Chapter 5

Polymers in Nature

La verdad adelgaza y no quiebra, y
siempre nada sobre la mentira como el
aceite sobre el agua.
(Truth will rise above falsehood as oil
above water.)

Miguel de Cervantes,
Don Quixote

In a bath, in a tub, in a shower,
In a stream, in a brook, in the sea,
Here and there, and everywhere —
Glory to water forever be!

K. Chukovskiy,
Wash-into-holes (Russian children’s poem)

A great many fascinating biological objects consist of polymers. For ex-
ample, the shell of a tortoise or the sti↵ back of a beetle are “built” from
a polymer called chitin whose chains are held together by proteins (which
are polymers too!) Then there are viruses, little boxes made from protein
chains, with a nucleic acid chain inside each. There are far too many ex-
amples to tell of them all! We shall therefore have to stick to three, ones
which we, as physicists, believe are the most interesting and fundamental.

However, before we start our story, there is one more thing to say: The
main biopolymers function in the medium of water. A human body consists
of 60% water by mass; some animals carry around even more water in their
bodies. Water reservoirs are a source of life (as we shall discuss in more
detail in Chapter 14). Therefore, it might be helpful to learn a bit about

53
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the molecular structure of water, before we plunge into the discussion of
biopolymers.

5.1 A Few Words about Water and the Love or Fear of it

A molecule of water, H
2

O, is triangular in shape (Figure 5.1 a). The
electron cloud tends to be shifted away from the hydrogen nuclei towards
the oxygen nucleus by, on average, 0.02 nm = 2 �10�11 m.

As a result, the positive charge of the hydrogen nuclei is not quite
compensated. Similarly, there is an uncompensated negative charge around
the oxygen nucleus. This peculiarity of the structure may not seem of great
significance at first sight. However, it is the real cause of all the special
properties of water which make it play such an important role in living
organisms. What are these properties?

First, a water molecule has a considerable dipole moment, p = 0.6 �
10�29C �m, i.e. the water is polar (this is what we call substances whose
molecules have a non-zero dipole moment). This means that in an external
electric field water molecules can be regarded as little “dipoles”, each car-
rying two charges, +e and � e, separated by a distance a (e is the charge
of proton, e = 1.6 �10�19 C); then p = ea. Given the value of p mentioned
above, we can calculate a = p/e = 0.04 nm = 4 �10�11 m. Such little
dipoles have no di�culty in becoming aligned in an external electric field;
this explains why the dielectric permeability of water is much higher than
for all other common liquids: " � 80.

In Section 4.8 we decided that such a high value of dielectric constant
means that many monomers dissociate in water solutions. In other words,
the corresponding polymers are polyelectrolytes. In particular, the poly-
electrolyte nature of the main biopolymers, DNA and proteins, is crucial
for their biological functioning.

Second, water molecules appear to be able to form so-called hydrogen
bonds between each other. A hydrogen bond is a kind of saturable, attrac-
tive interaction between a couple of atoms, say O, C, N, etc. One of the
two atoms should be joined to a hydrogen atom by a covalent bond. For
instance:

O� H . . .O ,

where the dots mark the hydrogen bond, and the solid line the cova-
lent bond. Roughly speaking, the attraction occurs because the hydro-
gen atom’s electron is shifted towards the oxygen atom along the covalent



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

Polymers in Nature 55

bond. As a result, there is some extra positive charge near the H nucleus
as well as some extra negative charge around the O nucleus. Thus an
H nucleus can be attracted to an O nucleus of another molecule, linking
the two molecules together. The binding energy of a hydrogen bond is
of order 0.1 eV = 1.6 �10�20J; this is one or two orders of magnitude
smaller than a covalent bond’s energy (which is about 1 to 10 eV), but
somewhat larger than the thermal energy at room temperature (300�K):
k
B

T � 0.03eV where k
B

� 1.38 �10�23 J/K is Boltzmann’s constant. The
comparison of these energies is very telling. On the one hand, random
molecular motions with energy about k

B

T are practically unable to break
covalent bonds, which, therefore, act like reliable locks at room tempera-
ture. On the other hand, hydrogen bonds at room temperature are far less
reliable; their energy is still few times k

B

T , so they are connected most of
the time, but do break every now and then due to random molecular hits.
Therefore, the molecular structure of water at any instant just looks like
a three-dimensional network of hydrogen bonds, but, in contrast to a gel,
every piece of this network gets torn apart and stuck together in a new
manner over and over again, due to the thermal motion.

The network of hydrogen bonds is a key concept clarifying many prop-
erties of water, e.g. water’s high heat capacity. Indeed, in order to increase
the temperature of water you have to expend a fair bit of energy to break
the hydrogen bonds.

What we have said about water also explains its special features as a
solvent. Nonpolar substances (i.e. substances whose molecules have no
dipole moment, for example the simplest organic compounds — fats and
oils) are barely soluble in water, whereas the solubility of polar substances
is normally much greater. This can be explained in the following way. If a
polar molecule is placed into water it experiences a strong attraction to the
water molecules. This is due to the interaction between the little dipoles,
which have the ability to line up antiparallel to each other (compare the
inset in Figure 4.10 and Section 4.8). For a low-molecular weight molecule,
the energy of such attraction is usually around 0.1 eV, and quite often
this is enough to provide significant solubility. In contrast, if there is a
nonpolar molecule in the water, there will be no attraction, in fact just the
opposite will occur — the water’s molecular structure will be distorted as
some hydrogen bonds will be broken. Obviously, this is not energetically
favorable, and so the water molecules will try to “push” the alien molecule
out. Such molecules have practically zero solubility.
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Polar and nonpolar substances are also known respectively as hy-
drophilic and hydrophobic. These names start making sense when trans-
lated from Greek: hydro (��⇢o) of course means water, philos ('◆�o&) means
friend, and phobos ('o�o&) fear.

The concept of hydrophilic and hydrophobic behavior is very important
in molecular biology.

5.2 Head-and-Tail Molecules

Add some hydrophilic substance to a glass of water, and it will merely
mix with the water, just like sugar. In other words, it will be dissolved.
On the other hand, a hydrophobic substance cannot be dissolved, it will
separate out from the water, just like oil. However, there is a more complex
“amphiphilic” kind of molecule; each molecule contains both a hydrophilic
and a hydrophobic part. What happens to them in water?

Each of us must make such experiment many times a day, observing the
interaction between amphiphilic substances and water, since even ordinary
soap consists of amphiphilic molecules. (How could we avoid mentioning
soap having chosen an epigraph from the book Wash-into-holes?) Besides,
amphiphilic molecules are often encountered in biological systems. Most
often such molecules consist of a polar atomic group, the “head” (Figure
5.1 b), and a hydrophobic “tail” which is attached to the head. The tail is
a carbohydrate chain (�CH

2

�)
n

of moderate length; normally n varies in

oil

water
water

oil
e

d waterfc

water

“oil”

a
H
O

H

b -CH2-CH2-...-CH3

Fig. 5.1 The behavior of amphiphilic molecules in water. (a): One molecules of water;
(b): A schematic diagram of a typical amphiphilic molecule, consisting of a hydrophilic head
(a ball) and a hydrophobic hydrocarbon tail; (c): If there are not too many amphiphilic
molecules in contact with water, they prefer to locate on the surface; (d): amphiphilic
molecules can surround a drop of oil in water; (e): in this sense a soap molecule can be said
to connect water and oil; (f): A liposome contains a small amount of water inside, separate
from the bulk of water by an oily shell.
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the range from 5 to 20. The whole molecule looks very much like a tadpole.
Strictly speaking, “tadpole” molecules like the ones in Figure 5.1 b are not
quite polymers since the number n is not high enough. Nevertheless, it is
just because they have their flexible tails that such molecules exhibit some
rather special and interesting properties.

Well, so what will happen if you try to dissolve molecules like those in
Figure 5.1 b in water? A straightforward guess is that while there are not
too many of them they will stay on the surface, immersing their heads in
the water and sticking their tails out of it (Figure 5.1 c). By the way, this
makes it clear how soap actually works. Oil, fat, and other nonpolar organic
compounds cannot be easily washed o↵ by water because they just do not
dissolve in it. However, there is a great di↵erence as soon as amphiphilic
molecules of soap come along. Their hydrophobic tails will cling to the oil.
The reason is that it is energetically favorable for hydrophobic particles in
the water to come together. For them, getting together is simply a way of
defending each other from being too close to the water. As a result, the
water molecules form a kind of “coating” around the drops of oil (Figure 5.1
d). The whole surface of such “coated” particles consists of the hydrophilic
heads of the soap molecules; therefore they are soluble and easily washable
by water. Thus, in a sense, the amphiphilic soap molecules stick the oil to
the water (Figure 5.1 e).

The next question to ask is: What if there are too many “tadpoles” and
they cannot all be accommodated on the water’s surface? Each of us has his
or her own experience with soap and detergents, and we all know one good
way to accommodate more “tadpole” molecules — to increase the surface
area considerably by forming a lot of bubbles, or a foam. (This is why the
substances formed of interface-loving molecules, such as “tadpoles”, are
even referred to as surface-active). However, if there is no way to increase
the surface area any more, then the approximate scenario shown in Figure
C5.2 gradually develops with the increase in the “tadpole” concentration.

The first stage is that the “tadpoles” get together to form spherical par-
ticles, called micelles. Each micelle’s outer surface is made up of hydrophilic
heads, and is in direct contact with water, whereas the hydrophobic tails are
hidden inside (Figure C5.2 a). On the one hand, obviously, such micelles
dissolve easily in water, because to water they seem purely hydrophilic! On
the other hand, they behave like highly stable, almost indestructible units.

If there are even more amphiphilic molecules in the solution, the spheri-
cal micelles start to feel rather cramped. The “tadpoles” reorganize to form
a system of parallel cylindrical micelles (Figure C5.2 b). Now let’s imagine
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that the number of “tadpoles” continues to grow. You can regard it as
just having less water — no longer enough to fill in the gaps between the
cylindrical micelles. So the amphiphilic molecules are forced to rearrange
themselves once again, this time forming parallel layers known as lamellae
(Figure C5.2 c). If there is even less water then inverted cylindrical micelles
(Figure C5.2 d) and, later, inverted spherical ones (Figure C5.2 e) gradually
develop. We end up with lots of di↵erent and very beautiful structures!

Substances with such structures have quite unusual properties. They
are fluid, but in the cases b and d they tend to flow di↵erently parallel
and perpendicular to the cylinders. Meanwhile, for the lamellar structure
c there is only one possible direction of flow — the layers can only slide
parallel to each other. Certainly, light too propagates di↵erently along and
across the cylindrical micelles or the lamellae; hence birefringence is typical.

To tell the truth, you cannot usually get all five successive stages (Figure
C5.2 a–e) with the same substance. Either the tails are too thick to form
spherical or even cylindrical micelles, or, on the contrary, they may be too
thin to construct inverted micelles. Normally one substance can exhibit
only two or three of the structures in Figure C5.2.

Let’s compare Figure C5.2 and 4.8. You can easily spot the similarity
between the structures that “tadpoles” form in water and those appearing in
block-copolymer melts. This is not a coincidence. Indeed, block-copolymers
are also amphiphilic molecules, just like the “tadpoles”. The only di↵erence
is that, instead of a tail and a head, they simply have two tails connected
with each other.

The structures like the ones in Figure C5.2 are often used in a special
kind of polymerization process called emulsion polymerization. In Sec-
tion 3.1 we described how polymerization occurs. We discussed that the
chain growth often “terminates” because its two growing ends come to-
gether. If we knew how to make the ends less likely to encounter each
other, we would be able to produce longer polymers. One of the solutions
is to carry out polymerization in a system such as that shown in Figure
C5.2 a. Indeed, assume that both the initiator and the monomers are in-
soluble in water, but that they do not mind the hydrophobic tails of the
“tadpoles”. Then, if you dissolve them both in the system shown in Figure
C5.2 a, they will be mostly absorbed by hydrophobic micelles. Polymeriza-
tion will start in the micelles where the initiator molecules ended up. You
can adjust the concentration so that there is no more than one molecule
of the initiator in most micelles. Then the chain growth will be safe from
terminating. The polymerization will go on until there are no monomers
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left in the micelle. Thus, we create longer polymers than if we use one
of the usual methods. Moreover, the chain tends to grow faster, because
monomers are trapped in a special “microreactor”, a micelle. Since this
“microreactor” has a microscopic size, it helps to solve another problem,
the one of taking away the heat that is given out during the reaction.

This is all fairly interesting, but you may start wondering: what does
it have to do with biology? Here is the answer: Molecules of phospholipids
have the shape of a “tadpole”, although normally with two, or sometimes
even three, tails. They are the chief constituent of membranes that separate
biological cells from the outside world and divide the cells into compart-
ments. The considerable thickness of the double tails prevents phospho-
lipids from clumping into micelles, hence they form into layered walls.

Phospholipids can even be used as a material to make a model of a real
cell. All you have to do is to take a suspension of phospholipids and to give
it a good “shake” with an ultrasound signal of the appropriate wavelength.
This forms “liposomes” which are comparable in structure to that shown in
Figure 5.1 f Liposomes are used, for example, to study how di↵erent drugs
may penetrate into a cell through the cell membrane.

However, the phospholipid layer is not the only part of a membrane.
There are also some proteins “floating” in the lipid medium, as shown in
the cartoon in Figure 5.1 (the image was created by Mariana Ruiz Villareal
and is available in public domain http://commons.wikimedia.org/break

wiki/File: Cell membrane detailed diagram en.svg). Moreover, the
membrane (and thus the whole cell) is held in shape by the so-called cy-
toskeleton. It consists of proteins and polysacharides (which are polymers
too!) The strange name comes from the Greek for cells, cytos (�⌧⌧↵&).

A few years ago, Vincent Noireaux (now at the University of Minnesota)
and Albert Libchaber (of Rockefeller University in New York) published an
article1 with a telling title “A vesicle bioreactor as a step toward an artificial
cell assembly”; they reported data of a series of experiments in which they
used a vesicle like the one in Figure 5.1 f and tried to equip it with at least
the elements of bare necessity for a simplest biological cell. They succeeded
in implanting some of the proteins into the artificial membrane, placing
some DNA inside the cell, and making a few more steps towards artificial
cell.

The study of cell membranes is one of the most rapidly developing
branches of modern biology; it even has its own name, membranology.

1Proceedings of the National Academy of Sciences of USA, v. 101, n. 51, pp. 17669–
17674, 2004.
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There is a great variety of interesting phenomena in this area, and quite
a few of them are related to polymers. Unfortunately, there is no way to
describe them all in this book, but we cannot help giving one particular
example. In principle, the “fatty” layer of a membrane can exist in two
di↵erent states. One of the states is nearly solid, with the hydrophobic
“fatty” tails lying parallel to each other. In contrast, the other state is
liquid, and the tails are randomly entwined. There is a possibility of a
phase transition between the two states. (To be precise, the cytoskele-
ton is actually involved in this transition too.) At di↵erent stages of a
normal cell’s life cycle, its membrane appears in the two di↵erent states,
sometimes changing from one to the other. (A cancer tumor cell, how-
ever, which is prone to uncontrollable division, is incapable of such tran-
sitions, so its membrane remains liquid all the time. This may turn out
to be important in understanding cancer, although as yet we do not know
why.)

Thus, some rather complicated structures can be built from phospho-
lipid molecules in nature. Later we shall see even more interesting “ar-
chitecture” when discussing proteins and nucleic acids. However, we first
ought to explain what made us mention architecture.

5.3 Molecular Biology and Molecular Architecture

In books on the history of architecture you may come across an interesting
theory. People who are keen on scientific explanations may find it quite
attractive. In our own words, it is the following.

How could you work out, if you wanted to, what kind of architectural
style was typical of some period in history? It turns out that you do not
really have to study the aesthetic views of that epoch. All you need is just
some knowledge of the mechanical properties, the elasticity and strength,
of the building materials used at that time.

To make this clearer, we give some examples. They, of course, will be a
digression, but they are interesting, and will help us to get the idea. A struc-
ture made of huge unattached stone blocks appears tremendously strong in
compression, but very weak in shear; bending (torsion) may only be sup-
ported by individual blocks. The Egyptian pyramids in which the pharaohs
were buried are an extreme example of this method of construction. They
have the most pointed tops that one can create using material that cannot
withstand shear stresses.
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By contrast, for a building without a pointed top, columns (which work
in compression) are used to support continuous beams (working in bend).
This is exactly how the glorious Parthenon in Athens was designed and
constructed.

Layers of bricks or a system of small stone blocks glued to each other
would still be very strong in compression, and now satisfactory in shear.
However, they still cannot tolerate tension or bend at all. Vaults of a
ceiling made of such a material have to arch upwards. This kind of design
can be seen in the Hall of Facets in the Moscow Kremlin, and in white stone
churches all over Russia. It also occurs in the Gothic cathedrals of Western
Europe. In fact, in the latter case, numerous little towers and buttresses
are designed to save every part of the walls from any tensile stress, even on
the expense of introducing more compression.

Wooden logs are a di↵erent example — they are strong in compression
perpendicular to their length and in tension along it. Hence, apparently,
were built the wooden temples in the North of Russia.

And finally, reinforced concrete can withstand beautifully all types of
stresses, and this explains giant vertical and horizontal surfaces in modern
constructions, such as the sky scrappers or several hundred meters tall TV
towers.

Of course, whatever style and material, there may be all sorts of archi-
tecture — some buildings show no spark of talent, whereas some others are
real works of genius. But that is a very separate discussion indeed!

Back to biology: If we think of a chemical substance as of some kind of
architectural construction, and of the molecules as of a building material,
we shall get quite a similar situation. In the previous chapter we looked
at how properties of various polymer chains are determined, in the end,
by the chain structure of the individual molecules. However, no architect
in his or her worst nightmare would ever dream of becoming a polymer
technologist. The trouble is that a polymer scientist is unable to pile up
the molecules, one by one, in specially determined places, as if they were
bricks or logs. Instead, indirect methods must be used, such as, for in-
stance, heating and cooling, or dilution and sedimentation etc., in order to
encourage the molecules to arrange themselves in a way at least vaguely
similar to what is desired. (Just imagine an architect trying to build some-
thing sensible out of a pile of bricks, by merely shaking it, or floating the
bricks in water and pouring them out!) This is why the order of molecular
segments and the geometrical structure of synthetic materials (particularly
polymers) always has many faults (or defects) and can never be perfect.
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(For example, if entwining polymer chains in a fiber could be arranged to
the perfection of a tidy little girl’s hair plait, then we would have fibers of
amazing strength — as much as an order of magnitude stronger than that
for the best known ones made from a liquid crystalline solution.) How-
ever, this is only the case with artificial materials. (Architecture will be
mentioned again in this book — see Figure C13.2.)

The situation in biology is totally di↵erent. Molecular biology does
have something in common with molecular architecture. First, a number
of molecules in biological systems are such that they manage to keep, nat-
urally, very high order among themselves (we have seen it with lipids).
Second, there are some special systems in a living cell that are capable of
arranging molecules in a given structure; an example is a ribosome, which
is responsible for protein synthesis. This is why a peculiar novel language
comes into use when a physicist starts talking about proteins and nucleic
acids – rather unusual and di↵erent from all the rest.

5.4 Molecular Machines: Proteins, RNA, and DNA

The special thing about biological macromolecules (proteins, RNA and
DNA) is that they have biological functions to fulfill. You could say that
proteins, or RNA, or DNA are not only molecules of a particular substance,
but each of the molecules is also a device or a machine to do particular oper-
ations. In this sense it is more straightforward to talk about such polymers
in the language used to describe robots.

In particular, as we have already said, a strictly fixed sequence of di↵er-
ent monomer units in a chain of a biopolymer can naturally be compared
to a text written with the appropriate molecular “alphabet”. Since such
a sequence determines chemically the individuality of, say, a protein, then
in the spirit of this analogy we can say that a “protein text” lists or codes
the function of the protein, it should be compared to a blueprint of a ma-
chine. The sequence of monomer units in DNA, as everyone knows, contains
genetic information, and it codes the “texts” of proteins by means of the so-
called genetic code. This is the cybernetic terminology which is commonly
used in molecular biology.

This cybernetic analogy is beautiful and comprehensive, but it does
not tell us anything about the way in which the processes actually occur.
Why can one protein with a given piece of text detect photons of light in
the retina of an eye, and another with a di↵erent piece of text cause the
physical e↵ort of a muscle, whereas a third controls the immune system,
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and a fourth. . . ? (One cannot easily count all the functions of proteins:
catalysis of strictly specific reactions, including the biosynthesis of proteins
and DNA; transportation of molecules through membranes; tangling and
disentangling of knots on DNA, etc. — as a matter of fact, all the pro-
cesses in a cell are carried out by proteins.) So how is the DNA text read,
and how, according to the instructions that it contains, is a protein built?
Certainly all these and similar questions are connected with the physics of
biopolymers. We already know a lot, but there is still far to go to reach a
complete understanding. Perhaps you, however young or old you may be
today, will still have many interesting open questions left for your curiosity
if you decide someday to take part in these studies. For now, we shall just
describe in brief what is already known.

5.5 The Chemical Structure of Proteins, DNA and RNA

5.5.1 Proteins

First, a few words about the chemistry of the subject. Monomer units of a
protein chain are residues of the so-called amino acids, and have a structure
of the sort � CO� CHR � NH� . They are called residues, because amino
acids have extra OH group on the left end and extra H atom on the right
end; when amino acids combine to form a peptide, (almost) each of them
looses water (H

2

O), and what enters the chain is a residue. The exceptions
are two monomers at the ends: the one which keeps the OH group is called
the C-terminal, while the other one which keeps the H is called N-terminal
of the chain.

In the above chemical formula for amino acid residue, R stands for
a radical which can be of 20 possible types. In the simplest case it is
just a hydrogen atom (-H), and the corresponding amino acid residue is
called glycine (Gly). For the remaining 19 amino acids the radical R has
a more complex structure, such as –CH

3

(alanine, Ala), –CH
2

� OH (ser-
ine, Ser), –CH

2

� CH
2

� S� CH
3

(methionine, Met), –CH
2

� CO� NH
2

(as-
paragine, Asn), � CH

2

� COO� (aspartic acid, Asp), and � (CH
2

)
4

� N+H
3

(lysine, Lys). The latter two examples show that protein chains may con-
tain monomer units which carry a positive or negative electrical charge. As
usual, the system as a whole must be electrically neutral, so the amino acid
residue might be charged when and if it dissociates, which means it releases
its counterion into the surrounding water, or it receives an ion from disso-
ciated water molecule. The sequence of amino acid residues in the chain
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Fig. 5.4 The chemical structure of a protein chain. In the picture, flat amide groups are
enclosed in rectangles. They all contain �N�C� peptide bonds which form the main chain
backbone when the chain is finally complete. The arrows show the bonds about which the
chain may rotate. (The corresponding angles of rotation are called Ramachandran’s ' and
 angles.) R symbolizes side groups of various amino acid residues.

is di↵erent for di↵erent proteins; you can regard this sequence as a kind
of “text” written in a 20-character protein “alphabet”. The important
point, corroborating the analogy with architecture, is that all individual
molecules of any particular protein type have exactly the same sequence of
residues; for instance, all hemoglobin molecules in your body have identical
sequences. The number of monomer units N in each molecule varies from
protein to protein, usually in the range of a few tens up to a few hundreds.

The spatial arrangement of atoms in a short piece of a protein chain
is sketched in Figure 5.4. The �CO�NH� bond links together �CHR�
groups which are specific to each unit. It is called a peptide bond; that
is why the whole protein molecule is often referred to as a peptide (or
polypeptide) chain.

5.5.2 Nucleic Acids

The chemical structure of DNA strands is illustrated in Figure 5.5. Each
strand is made up of alternating sugar (deoxyribose) and phosphate groups.
A nitric base is attached to each sugar group. There are four possible bases:
adenine (A), cytosine (C), guanine (G), and thymine (T ). They are all
shown in Figure 5.5. RNA strands have a similar structure, only with a
di↵erent type of sugar in the main chain, and the base uracil (U) replacing
thymine.

As for the three-dimensional structure, you probably know that in a
living cell, DNA molecules consist of two strands (like the one in Figure
5.5) which form a double helix (see Figure C5.10 a little further on). It is
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essential that these two strands are mutually complementary. This means
that, say, adenine in one of the strands always corresponds to thymine
in the other, whereas guanine always corresponds to cytosine. Physically,
the reason for this is that the nitric bases are located in the very core of
the double helix, where only the pairs A� T and G � C can fit perfectly
without distorting the shape of the double helix. Figure 5.6 explains in a
somewhat simplified way why this is so. Hence, the second strand of the
double helix contains no extra information, but merely helps to reproduce
the information and to make multiple copies of it.
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Phosphate groups are negatively charged at normal conditions. That
means, of course, that their respective positive counterions dissociate from
them and wander in the surrounding water. As a rule, both in the living
cell and in the laboratory, there are many other ions, apart from DNA
counterions. For instance, there are usually salts dissolved in water, such
as regular table salt NaCl, or KCl, or MgCl

2

, etc. These molecules also
dissociate, and they are present in water as ions, such as Na+ (or K+, or
Mg2+) and Cl� etc2. Tight control of delicate balance of ions is one of
the most stringent requirements of survival for every cell, both single cell
organism or a cell from, say, anywhere in our body. Not going to any details,
we only point out that the most important and the simplest condition
is overall electroneutrality: positive ions in any macroscopic volume are
almost exactly compensated by the negative ones. However, when we are
talking DNA, on the molecular scale, we are dealing with a negatively
charged molecule. And the charge of DNA is pretty large. If all of the
phosphate groups were to be dissociated, the linear charge density would be
� 2e/a � � 5.9e/nm, where a is the distance between neighboring phosphate
groups, about 0.34 nm; in other words, surface charge density on the double
helix would be � 2e/⇡da � � e/nm2, where d � 2 nm is the diameter of
the double helix. This is a huge charge density! It is so large, that in
fact only about 25% of all counterions truly depart from DNA into the
surrounding medium, the other 75% remain in close vicinity to the double
helix (so called Onsager–Manning condensation). But 25% is also a lot —
it is in fact practically maximal possible charge density for any molecular
system, natural or artificial. So, in a word, DNA is a very strongly charged
thing!

For the readers knowing some electrostatics it would be no surprise that
charge phosphate groups are located on the outer surface of the double
helix. This is because the dielectric constant of water is very large, it is
about " � 80 (because water molecules have dipole moments, they are
polar), while the interior of the double helix is not polar and only weakly

2Under such circumstances, it makes little sense to ask which specific positive ions are
“attributed” to DNA as its “own” counterions — protons H+ or some of the present
positive metal ions. This may lead to the question whether DNA and RNA deserve the
character A in their abbreviated names, which stands for “acid”, or, maybe, it is more
productive to think of DNA as a salt of the corresponding acid? This question seems
purely terminological to a physicist, but a chemist may have a di↵erent opinion. On
this topic we can only cite the very first sentence from the famous very first paper by
J. Watson and F. Crick, where they announce their discovery of the double helix: “We
wish to suggest a structure for the salt of deoxyribose nucleic acid (DNA)”.
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polarizable, so energy of the charged groups is dramatically reduced when
they are in contact with water.

5.6 Primary, Secondary, and Tertiary Structures
of Biopolymers

Going into the physics of biopolymers, the first thing to understand is the
hierarchy of their structure. As you must have guessed from the title of
this Section, there is a primary, a secondary, and a tertiary structure, and
sometimes even a quaternary one.

5.6.1 Primary Structures: Sequences

The primary structure, as we have already mentioned, is the sequence of
units in the chain, that is, the “text”. It is created during the biosynthesis
of each molecule and is “memorized”; in other words, it is not distorted by
the thermal motion unless the whole molecule is destroyed. For a book, it is
obvious that thermal motion of atoms in the page is far insu�cient to swap
letters in a word (making “no” from “on” etc.); for a molecular book, it is
much less obvious — but still true, because the sequence of letters in either
a DNA or a protein is fixed by strong covalent bonds which are practically
never broken by thermal fluctuations under normal conditions.

Biochemists have learned how to “read out” the primary structure of a
protein molecule. Although more di�cult, methods have been developed
to sequence natural DNA’s as well. In 2003, an amazing project was com-
pleted — the sequencing of (almost) entire human genome: the sequence of
about 3� 109 nucleotides is now known and is stored in a computer memory.
Genomes of other organisms, ranging from viruses to mammals, are now
being deciphered with an ever increasing speed, and there is a huge, con-
stantly increasing international database of the corresponding data3. Un-
fortunately, early methods of DNA sequencing were rather laborious and,
therefore, expensive: the first sequences were decoded at the cost close to
$1 per nucleotide, which meant billions of dollars per genome. But the
hopes for a better health care are now largely revolving around the knowl-
edge of DNA sequences — the knowledge of genomes of pathogen viruses
or bacteria, the knowledge of abnormal human genes, etc. Therefore, we
3Incidentally, the widely known use of DNA in criminal investigations is also based on

sequencing, but does not involve genes; it looks at so-called short tandem repeats in
non-coding parts of DNA.
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— the humankind — desperately need to reduce the sequencing price from
its original level by as much as at least six (!) orders of magnitude, that
is, a million fold, to make individual sequencing accessible as a diagnostic
tool. The work in this direction continues, the sequencing price tag rapidly
diminishes, but we need more.

One promising avenue to make DNA sequencing fast and cheap must
be mentioned in this book, because of its distinct polymer physics flavor.
The idea is as follows (see a sketch in Figure C5.7). Imagine taking a vol-
ume of salty water and divide it into two halves by a membrane. Imagine
now that there is one little hole in the membrane. With two electrodes
in the two halves of the volume, we can use a battery to drive an elec-
tric current carried through the hole by the ions (presented in water be-
cause it is salty; in a typical case, when salt is the regular table salt, the
positive ions are sodium and negative ions are chloride). This part of ex-
periment is very easy, and everyone can make it at home. Now the not
so easy part comes. First, let’s add some DNA into water on one side
of the membrane. Second, let’s make the membrane hole so small that
only one DNA chain can squeeze there. This is of course not only not
easy — this is actually very di�cult, but scientists did master it. More-
over, there are two ways to do it. First, one can use a special protein,
for example, the one called ↵-hemolysin, which self-assembles to form a
nice pore in a lipid membrane; second, one can use semi-conductor tech-
nology to make a little hole in a solid membrane. Another serious di�culty
is that when membrane hole is only of a molecular size, the current of
ions through it is really tiny small, only about 10�9 amps (to put it in
prospective, a typical wristwatch consumes from its battery tens of thou-
sands times larger current); it is di�cult to measure such current — but
scientists did master that, too. Now, when DNA chain squeezes itself into
the hole and crawls through it like a snake — it blocks the ions from pen-
etrating through the hole and reduces the current even further. Moreover,
the chances of an ion to get through depend to some extent on which par-
ticular nucleotide is presently in the pore — therefore, optimists say, if we
monitor the tiny fluctuations of ion current in real time as DNA crawls
through the hole, we can read out the DNA sequence from this electric
signal. Sounds beautiful! Is it possible to realize, is it practicable? Un-
like science questions, to which definitive answers are established, this is
for now an open matter of opinion - and various opinions, including the
diametrically opposite ones, do exist; we recommend a nice review of this
topic in the article [51]. But what we can say for sure — this is a truly
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exciting area of work, of course, as well as some other propositions for
sequencing.

Sequencing is akin to reading. But when a young child masters reading,
he or she also learns to write at about the same time; are there then analogs
of writing for biopolymer sequences? Yes, there definitely are! First, there
is recombinant technology — one can add the desired piece of DNA into
an existing organismal genome, such as the plasmid of bacteria. This way
one can force the bacteria to produce some protein which is entirely foreign
to this bacteria, for instance, human insulin. Second, making a short DNA
strand — up to a couple of thousand nucleotides — with any desirable
sequence is now a routine procedure: you can write down a desired sequence
on the proper web site, pay a modest fee using your credit card . . . —
and then receive the DNA sample in the mail. The procedure behind this
“DNA-made-to-order” is quite complex, but its major component is the
so-called polymerase chain reaction, universally called by an abbreviated
name PCR. (Using abbreviations instead of words does not add to the
language elegance, but the fact of the matter is that some abbreviations —
DNA being the most striking example — do become universally accepted
technical terms.) PCR uses the DNA polymerase enzyme to produce copies
of DNA initially presented by very few molecules. As the reaction develops,
the generated copies of DNA automatically become templates for yet new
copies, which is why this is the chain reaction, it develops exponentially and
large number of copies can be quickly produced4. The beauty of PCR is
that natural DNA polymerase enzyme is employed essentially as an e�cient
technological device.

It is also possible now to “write” protein sequences: the approach, called
protein engineering, was pioneered in 1980s by Sir Alan Fersht in the Uni-
versity of Cambridge in Great Britain. His idea was to use a natural system
of biosynthesis that is at work in every living cell; in this sense, it is the en-
tire cell that is now a technological device. Given our ability to prepare any
DNA sequence, in principle, we could get a cell to produce protein molecules
with any primary structure we wish. However, even if the technical side
were no problem, the trouble is that no one really knows what to wish for.
When the total number of units N � 102, and there are 20 “candidates” for

4The word “chain” in PCR has nothing to do with molecular chains we discuss in this
book. In this case, it is the chain reaction because the product of one step in the reaction
is immediately used as the reagent in the next step; this type of chemical reactions is
particularly common in such areas as combustion and explosion.
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each unit, we end up with approximately 20100 di↵erent possible sequences
for a chain of length 100. How can we choose some sensible ones out of
such a tremendous number? Of course, one can merely “duplicate” some
genuine proteins just as they exist in nature. However, this would be quite
an extravagant pastime; it would be only worth trying if we managed to
“improve” on nature. It is a bit like a publisher who is unable to read:
he is free to publish any book, but how would he choose an exciting and
informative text that would become a best-seller? As for biopolymers, par-
ticularly proteins and RNA, it only becomes clearer whether their texts are
“exciting and informative” once the secondary and tertiary structures are
formed.

5.6.2 DNA Methylation

We should mention here important complication. Under certain circum-
stances, the chemical structure of DNA can be modified by the addition
of a methyl group for example, to the number 5 carbon of the cytosine
pyrimidine ring (see Figure 5.5). This usually plays a regulatory role, for
instance, it may have the specific e↵ect of reducing gene expression. DNA
methylation was observed in both the cells of adult somatic tissues, and
in the embryonic stem cells. There are suggestions that long term mem-
ory storage in humans may be regulated by DNA methylation, and that
methylation aspect of the sequences can be inheritable.

5.6.3 Secondary Structures

Secondary and tertiary structure are the short-scale and long-scale order in
the monomers’ positions, respectively.

The main secondary structures of proteins were discovered in the 1940–
1950s by a chemist Linus Pauling (1901–1994) at California Institute of
Technology in Pasadena near Los Angeles (these studies were an important
part of the work for which Pauling was awarded the Nobel prize in Chem-
istry in 1954; by the way, he also won the Nobel Peace prize). They are
called ↵ and � structures. They are made stable by the hydrogen bonds.
In fact, the reason why the loops of the helix and the �-folds are formed is
simply that this is the arrangement that achieves the maximum saturation
of the hydrogen bonds.

Both ↵- and �-structures of polypeptides are quite universal, their struc-
ture is only marginally dependent on the sequence of aminoacids (this
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dependence, however small, might still be important, for instance, some
aminoacids make ↵-helix more likely, others promote �-strands, and yet
others prefer to be in the loops between secondary structure elements).
The cartoon of ↵-helix is shown in the Figure C5.8, while similar cartoon
of the �-sheet is presented in Figure C5.9.

The most common secondary structure of DNA was discovered in 1953
by Francis Crick and James Watson at the University of Cambridge in
England using the experimental data of Rosalind Franklin at King’s College
in London — it is the famous Watson and Crick double helix. The discovery
of the double helix has won a firm and very fair reputation as one of the
major achievements in the history of science. The striking beauty of the
double-helix model of DNA is the way it explains, with brilliant ease, one
of the real marvels of nature — the ability of all living things to reproduce
themselves. Indeed, as soon as the two complementary strands move apart,
they form something like a pair of “printing plates” or templates which
are ready to make two identical copies. This is exactly how biological
inheritance occurs at the molecular level. The canonical Watson–Crick
double helical DNA is shown in Figure C5.10.

We should also mention in passing that some DNA sections, with par-
ticular types of primary structure, may form very unusual — called also
non-canonical — secondary structures under certain conditions. These
structures are di↵erent from the familiar Watson-and-Crick right-handed
double helix (which in this context is called the B-form). In particular, if
the DNA is torsionally stressed (e.g., by improperly forming a ring or by
magnetic tweezers in the lab), its parts can form a left-handed double helix
(the Z-form). There is a possibility to make a triple helix (the H-form),
and so on. As another example, you can encounter palindromes in the pri-
mary structure of segments of DNA. These are sentences which read the
same in both directions; a few funny examples in English are “A man, a
plan, a canal — Panama”, “Draw pupil’s lip upward!”, “And DNA”, etc.
Palindromic bits of DNA often take the shape of a cross (Figure 5.11).

There can be some unfavorable conditions when secondary structures
do not develop in biopolymer chains. This can be seen upon a close look
at the Figure 2.12: it shows electron micrograph of some DNAs prepared
under the conditions of very low salt concentration in solution. Under
such conditions, negatively charged phosphate groups of the opposite DNA
strands repel strongly and this leads to the unwinding of the double helix
at least in some places, shown by arrows in the Figure 2.12. More generally,
if the temperature is increased, or some low molecular weight substances
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Fig. 5.11 The cross-like structure of a palindromic strand of DNA. To make this struc-
ture possible, the sequence must be symmetric, or be a palindrome. The second string’s
palindrome is not identical, but complementary to the first string’s one.

a b

Fig. 5.12 DNA strands: (a) in a double helix, and (b) in the molten state.

(such as salt) are added to the solution (or removed from it), it can cause
untwisting of the helices, called a helix-coil transition. This transition has
this name because a spiral-shaped polymer chain is rather rigid, whereas
a non-spiral one is a relatively flexible coil (Figure 5.12). Therefore the
helix-coil transition is also called the melting of the helix. The physics of
helix-coil transition is of great interest.

Helix-coil transition is beautifully used in PCR. Indeed, once new copies
of DNA strands are produced tightly wound with their templates of the
previous generation. To unwind them and to make them serve as templates
once again, experimenter raises temperature, causing helices to undergo
helix-coil transition and complementary strands to di↵use away from each
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other, after which temperature can be lowered again to repeat the whole
process. In fact, historically, the decisive step in implementing PCR as a
routine reliable procedure was to employ the DNA polymerase enzyme (so-
called Taq polymerase) isolated from a thermo-stable organism (typically
the bacterium Thermus aquaticus) which can withstand multiple heating-
cooling cycles.

The analogy of helix-coil transition with the ordinary melting of solids
is particularly appropriate since both transitions occur very sharply with
increasing temperature, over a narrow temperature range. As in melt-
ing, helix-coil transition is accompanied by considerable absorption of heat
which is used to break the hydrogen bonds forming the helix. Furthermore,
just as a crystal melts in big pieces, not atom by atom, in a similar way
in helix-coil transition, not only are individual turns of the helix destroyed
(this would be similar to the melting of individual cells of a crystalline
lattice), but whole chunks of the helix break down. This is a cooperative
e↵ect, i.e. the loss of one turn helps the neighboring one to fall apart.
Thus, the analogy between ordinary melting and the helix-coil “melting”
is rather pervasive, but. . . However good is the analogy, in some ways the
helix-coil transition is di↵erent from ordinary melting. The main di↵erence
is that spiral and non-spiral strands do not separate out (as, say, regions of
ice and water do in a winter river or in your glass of a drink with chunks
of ice), but they are mixed along the chain. In the language of theoretical
physics, we can say that phase segregation does not occur in the helix-coil
transition, and, therefore, strictly speaking, this is not a phase transition.

The theoretical interpretation of all this is rather interesting. Appar-
ently, the helix-coil transition is indeed a real melting process, although not
of a three-dimensional crystal, but of a one-dimensional one. In the one-
dimensional world, melting is a rather rapid process, but it does not lead
to phase separation. This fact is known to physicists as Landau’s theorem
— because it is briefly mentioned in one of the volumes of the 10-volume
“Course of Theoretical Physics” by Lev D. Landau and Evgenii M. Lifshitz.

It is also interesting that a real heteropolymer with a non-uniform pri-
mary structure does not melt as sharply as a specially prepared homopoly-
mer. Figure C5.13 explains why. It compares polymers with di↵erent pri-
mary structures showing their melting curves. These are dependencies of
the helical fraction # (sometimes also called helicity; it is the fraction of
helical units in the chain) on inverse temperature T�1. Two uniform ho-
mopolymers, say A � A � . . . � A and B � B � . . . � B, both melt rather
sharply, but at di↵erent temperatures. (For example, the di↵erence in
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melting point for DNA molecules which consist only of A � T pairs or only
of G � C pairs is as big as 40�C) — see Figure C5.13 a. Obviously, a
copolymer A� A� . . . � A � B � B � . . . � B would melt in two stages (see
Figure C5.13 b). Hence it is not surprising that the melting of a real het-
eropolymer with a complex sequence of monomers A and B is a somewhat
gradual process (Figure C5.13 c).

These di↵erences in behavior become even more obvious if we look at
the so-called di↵erential melting curves – dependencies of the derivative
@#/@T on the inverted temperature, T�1 (lower graphs in Figure C5.13).
Di↵erential melting curves characterize the slope of the #(T�1) dependen-
cies (upper graphs in Figure C5.13). Typical di↵erential melting curve looks
like a set of peaks, and Figure C5.13 explains why: if a peak is observed
at some particular temperature T

0

, then it suggests melting of a particu-
lar piece of the helix at or around T

0

— namely the piece whose primary
structure happens to mix “stronger” and “weaker” base pairs in such a
proportion as to melt at T

0

.

5.6.4 Tertiary Structures

Thus, the secondary structure of a protein has the geometry of an ↵-helix
or a �-fold with an elementary unit (i.e. a turn of a spiral, or a “hairpin”)
which includes some three to ten monomers of the chain.

Meanwhile, the tertiary structure is the way the chain is laid out as
a whole, i.e. the geometry in which the pieces of the secondary structure
are brought together. A tertiary structure is intrinsically di↵erent from the
secondary one. When the secondary structure is formed, only the monomers
which are close to each other along the chain are brought together. On the
other hand, the formation of tertiary structure may bring close to each
other any parts of the chain, even those separated by very long strands of
the chain.

An example of globular tertiary structure of a protein is presented in
Figure C5.14. This particular protein is called aspartic protease endothia-
pepsin, but its name is not really important for us at the moment. Let’s
look first at the image C5.14 a. There, the spirals show the strands of
↵-spirals (there happens to be only a few of them in this particular pro-
tein), and the flat arrows represent the pieces which have �-structure. This
way of depicting the protein structure was suggested by the biophysicist
Jane Richardson of Duke University. It is good for its clarity; if you tried
to draw tertiary structure in more detail, the picture would appear too
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complex and hard to understand. The image C5.14 b presents the same
structure in a di↵erent, space-filling way. This representation is useful to
show that the globule is actually very compact, the groups of atoms are
packed quite densely — but, of course, this way we do not see the elements
of secondary structure inside.

The protein in Figure C5.14 is a globular one. This means that its ter-
tiary structure fold into a dense, compact bundle called a globule. We shall
talk in detail about polymer globules in Chapters 9, 10, and 14. Among
other things, we will discuss how these globules are formed and how they
can be destroyed (or denatured, as it is more commonly called), whether
this is similar to melting or not, whether it is phase transition or not, and
why this issue — dubbed as protein folding problem — is considered one
of the central problems in modern biological physics. There, we will also
discuss globular states of other biopolymers, particularly DNA (see Section
9.12).

5.7 Globular Protein Enzymes

Quite a lot of proteins have a globular structure. Above all, these include
enzymes which catalyze all kinds of chemical reactions in a living cell, in
particular biosynthesis of new proteins and DNA. Remember that a catalyst
is a substance that speeds up a chemical (or some other) reaction, but is
not itself a↵ected by the reaction. A light-hearted example is a subway
escalator. Its function is to take passengers up and down. Let’s think of
these two operations as of two “reactions” going in opposite directions:

[person in subway] + [electrical energy] � [person above ground]

From the point of view of energy conservation, it is all very simple and
straightforward. If a person is in the subway and there is enough electrical
energy available, then he or she can be moved to the surface (the direct
“reaction”). Alternatively, if the person was on the surface and is going
down, then his or her potential energy can be transformed into electrical
energy (the reverse “reaction”). The escalator itself would not be a↵ected
by taking passengers up and down. This is exactly what a typical catalyst
does. You can come up with many more such examples for yourself. In
fact, any kind of machine tool acts as a catalyst. By the way, biological
enzymes behave more like man-made machines, rather than like ordinary
chemical catalysts (such as, say, a platinum powder which speeds up the



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

76 Giant Molecules: Here, There, and Everywhere

oxidation of sulphur dioxide to sulphur trioxide by nearly 1,000 times, and
is used in the industrial production of sulphuric acid).

There are two fundamental similarities between enzymes and machines.
First of all, the acceleration of the reaction is extremely high. Usually the
reaction does not even occur without the enzyme, in the same way as a rod
does not spontaneously shape itself into a bolt without a lathe! The second
point in common is the extreme selectivity. An enzyme may work with one
substance, but would not work with another, even a very similar one. It
is like a cutting tool which cuts right-handed bolts of a certain diameter,
but would not make left-handed ones or the ones of even slightly di↵erent
diameter.

So how do these molecular machines, the enzyme globules, actually
work? Figure 5.15 shows the mechanism schematically. A “starter”
molecule is to undergo the treatment. It dives into a special cavity, or
a pocket, on the surface of the globule which is called an active center.
Inside the pocket, the molecule might press a kind of “button”, and some-
times the name of active center is reserved for that. Whatever terminology
we use, the essence of the matter is that the electron shells of the active
center are set into fast motion; then other parts of the globule start moving
(although not as fast). They squeeze the “starter” molecule as if with a
pair of pincers and pull it, snap it, wring it, and so forth, to make it into the
desired shape. In a similar fashion, other proteins fight the “invaders” of
our body, such as bacteria and viruses; these proteins are capable of highly
specific recognition of other molecules. In fact, the particular protein illus-
trated in Figure C5.14 is a “recognition molecular machine”, and the figure
depicts how the recognition is achieved in this case.

Certainly, our description of enzymes and immunoglobulines is rather
approximate. On the other hand, a detailed theory of how these proteins
really work has not yet been completed. This study forms a subject called
enzymology. In any case, what seems apparent at this stage is that since
each tool or machine is not just a random pile of bits and pieces, similarly an

Fig. 5.15 A
sketch of dif-
ferent stages
of catalysis
by an
enzyme.
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Fig. 5.16 A sketch of a pro-
tein crystal.

enzyme’s globule should be an organized structure, with all the monomers
in well defined places.

This conclusion can be easily tested by experiment. If it is true, then
all the molecules of a particular protein should be globules of a strictly
identical shape. Therefore, if they are fairly concentrated they would line
up in a regular periodic lattice (as in Figure 5.16), a protein crystal. This
is exactly what happens. If you extract a protein from a cell and make
a concentrated solution, then after some skilful work (aimed at precise
determination of properly conducive conditions, such as temperature, salin-
ity, pH — which frequently have to fit into very narrow “windows”), you
end up with protein crystals. They are so perfect that they can provide
sharp di↵raction patterns when illuminated with X-rays. It is worth to
emphasize that not only globules form a regular lattice, but every internal
element of every particular globule is positioned inside the globule in ex-
actly the same way as its counterparts in all other globules. Studying such
di↵raction patterns is a good way to find out the spatial structure of the
globules. This is just what the scientists do; as a matter of fact, several
thousands of tertiary protein structures have already been “decoded” by
now.

So what are the forces that hold a protein in the shape of a globule?
The globule must be very dense since all the monomers have to occupy
fixed positions. It turns out that the shrinking of the protein molecule
to a globule is mainly caused by the hydrophobic e↵ect which we have
already discussed. About a half of all the twenty amino acid residues are
hydrophobic, so they are crammed into the inside of the globule, letting
the hydrophilic ones take up positions on the surface. This arrangement
reminds us of spherical micelles (Figures 5.1 d and C5.2 a). The only
di↵erence is that now we have only one long chain strung back and forth
through the globule. Thus the structure is not quite spherical, but much
more complex.
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We can now understand better some of the di�culties of protein engi-
neering. The aim is to design the primary structure so that the chain will
coil up into a globule with the required tertiary structure, and will act in
the desired way. It is no easier than to write a decent book on polymer
physics in a language that seems like gibberish, just by manipulating letters
and words randomly!

5.8 Molecular Motors

We mentioned that protein enzymes are akin to human-made machines,
albeit on a nano-scale. We cannot resist mentioning that some of these
machines are correctly called motors, because what they do is they per-
form mechanical motion against friction on the expense of chemical energy.
For instance, some of the neurons (neural cells) in your body have their
cell soma (main body) somewhere in your back close to your waist, while
their axons go as far as the tip of your toe — perhaps the distance of
the order one meter. Some proteins are synthesized in the cell soma and
have to be delivered to the cell end. How can they be transported? The
cell cannot a↵ord waiting for this to happen via simple di↵usion (with a
di↵usion coe�cient around 10�9

m

2

s

, this would require about 109 s, or 30
years). Instead, special motor proteins, called kinesin, deliver the cargo by
traveling along the microtubules — by the way, yet another polymer-like
object. Another motor proteins, called dynein, deliver cargo in the opposite
direction.

Perhaps the most widely known motor protein is myosin, responsible for
the work of our muscles. Yet another motor proteins push DNA to make
the virus. And the list of examples is easy to continue.

From chemical point of view, what these motor proteins do is they
catalyze the reaction of hydrolysis of ATP; each act of hydrolysis yields
energy about 14 k

B

T . Motor proteins use this energy to perform directed
walk in one particular chosen direction (instead of random walk in random
direction in thermal equilibrium).

We have to emphasize that molecular motors are not classical heat en-
gines familiar from physics and thermodynamics classes. It is not because
molecular motors are small. It is because they use chemical energy directly
transforming it into mechanical work, while human built heat engines trans-
form chemical energy of a fuel into heat and then transform part of the heat
into mechanical work. Only part of the heat can be transformed (only free
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energy, not energy, is available to do work), which is why the e�ciency of
heat engines is always smaller than 100% (this statement is known to physi-
cists as Carnot theorem). By contrast, molecular motors do not dissipate
chemical energy into heat before doing mechanical work, which is why their
e�ciency is not restricted by any fundamental physics law, and, depending
on how one defines it, may approach arbitrarily close to 100%.

The fact that molecular motors are not heat engines has also other very
direct consequence: as mechanical devices, they are reversible. What does
it mean? For instance, a molecule of kinesin, under physiological conditions,
burns its fuel (hydrolyzes ATP) and spends the obtained energy to walk in
a particular direction. But what would happen if we intentionally starve
the kinesin on ATP, provide the excess of ADP and inorganic phosphate
(products of hydrolysis), and forcefully pull kinesin molecule along its track?
Well, you may guess, the machine is reversible — it will start catalyzing the
reverse chemical reaction, producing ATP out of ADP and phosphate on
the expense of the external source performing mechanical work to pull the
kinesin forward. At the first glance this may sound a bit like pulling a car
by its bumper in the hope that it will start producing gasoline — but the
car motor is a heat engine, which is why it is irreversible and can never be
run in the opposite (gasoline producing) direction, while kinesin molecule
is a mechanical system and it can be reversed. In this sense, kinesin is
more like an electric motor, for which the reversion — turning the shaft
and getting the electricity out — is a very common lecture demonstration
in physics.

It is very tempting to tell you more about these amazing motors and
how they work, because it is very interesting, but we must restrict ourselves.

5.9 Physics and Biology

There is just one more question we would like to broach to conclude this
chapter. We have been using the words: primary, secondary, tertiary. And
what comes next? Sometimes the name quaternary structure is introduced
when a few protein globules are stuck together, or when one protein chain
forms a number of little globules. Clearly, there is the whole hierarchy of
structures: There are complexes of chains, these complexes form parts of
cells, the cells make up tissues, and so on.

Where does the dividing line between physics and biology go, in the
face of such a variety of structures and systems? Physicists and chemists
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study atoms and molecules. Biologists dig their way towards them, from
the other end, by looking at organs, tissues, and cells. . . Do their paths ever
meet, or even overlap, or are they separated by an impermeable stone wall?
This is a crucial question. If there is a wall, then we will never succeed in
understanding life. Biopolymers, with their three levels of structure (i.e.,
primary, secondary and tertiary) seem to have all the chance to connect the
territories of physics and biology. On the one hand, a biopolymer chain is
just a molecule. In this sense, it should be the job of physics to explore its
properties; moreover, physics and physicists are well equipped to achieve
that. On the other hand, a biopolymer molecule has aspects which could
be called “specifically biological”, specifically, it carries information which
was created by evolution, and it is tailored to perform a certain function.

Indeed, what do all living things, from an elephant to a microbe, have
in common? One of the main features is some kind of “design” or “con-
struction” which the creature holds on to from birth to death. But this is
just what we could say about a biopolymer chain too (although its design is
much simpler). A biopolymer keeps its structure unchanged, from the mo-
ment when it is synthesized, chemically or in the cell, until it is destroyed.
And the biopolymer molecule is apparently the simplest of all systems pos-
sessing the property of having a “construction” or “design”. That is why
we are so enthusiastic about biopolymers serving as a real bridge between
the realms of physics and biology.

This idea is so attractive, and looks extremely simple. It seems obvious
indeed! In fact, it seems the property of really good ideas to become obvious
once they are formulated! And it is also usually quite di�cult to identify
who was the first to formulate such idea. The authors of the present book
know that this deep view of biopolymers as physical objects possessing
the property of design was clearly formulated in 1968 by our teacher, the
Russian physicist Ilya M. Lifshitz of the Institute for Physics Problems in
Moscow. He coined the term “linear memory” of biopolymers — as if they
always “remember” the linear structure they were given when synthesized.
The invention of the term does not seem particularly successful, it is rarely
(if at all) used at present. But the idea itself is more than successful. Was
Lifshitz the first? He was definitely among the first, and his thinking was
perhaps the most clear and the most advanced at the time, but similar
ideas were slowly coming into the existence through the works of quite a
few people worldwide, and by the mid 1980s the idea had become a matter
of course (you may want to remember our comments on how Staudinger
discovered the chain structure of polymers).
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Thus, it turns out that if you start to look into the physics of systems
with linear memory (to use our teacher’s word), you may hope one day to
come face to face with the mysteries of biology. We shall talk more about
this in the chapters that follow.
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Color Figures for Chapters 2–5

Fig. C2.4 Spatial structure of
a strand of a DNA double helix.
Atoms of di↵erent types are shown
with spheres of di↵erent shades.
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1 m
=1000 nm

Fig. C2.7 Electron mi-
croscope picture of bacte-
rial DNA partially released
from the cell (bacteria E.

coli) upon gentle breaking
of the cell outer membrane
(see Sections 2.4, 6.3 and
9.12). The figure illustrates
how dense is the DNA pack-
ing under native conditions:
we see that even spilled out
DNA is rather dense and
tangled, we can therefore
imagine how dense it was
while still inside the cell.
The scale bar in the im-
age corresponds to 1 mm,
or 1, 000 nm — about the
size of the cell. The fig-
ure is reproduced with per-
mission from the classical
paper: Ruth Kaveno↵ and
B.C. Bowen, “Electron Mi-
croscopy of Membrane-Free
Folded Chromosomes from
Escherichia Coli”, Chromo-
soma, v. 59, n. 2, pp. 89–
101, 1976.

 
Fig. C4.9 Four di↵erent microphase segregated structures which can exist in diblock-
copolymer melt. Layers (lamellas), spherical micelles, cylindrical micelles, and bicontinuous
phase are shown. The figure is courtesy of P.G. Khalatur.
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Fig. C5.2 Possible structures formed in solution of amphiphilic molecules: spherical mi-
celles (a), cylindrical micelles (b), lamellas, or layers (c), inverted cylindrical micelles (d), in-
verted spherical micelles (e). In three-dimensional space these structures will organize pretty
much in the same way as shown in Figure C4.9. The figure is courtesy of P.G. Khalatur.

Fig. C5.3 A cartoon of a cellular membrane. The various parts of it are labeled in the
figure. The image was created by Mariana Ruiz Villareal and is available in public domain.
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Fig. C5.7 An illustration of experiment on DNA translocation through a nanopore. Panel
(a) is a cartoon of the overall experimental setup: a thin membrane with a single narrow
channel separates two volumes of salty water. Once electrical voltage is applied by the
battery, the current is induced through the pore, carried by the salt ions, typically K+ and
Cl�. Since DNA is negatively charged, it is also the subject of force and every now and then
DNA gets thread into the pore. Since the pore is so narrow, the DNA obscures the passage
of ions, and thus blocks the current. Panel (b) shows typical current trace indicating two
clearly visible events of DNA passage through the channel. Both the dwell time (needed for
DNA to pass through the channel) and capture time (needed for the next DNA to arrive to
the pore) can be reliably measured from such current traces. Panels (c) and (d) illustrate the
two possible ways to make proper nanopores. The (c) is the solid state nanopore: left is TEM
(transmission electron microscope) image of a 4 nm pore fabricated in 20 nm thick silicon
nitride film; right is the reconstructed image of double stranded DNA threaded through a 4
nm pore. The (d) are top view and side view of the ↵-hemolysin protein — better to say,
self-assembled system of 7 protein molecules, which is stable when its “stem” is submerged
into a lipid membrane. Protein channel is narrow and is suitable for single stranded DNA
translocation only (double helix does not fit into the hole). Notice that the scale in panels (c)
and (d) is the same; protein nanopore is significantly smaller indeed. The figure is courtesy
of Amit Meller. Parts of the figure are reprinted with permission from M. Wanunu, M. Sutin
and A. Meller, “DNA Profiling Using Solid-State Nanopores: Detection of DNA-Binding
Molecules”, Nano Letters, 2009. Copyright 2009, American Chemical Society.
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Fig. C5.8 One of the two most common secondary structures of protein: ↵-helix. Notice
that while main chain is of helical shape, the side groups of aminoacid residues extend outward
from the helix, which is why the geometry of the backbone in ↵-helix is relatively universal,
it is only weakly dependent on the sequence. In this illustration, for simplicity, only the
least bulky side groups (glycine, side group H, and alanine, side group CH3) are used. The
geometry of ↵-helix is such that the advance per one amino acid residue along the helix axes is
0.15 nm, while the pitch (or advance along the axes per one full turn of the helix) is 0.54 nm.
That means, the turn around the axes per one monomer equals 360� ⇥ 0.15/0.54 ⇡ 100� ;
in other words, there are 360� /100� ⇡ 3.6 monomers per one helical turn. Accordingly,
hydrogen bonds CO . . .HN (shown in the figure as dotted lines) connect residues k and k+3
for every k.

Fig. C5.9 One of the two most common secondary structures of protein: �-sheet. It is
stabilized by hydrogen bonds between atoms of the main polypeptide chain, not involving
the aminoacid residues side groups, which extend above and below the sheet. As in case
of ↵-helix, only the least bulky amino acid residues, glycine and alanine, are used for this
illustration.
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Fig. C5.10 The most common secondary structure of DNA is a double helix. Under
normal physiological conditions (of temperature and ionic strength) it has about 10.4 base
pairs per helical turn, with the distance between base pairs along the helix about 0.34 nm.
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Fig. C5.13 Melting curves, #(T�1), upper plots, and di↵erential melting curves, d#/dT ,
lower plots, for di↵erent sequences, presented at the top: (a) poly-A and poly-B homopoly-
mers; (b) block-copolymer with 60% A and 40% B; (c) heteropolymer with random alter-
nation of the monomer units.
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a b

Fig. C5.14 A realistic image of molecular recognition by a protein called aspartic protease
endothiapepsin. Figure (a) represents a ribbon diagram of three-dimensional structure of
the globule in the form in which it was crystallized. It is seen that the globule consists of
two domains; they have, respectively, 175 and 153 residues. The binding pocket is situated
in the gap between two domains. In figure (b), the same protein is shown in space-filling
representation; the main body of the protein globule is shown in blue, while yellow is the
“target” molecule to be recognized. Red is the part of the protein that forms an active center.
Reproduced with permission from: J. Gomez and E. Freire, “Thermodynamic Mapping of
the Inhibitor Site of the Aspartic Protease Endothiapepsin”, Journal of Molecular Biology, v.
252, n. 3, pp. 337–350, 1995.
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Chapter 6

The Mathematics of a Simple
Polymer Coil

It was customary for wealthy pirates to
start with a proper wardrobe.

Mark Twain,
The Adventures of Tom Sawyer

6.1 Mathematics in Physics

In the two previous chapters we looked at the properties of real polymeric
substances. We have come across both artificial polymers, which are used
in industry or in everyday life, and natural polymers, the building bricks of
life. We only used words to describe them, without any mathematics. How-
ever, it was more like a story than a science, so our description was rather
superficial. In order to understand polymers better, as always happens in
physics, one has to move on from words to mathematics. This is because
“those who have mastered at least the principles of mathematics give the
impression of people with one more sense than other mortals” (Charles
Darwin1). Moreover, “mathematics is the language in which the gods talk
to people” (Plato).

However, mathematical descriptions have their own “game-plan”. Real
systems are so extraordinarily complex that if you wanted to describe them
fully, you would have to take into account an incredible number of di↵erent
factors. This would be a hopeless task. The way out is to simplify reality,
grasping the main features and ignoring all the less important. Fortunately,
constructing a theory with even a very simple model usually pays o↵.

1Some other sources cite a slightly di↵erent formulation: “Mathematics seems to endow
one with something like a new sense”.

91
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When you get a deep feel for the properties of the simple model, it opens
your eyes to the behavior of the real system too.

In this chapter, we shall discuss di↵erent mathematical descriptions of
the simplest model of a polymer, the “ideal polymer coil” (the reason for
this name will become clear in Chapter 7).

To tell the truth, the authors are physicists, not mathematicians. So
we can fully appreciate Goethe’s joke when he said: “Mathematicians are
like Frenchmen: whatever you say to them they translate into their own
language, and forthwith it is something entirely di↵erent”. Goethe’s sar-
casm was directed perhaps against the invading armies of Napoleon, rather
than against the poor mathematicians. However, his attitude is echoed by
John Ziman, the English theoretical physicist: “Nothing is more repellent
to normal human beings than the clinical succession of definitions, axioms,
and theorems generated by the labours of pure mathematicians”. There-
fore, we shall try to spice up the following chapters with some history and
various physical analogies. Occasionally we may even wander o↵ into some
“non-polymer” physics. In any case, we are not going to do math just for
the sake of it. The physical sense and meaning of mathematical formulae
will be our main concern.

6.2 Analogy Between a Polymer Chain and Brownian
Motion

Imagine you are in a thick forest. You have picked enough mushrooms and
berries (or whatever you were gathering there), the weather has become
bad, and all you want now is to get out of the wretched place. But how?
The trees and bushes hinder your view and make it hard to walk. You
cannot see the sun behind the clouds. . . It seems quite certain that you are
facing a hard time — unless you have got a compass. (Well, in theory
they say that an experienced person can tell directions by looking at how
moss and lichen grow on tree trunks, and where ant hills are, etc. — but
that is not really our subject.) But with a compass — would it be of any
use without a map? You would not know which direction you need to
take. . .Well, it appears a compass would still be extremely useful. Soon we
shall see why.

We are telling you this story for a good reason. It will help us to
comprehend a deep mathematical concept which has been very fruitful when
explaining the behavior of polymers as well as many other things, in the
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fields ranging from biology to economics. Historically, this concept was first
developed when Brownian motion was studied.

Brownian motion itself, as its name reveals, was discovered in 1827 by
the English botanist Robert Brown (1773–1858). Looking through a mi-
croscope at little particles of pollen suspended in water, he was fascinated
by their random “dances”. The particles were moving by themselves, ap-
parently with no external encouragement. So a lot of people decided that
there must have been some “living power” causing the motion (because
the flowers were animate!) They reckoned this had proved that there was
some mysterious “substance” which made the animate di↵erent from the
inanimate.

The question was debated for a long time. Everyone was free to think
what they wanted. Then there was a dramatic boom in interest at the end
of the 19th century. Brownian motion was regarded as a kind of perpetual
motion, so it tantalized those who were puzzled by the general problems of
science. These included the nature of irreversibility (i.e. the distinction
between past and future) as well as the di↵erence between Darwinian bio-
logical evolution leading to perfection of species, and the thermodynamic
evolution described by Clausius, Thompson, and Boltzmann, which leads
to dissipation, or, as it was then called, “thermal death.”

Eventually, the answer was found by Albert Einstein2 and the Polish
physicist Marian Smoluchowski (1872–1917), then a professor at the Uni-
versity of Lviv. The title of one of Einstein’s papers on the theory of
Brownian motion is rather telling: “On the motion of particles suspended
in resting water which is required by the molecular-kinetic theory of heat”.
Einstein and Smoluchowski considered chaotic thermal motion of molecules
and showed that it explains it all: a Brownian particle is “fidgeting” because
it is pushed by a crowd of molecules in random directions. In other words,
you can say that Brownian particles are themselves engaged in chaotic ther-
mal motion. Nowadays, science does not make much distinction between
the phrases “Brownian motion” and “thermal motion” — the only di↵er-
ence lies back in history. The Einstein–Smoluchowski theory was confirmed
by beautiful and subtle experiments by Jean Perrin (1870–1942)3. This was
a long awaited, clear and straightforward proof that all substances are made
of atoms and molecules4.

2By the way, Einstein presented his theory of relativity and the concept that light
consists of photons in exactly the same year, 1905.
3You can read about Perrin’s experiments in a very interesting book [55].
4The atomic hypothesis was suggested long ago by the ancient Greeks, but it had to

wait for more than two thousand years to be proved!
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We will skip further details of this adventure story. We just need to
emphasize one more thing before we get back to polymers. Since a Brow-
nian particle moves due to collisions with molecules, its path breaks into a
sequence of many very short flights and turns. In this sense, a Brownian
trajectory is pretty similar to the shape of the polymer chains which we
saw in Section 2.4 (Figure 2.6). Another obvious example of this sort is of
a man who is lost in a forest, with no compass, and has no choice but to
wander at random.

Certainly, no microscope would let you see the twists and turns of an
individual molecule’s path. However, the Einstein–Smoluchowski theory
tells us how to spot the di↵erence between a “fuzzy” line which consists of
a great number of tiny random kinks, and an ordinary smooth curve, even
though we cannot discern the individual kinks. (We do not always need to
see everything, e.g. we can happily tell water from alcohol even though
the individual molecules are invisible!) In the same way, a polymer chain
looks nothing like a shape stretched in a certain direction. And the path of
a man in a forest would depend quite noticeably on whether he is equipped
with a compass or not!

So what is the di↵erence between a smooth and a “kinky” path?

For motion in a straight line: R = v (t
2

� t
1

) (6.1)

For a Brownian particle: R = `1/2 [v(t
2

� t
1

)]1/2 (6.2)

The notation here is as follows: in formula (6.1), R is the displacement,
i.e. the distanceR = |R

1

�R
2

| between the initial (R
1

at time t
1

) and final
(R

2

at time t
2

) points of the motion (t
1

< t
2

), v is the average velocity of the
motion. In formula (6.2), R also characterizes the distance between initial
and final positions, but since the motion is random, R should be understood
as an average; more specifically, it is the root-mean-square displacement:

R =
⌦
(R

2

�R
1

)2
↵
1/2

, where the angle brackets indicate that the average is
taken over a number of di↵erent Brownian paths. Apart from this technical
detail of the definition of R, Equation (6.2) is fundamentally di↵erent from
(6.1) because R is proportional to the square root of elapsed time instead
of time itself. The price for that is the appearance of a new parameter `

which has the dimension of length and whose physical meaning we will have
to discuss and explain5).

5The Einstein–Smoluchowski theory leads to the value ` = (mkBT )1/2/(3⇡⌘r) for
spherical Brownian particles of radius r and mass m moving in a liquid of viscosity ⌘ at
a temperature T .
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What is the polymer analogue of the Einstein–Smoluchowski equation
(6.2)? Let L be the contour length of a polymer chain. It is bound to
be proportional to the number of monomers in the chain, given that the
chemical structure does not change. The chain length L plays the same
role for a polymer as the value v(t

2

� t
1

) for a Brownian particle, that
is the total distance traveled by the particle along the path. Since the
chain wiggles around a lot, the root-mean-square distance between its ends,

R =
⌦
(R

2

�R
1

)2
↵
1/2

, is totally di↵erent and not even proportional to the
contour length L. You can easily find R from Equation (6.2) if you replace
v(t

2

� t
1

) by L:

R = `1/2L1/2 = (`L)1/2 . (6.3)

6.3 The Size of a Polymer Coil

Let’s look again at formulas (6.1) and (6.2). How di↵erent are they really?
And how similar are the end-to-end distance R and the contour length L

of a polymer coil? The answer is that the di↵erences are very significant,
and we shall try to explain why.

The main distinction between (6.1) and (6.2) can be spotted at the first
glance — the power law for R depending on the time interval �t = t

2

� t
1

is not the same! In case you think it is not important, or not even worth
mentioning, we will use words and numbers rather than formulas to make
it clearer.

Let’s start with numbers, in other words, with estimating the order of
magnitude of things. As we have seen, the rambler lost in a forest is very
similar to what happens to a Brownian particle. Say, the rambler spends
10 h per day walking (i.e. �t = t

2

� t
1

= 10 h) at a speed of v = 3 km/h.
(It is hard to move much faster in the forest.) If he uses a compass or
some other means of judging direction, his path will look more or less like
a straight line. The displacement will be given by (6.1); in our case, it is
30 km. Having strolled that far, the well-prepared hiker is quite likely to
find the way out, or at least to reach a major road or path. However, if
he wanders randomly with no guidance, the situation becomes much more
serious. Let’s just take for granted for a moment that ` ⇡ 300 m; then we
can use (6.2) and discover that the poor chap will move no more than 3 km
from where he started. . . Hence, good advice for stray hikers in a forest
is: Do not rush about! Just keep going in a fixed direction. It does not
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matter where, as long as you use some landmarks to guide you in a straight
line6.

By the way, lost travelers are often known to feel that they are going in
circles. All kinds of absurd causes have been suggested to account for this.
Some reckon it is because one’s two legs may di↵er in length or strength,
others blame Coriolis forces, or even giddiness due to the rotation of the
Earth. However, the proper scientific explanation immediately follows from
Figure 2.6. A meandering, entangled path tends to cross itself a number
of times, so it is not surprising that a lost traveler may occasionally find
himself in a place where he has been before. In Chapter 8, we shall estimate
how many self-crossings, on average, there are along a random path.

Now, what does a “self-crossing” mean in the case of a polymer? The
entangled shape brings some monomers, which are separated by a long
piece of the chain, closer together. They may even collide. Interactions
between such monomers during their collisions are known as volume inter-
actions. They occur in the bulk of a polymer coil, or inside its “volume”
— in contrast to “linear” interactions that hold together the neighboring
monomers along the chain. A little later, we shall discuss in detail how
various properties of polymers are a↵ected by volume interactions.

Let’s go back to formulas (6.1) and (6.2), and look at another example
directly connected with polymers. You may remember that the contour
length of a DNA double helix from a human or an animal cell can be as big
as one meter. The question is, how small a coil would the double helix form,
if it meandered randomly, in a Brownian-like way? The value of ` for DNA
has been measured in experiments; to high accuracy, ` = 100 nm = 10� 7 m.
Thus, Equation (6.3) leads to:

R ⇡ 3 · 10� 4 m = 0.03 cm . (6.4)

This is certainly much less than the one-meter contour length, yet far too
big to squeeze into a cell nucleus which is about 10� 6 m in diameter! Thus,
the fact that DNA coils up is important to understand how DNA is arranged
inside the cell, although it is not su�cient. Of course, if you think about
it, you can realize that it could not possibly be su�cient, because DNA’s

6Even if the forest is huge, and you know that one of its borders is much closer than
the opposite one, you still should not wander around, but advance in a straight line.
Only if the lapse of time suggests that you must be straying away from the closest
border, should you turn abruptly (e.g., through 120�) and try another direction. This
sounds like a lovely problem for Maths enthusiasts — to work out the best strategy for
a rambler who starts to make his way out of a forest at a given distance from the closest
straight-line border.



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

The Mathematics of a Simple Polymer Coil 97

shape cannot be merely random, there has to be some regularity in it,
otherwise it would be impossible to find its di↵erent strands and “read”
the information from them. Scientists are still a bit vague on how exactly
nature has managed to pack the double helix into a cell (see Figure C2.7).
There are some ideas, however, which we are going to discuss in Chapter
9. For now we shall only say that the main part is played by the volume
interactions mentioned above. They help DNA to fold in such a way that its
size becomes proportional to the number of monomers N (i.e. the contour
length L) not raised to the power one (as for a stick), nor even to the power
1/2 (as for a randomly entangled coil described by (6.2) or (6.3)), but to
the even smaller power 1/3.

6.4 Derivation of the “Square Root” Law

Now we know that the main peculiarity of a randomly entangled polymer
coil is that its size is proportional to the square root of the chain’s contour
length: R ⇠ L1/2 (see (6.3), for example). This is why a polymer molecule
appears much smaller in size than it would be if entirely stretched (given
that it is reasonably long). Indeed, the ratio R/L ⇠ L�1/2 decreases with
L, and tends to zero when L ! 1 for any `. However, if we wanted to find
the size R of a particular molecule with a given contour length L, we would
need to know the value of `. In any case, it would help if we knew more
about the physical meaning of `. Also, since we realize the importance of
the “square root” law, it might be a good idea to see where it comes from.

To tackle both questions, we shall abandon the Brownian analogy and
return to the purely polymer world, as it will be easier that way. Let’s
imagine a freely-jointed polymer chain consisting of N units (Figure 2.5 b).
The end-to-end vector R

N

is given by a simple formula which is obvious

r1
r2 rN

R rN-1
Fig. 6.1 Illustration for the formula
(6.5): random walk or a polymer chain can
be presented as a succession of vectors rr

i

,
and their vector sum is the end-to-end vec-
tor RR.
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from Figure 6.1:

R
N

=
NX

i=1

r
i

. (6.5)

Here i labels chain segments, N is the total number of segments in the
chain, and r

i

is an end-to-end vector for the ith segment. The moduli
of all the vectors r

i

are the same, they are equal to the length of one
segment: |r

i

| = ` (we have deliberately chosen this notation for the length
of a segment). Meanwhile, the directions of the vectors r

i

are completely
random and independent of each other.

Thus, the value of R
N

that describes the size of the coil can be written
as the sum of a large number of independent random terms, as in (6.5).
Fortunately, mathematical properties of such sums have been very well
studied, since they often emerge in areas of maths, physics, engineering,
and biology.

We will pick just a couple of examples. The stress experienced by an
airplane, for instance, depends on the total weight of the passengers, the
fat and the skinny altogether, and so the total weight is the sum of random
contributions. Similarly, in light scattering, the electromagnetic field of the
scattered wave is the superposition (i.e. the sum) of the fields created by
individual atoms. These contributions are totally random due to thermal
motion of the atoms; when they interfere they can either enhance or dimin-
ish each other. In both examples, as well as in lots of others, the answer
about possible deviations from the average can be found from the “square
root” law. Let’s derive this law from formula (6.5).

Together with R
N

, we need to introduce R
N� 1

which is a similar end-
to-end vector, but for the the first N � 1 units of the chain. We can write
down:

R
N� 1

=
N� 1X

i=1

r
i

, R
N

=
NX

i=1

r
i

R
N

= R
N� 1

+ r
N

(6.6)

(Recursion relations of this kind are often useful when one tries to sort out
random values.)

Now we can start thinking how to work out the average end-to-end
distance. But, first of all, we need to decide what sort of average to look
at. The point is that the average value of the vector R

N

itself, as well as of
all its components, is zero, i.e. hR

N

i = 0. This is simply because the end-
to-end vector can be equal to R

N

and to �R
N

with the same probability.



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

The Mathematics of a Simple Polymer Coil 99

Therefore, it is the average length of the vector, h|R
N

|i, that is meaningful,
and which gives us an idea of the size of the coil. However, it is handier to
calculate the value

R2

N

⌘
⌦
R2

N

↵
= hR

N

· R
N

i =
⌦
|R

N

|2
↵
, (6.7)

which also describes the coil’s size. The definition (6.7) agrees with the way
we defined R before.

According to (6.6), R2

N

is given by:

R2

N

= R2

N� 1

+ 2R
N� 1

r
N

+ r2
N

= R2

N� 1

+ 2|R
N� 1

|` cos �
N

+ `2 , (6.8)

where �
N

is the angle between vectors R
N� 1

and r
N

, whereas `, as you may
remember, is the modulus of r

N

, i.e. ` = |r
N

|. In the case of a freely-jointed
polymer, the direction of r

N

does not depend on the shape of the rest of
the chain. This is why the angle �

N

is equally likely to have any value from
0� to 180� , which means that cos �

N

is equally likely to be positive (when
�
N

lies between 0� and 90�) and negative (for �
N

between 90� to 180�).
Therefore, the average value of the cosine is zero, hcos �

N

i = 0. This should
help us to find the average value of R2

N

straightaway from (6.8). Indeed,
since the average of the second term on the right-hand side is zero,

⌦
R2

N

↵
=

⌦
R2

N� 1

↵
+ `2 . (6.9)

So, if an extra segment is added to the chain,
⌦
R2

↵
will increase by `2.

Now, applying induction, one can easily prove that:
⌦
R2

N

↵
= N`2 = L` . (6.10)

Now, at last, we can use Equation (6.7) to find the size of a polymer
molecule consisting of N units:

R
N

=
⌦
R2

N

↵
1/2

= N1/2` = L1/2`1/2 . (6.11)

Thus, the “L1/2 rule” is proved.

6.5 Persistence Length and Kuhn Segment

We have proved Equation (6.11) only for a particular model of polymer,
with independent, freely-jointed segments. Is the formula valid for other
models (including random walks)? We would need a special investigation
to find out. The investigation, however, can be reduced to a very simple
argument.

As we know, the flexibility of a polymer chain is not very noticeable at
smaller scales, but it starts showing up as the scale increases. This means
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that there has to be some critical length for each polymer, `
e↵

. Any segment
shorter than `

e↵

can be regarded as rigid; that is, its end-to-end distance is
roughly the same as its contour length. At the same time, di↵erent segments
of length `

e↵

behave as nearly independent. Such segments of length `
e↵

are called e↵ective segments, or Kuhn segments, after the Swiss physical
chemist Werner Kuhn (1899–1963) who was the first to use the statistical
mechanics to understand polymers and, in particular, he suggested the idea
of e↵ective segment. Obviously, a molecule of contour length L contains
N

e↵

= L/`
e↵

Kuhn segments. Since Kuhn segments are nearly independent,
we can imagine that they are freely jointed, and use Equation (6.11):

R2 =
⌦
R2

↵
= N

e↵

`2
e↵

=

✓
L

`
e↵

◆
`2
e↵

= L`
e↵

. (6.12)

Equation (6.12) gives, in fact, the definition of e↵ective Kuhn length; that
is `

e↵

= R2/L. Comparing (6.12) with (6.3), we immediately discover that
the value ` which appears in (6.3) and (6.2) is exactly the Kuhn length.
It gives the length scale on which the polymer chain (or the path of a
random walker) remains roughly a straight line. (This is precisely where
our estimate for a lost hiker in a forest, `  300 m, comes from.)

There is quite a large range of Kuhn lengths for real polymers. Rather
modest values of about 1 nm are typical for simple synthetic chains, whereas
DNA’s e↵ective segment stretches 100 nm. (This is a huge number in
molecular world, considering that an atom’s size is of the order of 0.1 nm!)

Why is there such a di↵erence? In each case, `
e↵

is determined by the
flexibility of the chain. It might be interesting to see how exactly the two
quantities — flexibility and Kuhn length — are linked together. Let’s set
out on a journey along the chain (Figure 6.2), assuming that the direction
of the first segment is fixed. At first, the change in direction would be
very smooth, and hardly noticeable. It feels as if the chain keeps a sort of
“memory” of the initial direction. Farther on, this memory starts fading,
and eventually completely disappears. To describe this quantitatively, we
choose two points on the chain, separated by a contour length s (Figure
6.2). Since the chain flexes, its directions at the two points are di↵erent; let’s
say the angle between them is ✓(s). This angle varies due to fluctuations
(i.e. due to thermal motion). You could probably guess that a meaningful
value is the average cos ✓(s). It turns out that, if s is reasonably large,
hcos ✓(s)i decays exponentially with s,

hcos ✓(s)i = exp
⇣
�s

l

⌘
. (6.13)
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(s)

s

Figure 5.2

Fig. 6.2 Diagram
explaining the
concept of
persistence length:
angle ✓ between
tangents of two
points, contour
distance s apart,
depends on s such
that at small s this

angle is very small, it growth with increasing s and eventually becomes uniformly distributed
between 0 and ⇡ (or 180�) — see Equation (6.13).

This formula is actually an exact definition of a very important quantity,
l, which is known as the persistence length of a polymer chain.

What is the physical meaning of the relationship (6.13)? To answer this,
let’s first look at a segment which is shorter than l. When s ⌧ l, Equation
(6.13) leads to hcos ✓(s)i ⇡ 1. Hence the angle ✓(s) fluctuates around zero.
This simply means that chain segments that are close compared to l have
nearly the same direction. For the opposite case, l � s, Equation (6.13)
results in hcos ✓(s)i ⇡ 0. Clearly, this indicates that ✓(s) can be anything
from 0� to 180� with equal probability. So the chain direction gets totally
“forgotten” at lengths greater than l.

To summarize, persistence length is a parameter describing polymer
chains quantitatively. Its physical meaning is the following: Memory of
chain direction is retained on length scales shorter than l, but lost once l

is exceeded. In other words, the name “persistence length” is very telling:
the chain persists to have unchanged direction up to the length l.

Since the memory stretches in both directions, the Kuhn segment of
length `

e↵

must be roughly twice as big as the persistence length l. This
is indeed true. Moreover, the relationship `

e↵

= 2l is exact for a worm-like
polymer chain (see Section 2.3); it is also valid for other models, although
only approximately.

In principle, the persistence length should vary with temperature. The
higher the temperature of a chain, the more it bends, and hence, the shorter
its persistence length and Kuhn segment. However, in most cases this de-
pendence is not important, since the range of temperatures where polymers
may even exist is not that wide.

In the following, we will drop the index e↵ for brevity and denote e↵ec-
tive Kuhn segment simply ` without index: ` = `

e↵

.
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6.6 The Density of a Polymer Coil and Concentration
Ranges of a Polymer Solution

The phrase “polymer coil” may perhaps remind you of a ball of thread
for knitting. In some sense, string or thread is indeed rather similar to a
polymer chain. Despite this, a ball of string and a polymer coil have nothing
in common whatsoever. A ball is wound tightly, with no gaps, whereas a
polymer chain is arranged in a very loose manner, as Figure 2.6 showed.
Yet structures as tight as a ball are known in the polymer world — they
are called globules. We shall leave them until Chapter 9, and instead look
for a theory to explain such low densities of polymer coils.

As we have seen, the size of a molecule made of N e↵ective segments,
of length ` each, is equal to R = `N1/2 (see (6.12)). The volume of this
coil can be estimated as7 V ⇠ (4⇡/3)R3 ⇠ R3 ⇠ `3N3/2.

Knowing the volume V and the number of segments N , we can now find
the average concentration (number of segments per unit volume), c? of the
segments in the coil:

c? =
N

V
⇠ N

`3N3/2

= `� 3N � 1/2 . (6.14)

Our main achievement so far is that we have found the actual dependence of
c? on N . In particular, estimate (6.14) shows that, if a chain is su�ciently
long (N � 1), the segment concentration c? becomes extremely low.

You might remember that we have already come across the concentra-
tion c? in Section 4.6, when we talked about polymer solutions. There we
said that if the overall concentration c of a polymer in the solution is less
than c? (i.e. c < c?) then individual coils hardly ever overlap, and the
solution looks like a low pressure gas of coils (Figure 4.7 a). If, on the other
hand, c > c? then the coils penetrate deeply into each other, and the chains
are entangled (Figure 4.7 c). The value c? corresponds to the threshold
regime (Figure 4.7 b). Now we have seen that the value c? is extremely
small for long polymer chains. It means that a polymer solution can be
made up of separate, non-overlapping coils only at very low concentrations.

This conclusion becomes even clearer if we replace c by another quantity,
the volume fraction � of a polymer in the solution. Let v be the volume of
a single segment, then, with c such segments per unit volume, the fraction
of the whole volume occupied by the segments is � = cv. The advantage
of � (compared to c) is that it has no dimensions. Formulas become even
7The sign ⇠ means “of the same order of magnitude”. When we make rough, order of

magnitude, estimates, such factors as 4⇡/3 are not important, so we leave them out.
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easier, e.g. in the case of a polymer melt (when there is no solvent at all)
� = 1.

Let d be a characteristic thickness of a polymer chain. Then, thinking
of an e↵ective segment as a cylinder of diameter d and height `, we can
estimate its volume: v ⇠ `d2 (we leave out as usual an unimportant factor of
⇡/4). The threshold volume fraction �? that marks the cross-over between
Figure 4.7 a and Figure 4.7 c will be approximately the following:

�? ⇠ c?v ⇠
✓
d

`

◆
2

N � 1/2 . (6.15)

In practice, the ratio `/d ranges from numbers about 2 or 3 for flexible
synthetic polymers to 50 for a DNA double helix. Using (6.15), we can
look at particular numbers. For example, if there are 104 units in a flexible
chain, then the coils already start overlapping when the volume fraction of
the polymer is 10� 2, i.e. when the polymer takes as little as 1% of the
whole volume of the solution.

Therefore, if N � 1, there has to be a rather broad range of concentra-
tions �? < � < 1 (c? < c < 1/v) in which the coils are heavily entangled
(�? < �), yet there is still little polymer in the solution (� < 1). This
type of polymer solution is known as semi-dilute, and is shown in Figure
4.7 c. Really concentrated solution corresponds to � ⇠ 1, when the vol-
ume fractions of the polymer and the solvent are comparable (Figure 4.7
d).

By the way, the intermediate, semi-dilute region is only possible because
polymer chains are so extremely long (N � 1). Indeed, if N ⇠ 1 (i.e. if
there were small molecules in place of a polymer in the solvent), the two
inequalities �? ' N � 1/2 < � < 1 would not work together. Therefore,
the solution has to be either dilute (� < 1), in which case the individual
molecules hardly interact with each other, or concentrated (� ⇠ 1), with
strongly interacting molecules.

Figures 4.7 a – d depict isotropic polymer solutions in which there is
no preferential orientation of polymer chains. However, as we have already
mentioned, spontaneous ordering can occur in concentrated solutions of
rigid (`/d � 1) polymers, and they become liquid crystalline (Figure 4.7
e). In most cases, such an anisotropic state is established at concentrations
c > c

cr

, where c
cr

⇠ `� 2d� 1 > c?, so c
cr

corresponds to a semi-dilute
solution.
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6.7 The Gaussian Distribution

There is another bunch of problems that we still need to tackle when por-
traying an isolated polymer coil. We might as well start with a very simple
question: What does it mean to say that a coil size is proportional to the
square root of the chain length, i.e. L1/2 or N1/2? Can the chain, acciden-
tally, stretch out into a straight line? In the same spirit you may ask, can
one day all the passengers of an airplane turn up very fat, and the plane fail
to take o↵? Can the dipoles of an object that scatters light, by coincidence,
all line up in the same direction? Can all molecules in the room gather in
one corner?

You would probably agree that, in principle, all these things could hap-
pen, although they are extremely unlikely. In fact, the probability that the
chain would stretch out into a straight line is just the same as the proba-
bility of any other particular conformation (assuming — plausibly — that
all conformations have the same energy). But the whole point is that there
are many many curled up and entangled shapes, whereas there is only one
straight line, and no more. That is why a polymer, left on its own, is most
likely to coil up into one of a myriad of conformations of a size R ⇠ `N1/2.
Hence, this is just what the average size of a polymer is, within an order
of magnitude. The chances that due to fluctuations a polymer may expand
up to R ⇠ `N are exceedingly slim.

To bring some maths into play, we need to count up all the stretched
and all the coiled conformations of a polymer chain. More precisely, we
would like to know how many di↵erent conformations of the chain have
the same end-to-end vector, R. How much is this as a fraction of all the
possible conformations? (In other words, what is the probability that a
polymer chain picked at random has an end-to-end vector R?) It is not
a usual kind of task for elementary maths. The question really is in how
many di↵erent ways can you choose the terms of a sequence, so that their
sum stays the same.

We cannot a↵ord to derive it here, so we shall merely tell you the answer:

P
N

(R) = Q exp


� 3R2

2N`2

�
. (6.16)

Here ` is the e↵ective, or Kuhn, length, N is the number of Kuhn segments
in the chain, and Q is a constant factor, which does not depend on R. The
value of Q depends on what exactly we mean by P

N

(R). It can be two
things, either the total number of conformations with the given R (in some
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infinitesimal volume element, of course), or the probability of a conforma-
tion with this R (i.e. the ratio of the number of such conformations to the
total number of all the possible conformations). In particular, if P

N

is the
probability, then

Q =


3

2⇡N`2

�
3/2

. (6.17)

Equation (6.16) is written for a vector ~R. We may also want to look at its
components R

x

, R
y

, and R
z

(which show how far apart the two ends of the
chain are shifted from one another along the x, y, and z axes). For any of
the three components:

P
N

(R
↵

) =


3

2⇡N`2

�
1/2

exp


� 3R2

↵

2N`2

�
. (6.18)

Formula (6.16) can be obtained by multiplying together expressions of type
(6.18) for all the three components ↵ = x, ↵ = y, ↵ = z; we leave it for
you to check and explain.) The function P

N

(R
x

) is plotted in Figure 6.3.
You can see that all the values of R

x

from zero up to about `N1/2 have
roughly the same probability. However, if R becomes larger, the probability
decays very dramatically. We could phrase it like this: If the first unit of
the chain is fixed at the origin, then there is a roughly equal chance that
the last unit will be at any point inside a sphere of radius `N1/2. On the
other hand, the likelihood of finding the last unit outside such sphere is
negligibly small.

Equations (6.16) and (6.18) for the probability of di↵erent values of R
or its components, are known as Gaussian distributions, because famous
mathematician K.F. Gauss (1777–1855) was the first to come up with this
kind of formula, albeit in a di↵erent context. The diversity of situations in
which one encounters Gaussian distribution is amazing. Apart from poly-
mers and airplane passengers, consider, for example, some measurements.
As you probably know, in order to obtain more accurate data and to reduce
the impact of inevitable random inaccuracies in measurements, experimen-
talists must repeat the same measurement again and again. Let’s say they
do it N times. Then they need to find the average. To do this, they first
have to add all the measurements together. Thus, the errors get added up
too. However, some of the errors are positive and some are negative, at
random. (It seems we can never get away from sums of random values!)
This is why the error in the sum is proportional to N1/2, rather than to
N . Finally, to take the average, the sum is divided by N . That is why
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Fig. 6.3 Gaussian dis-
tribution. (a): The
dependence of P

N

on
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be specific) given by
Equation (6.18). (b):
Two-dimensional
distribution P

N

as it
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coordinates x and y , on
R

x

/(`N1/2) and
R

y

/(`N1/2). Three-
dimensional distribution
P

N

depends on x , y , and
z; it looks quite similar
— but we cannot draw
it.

the error in the average will behave as N�1/2, hence it will indeed decrease
with the number of measurements.

In general, we can say that the sum of a great number of random values
is controlled by a Gaussian distribution of probabilities, like (6.16). This is
one of the key ideas in probability theory. Due to its great importance, it
was given a posh name, the central limit theorem (CLT).

Why “limit”? In fact, the Gaussian distribution (6.16) is valid exactly
only in the limit of a very large number of terms, N � 1. For a finite
number of terms, it is only approximate. However, even in the case of a
moderate number of terms (or unit segments, N), a Gaussian distribution
provides acceptable accuracy8.
8If you have a liking for elegant mathematical trifles, you may be interested in the

following example. It is about so-called “lucky” bus tickets. Russian bus tickets used to
have six-digit numbers on them, and students liked to believe — seriously or not — that
a ticket is “lucky” if the sum of the first three digits is the same as the sum of the last
three digits. It is possible to prove that there are 55, 252 “lucky” tickets out of the total
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Quite naturally, a free single polymer coil is often called a Gaussian coil,
after the distribution (6.16).

quantity of 1, 000, 000 six-digit numbers. So the probability of a lucky ticket is 5.5252%.
On the other hand, the sum of three digits of a number is actually a sum of random
terms. Although there are only three terms in this case, you could still try to use the
CLT to estimate the probability of a lucky ticket. You would then get an approximate
answer of 5%, which is surprisingly close to the accurate value. Thus, even if N is as
small as 3, the CLT works reasonably.
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Chapter 7

The Physics of High Elasticity

As a matter of fact, he was as not nor-
mal as it is possible to be.

J.K. Rowling,
Harry Potter

7.1 Columbus Discovered . . . Natural Rubber

In some popular books, they say that natural rubber was the first polymer
encountered by our ancestors. If you think about it for a minute, your
reaction might be: “What rubbish! People had always known things like
wood and timber. Not to mention that both prehistoric and contemporary
human beings themselves are made of polymers.” However, the fact of the
matter is that in many materials the polymeric nature, although important,
only shows up in rather subtle ways. For instance, there are low molecular
weight compounds that look similar to polymers in the semi-crystalline,
viscous, or glassy state. At the same time, there is a property which is
both very noticeable and purely polymeric, that is, impossible for small
molecules: high elasticity. And the first highly elastic substance that the
Europeans came across was indeed natural rubber.

When they reached America, the first European explorers and immi-
grants were, of course, overwhelmed by novelties. They found potatoes,
tobacco, sweet corn and tomatoes — to name a few. They met strange
local people there who had an unusual way of life. It is not surprising that
books on the discovery of America are so enthralling. Unfortunately, some
of the newcomers were greedy and aggressive and these features sometimes
dominated over the natural curiosity of discoverers. This did not only made

109
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the Native Americans to su↵er, but also caused irreversible damage to their
culture.

The culture of making rubber was a lucky exception. People from the
very first expedition of Columbus were amazed by the balls that the Native
Americans played with. At that time in Europe, balls were typically made
from bull’s bladders encased in a leather shell (these are also polymers, by
the way!) In contrast, the American balls were solid, heavy, and surprisingly
bouncy. They were made from a substance which the Native Americans
called “caoutchouc”. Only ten years later, when the Europeans reached as
far as Brazil, they found out that “caoutchouc” is a milky resin excreted by
the tree called “heve”, extracted by sloping cuts on the trunk. At that time,
the invaders, in their bellicose excitement, forgot about the rubber tree for
a while. More than two hundred years passed before “heve” was properly
scientifically described by botanists (in 1738). Now it is fairly well-known
as Hevea brasiliensis, and “caoutchouc” is still the word for natural rubber
in some European languages.

7.2 High Elasticity

Rubber has very unusual properties. Under certain conditions, it remains
solid (non-fluid), yet is extremely elastic. A fairly low stress is able to
deform a piece of rubber quite significantly (much more than if it were an
ordinary solid). The deformation is reversible (elastic), i.e. when the stress
is released, the sample regains its original, un-deformed shape.

To appreciate the elasticity of rubber, let’s see how it di↵ers from ordi-
nary materials, including the non-polymeric ones. Take steel or plastic, for
example. Figure 7.1 compares the dependence of the stress � on the strain
�`/` for a steel rod (Figure 7.1 a), for a plastic string (Figure 7.1 b) and
for a piece of rubber (Figure 7.1 c). The three graphs have some things in
common. They all start o↵ as a linear relationship between � and �`/`,
i.e. they follow Hooke’s law (4.1) for su�ciently small deformations. In this
range, deformations are almost completely reversible. The linearity extends
roughly to about point A in all three pictures. Then, between A and B,
the lines bend. Here the deformations become significantly non-linear, but
still remain reversible. Interesting behavior starts above B. This is where
the reversibility is finally lost: the sample, as they say, starts to flow. Even
if the stress is released, the material retains a certain residual (plastic)
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Fig. 7.1 A sketch of (engineering) stress-strain diagrams for steel (a), solid (partially
crystalline) polymeric material (b) and highly elastic (rubbery) polymeric material (c). See
caption of Figure 4.4 for the explanation of engineering stress. The basic points are indicated
in each graph: up to the point A, the elastic response (stress) remains linear in deformation,
i.e., material obeys Hook’s law; simultaneously, deformation remains fully reversible. Between
points A and B deformation is still reversible, the sample restores its size and shape upon
switching o↵ the load, but stress-strain relation is no longer linear. After point B the
deformation becomes plastic, that is, irreversible. At point C the material fails (breaks).
Although all of these features are common to all shown materials, they are exhibited at
vastly di↵erent values of stresses and strains.

deformation, and never quite goes back to its original shape. Eventually,
at point C, the sample gets torn apart.

Although all three graphs have points A, B, and C, they are posi-
tioned di↵erently. There is also a huge di↵erence in numbers. For instance,
to break steel (i.e. to reach point C) you only need to stretch it by a
few percent. And reversible deformations are never higher than 1%. In
contrast, a rubber strip can happily extend up to eight times its original
length (by 700%). Moreover, this is still reversible! The actual values of
stress at breaking point are also beyond comparison. They are up to about
2, 000 MPa for steel, and 30 MPa for rubber. So we are talking about totally
di↵erent scales both for stress � and for strain �`/`. This is why there is a
disparity in the Young’s modulus E as well. Indeed, according to Equation
(4.1), Young modulus is determined by the slope of the linear part of a
curve such as those in Figure 7.1. Hence, we get E � 2 �105 MPa for steel,
and E � 1 MPa for rubber. This gap is enormous, more than five orders of
magnitude. (We have already mentioned this in Chapter 4.) One more dif-
ference is that rubber has a wide range where deformations are non-linear
yet reversible (between A and B), whereas for steel this area is almost miss-
ing. On the other hand, the curve �(�`/`) for steel has a comparatively
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broad region of plastic deformations (between B and C), whereas rubber
almost immediately snaps as soon as it starts to flow (Figure 7.1 c).

Now you know what people mean when they talk about the high elas-
ticity of rubber. In brief, high elasticity means that the material is prone
to very high, non-linear yet reversible deformations as a result of rather
moderate stress.

7.3 The Discovery of Vulcanization

Besides balls, the Native Americans used to make lots of other handy things
from rubber, such as water-proof shawls, a kind of Wellington boots, flasks,
etc. They had not quite reached perfection though. All the stu↵ was rather
sticky and short-lasting. Even worse, on a hot day it would melt altogether!
The Europeans took over, and kept on trying to find a better use for such
an unusual substance. But it was not that easy.

The problem is that natural rubber is not really a solid. Any external
force (such as gravity) makes it flow, albeit slowly. Strictly speaking, it is
a liquid polymer melt in the viscous state. Therefore, any natural rubber
product keeps changing shape. Exactly how much it “wobbles” or “oozes”,
depends strongly on the temperature. High above room temperature, nat-
ural rubber is more of a liquid. At low temperatures, the oozing nearly
stops. But the high elasticity disappears as well, and the rubber hardens.

An amusing true-life story about the rise and fall of a man named
Charles Mackintosh, from Glasgow, Scotland, illustrates the problem. The
clever fellow decided to use rubber in the production of raincoats. A thin
layer of rubber was placed between two layers of fabric. It worked out very
nicely, and the raincoats (called macintoshes) became very popular in the
notoriously wet Britain. Mackintosh rapidly became rich, shortly after he
started his business in the winter of 1820. However, when summer came
along, the temperature rose, and all the rubber flowed out of the macin-
toshes. The poor inventor went bankrupt, and the whole idea of padding
coats with rubber was abandoned for many years.

Not for too long though. A breakthrough occurred in 1839 when the
American C. Goodyear suggested the process for vulcanizing rubber. At
the molecular level, rubber consists of polymer chains with frequent double
bonds (Figure 7.2). The vulcanization involves adding sulphur atoms to
the rubber. They form covalent bonds between the chains (Figure 7.2
b), so the chains become linked together by sulphur bridges. You get a
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a cb

Fig. 7.2 A cartoon illustrating vulcanization and elasticity of vulcanized network. Panel
(a) depicts a system of polymer chains prior to vulcanization. Panel (b) shows the same
polymers after vulcanization: chains are cross-linked and form now a network (cross-linkers
are shown as grey balls). Panel (c) gives an idea of network behavior upon deformation. In
this figure, the sample is stretched in horizontal direction and shrinks somewhat in vertical
direction to maintain practically unchanged volume (unchanged area in the figure). The
deformation is achieved by chains uncoiling to a necessary extent, by releasing some of their
loops and wiggles, along the direction of stretching; chains going in perpendicular direction
become somewhat more crumpled. The main point is that lengths of chains practically do
not change, only their shapes rearrange.

polymer network. It is not fluid, even at relatively high temperatures,
when a normal polymer melt of unattached chains would start flowing (due
to intense thermal motion, making the chains move with respect to each
other). At the same time, there is nothing to stop such a network from
expanding. Under strain all the chains would stretch as in Figure 7.2 c, so
it is still highly elastic. Of course, Goodyear had no idea that rubber was
a polymer. (This was discovered almost a hundred years later.) He did not
even dream of explaining the vulcanization in the way we have just done.
But his invention started the era of commercial use of new, vulcanized
rubber.

The story of the discovery is very interesting in its own right. Charles
Goodyear (1800–1860) was not a scientist in the modern sense of the word.
His education was not very deep, and his aspirations were mainly directed
toward business. Once he happened to buy a lifebuoy of india (natural)
rubber. The unusual material captured the inventor’s imagination. He
became literally obsessed with the idea of making rubber strong and pliable.
There was hardly anything Goodyear did not try! He mixed rubber with
turpentine, soot, and oil. He burnt it in the oven, as the Native Americans
were said to have made some progress by keeping rubber in the bright
sun. There were times when Goodyear thought he had succeeded. Then he
would persuade investors to support the enterprize, and immediately set up
production on a really American scale. Alas, every time the rubber would
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start to run. The products would ooze away, sometimes giving out such a
horrible smell that they had to be buried in the ground! The debts were
left unpaid, and Goodyear’s numerous children had to live in poverty, and
for a while he was even imprisoned for debt. But nothing could stop him.

To be fair, we need to say that Goodyear was not the only person to
work on improving india rubber. There was even a kind of “rubber fever”
in the 1820s and early 1830s in North America. However, it was none other
than Goodyear who eventually made the breakthrough.

It was entirely accidental. One day he was mixing rubber with sulphur
and various other ingredients when he dropped some on top of a hot stove.
The next morning the stove had cooled, and one side of the rubber lump,
which was next to the sulphur, had become unrecognizable. It looked like
the normal rubber we now use every day. At this stage, Goodyear did
something most important, which makes him really deserve the fame, not
just credit for being a lucky guy who got the answer by chance. He noticed
what had happened, realized its significance, and drew the right conclusion.
The recipe for success had to do both, mixing rubber with sulphur and then
heating it.

This is what Goodyear wrote about his discovery: “I was encouraged in
my e↵orts by the reflection that what is hidden and unknown and cannot be
discovered by scientific research, will most likely be discovered by accident,
if at all, by the man who applies himself most perseveringly to the subject,
and is most observing of everything related thereto1.”

Goodyear died almost as poor as he had been in his youth. Nevertheless,
his invention became widely popular even during his lifetime. The method
of vulcanization that he designed has survived till now with hardly any
changes. Furthermore, many of Goodyear’s ideas on how to obtain di↵erent
sorts of rubber with particular features are now successfully exploited. For
instance, incorporating an inert filler (such as carbon black), results in a
very hard and robust rubber that is especially good for tires. (The way it
works is that little particles of soot fill in the mesh of the network. This
makes it harder to squash.) To obtain the opposite e↵ect, a plasticizer (e.g.
some oil that would help the particles of filler move along the network) is
added. This gives rubber that is easily worn away, like that used to make
erasers and the like.

Thus, since the second half of the 19th century, the rubber industry
has developed very rapidly. The latex of Hevea brasiliensis, growing in the

1Quoted from the book [53], p. 124.
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wild, had long remained the only raw material for the industry. However,
in 1870 the English smuggled about 100,000 Hevea seeds from Brazil.

Then young trees were cultivated from the seeds in British botanical
gardens. They gave birth to vast plantations of rubber trees in the colonies,
mainly in Malaysia, Indonesia and Ceylon (Sri Lanka). By the First World
War, only a negligible part of the world production of rubber was from
Brazil.

7.4 Synthetic Rubber

In countries that had no access to the tropical plantations of rubber trees,
especially in Russia and Germany, scientists tried to work out how to make
synthetic rubber from available raw materials. The studies were a suc-
cess. They found a way of making synthetic rubber from butadiene and
in the 1930s production started. It worked out well, synthetic rubber was
satisfactory, and looked very similar to natural rubber.

All other industrial countries remained content with natural rubber.
Its qualities were still better overall. However, all was to change during
the Second World War, when almost all the rubber plantations in South-
Eastern Asia were occupied by the Japanese. This encouraged the search
for new methods of synthesizing rubber, especially in the United States
and Canada. Soon, the world production of artificial rubber caught up
with and, by the 1960s, had surpassed the production of natural rubber.

In contrast to vulcanization, this time it was all worked out scientif-
ically. The studies on rubber synthesis kept up with the new idea that
polymers were made of long molecular chains. (You may remember that
H. Staudinger pioneered this theory, and gave credence to it by many ex-
periments in the 1920s and 1930s.) The endeavor with synthetic rubber not
only brought in new products, it also had scientific value. Those studies
confirmed that high elasticity was not a unique feature of natural rubber,
but should be typical of any polymer network or gel (as long as there is
no glass transition or crystallization under certain circumstances, otherwise
the motion of the chains would be constrained).

7.5 High Elasticity and Stretching of an Individual
Polymer Chain

We have said that high elasticity is a common property of polymer networks.
However, this sounds a bit too general. Let’s zoom in, and examine what
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it implies for particular molecules. Figure 7.2 b portrays a typical polymer
network. You can see a set of long molecular chains, bridged together with
cross-linkers (covalent chemical bonds). It looks like a kind of framework
in three-dimension. What would you regard as an elementary “brick” of
such a structure; what is the smallest piece we have to consider if we want
to understand network deformation? The answer is clear from Figures
7.2 b and c: It is a strand of the chain between two neighboring cross-
links (bridges). We shall introduce a new word, subchain, for such strands.
Because polymer chains are so flexible and randomly coiled, it is usually
su�cient to uncoil slightly some of the chains to achieve a rather significant
deformation of the network. Thus, if a polymer network is stretched, many
subchains will be somewhat uncoiled, while some of them will be actually
somewhat compressed (Figure 7.2 c). Therefore, the elasticity of the whole
polymer is a sum of the elasticities of all the individual subchains. This is
why it makes sense to explore elastic properties of a single subchain first,
before looking at the whole network.

Thus, let’s see what happens if a single chain is pulled upon by an
external force f , as shown in (Figure 7.3). Actually, such a single chain
stretching experiment can be done — which is a marvelous experimental
achievement. It was first done by C. Bustamante and his co-workers in
the University of Oregon in 1992, and then repeated in many laboratories
around the globe. There are several versions of the apparatus by which
experimenters can manipulate single molecules, such as optical tweezers,
magnetic tweezers, and some others; we cannot talk about it here, but
encourage the reader to read on this subject, for instance, in the article
[52]. It is actually somewhat ironic that the most convenient polymer for
performing such single chain stretching experiment is nothing lesser than
double helical DNA. Needless saying, experiments with DNA are exciting
because they shed light on the properties of this most important of all
molecules — and we will return to this point (see Section 7.12). But for
now let’s just use the example of DNA to sort out the basics of polymer
physics.We imagine that one chain end is attached to an immobile support
at the origin (we always can choose origin as we like), then the position
of the other end, where the force is applied, is described by the familiar
end-to-end vector R (see Figure 7.3). We want to find the average value of
R as it depends on the applied force f .

It turns out useful to think first about the opposite problem. Suppose
we want to maintain the chain’s dangling end at the given position R; what
kind of force f , on average, should we apply in order to retain the desired



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

The Physics of High Elasticity 117

R

f
R

D

fba Fig. 7.3 In order to keep a given
end-to-end vector R for a single
polymer chain, we need to
apply an external force ff. Similar
figure in the first edition of this
book was considered a rather
abstract theoretical concept; right
now this very experiment is
performed rather routinely in many
laboratories using DNA as a poly-
mer to test, and optical or mag-
netic tweezers to apply the force.
Our cartoon illustration is unrealis-
tic only in one aspect, namely, the
size of the bead (to which the force
is applied) in these experiments
is an order of magnitude larger

than the DNA coil size. Panel (a) shows the situation with weak force, when chain makes
numerous loops and remains randomly coiled. Panel (b) depicts strong force regime, when
chain makes only limited excursions in perpendicular direction, characterized by the length
scale D; this situation is more fully considered below in Section 7.12.

value of R? You may be a little surprised by this last question. Is a force
really needed to keep R unchanged? As we learned in Section 6.7, even
with no force at all the end-to-end vector may have any possible value,
including the value R we wish. There is no doubt about that. However,
without the force, if f = 0, the dangling end will not stay at the desired
point R for any length of time. It will go on fluctuating. All directions of
R will be equally likely. This is why on average the end-to-end vector will
be equal to zero, just as you expect from the symmetry of the distribution
P
N

(R) (6.16). Hence, in order to keep R fixed, you need to use a force f .
You can guess, based on a simple symmetry argument, that f should point
in the same direction as R (Figure 7.3); indeed, what other direction might
it point to? It is an external force, i.e. a force from some external object,
acting on the chain. And what about the force that the chain in its turn
exerts on the external object? Newton’s third law tells us that it should
point in the opposite direction, i.e. towards the origin of coordinates. So it
is a restoring, elastic force. Thus, we have naturally come to the conclusion
that a polymer chain resists being stretched. In other words, it exhibits
elasticity.

We encourage the reader to re-think the above paragraph to realize that
all our arguments are perfectly applicable even to the simplest model of a
chain — a freely-jointed polymer chain made of a large number N � 1 of
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elementary segments, each of the same length ` and, moreover, with all vol-
ume interactions between segments completely neglected (see Section 6.3).
(The latter approximation is known as an “ideal polymer chain”; we will
come back to it in Section 8.1, but for now we can think of it as just sticks
of practically zero thickness).

Our arguments may not satisfy you completely. Indeed, what is the
physics of polymer chain elasticity if it exists even for inextensible seg-
ments with no interactions? To answer this, let’s think of an ordinary solid
crystal. What makes it elastic? When a crystal is stretched, the atoms
are pulled further apart (Figure 7.4). Thus, the elastic force in this case
would be a result of many interatomic interactions. Sometimes it helps to
describe the same thing in terms of energy. The undeformed crystal is in
equilibrium; that is, the potential energy of interatomic interactions is a
minimum (Figure 7.4). An external deforming force pulls the atoms up the
slope from the bottom of the potential well. Suppose an external force f

causes an elongation of the crystal, �x. The work it does, f�x, is used to
increase the internal potential energy �U of the crystal, which is the total
energy of interatomic interactions: f�x = �U , or:

f =
�U

�x
. (7.1)

Equation (7.1) gives you a recipe for finding the stretching force f (and the
elastic force of the crystal, which is opposite to it). All you need to know

ua

b

r

r0
r0

r0+ rF F

Fig. 7.4 An illustration of the elasticity of a crystal. (a): Initially, in an non-deformed
crystal, the distance, r0, between any two neighboring atoms corresponds to the minimum
of the interactional potential energy U(r). (b): To stretch the sample, we have to increase
distances between atoms, to make each of them r0 +�r , and the displacement�r determines
the shift away from the minimum of potential energy: we have to increase the potential
energy, which is why the crystal develops the force of elastic response.
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is how the crystal is constructed. Then you should be able to work out its
internal energy �U .

Now let’s go back to a polymer chain. This time, we are not talking
about a stretched array of atoms, as in the case of a crystal. What we
really see when a polymer chain is stretched is an increase in the end-to-
end distance (Figure 7.3). The only way this can happen is, of course,
if some wiggled bits of the chain straighten up and disentangle. This is
particularly striking and easy to follow if we think of a freely-jointed (Figure
2.5 b) ideal chain. (Once again, ideal chain approximation assumes that
the only interaction between the neighboring monomers comes from their
being joined together into a chain. All other monomers do not interact at
all, just like the molecules in an ideal gas. You will be getting used to this
approximation.)

Suppose we apply a force f , and change the end-to-end vector R by
some value �R. Hence, we did an amount of work f�R. Where did the
energy go? Previously, when we looked at crystals, we managed to find the
answer quite easily. Unfortunately, the way we did it would not work in
this case. In an ideal system, interactional potential energy is zero, both
before and after the deformation. Thus, Equation (7.1) is of no use. As
for kinetic energy of molecules, it is determined by the temperature. If the
temperature is constant during the deformation, the kinetic energy will not
change either. . . Are we lost?

Before giving up, let’s think of another analogy. Strange as it may seem,
help comes from an ideal gas. In a sense, an ideal gas has “elasticity the
other way round”. Suppose you wanted to hold the gas under a piston
(Figure 7.5) in a vessel of a certain volume (it is just like holding a polymer
chain to retain a non-zero R). You would have to apply a squeezing force
f = pA, where p is the gas pressure, and A is the area of the piston.
In order to reduce the volume, you would always need to do some work.

x
x

Fig. 7.5 Ideal gas in a vessel with
a piston before (left) and after (right)
the compression by the amount �x .
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Nevertheless, both the potential and kinetic energy of the gas molecules
stay the same, given that the compression is isothermal. So where on earth
does the work go? (As you see, we end up with the same question once
again.)

Of course, in the long run, all the work transforms into heat which is
dissipated in the surroundings. How do we know? Well, if there were no sur-
rounding medium to take the heat away, both a gas when compressed and
a polymer when stretched would get warmer (see also below Section 7.11).
Does that mean elasticity of a polymer chain depends on the environment
which absorbs the heat? Well, we know that the pressure of an ideal gas
does not depend on the type of the environment, so maybe there is some-
thing similar for a polymer?

Also, is there any hope we can still manage with simple energy argu-
ments? Or do we need to tackle the problem by means of mechanics, tracing
all the molecules? It would not be hard for an ideal gas. Its pressure is
just an overall result of all the individual hits by the molecules on the
piston. This concept immediately leads to the ideal gas equation of state
(we encourage the reader to reproduce this derivation, it is very beautiful).
However, there is no such simple picture for a polymer. Even in the case
of an ideal chain, the motion of segments is extremely complicated, due to
knots and entanglements.

But let’s think. We know that the surrounding medium plays no other
role but to maintain the constant temperature T . Our proof of polymer
elasticity was based on a very general idea. Indeed, we showed that when
a polymer chain is stretched, it is pulled from a more probable to a less
probable state. Hang on a minute! Is there perhaps some universal way of
finding the energy cost of lowering the probabilities at a constant tempera-
ture, without getting bogged down in the mechanics of molecular collisions?

There is indeed a very general rule, known as the Boltzmann princi-
ple. It states the following. Suppose there are ⌦ ways in which molecules
can occupy a certain state. (In our case, this number is proportional to
the probability P (R) — see Equation (6.16)). Then we need to find the
quantity

S = k
B

ln⌦ , (7.2)

where k
B

is Boltzmann’s constant. The energy equivalent of probability we
are seeking is the change in the value:

U
e↵

= � TS , (7.3)
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where T is the absolute temperature. In the case of a polymer chain,
according to (6.16),

S(R) = � k
B

3R2

2N`2
+ const , (7.4)

or

U
e↵

(R) = k
B

T
3R2

2N`2
+ const , (7.5)

where const is a quantity independent of R (which arises because ⌦ is
proportional to P (R), not equal to it). Using Equation (7.5), we can easily
find the elastic force from (7.1). We shall do so a little later, in Section 7.9.
Thus, the Boltzmann equation S = k

B

ln⌦ has rescued us when we had
nearly lost hope. It is not surprising that this formula was engraved on the
tombstone of the author, Ludwig Boltzmann (1844–1906)! But what does
it mean, and where does it come from? It is an interesting question in its
own right. We shall devote the next two sections to it, and then come back
to the discussion of high elasticity.

7.6 Entropy

Rapidly developing science gives rise to a new vocabulary. This gives us
an excuse to reflect on how human languages evolve. It is fascinating to
be able to trace this process, spanning from the dawn of mankind to the
modern day. For example, o�cers of the Russian army, after entering Paris
in 1814, used to spur on French waiters in Russian. The Russian word
bistro (meaning “quickly”) soon became absorbed into French and then
to other western languages, everybody now understands that “Bistro” is a
modestly set small restaurant o↵ering inexpensive simple meals. Much more
recently, we witnessed how the English language acquired such strangers
as “pogrom”, “sputnik”, “perestroika” from the Russian, French language
picked up “airbags” from English, whereas the Russians borrowed words like
“computer” and even some English abbreviations became words in Russian
such as PR (public relations). Novel words usually enrich the language, as
they represent new things and ideas. For instance, the word “computer” is
literally absorbed into Russian to distinguish the modern universal device
from a “machine for calculations”; likewise, the word sputnik in English
does not mean “satellite” in general (which would have been the correct
translation), but rather refers to the first Russian satellite, and so evokes
memories and mood of that period of time.
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Speaking more specifically of the scientific words, many people are afraid
of them, and indeed some of the newly invented ones may sound pretty hor-
rible (like “uniformitarianism” or “compartmentalization”). Such words
have a very narrow use, and clutter up the language. We honestly think
that their authors must have lacked a sense of moderation! Here is a telling
statement by Samuel Goudsmit, an editor of one of the leading scientific
journals, Physical Review : “We find that [neologisms] are often ungram-
matical, frequently ugly, sometimes chauvinistic, likely to be obscure, and
usually unnecessary”. Nevertheless, there have been some really valuable
scientific contributions to the world’s vocabularies, and the word “entropy”
is among them; moreover, it certainly deserves a place near the top of the
list.

Together with energy, time, and so on, entropy is one of the most crucial
concepts of physics, and of science in general. Unfortunately, ever since the
idea of entropy appeared, it has always been surrounded by a halo of mys-
tery. For instance, the following definition is attributed to the well-known
physical chemist Wilhelm Ostwald (1853–1932; he was born in Riga, edu-
cated in Tartu, worked most of his life in Leipzig, and awarded Nobel prize
in 1909): “Energy is the queen of the world, and entropy is her shadow!”
Such an attitude is not without reason. How do people hear about entropy
the first time? Quite often it gets mentioned in the context of the most
global and tantalizing problems, such as the origin of life, or the future of
the Universe. Perhaps, this explains why there is usually no room for en-
tropy in the school curriculum. However, it is quite a straightforward thing.
To get to know it in the first instance, you do not need to dive into obscure
philosophical matters. Moreover, it is hard to manage without entropy,
if you are aiming to describe atomic properties of matter. It would be a
bit like trying to explain the rules of football without mentioning the ball!
This is especially true for polymers. Now you understand why we need to
digress from the main theme, and talk about entropy in more detail.

Let’s think of energy, for a start. How would you define it? Of course,
you can split it up into various forms, e.g. potential energy, kinetic energy,
etc, and describe them separately. However, the real meaning of energy is
revealed by the conservation law. Consider a complex system. Suppose we
know that somewhere in this system a certain form of energy has decreased.
This means that the energy of the other parts must have increased (given
that the system is isolated). Thus, we are able to draw the right conclusion
straightaway. The great thing is that we don’t need to know anything about
the way the system functions or what it is made of.
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Now back to entropy. Equation (7.2) can be regarded as its definition.
As we have already said, entropy is the energy equivalent of probability.
In other words, if you look at how much the value (�TS) has changed, it
will tell you exactly how much work has been done to transfer the system
from a more probable to a less probable state. In this case yet again, just
like with energy, you need not worry about the details, e.g. what did the
work (a piston, or an electric field, etc.), how the molecules collided with
the object doing the work, and so forth.

What exactly does the Boltzmann principle (7.2) mean? Its main idea
is that the quantity U

e↵

= �TS defined by (7.3) and (7.2) can be regarded
as some sort of potential energy. Indeed, if the system is left to itself,
it is most likely to drop down into the most likely state (sorry for this
tautology!) According to (7.2) and (7.3), this would mean an increase in
entropy, and hence a decrease in U

e↵

, which is just what the principle of
minimum potential energy predicts.

Figure 7.6 sketches the function U
e↵

(R) for an ideal polymer chain,
in accordance with (7.5). The graph has the shape of a potential well.
However, you cannot say that “sitting” at the bottom of the well corre-
sponds to the equilibrium. We are talking about non-zero temperatures
here. Suppose you have a little ball at temperature T , and you put it into
a proper potential well (not U

e↵

, but merely U). What will it do? It will
go jittering around the equilibrium position, in a random Brownian way.
The typical size of the swings will be such that the potential energy in-
creases by about k

B

T . (By the way, this is just how physicists estimate the
amplitudes of thermal oscillations of atoms in a crystal.) A similar thing
can be said about U

e↵

. As you can see from Equation (7.5), the condition
U
e↵

(R)� U
e↵

(0) � k
B

T leads to the result that the distance �R�� N1/2`

(as usually, we dropped numerical factors of order unity). This result is

typical fluctuation range

kBT

Ueff=-TS

Rx

Fig. 7.6 The dependence of the ef-
fective potential energy Ue↵ = �TS
of a polymer on the x-component of
its end-to-end vector RR. This pic-
ture shows how the amplitude of the
fluctuations in R can be found from
the condition that Ue↵ reaches up to
about k

B

T above the minimum.
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exactly what we want — the most probable end-to-end distance for a single
polymer coil (see Section 6.7).

Now the Boltzmann equation has become a little clearer, because we
have sorted out U

e↵

, and agreed that it is something like potential energy.
Yet it is so tempting to actually try to derive the equation! Let’s do it for
an ideal gas, in the next section.

7.7 Entropic Elasticity of an Ideal Gas

Assume there is an ideal gas in a vessel with a piston. The ideal gas equation
of state (also called sometimes Mendeleev–Clapeyron equation) gives us the
pressure of the gas, p:

pV = Nk
B

T , (7.6)

where N is the total number of molecules, and V is the volume of the vessel.
The force acting on the piston will be

f = pA =
Nk

B

TA

V
, (7.7)

where A is the surface area of the piston.
Suppose we have pushed the piston down by �x thus slightly com-

pressing the gas. The volume of the vessel has obviously decreased by
�V = A�x (Figure 7.5). If �x is very small, we can neglect the tiny
variations of the force and pressure while the piston is moving. Hence the
work done will simply be given by

f�x = pA�x = p�V =
Nk

B

T�V

V
. (7.8)

At this stage, it would help if we remembered that �V/V can be approxi-
mated as �(lnV ), in the limit of the small V . Indeed, from calculus,

�(lnV ) � @(lnV )

@V
�V =

�V

V
. (7.9)

Since N is constant,

N
�V

V
= N�(lnV ) = �(N lnV ) = �(lnV N ) . (7.10)

Hence, we get:

f�x = kT� lnV N , (7.11)

or:

f = � �U
e↵

�x
, (7.12)
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where

�U
e↵

= �k
B

T� lnV N . (7.13)

So we have the force in the form (7.12), which looks similar to (7.1). Now
we need to specify what U

e↵

is. We are going to link it with the number of
ways in which a molecule can be positioned in the vessel.

Clearly, a gas cannot decrease in volume of its own accord. Yet it
can expand with no extra help. This inequality of rights has to do with
the di↵erence in probabilities. Apparently, a rarified state of gas is more
probable than a denser state. The reason is that it can be realized in more
di↵erent ways. But how do we know? Can we really count all the possible
ways for each state? The answer is yes, and the simplest procedure is the
following. Let’s divide the whole volume of the gas into little cubic cells,
of volume a3 each (Figure 7.7). To make it simpler, let’s assume that each
molecule can only be located in the centers of the cells. Hence, we are
bringing in a discrete distribution of the molecules’ positions, instead of a
continuous one. There will be V/a3 di↵erent ways of accommodating each
molecule in the volume V . Suppose there are N molecules all together.
Then you will be able to arrange them in (V/a3)N ways in the volume V .
This is because the molecules of an ideal gas do not interact with each
other; so you can spread them around the cells totally independently. If
the piston was originally at a height x

1

, the initial volume was V
1

= Ax
1

,
whereas the final volume is V

2

= Ax
2

= A(x
1

��x). The number of ways,
⌦

1

and ⌦
2

, in which the two states can be realized is given by:

⌦
1

= (V
1

/a3)N ⌦
2

= (V
2

/a3)N . (7.14)

Obviously, ⌦
1

> ⌦
2

(because V
1

> V
2

), so indeed the final, more com-
pressed state is the less probable one. However, you may feel a bit suspicious

a

Fig. 7.7 Counting the number of states of an ideal gas.
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about the method of calculation. We jumped rather carelessly from the
continuous set of the molecules’ positions to a discrete one. In fact, it is
quite all right to do so. You will see a little later that the size of a cell
a will cancel out from all the final formulas for physical quantities. This
means that it does not matter after all how you break up the volume and
count the states.

How much do the quantities ⌦
1

and ⌦
2

really di↵er? Let’s look at the
ratio ⌦

1

/⌦
2

. Equation (7.14) leads to:

⌦
1

⌦
2

=

✓
V
1

V
2

◆
N

. (7.15)

The ratio V
1

/V
2

is greater than one; the power N is a large number, much
greater than one. Therefore, ⌦

1

/⌦
2

� 1. Let’s make a simple estimate.
Say, for example, V

1

/V
2

= 1.01, and N = 6 � 1023 (this is roughly the
number of molecules in one mole of a gas). Then

⌦
1

⌦
2

= (1.01)6·10
23

� 102.6·10
21

, (7.16)

which is an incredibly enormous number; it is even greater than the number
of atoms in the whole universe! Thus, according to (7.15), the final state is
incomparably less likely than the initial one.

It seems obvious that spontaneous evolution of a system can only go
in one direction, from a less probable to a more probable state (especially
when there is such an immense gap between the two probabilities). Now
you understand why a gas can spontaneously expand (at a constant tem-
perature), but is unable to shrink of its own accord. In order to compress
the gas, you have to push the piston with some force. The counter reaction
against your e↵ort is the elastic force of the ideal gas.

Using (7.15), we can rewrite expression (7.11) in terms of ⌦:

�
�
lnV N

�
= lnV N

1

� lnV N

2

= ln

✓
V
1

V
2

◆
N

= ln

✓
⌦

1

⌦
2

◆
= � (ln⌦) . (7.17)

Comparing this with (7.13), we can conclude that, for an ideal gas,

U
e↵

= k
B

T ln⌦ (7.18)

which is the same as the Boltzmann equation (7.2).

7.8 Free Energy

There is one more tricky bit that we need to sort out. What if we have a
complex structure where both the potential energy U and the probability



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

The Physics of High Elasticity 127

⌦ of the state (or the entropy S as in (7.2)) are changing at the same time?
In fact, this is exactly what happens in practice, in real physical systems,
including polymers.

The answer is obvious. During any isothermal process, an external force
has to do work on both things at a time, i.e. altering the energy U as well
as the number of states ⌦. The work done is determined by the change
in the total U + U

e↵

. This quantity is known as the free energy F , and is
normally written as

F = U + U
e↵

= U � TS . (7.19)

This leads us right to the very basic principle of minimum free energy.
Any system, left on its own at fixed temperature, always behaves in such
a manner that its free energy goes down. The minimum of the free energy
corresponds to the equilibrium state. However, the equilibrium is only
defined in a statistical sense — the system never stops its random thermal
jittering around the equilibrium position. We say that it fluctuates.

The two terms in the free energy (7.19) are often known as the “energy
part” and the “entropy part”. Using this, we can make some interesting
generalizations. An ideal gas and an ideal polymer both appear to have a
zero energy part of the free energy. On the other hand, an ideal crystal has
a zero entropy part.

Later on, we shall have a few more chances to explore free energies of
polymers. But for now, let’s try to solve the question which you might
have had for some time. Why “free”? What a strange name! In fact, the
concept of free energy (as well as of entropy) belongs to thermodynamics,
which is known as “the child of the age of steam”. It was once a very
applied area, concentrating on the problems of heat-engine design. Even
now, if you look in the wrong textbook, you might get the impression that
thermodynamics is a strange, out-of-date study of steam engines. This is
certainly far from true. Thermodynamics is probably a unique example of a
science that originated from rather narrow practical problems and gradually
formed into a very general field of knowledge, spanning from cosmology to
biology.

It is most amazing that scientists such as Carnot and Clausius, who laid
the foundations of thermodynamics, still believed in a very naive caloric
theory of heat, which held that heat is a form of fluid. The main practical
question they faced was the following. Suppose there is some hot steam
coming from a boiler. How much of its energy can it give away to produce
useful work? (Presumably, it cannot give up all its heat!) In other words,
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what fraction of the energy is free to be converted into work? The answer
is: the free energy (7.19)! Hence the name.

7.9 Entropic Elasticity of a Polymer Chain

Let’s now go back to the high elasticity. As we have just seen, the internal
energy of an ideal polymer does not change: �U = 0. So there is no energy
contribution to the elasticity; the elasticity is explained in terms of entropy
alone. Indeed, when a chain is stretched, we move from a more probable
state (realized in more di↵erent ways) to a less probable one (realized in
fewer ways). The chain starts getting uncoiled, and loses some freedom. In
the extreme case, a chain stretched out in a straight line has no freedom at
all (⌦ = 1, S = 0).

We have already found the entropy of an ideal chain (7.4). Now we can
use formula (7.1) to find the elasticity:

f = � T
@S

@R
=

✓
3k

B

T

N`2

◆
R . (7.20)

The vectors f and R are parallel (as you can see in Figure 7.3). This is
why we can rewrite (7.20) in the vector form:

f =

✓
3k

B

T

N`2

◆
R . (7.21)

Thus, the force f has turned out to be proportional to the “displacement”
R. We can say that an ideal chain obeys the well-known Hooke’s law.
However, perhaps we need to be a bit more cautious. Compare (7.20) with
an ordinary form of the law (4.1). The main discrepancy is that the average
value of R in a non-deformed chain equals zero. Therefore, we cannot bring
in anything like the relative deformation �`/` which appears in the usual
form of Hooke’s law.

Still, we could think of an “elastic constant” of a polymer chain: it
would be the coe�cient of the linear relation between the force f and the
deformation R. According to (7.20), it happens to be 3k

B

T/N`2. First,
notice that it is proportional to 1/N , which makes it a very small quantity
if the chains are fairly long. This means that polymer chains are very
susceptible to external forces; this is exactly what accounts for the high
elasticity of rubber and other similar polymers. The second thing we can
notice is that the elastic constant is proportional to the temperature T .
This is because the elastic forces are due to entropy, as you can see from
(7.3).
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7.10 Entropic Elasticity of a Polymer Network

We have explored what happens when an individual polymer chain is
stretched. This was not just an exercise. We have shown that the elasticity
of a network is built up from the elasticities of all the subchains (Figure
7.2), so we can make use of what we have found. There is one tricky ques-
tion though. Let’s imagine a highly elastic solid body, say, a rubber ball.
The macromolecules are rather closely packed in it and interact strongly
with each other. So can we really treat each subchain as an ideal polymer,
with no volume interactions at all?

The answer is that we can. Of course, in such a dense structure, the
thermal motion of the molecules will be nothing like that of an ideal sin-
gle chain. Atomic groups within one monomer will oscillate and rotate
in a totally di↵erent fashion. However, the density of the surroundings
will make no di↵erence to the entangled shape of the macromolecules (i.e.
the size of a coil will still be proportional to the square root of the chain
length). The Gaussian distribution (6.16) will not be a↵ected either. In
general, the large-scale properties of chains are the same for both ideal and
highly-elastic polymers. This idea was voiced clearly for the first time by
P. Flory in 1949; thus it is often called the Flory theorem. You can explain
it qualitatively in this way. In a uniform, amorphous substance all the
conformations of a certain chain are equally likely (in the sense that they
correspond to the same energy of interaction with the other chains). This
is because the surroundings of each unit are roughly the same. But this is
the only assumption we actually made when deriving the elasticity of an
ideal polymer.

Now, as we are convinced we are on the right track, let’s investigate
the stretching of a polymer network (see Figure 7.2). We shall treat it
as a set of ideal subchains. Suppose each subchain consists of N freely-
jointed segments, each of length `. (To make it simpler, we neglect the
polydispersity of the polymer.) When the network is stretched, all the
subchains are also stretched on average. Their entropy (7.4) decreases
(as the end-to-end distance R grows). This causes an “entropic” elastic
force. It does not explain the high elasticity yet. The high elasticity is the
capability of bearing huge reversible strains at rather moderate stresses.
It occurs because the “elastic modulus” of each chain is fairly small (see
(7.20)).

Imagine a polymer network in the shape of rectangular parallelepiped.
Let’s draw the x-, y-, and z-axes along its sides. Suppose we have elongated
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the network by factors �
x

, �
y

, and �
z

along these axes (respectively). Then,
if the initial length of the network along the x-axis was a

0x

, it will now be
�
x

a
0x

, etc. Now we need to make some assumption about how the network
is deformed. The simplest is to assume what is called a�nity (where the
cross-links and the whole network deform in the same way). Say, the end-
to-end distance of a certain subchain was initially R

0

, with components
R

0x

, R
0y

, and R
0z

. After the deformation, the vector becomes R such
that its components are R

0x
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. According to (7.4), the
change in entropy of the subchain is
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To find the total change in the entropy of the whole network, we have
to sum contributions like (7.22) for all the subchains. In other words, we
can average over R

0

, and multiply by the number of subchains, ⌫V , in the
network. (Here V is the volume of the sample, and ⌫ is the concentration
of subchains per unit volume.)
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Now we can take into account that
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(see (6.11)). We also know that all the three directions (x, y, and z) have
equal rights, therefore
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= N`2/3. So we finally get:
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� 3
�
. (7.25)

It is interesting that the answer does not depend on the parameters N and `

which describe an individual subchain. This indicates that Equation (7.25)
is universal. It works whatever the particular structure of the subchains
(for instance, regardless of whether they are freely-jointed or wormlike), for
whatever contour lengths and Kuhn lengths, and so on. If we glance again
at our calculations, we can see that basically all we needed to draw the
main conclusion (7.25) was just to regard the subchains as ideal.

We can use (7.25) to find the stress caused by the “entropic” elasticity,
for all sorts of deformations. Obviously, one of the most important types of
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deformation is the uni-axial elongation (or compression). Let’s see what we
can get out of (7.25) in this case. Suppose we have elongated the sample
by the factor of � along the x-axis, i.e. �

x

= �. The size of the network
along the y and z coordinates may change freely. Can we find the relative
deformations �

y

and �
z

in this case?
Remember that we are talking about a polymer in a highly elastic state.

It seems a sensible assumption that its volume has not changed under the
strain. Then, both the y-size and the z-size of the sample ought to have
shrunk by a factor of ��1/2, that is, �

y

= �
z

= ��1/2. Thus the total
volume after the deformation would not change:
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0
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. (7.26)

How can we justify, physically, that the volume has to be constant? A highly
elastic polymer is usually a sort of fluid (a polymer melt). Its chains are
linked with chemical bonds. So, if squashed in all directions, such a polymer
is bound to behave as an ordinary liquid. In particular, a 1% change in
volume can only be achieved with a pressure of roughly 100 atm � 107 Pa.
At the same time, the elastic modulus of such polymer is fairly small.
Therefore, the sample can be stretched a few times its length with a much
smaller stress (� 105 or 106 Pa). So it is only natural to assume that the
volume does not change under such low stresses.

From this point of view, elastic polymers are di↵erent form ordinary
solid crystals and glasses, which change their volume just because their
length changes. At a molecular level, this di↵erence is not surprising.
When crystals are elongated, their atoms are pulled further apart. Mean-
while, polymers increase their length by merely disentangling, uncoiling,
and stretching out their wiggly subchains; this way the distances between
the atoms are kept unchanged.

If we substitute �
x

= � and �
y

= �
z

= ��1/2 into Equation (7.25), we
obtain
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There is no problem in finding the elongating force here, using a formula
similar to (7.12):

f = � T
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More often we are not interested in the force as such, but rather in the
stress, i.e. the force per unit cross-sectional area. There is a little subtlety
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of which we should inform the reader: in defining stress, one can divide
force by the actual cross-section at the current state of deformation, or by
the initial cross-section of the undeformed sample; the former quantity is
called true stress, while the latter is usually dubbed as engineering stress.
Engineering stress is much easier to find in practice, which is why it is most
commonly used. We are also using engineering stress throughout this book
(see, e.g., Figure 4.4 and its caption). For our present task, engineering
stress is computed as follows:

� =
f
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Therefore, let’s rewrite our answer in terms of �:

� = k
B
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� � 1

�2

◆
. (7.30)

The result (7.30) is a major one in the classical theory for the high elasticity
of polymer networks. If the elongation is small (i.e. � is close to one),
Equation (7.30) can be used to estimate Young’s modulus of a polymer
network (see (4.1)). Indeed, in the limit of � � 1:

�� 1

�2

= (�� 1)+
(�+ 1)(� � 1)

�2

� (�� 1)+
(2)(� � 1)

12
= 3(�� 1) . (7.31)

Meanwhile, the value � � 1 � (a
x

� a
0x

)/a
0x

is just the relative elongation.
In other words, it plays the same role as the parameter �`/` in Equa-
tion (4.1). Comparing (4.1), (7.30), and (7.31), we end up with Young’s
modulus:

E = 3k
B

T⌫ . (7.32)

Thus, E turns out to be the same as the pressure of an ideal gas whose
molecular concentration is 3⌫ (i.e. three times the concentration of the
cross-links). It means that the more cross-links there are in a highly elastic
sample, the less elastic it is. Therefore, the value of E does not indicate
a specific polymer. It varies dramatically depending on the density of the
cross-links.

However, (7.30) can be used not only to find Young’s modulus. It also
describes the nonlinear elasticity, which takes up quite a lot of room on the
stress versus strain curve. (In Figure 7.1, it spans from point A where the
elasticity ceases being linear up to point B where the reversibility is lost.)
What is more, Equation (7.30) is just as good for uni-axial compression.
You only need to bear in mind that � will be less than one in this case.
Another warning is that when compressed along the x-axis, the sample will
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automatically stretch in both the y and z directions. Even more complex
deformations, such as two-dimensional elongation, torsion, shear, and so
on are covered by the general relationship (7.25). Although we shall not
do it here, you can derive equations similar to (7.30), revealing nonlinear
behavior of the stress.

Thus, the result (7.30) �(�) dependence is pretty general — but how
accurate is it when compared with experiments? Figure 7.8 brings together
both a typical experimental curve and the theory. You can see that up to
about � = 5 the agreement is far from perfect, but more or less tolera-
ble. Then, for � > 5, the discrepancy grows more and more. This is not
surprising. Expression (6.16) for P

N

(R) ceases to work for long end-to-end
distances R (or, equivalently, large elongations). Why? Because it does not
take into account that there is a limit to how much the chains can actually
be stretched. Namely, the distance R can never exceed the total contour
length N`. This is why Equation (7.27) and all the consequent results will
not hold for the case of strong elongation.

Let’s look at the range of moderate elongations: 1.2 < � < 5. For
most polymer networks, typical discrepancies between the theoretical and
experimental �(�) are not that high (about 20% or so), but they tend to be
systematic (Figure 7.8). These are explained by the so-called topological
constraints to the subchains’ conformations (see Section 2.6).

1 2 3 4 5 6 7

2
4
6
8

10
12 , MPa

Fig. 7.8 The dependence of
(engineering) stress � on the
strain � for a highly elastic poly-
mer network material. Solid line
is the theory (7.30); dots show
a typical experimental curve (see
caption of the Figure 4.4 about
the definition of engineering
stress). Equilibrium module used
to plot the theoretical curve is
3⌫k

B

T � 3.3 MPa, which cor-
responds to ⌫ � 0.27 nm�3 —
roughly one cross-link per four

cubic nanometers. Although the data presented are quite typical in the sense that data first
go below theoretical curve and then shoot up above it, the value of ⌫ and the corresponding
values of stress can easily change by an order of magnitude either way in di↵erent materials.
Experimental data courtesy of A.A. Askadskii were obtained at room temperature using the
sample of polyurethane derived from methylenediphenyl diisocyanate and polyester based on
hexanedioic acid and 1,2-ethanediol (the chain extender is 1,4-butanediol). The sample of
initial length 25 mm was stretched at the rate 0.16 mm/s, which is very slow. The stress,
which has the dimensionality of pressure, is given in the units of megaPascal: 1 MPa = 1 pN

nm2 .
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Despite all the imperfect agreement with experiment, this approach to
the description of high elasticity has proved ideologically quite successful,
especially because it is universal. All the predictions are satisfactorily accu-
rate, whether it is absolute values of Young’s moduli, or their temperature
dependencies, or the shape of the nonlinear stress versus strain curve. There
are not many other examples in the physics of disordered solids and liquids
where such simple arguments have helped to understand so much. The rea-
son is rather obvious. The way the chains are entangled and rolled up into
coils is not described by the short-scale chemical structure or interactions
of individual atomic groups. It is determined by the very fact that the
monomers are grouped into chains. So it is a long-scale feature. Soon
we shall have a chance to discover that some other most interesting and
peculiar properties of polymers have the same sort of origin.

7.11 The Guch–Joule E↵ect and Thermal Aspects
of Rubber Deformation

Until now, all we have deduced from (7.30) was the dependence �(�) at
constant temperature. However, it also contains the dependence on T .
So, let’s analyze how the elasticity of polymer networks is a↵ected by the
temperature.

Suppose we hang a weight on a rubber string. The string will become
elongated. Now let’s increase the temperature. According to (7.30), as
long as � = const (because hanging weight does not change), an increase in
the temperature should lead to a decrease in �. Thus, a stretched rubber
string, in contrast to most non-polymer materials, contracts on heating!
This strange behavior was discovered by Guch as early as 1805 when he
experimented with strips of natural rubber. Half a century later, Joule (the
same person who, being professional bear brewer, established equivalence
of heat and mechanical energy and thus helped discovering the energy con-
servation) carried out a careful set of measurements and confirmed Guch’s
result. Thus this phenomenon is usually known as the Guch–Joule e↵ect.

This e↵ect demonstrates, perhaps in the most dramatic way, that the
high elasticity of rubber and other polymers is related to entropy. Indeed,
as the temperature goes up, all sorts of interactions start to lose their
importance. This is because the characteristic energy of such interactions,
", becomes much less than k

B

T (i.e. "/k
B

T < 1). Meanwhile, the entropy
contribution gains more and more significance. (According to (7.4), the
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entropic elasticity is proportional to the temperature.) Therefore, the fact
that the “bouncing” reaction is enhanced by heating suggests that it is the
entropy to blame for the high elasticity of rubber.

What happens when the system cools down again? The sample may
become partially crystallized, and in that case the Guch–Joule e↵ect is
replaced by the opposite: the partially crystallized rubber would expand
with heating. This is yet another sign that only the highly elastic polymers
exhibit the very peculiar elasticity of special entropic nature.

A common but very impressive way to demonstrate the Guch–Joule
e↵ect in a class setting is the following. (It can be reproduced easily in an
ordinary school laboratory.) Take a bicycle wheel and replace the spokes
by elastic strings made of soft rubber (Figure 7.9). Preferably, the strings
should be stretched to about three times their original length. Now fix the
axle in a horizontal position, so that the wheel can rotate in the vertical
plane with little friction. Place an electric heater pointing at a certain

Fig. 7.9 An experiment to demonstrate the Guch–Joule e↵ect. The device in this photo
belongs to the lecture demonstration facility of Physics Department, Moscow State Univer-
sity; the image is courtesy of A.A. Aerov and S.B. Ryzhikov.
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part of the wheel. (You can also use a powerful electric light bulb for this
purpose, shining on some section of the wheel.) The heat makes the rubber
strings shrink, and the center of mass shifts. As a result, the warmed
sections of the wheel move up, and other sections take their place at the
spot being heated. They are warmed up in their turn, and so on. As
you might have guessed, the wheel starts rotating at a constant angular
speed2.

Here is an even simpler experiment. Hang a weight on a rubber band,
and start warming up the band, either using a light bulb or some other sort
of electric heater. Alternatively, you may place the whole thing in water
(say, in a bucket), and heat it up. When heated, the rubber will pull the
weight up, and after cooling down it will let it down again.

In the Guch–Joule phenomenon, the change in size of an elastic string is
a consequence of the temperature variation. It turns out that it works the
other way around, too: The temperature of a string will change if its size is
changed, for example, if it is rapidly squashed or elongated. You can check
it yourself. Stretch a strip of rubber quickly, then touch it with your lips
to feel how it is warming up! Conversely, when stretched rubber is rapidly
released, it will noticeably cool down. This is totally opposite to what
happens with an ideal gas, which gets warmer when rapidly compressed
and cools when allowed to expand rapidly.

In spite of the contrast, the two types of behavior — those of the gas
and those of the rubber — have the same cause. Say a system is quickly
extended (expanded) or compressed. Obviously, there will be no time for
heat to be exchanged with the surroundings. To put it in other words,
all such processes can be regarded as adiabatic. So why should an ideal
gas warm up when it is adiabatically squashed? The answer is this. The
squashing requires some work to be done by external forces. Where does
this work go? As no heat is leaking out, all the work is transformed into
the internal energy of the gas. Therefore, the temperature rises. The
same happens when a piece of rubber is adiabatically (rapidly) stretched.
Again, external forces do the work, which is all used to increase the rubber’s
internal energy (and the temperature). In contrast, when either rubber is
compressed or an ideal gas is expanding, the work has to be done by the
system itself. As no extra heat comes from the outside, some of the system’s
own internal energy has to be used, and so it cools down.

2At the first glance, this device may seem to work as a perpetual motion machine,
violating the thermodynamics. In fact, of course, the wheel rotates on the expense of
energy provided by the electric heater, so there is no contradiction.
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7.12 Single Chain Stretching Revisited: Worm-Like Chain
Model and dsDNA

When the first edition of this book was in preparation, the idea of single
molecule stretching was a rather abstract theoretical concept. But this
turned out to be the place of huge breakthrough of experimental tech-
niques. At the present time the so-called force-spectroscopy experiments
are routinely performed in many laboratories around the world. And this
all started with the simple minded but technically sophisticated experiment
by C. Bustamante and his colleagues, when they tried to pull dsDNA by
its ends — pretty much in the way shown in our cartoon in Figure 7.3.
Despite scores of textbooks describing a thought experiment on stretching
a single polymer chain, the results of a real experiment proved largely un-
expected. Mother Nature once again taught researchers that every theory
has its limits of applicability. . .

We mentioned already more than once the nice property of universality
in many cases characteristic of polymers. In this spirit, researchers got used
to thinking that all polymer chains are alike, each characterized by just two
parameters, total length and persistence length. Indeed, isn’t that what we
described above in this chapter? Formulas (7.20) or (7.21) relate pulling
force f to end-to-end distance R in terms of the segment length ` and the
full contour length of the chain L = N`; they represent, of course, quite a
universal relation – but it is valid if and only if the chain is not too strongly
stretched. If you go back and re-trace the derivation, you will see that
formulas (7.20)–(7.21) represent an o↵spring of Gauss distribution (6.16),
which is a very good approximation for modest end-to-end distances R,
but certainly breaks down if R is too large (for instance, Gauss distribution
predicts small but non-zero probability that a polymer chain stretches from
here to the Moon, which is an obvious absurdity). Therefore, we should
re-write formula (7.20):

f =

✓
3k

B

T

L`

◆
R if R � L . (7.33)

This universal result is useful to describe network elasticity, because almost
none of the subchains in the network is close to full stretching. But as soon
as people started doing single molecule experiments, the stretching of DNA
to almost its full contour length became possible and brought interesting
unexpected results.

Indeed, how should we address chain stretching when end-to-end dis-
tance R approaches full stretching length L? The easiest approach is to
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solve this problem for the freely-jointed chain model (Figure 2.5 b). And
people assumed — wrongly, as it turned out — that the result should be
universal. But the result was in gross discrepancy with the dsDNA stretch-
ing experiment. Of course, it did not take long to realize that there is no
(and should not be) universality in the strong stretching regime, and the
analysis of worm-like chain model (Figure 2.5 a) showed excellent agree-
ment with dsDNA data, as shown in the Figure 7.10. This was the proof
that dsDNA does indeed possess the worm like mechanism of flexibility.
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Fig. 7.10 Results of the experiment on stretching single DNA chain by its ends. The
double �-DNA was used, its length is about 97,000 base pairs, or L � 32.7 µm. On the
lower axis, the end-to-end distance, R, is labeled in microns; on the upper axis it is labeled
in terms of unitless ratio R/L. The force is seen to increase rapidly as R approaches L, or
as molecule approaches full stretch. On the left axis, the force is marked in pico Newtons
(10�12 N); on the right, the force is labeled in terms of unitless quantity f `/k

B

T . The inset
shows the region of small forces. The worm-like chain model is seen in excellent agreement
with the data. The freely-jointed chain model significantly underestimates the force in the
strong stretching regime. Gauss theory is only valid in the region of small forces, when, as
expected, all theories yield basically identical results. The data are taken from the paper:
S. Smith, L. Finzi, C. Bustamante, “Direct Mechanical Measurements of the Elasticity of
Single DNA Molecules by using Magnetic Beads”, Science, v. 258, n. 5085, p. 1122, 1992.
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Interestingly, there was a sort of over-reaction among researchers: now
many people consider worm like chain model either more realistic or just
“real” — while in fact many polymers (e.g., proteins) should be described
by other models, with rotational isomers etc.

7.12.1 Strong Stretching of a Chain is akin to its
Confinement in a Narrow Tube

Because of great importance of this subject, we will sketch below the deriva-
tion of f(R) for both freely-jointed and worm like chain models and explain
the physical source of di↵erence between them. In both cases our approach
will be based on the following idea.

If the chain is almost fully stretched, its excursions in perpendicular
directions are very small, they are suppressed. This is illustrated in Figure
7.3 b: when the force is strong, the end-to-end distance R is large and
approaching the full length of molecule L, while the characteristic distance
of perpendicular excursions, D, gets small. Therefore, it will prove useful to
consider an artificial model, depicted in Figure 7.11: the chain confined in
a very narrow tube of some diameter D which is so small that it is smaller
than the chain segment (or e↵ective segment) length `: D � `. Surely, the
relevant tube diameter D should depend on the amount of stretching and
we will have to determine it in some self-consistent way. But for now let us
think about the tube and let us ask: how much work should we perform to
squeeze chain in such a tube? That will help us determine how much force
we have to apply in real situation to achieve the end-to-end separation R.

We should also mention that the problem of chain confinement in a
narrow tube, introduced above as an artificial model, is of great interest in
its own right: think about DNA translocation through a narrow channel
(see Figure C5.7), or DNA pushed from virus head into the cell through a
narrow tube. As a note in passing — it is probably true in general that
a good model in physics will always find some application: in the words
of Charles Dickens, “Nothing of what is nobly done is ever lost” (we will
return to this in Chapter 11).

7.12.2 Strong Stretching of a Freely-Jointed Chain

If a freely-jointed chain is confined in a narrow tube, each of its straight
segments makes a small angle with the tube axis. That is unfavorable in
terms of entropy: as the tube gets more narrow, every segment has fewer
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orientations available to it. We can apply Boltzmann principle to analyze
this “orientational entropy”. Since we talk about orientations only, we can
imagine that one end of the segment is fixed in some point in space, then
the other end chooses any point on the sphere of radius `, its surface is 4⇡`2.
But if the segment is confined in a tube, its end is restricted to the much
smaller surface proportional to D2, as it should be clear from the lower part
of Figure 7.11 a. Therefore, dropping as usual the numerical coe�cients3,
we can say the entropic price of confining one segment into a tube is about
k
B

ln(D2/`2), and for all N segments we get �S = Nk
B

ln(D2/`2). The
physical meaning of this quantity is revealed by noticing that � T�S is the
minimal amount of work necessary to confine polymer into the tube, and
�S < 0 means that the chain resists being squeezed.

Interestingly, it does not matter how we are going to perform work:
we can squeeze polymer from the sides or we can pull it by the ends, the
amount of work should not depend on that (the beauty of entropy and
Boltzmann principle!). But if we are talking about pulling the ends, it is
more convenient to use end-to-end distance R instead of D. How are they
related? For each segment, its projection along the tube axis is

�
`2 � D2 �

` � D2/2` (since D � `). Therefore, total end-to-end distance is R �
N

�
` � D2/2`

�
= L � LD2/2`2. By doing now simple algebra we can re-

express D in terms of R and then re-write entropy or the corresponding
free energy for all L/` segments as an explicit function of R:

�F � � k
B

T
L

`
ln

✓
1 � R

L

◆
. (7.34)

The necessary pulling force is found from here by di↵erentiation: f =
� @�F/@R:

f � L

`

k
B

T

L � R
(freely jointed, strong stretching), L � R � L . (7.35)

We see that force blows up as we approach full stretching. It is always
di�cult to devoid any system of its last pieces of freedom, which is why it
is impossible to reach absolute zero of temperature, and which is why it is
impossible to reach complete stretching of a polymer with finite force; in
fact, the chain will break far before it reaches complete stretching.

This is all good, but formula (7.35) did not agree with experiment on
dsDNA.
3We drop numerical coe�cients inside the ln, such as 4⇡ etc., because, for instance,

ln(4⇡`2/D2) = ln(`2/D2) + ln(4⇡) and, since ` � D, we neglect the second term.
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7.12.3 Strong Stretching of a Worm-Like Chain

Let’s try to analyze the worm-like chain model in the tube. We will do it
using the idea of Figure 7.6, namely, finding the fluctuation with energy
about k

B

T . As it is seen in Figure 7.11 b, conformation of a worm-like
chain in a tube represents a kind of succession of arcs. Let’s concentrate
on one such arc. If � is the length of it, then simple geometry, shown in
the lower part of Figure 7.11 b suggests that curvature radius ⇢ of the arc
is about

⇢ � �2

D
, (7.36)

(again dropping numerical coe�cients). What is then its energy?
Well, we never said so far how to find bending energy of worm-like chain.

As a matter of fact, we can borrow the prescription for this task from
mechanical engineers, for they know everything about bending of elastic

(ℓ
2 -
D
2 )
1/
2

ℓ

D

D/2

D

a b

Fig. 7.11 Confined in a narrow tube freely-jointed chain (a) and worm-like chain (b). The
lower figures represent auxiliary geometric constructions explained in the text. Notice that
worm-like chain hits the walls in more points than freely-jointed.
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beams. But we can also guess ourselves: bending energy should be pro-
portional to the squared curvature 1/⇢2 (because it should vanish for the
straight shape with no curvature, and it should not depend on the sign of
curvature); it should be proportional to the length of the piece in question
�; and there should be some coe�cient describing the rigidity of the ma-
terial. If we take bending energy in the units of k

B

T , the result should
be then unitless and, therefore, the material coe�cient in this case can be
nothing else but persistence length or e↵ective segment (up to a numerical
coe�cient). Thus, bending energy of the arc reads E

bend

� k
B

T `�/⇢2.
Since bending energy should be just about k

B

T (see Figure 7.6), we get
that

`�

⇢2
� 1 . (7.37)

Equations (7.36)–(7.37) together determine the important length scale � —
the so-called undulation length (also called Odijk length after the author
of the concept — Theo Odijk of Leiden University in The Netherlands):

� � `1/3D2/3 . (7.38)

Notice that � � `; that means, worm-like chain hits the tube walls more
frequently, in more places, than freely-jointed chain; one can say, worm-like
chain requires more guidance to keep going straight.

And now we can estimate confinement entropy. We will argue that this
entropy is of order unity per each arc of the length �. Indeed, we can say
each arc can bend to either right or left, which means the relevant number
of conformations is estimated as 2L/�, where L/� is the number of arcs.
According to the Boltzmann principle, we obtain then entropy proportional
to L/�. Transforming this to the function of end-to-end distance R (which
is geometrically related to � in the same way as R was related to ` for freely
jointed chain, i.e., R � L � LD2/2�2, or given formula (7.38), R � L �
� L�/` ), we arrive at the free energy

�F � � k
B

T
L2

(L � R)`
(7.39)

and pulling force:

f � k
B

TL2

(L � R)2`
(worm-like, strong stretching), L � R � L . (7.40)

As in case of freely-jointed chain, Equation (7.35), the force also blows up
at the approach to complete stretching, but does so much stronger — as
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(L� R)�2 instead of (L� R)�1. And this di↵erence in power does the trick
— formula (7.40) agrees with the data very well.

It is important to understand the physical meaning of the di↵erence:
why stretching worm-like chain becomes much more di�cult at large elon-
gations than stretching a seemingly similar freely-jointed polymer? This is
actually yet another demonstration of entropic nature of polymer elasticity.
Indeed, to keep the freely jointed chain in the confines of a thin tube it is
necessary and su�cient to control the direction of every segment to within
proper accuracy, but the segment has to be oriented at one point only. By
contrast, the direction of worm-like chain has to be controlled everywhere:
as we decrease the diameter of the confining tube, we have to correct the
orientation at an increasing number of points; in other words, as we squeeze
the chain in an increasingly narrow tube, or pull it by the ends with an in-
creasing force, we must suppress increasingly short wave length motions of
the chain, which requires more and more entropy.

A prepared student would be well advised to think through the analogy
of this situation with the well-known Einstein and Debye models of heat
capacity in solid state physics. The analogy is surely incomplete, and in
some ways even reverted, but still very instructive. Let’s remind that in
Einstein model a solid body is represented as a set of oscillators, all hav-
ing the same frequency; this is similar to freely-jointed chain, in which all
possible ways to bend the chain have one and the same wavelength — the
segment length `. Einstein model played an important historical role in
physics, for it showed how heat capacity can violate the classical mechanics
prediction (which says that heat capacity does not depend on temperature);
but Einstein model did not agree with experiments. Debye model proved
immensely more successful, because it predicts a certain universal (for all
bodies) behavior of heat capacity at low absolute temperature, proportional
to T 3 (for regular three-dimensional crystals), which agrees very well with
numerous experiments. The key feature of Debye model is the realization
that oscillators in the crystal are nothing else but sound waves, or phonons
in quantum language. As we lower temperature, we remain with increas-
ingly long wave length waves (their frequencies and energies are lower), and
these are universal because long wave envelops many atoms and hides the
di↵erence between them. In this sense strong stretching of worm-like chain
is somewhat opposite to lowering temperature of a solid, because in the
former case we suppress the long wave lengths, while in the latter case we
suppress the short ones. (As a matter of precaution, we warn the reader
that these “waves” in a worm-like polymer, unlike regular solid, are just



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

144 Giant Molecules: Here, There, and Everywhere

a mathematical way to think about bending fluctuations, these waves are
overdamped by the friction in the viscous solvent, and they would not exist
if not for the constant excitation by the surrounding molecules.)

7.12.4 Force Spectroscopy

The di↵erence in stretching behavior between di↵erent polymers proved
extremely informative and gave rise to the experimental method called
“force spectroscopy”. For instance, the data of C. Bustamante and his co-
workers shown in the Figure 7.10 are considered the experimental proof of
the fact that dsDNA is a worm-like chain. Strictly speaking, formula (7.40)
is not enough to make this conclusion, for it only describes the situation
at rather large force; one needs a more sophisticated formula that connects
smoothly between the universal behavior at small forces (7.33) and the
blow-up at large ones.

We will not derive general formulas here, but just write them down for
both freely-jointed and worm-like chains — in case our reader wants to play
with them. For the freely-jointed chain the formula expresses end-to-end
distance as a function of force and reads

R = N`

✓
e⇠ + e�⇠

e⇠ � e�⇠

� 1

⇠

◆
, where ⇠ =

f`

k
B

T
; (7.41)

this formula is called after P. Langevin (1872–1946) (he discovered the for-
mula while studying the magnetization dependence on the applied magnetic
field — yet another physical analogy). For the worm-like chain the corre-
sponding formula is called after J. Marko and E. Siggia (who first used it
to interpret Bustamante data), it expresses force in terms of the extension
and reads

f =
k
B

T

2`

"
L2

(L � R)2
� 1 +

4R

L

#
. (7.42)

The reader should check that these formulas have proper limiting behavior
at small and large forces.

Worm-like chain model is good not only for dsDNA, but for a number of
other polymers. The notable example is so-called F-actin. Strictly speak-
ing, calling F-actin a polymer is a little bit of a stretch: it does not have a
covalent backbone; it is actually a chain-like assembly of protein globules
(called G-actin). The diameter of F-actin “chain” is about 5 nm, and the
chain is rather sti↵, its e↵ective segment is close to 30 µm, about three
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orders of magnitude larger than for dsDNA. Actin fibers are important
components of cytoskeleton supporting shapes of eukaryotic cells.

The success of worm-like chain model for dsDNA made this model and
formula (7.42) fashionable among the scientists (somewhat surprising fact
of life is that there is such thing as fashion in science!); nowadays formula
(7.42) is often used to fit the data for which it is not at all the most appro-
priate. We sincerely hope that Langevin formula (7.41) and its underlying
freely-jointed model, as well as rotational isomers and other models will
soon regain their rights and will be used where appropriate.

Meanwhile, every meaningful scientific theory, from very large (like rela-
tivity) to rather small (like worm-like chain model) has its limits of applica-
bility. Finding these limits is not a penny less important than formulating
the theory itself. Of course, worm-like chain model does not work for many
polymers (having joints of some kind). Furthermore, if we pull on DNA
stronger and stronger, we can eventually start deforming the double he-
lix itself — which means we can start testing the energetic component of
the DNA elasticity in addition to the entropic part. Indeed, under usual
conditions of temperature and ionic strength, something serious happens to
DNA at the force about 65 pN (see below Section 8.2 about the estimates of
forces; you will see that 65 pN is actually a huge force). Definitely worm-
like chain model fails above this force, but what exactly happens is not
clear, and the debate continues whether double helix unwinds or undergoes
some other transformation.

Unfortunately, this book is not the place to describe all the beautiful
tools employed in force spectroscopy experiments, such as optical tweezers,
magnetic tweezers, atomic force microscope, and several others. But the
fact of the matter is that force spectroscopy methods which were born and
gained popularity in the experiments on dsDNA are used with increasing
success. People pull on proteins to learn how they fold and unfold (Section
5.7 and Chapter 10); on DNA to study its translocation (Figure C5.7), or
examine helix-coil transition (called unzipping in this context), or to see how
DNA tail is being packaged in the virus head (Figure C9.11); researchers
pull on molecular motors (see Section 5.8) to find how strong they are; and
the list of applications continues to grow rapidly.



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

Chapter 8

The Problem of Excluded Volume

I hate to tell you, but there ain’t any
chance for but one of us. Bolivar, he’s
plenty tired, and he can’t carry double.

O. Henry,
The Roads We Take

8.1 Linear Memory and Volume Interactions

What are the chances that one or another theoretical study will be a suc-
cess? As history shows, it greatly depends on whether theorists can think
of a nice, manageable model idealizing the real world. Of course, there are
no ideally simple systems in nature. However, we can use our imagination
and invent an ideal gas (whose molecules do not interact at all), an ideal
crystal (with no defects at all to the regular atomic structure), and so on.
As a matter of fact, you can say that all these models are ideal indeed,
meaning that they are the best for physicists. This is because they are the
simplest — but they are simultaneously the most basic ones. So one has to
master them first, before moving any further in either statistical mechanics,
or hydrodynamics, or solid state physics, or whatever chapter of physics.

How crude are the results we might get from such “ideal” models? Are
there some cases where they work well, and some where they fail? There
is a special trick that often helps us to decide. It involves finding some
dimensionless parameters, either large or small, which describe the system.
For example, a gas can be characterized by the fraction of volume which
is taken up by the molecules. If this parameter is much less than one,

147
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then the molecules are typically very far away from each other, and the gas
can be treated as ideal. Similarly, a crystal is nearly ideal if the dimen-
sionless fraction of incorrectly occupied sites of the lattice is small. Notice
also that these small parameters emphasize the connection between “ide-
alizations” and “approximations”: under certain real circumstances, when
proper parameter is small (or its inverse is large), a real system might be
well approximated by an idealized model.

What sort of large or small dimensionless parameters can describe a
polymer? One of them we have actually used already, and not just once. It
is the large number of monomer units (N � 1) in a chain. We have shown
that a huge N can account for many things. It explains, for example,
the low concentration of monomers in a coil (see (6.14)), the existence of
semi-dilute solutions (Figure 4.7 c), and the high elasticity of polymers.

Another special polymer parameter comes from the hierarchy of in-
teractions. The energy E

1

of a covalent bond between two neighboring
monomers in a chain is normally about 5 eV � 0.8 � 10� 18 J. This is much
higher than the typical energy E

2

of any other interactions (say, between
the polymer and the solvent, or between monomers which are not nearest
neighbors along the chain, etc.) Roughly E

2

� 0.1 eV � 1.6 �10� 20 J.
Therefore, the ratio E

2

/E
1

� 1 is just the type of small parameter we were
seeking. It allows us to introduce an ideal polymer chain approximation.

Indeed, let’s see what happens near room temperature (k
B

T � 2.6 �
10� 2 eV � 0.41�10� 20 J). This region is the most interesting one as far as
polymer properties are concerned. Covalent bonds cannot be broken due
to thermal fluctuations, since E

1

/k
B

T � 200 � 1). This means that the
sequence of units is “cemented” into the chain by the high energies of the
backbone covalent bonds. Each unit “remembers” its own number which
it acquired when the chain was formed. To put it briefly, a polymer chain
has a fixed linear memory.

Having sorted out the covalent bonds between the neighbors, we can
now concentrate on all the other interactions. These are frequently referred
to as “volume interactions”. As we have said, they have a typical energy
E

2

, and are much weaker than those in charge of the linear memory. In
the crudest theory, we may completely neglect them. Then we shall end
up with exactly what is called an ideal polymer chain. This is just how we
handled all the calculations in the previous chapters. It worked fairly well,
and we coped with quite a number of problems. We described how a chain
rolls up into a loose coil, and we revealed the peculiar entropic nature of
the high elasticity of polymers.
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Nevertheless, the ideal polymer chain approximation — just as well as
ideal gas or ideal liquid or any other idealization in science — proves not
to be enough for many purposes. The properties of real polymers are much
richer and more diverse than idealization predicts. If you are not convinced,
think back to Chapter 4. There we talked about the various physical states
of polymers. In order to understand fully how all those states are formed,
and why, we need to allow for volume interactions. These include, in par-
ticular, interactions between di↵erent macromolecules. Monomers in the
same macromolecule will also interact, even if they are not close neighbors
along the chain, but somehow come close to each other in space due to the
chain bending and wiggling. In this chapter, we shall look at interactions
of both types — between monomers belonging to the same or to di↵erent
macromolecules.

What can we say in general about interaction between two monomers?
We will discuss it in some further details in the next Section 8.2, but it
will be handy to make some preliminary arguments here. The interaction
certainly depends on the type of chain, and on the solvent too. However,
we can roughly sketch the potential energy of this interaction u(r), as a
function of the distance r between the monomers (Figure 8.1 a). (In general,
the potential energy does not only depend on r, but also on the mutual
orientation of the monomers, and bulky monomers can have some flexibility
of their own to a↵ect the u — see, e.g., Figure 4.2. We do not take this
into account directly, since the main qualitative features are well enough
represented by the simplified Figure 8.1 a.) Qualitatively, main features
of u(r) are quite common for all types of molecules and monomers: If r is
small, u(r) is positive and very large. This is because the monomers cannot
penetrate into each other. In other words, the volume taken up by each
monomer is automatically excluded from that available to any other one
(hence the phrase “excluded volume”). As r becomes larger, monomers
usually start to attract each other. This is the region on the right-hand
side of the minimum in Figure 8.1 a. Usually, the crossover distance r

0

between the two regimes (corresponding to the minimum) should have the
same magnitude as the size of a monomer unit, i.e. r

0

� 1 nm = 10� 9 m.
What is the physical meaning of u(r)? To bring two monomers together,
as close as r, some work has to be done. This work is stored in u(r). It is
done against the solvent molecules, as they need to be squeezed out of the
way. Hence, the potential energy u(r) represents the e↵ective interaction of
monomers through the solvent. It should depend, therefore, on the contents
and state of the solvent, as well as on the temperature.
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By the way, to describe interaction of monomers through the solvent in
terms of potential u(r) is also an idealization of sorts. It works well, but
not always, and more ideas have to be brought to bear if it fails — in cases
such as strongly elongated particles, when dependence on orientation is
important; charged monomers, because Coulomb interaction is strong and
long-ranged and involves many particles collectively; monomers forming
covalent chemical bonds in addition to those along the chain backbone, etc.
We will touch quite a few of those special cases later in the book, but the
good practice in science (and, we believe, in life in general) is to examine
simple things first, to gain insight and intuition which we can later bring
to bear on complications.

8.2 Four Forces in Molecular World; Scales and Units

Before we move to our next subject, which is polymers with excluded
volume, it is prudent to digress and review the forces operating between
molecules and monomers in a more specific way. We realized already and
will see more all the time that properties of polymeric substances are dic-
tated by the interactions between monomers or between di↵erent chains.
What are those interactions?

The reader may have heard about the four fundamental forces in nature
(gravity, electromagnetic, weak, and strong are their names), but this is
not what we are talking about. In molecular world all the relevant forces
are fundamentally various forms of interplay between electromagnetism and
quantum mechanics. But these can masquerade in di↵erent costumes, tra-
ditionally grouped into four categories, as illustrated in Figure 8.1: panels
b through e represent, respectively, van der Waals interactions (see, e.g.,
Section 9.3), hydrophobic interactions (Section 5.1), Coulomb attraction
or repulsion between charged groups (Section 2.5.3), and hydrogen bonds
(Section 5.1). Van der Waals forces are the most generic, they are always
present. Panel a represents a sketch of characteristic potential profile, in-
cluding repulsion at short distances and attraction at longer ones. This
arises typically of combination of several types of forces, including the in-
teractions with the solvent.

To be quantitative, we should indicate the characteristic scale of these
forces. This is a delicate matter, because we have to choose the units.
Indeed, hundred dollar bill is inconvenient to operate a public telephone,
while change or small coins are equally inconvenient to buy a pair of shoes;
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Fig. 8.1 This cartoon illustrates four types of forces operational in molecular world, such
as (b) van der Waals interactions (which include both repulsion at short distances and
attraction at longer ones), hydrophobic interactions (c) between nonpolar molecules and
groups in water medium, Coulomb forces (d), which might be very strong and require special
attention, but present only when some groups are charged, and hydrogen bonds (e), which are
directional and saturate (unlike others). Panel (a) represents a typical potential of interaction
between two monomers in the solvent which usually results from the interplay of several of
the above mentioned interactions: repulsion at short distances is always present due to the
van der Waals component, while other aspects might be influenced by the solvent and other
circumstances.)

similarly, the common units (meters, kilograms, etc), chosen for their con-
gruency to the human body scale, are inconvenient for the molecular world.
The natural scale of energy in molecular world, as we already saw, is k

B

T ,
because polymers and biopolymers usually exist under the conditions in
which absolute temperature does not really change that much: for instance,
the whole interval between 0�C and 100�C in terms of absolute temperature
corresponds to room temperature plus or minus 10 or 20%. Therefore, for
the purposes of rough estimates the T is always close to 300�K.

In terms of this natural energy unit, the typical strengths of the inter-
actions are as follows. To begin with, covalent bond is as strong as about
100 or 200k

B

T ; this is why covalent bonds do not break on their own. This
is also why covalent bonds are not included among four types of forces in
molecular world: unbreakable covalent bonds are always among the deter-
mining circumstances of all non-covalent interactions. Among the latter,
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hydrogen bond (Figure 8.1 e) is usually an order of magnitude weaker than
covalent, about 10k

B

T . Van der Waals interaction for atoms is even weaker,
a fraction of k

B

T — but one has to keep in mind that when two molecules or
two monomers of a polymer approach each other, then several atoms come
into contact; therefore, typical van der Waals energy for the atomic groups
like monomers (which is " in Figure 8.1 a) is typically several k

B

T , close
to hydrogen bond. Characteristic energies of hydrophobic and Coulomb
interactions are more dependent on circumstances, and we will touch upon
them below.

Last but not least, the energy k
B

T allows us to estimate also the char-
acteristic values of forces involved. Indeed,

k
B

T � 4.1 nm �pN at room temperature. (8.1)

Notice that there is no powers of ten involved, in the chosen units k
B

T is
just about 4. So what are these convenient units? It is nanometer (10� 9 m)
times picoNewton (10� 11 N), distance times force. Nanometer is a natural
unit for distance, because, for instance, atom size is about 0.1 in these
units, while the DNA diameter is 2. Therefore, given that k

B

T is the
natural scale of energy, and nanometer is natural for distances, we discover
that picoNewtons is the natural scale of forces. The reader will be well
advised to keep this in mind.

8.3 Excluded Volume — Formulating the Problem

Let’s discuss how interactions of the type shown in Figure 8.1 a might
influence the shape of an isolated polymer chain in a dilute solution (Figure
4.7 a). First of all, would volume interactions make the coil swell or shrink?
This, it turns out, depends on the temperature of the solution.

Suppose the characteristic energy of attraction " (Figure 8.1 a) is much
greater than the thermal energy k

B

T . Then attraction will dominate. As
a result, the macromolecule will shrink to become more compact than an
ideal coil. This is a special polymer state, called a polymer globule. We
shall come back to it in the next chapter.

It is not the same story if " is smaller than k
B

T . In this case, attraction
is not too important. Repulsion at shorter distances between monomers is
the prevailing form of interaction. It makes the coil swell. Such swelling is
called the excluded volume e↵ect. (You presumably understand where the
name comes from. As we have already said, the repulsion at short distances
occurs because the volume of each monomer is excluded for all the others.)
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a b

Fig. 8.2 A random walk (a) and a self-avoiding
path (b) on the lattice in two dimensions (on the
plane). Notice that random walk frequently retraces
its own path, while self-avoiding walk never does so.

In this chapter, we are going to tackle the problem of excluded volume,
that is, we shall try to picture how a polymer coil swells.

For an isolated polymer chain, the problem is purely geometrical. In-
deed, the spatial shape of an ideal chain resembles the path of a randomly
wandering Brownian particle (see Chapter 6). What new features will the
shape of the chain acquire, if we allow for the excluded volume? Clearly,
since the “private space” of each monomer is not available to the rest, the
chain cannot possibly cross itself at any stage. This sort of behavior can
be described as self-avoiding. For example, if there were an equivalent
Brownian particle, it would not be allowed to cross its own track. A two-
dimensional version of such a trajectory is sketched in Figure 8.2. Thus, we
have made it a purely geometrical problem of self-avoiding random walks.

This problem can be quite successfully approached by computer simu-
lation. The simplest way to set it up is to use a random number generator
to try out various trajectories of a polymer chain (just as described in Sec-
tion 2.4). Then whenever we obtain a trajectory with a self-crossing, we
merely ignore it. Thus, we only keep the self-avoiding paths, and when we
have enough of them, we can look at some average features. Although more
sophisticated (and more e�cient) algorithms are normally used these days,
in principle they are not that di↵erent from what we have just described.
Typical result is shown in Figure 8.3.

So what has been gathered from the computer simulations of self-
avoiding walks? It appears that the conformational properties of a poly-
mer coil are quite significantly a↵ected by the excluded volume. The coils
become looser, and the fluctuations in the segment concentration become
more severe. The mean-square size of the coil increases. Moreover, the
mean-square end-to-end distance

�
R2

�
now depends di↵erently on the num-

ber of segments in the chain. Instead of the familiar
�
R2

�
� N (which we

derived for an ideal chain in Chapter 6), we now get
�
R2

�
� N2⌫ , 2⌫ � 1.176 � 6/5 in 3D , (8.2)

for self-avoiding walks in three dimensions, and
�
R2

�
� N3/2 in 2D , (8.3)
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b
c

a

100

Fig. 8.3 Three
types of conformations
for the same polymer
are shown for compar-
ison. The polymer
has 1,000 segments of
length 1 each. A
typical Gaussian con-
formation is shown in
(a). A typical
conformation of a
polymer that is self-
avoiding in real three-
dimensional space is
shown in (b). While
the self-avoiding chain
never crosses itself, its
projection on the plane
can (and frequently
does) have crossings.
This is why this
figure is very di↵erent
in spirit and in

its meaning from the Figure 8.2. A typical collapsed globular conformation is shown in (c);
we will discuss globules later in Chapter 9. The figure is courtesy of S. Buldyrev.

for self-avoiding walks on a plane (i.e. in two dimensions). Of course,
the accurate values of indices 1.176 and 3/2 do not appear as such in the
computer simulations, particularly on simple minded ones. But within a
certain accuracy, the indices produced by a computer are close to these
values. Relationships (8.2) and (8.3) confirm that a polymer coil with
excluded volume is swollen compared to an ideal coil. You will find it
handy to introduce a swelling coe�cient ↵, such that

↵2 =

�
R2

�

�R2�
0

, (8.4)

where
�
R2

�
0

= N`2 is the size of an ideal polymer chain. As N increases,
↵ grows approximately as N1/5 in three dimensions, and as N1/2 in two
dimensions.

8.4 The Density of a Coil and Collisions of Monomer Units

The problem of excluded volume did not succumb to the e↵orts of theorists
for more than 20 years. The way to tackle it, or, to be more precise, the
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way to reduce it to some other, better explored problems, was found by
P.G. de Gennes in 1972. His solution goes far beyond what we can explain
in this book. However, we do not have to jump straightaway to Equations
(8.2) and (8.3). To convince you, we o↵er a simple explanation known as
Flory’s theory, although the way we are going to present it does not quite
follow Flory’s original version.

First of all, the mean spatial size of a coil R is obviously of the same

order of magnitude as
�
R2

�
1/2

. This is why we can write that R � `N1/2 for
an ideal polymer (see (6.11)). Meanwhile, for a coil with excluded volume
we get R � ↵`N1/2 > `N1/2. The volume taken up by such a coil is
V � `3N3/2 (we omit the factor 4⇡/3 as usual). However, a polymer chain
never uses up all the space inside the coil. This is clearly seen in Figure
2.6. You can show it is true by the following argument. Let the volume of
a single monomer segment be v. Then the total volume of the coil is Nv.
Since N � 1, we have V > `3N3/2 � Nv. In other words, the fraction �

of the volume of the coil taken up by the monomer segments is really very
small:

� � Nv

V
<

Nv

`3N3/2

� N � 1/2

� v

`3

�
� 1 . (8.5)

(In Section 6.6, we used the same sort of argument for an ideal polymer.)
The same thing can be said about the mean concentration of the segments in
the coil, n � N/V � `� 3N � 1/2 (cf. (6.14)). At first glance, you may think
it implies that a polymer with excluded volume is always ideal. Indeed, if
the segment concentration is so low, their encounters are very rare, and one
can be tempted to neglect them. On the other hand, we know that the coil
is very pliable, and its elastic modulus is small.

This suggests that the question should be treated with more subtlety.
Let’s make a crude estimate of how many encounters (i.e., collisions) be-
tween the segments of the coil may occur at the same time. Assume that
the coil is a cloud of totally independent particles (segments) spread over
the volume V . It would be wonderful if we could take a three-dimensional
photo of this cloud. We would then be able to count all the collisions
between two, three or more bodies, caught at a moment in time.

Unfortunately, we cannot do this, so we have to use another approach.
There are N particles all together. The probability that each particle has
a close “partner” is �. This is why the number of pair collisions is of order
N�. In the same way, the number of three-body collisions is roughly N�2,
and so on. In general, the number Y

p

of p-body collisions can be estimated
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as N�p� 1. From (8.5),

Y
p

� N�p� 1 < N (3� p)/2

� v

`3

�
p� 1

. (8.6)

You can see that Y
p

� 1 if p > 3. This indicates that many-body collisions
are really rare. Even the number of three-body collisions in a swollen coil
is of order 1. So they cannot seriously a↵ect the conformation of the coil.
In contrast, the number of simultaneous pair collisions is about N1/2. This
is much less than N (so each particular segment seldom has a collision),
yet it is a large number compared to 1.

Besides, as we showed in Chapter 7, a long polymer chain is very pliable,
and its elastic constant is small (� 1/N , see (7.21)). Therefore, we have
the right to suspect the pair collisions of making the polymer swell in the
way implied by (8.2) and (8.3).

What is the free energy of a polymer like, given the excluded volume
interactions? (See formula (7.19) for the definition of free energy.) Of
course, it has the usual entropy term � TS (which would be the only term
in the case of an ideal gas or an ideal polymer). In addition, it includes
the internal energy U of the segment interactions. This latter term is
responsible for the swelling. In other words, it accounts for the excluded
volume e↵ect. All we need to know now is the contribution of the binary
collisions to the internal energy U of the coil.

Here is how you can find it. The segment density n is very low, as we
have seen. So U can be expanded as a series of powers of n:

U = V k
B

T
�
n2B + n3C + . . .

�
, (8.7)

where V is the volume of the coil, and B and C are expansion coe�cients,
or virial coe�cients (i.e., B is the second virial coe�cient, C is the third,
and so on). These coe�cients are fully determined by the form of the
interaction potential u(r) and the temperature T . Obviously, the first term
in expansion (8.7) stands for the binary interactions. This is because it is
proportional to n2, which is just the pair collision probability. Likewise,
the second term is related to three-body interactions, and so on1.
1Here is a useful leisure time exercise for a very attentive reader. The purpose is to

understand the connection between virial expansion (8.7) and the well known van der
Waals equation of state (i.e., the relationship between volume, pressure, and tempera-
ture) for an ordinary imperfect gas. You may have studied van der Waals equation in
general physics and/or general chemistry class, it reads (p+a/V 2)(V �b) = NkBT . Say,
the volume is V , and the number of molecules in the gas is N . Then n = N/V . You can
work out the pressure by di↵erentiation: p = �(@F/@V ), where free energy F is defined
by formula (7.19), F = U � TS = U + Ue↵ , the internal energy U is given by (8.7), and
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Notice that B has the units of volume, while C has the units of vol-
ume squared. Thus, the energy of all the binary interactions between the
segments of a coil is:

U = V k
B

Tn2B , (8.8)

where n is the average segment density in the coil (the number of segments
per unit volume inside one coil).

8.5 Good and Bad Solvents, and ✓ Conditions

We have already discussed the potential u(r) in Figure 8.1 a. Repulsion
between the segments dominates at higher temperatures (" � kT ) (the
excluded volume e↵ect), whereas at lower temperatures (" � kT ) attraction
takes over. Let’s look at the higher temperature region first. The most
important values of r are those where u(r) > 0. So the internal energy of
the coil (as well as the second virial coe�cient) is positive. In contrast, at
lower temperatures it is the “attractive” part of u(r), where u(r) < 0, that
gives the biggest contribution. So the internal energy of the coil U and
B are both negative. In the former case we say that we are dealing with
a good solvent, and in the latter case with a bad one. We are not being
biased! If in a solvent the segments of polymer chains tend to repel each
other, the polymer will dissolve. Conversely, if the segments attract each
other, the polymer chains will be rather “sticky”; in other words, they will
stick together and precipitate out rather than dissolve.

The quality of a solvent (i.e., whether it is good or bad) may change
with its contents or with temperature. Hence, there has to be a special

entropy S or Ue↵ = �TS can be thought to be the same as for an ideal gas. Here, we
should warn the reader: we never in this book wrote the relation for ideal gas entropy,
we only wrote formula for the change of this quantity between two states of di↵erent
volumes but the same numbers of particles, this was formula (7.13) — pay attention to
� on both sides of that formula! In fact, the corresponding formula in general should
read Ue↵ = �kBT ln(eV/N)N . The extra term N lnN/e arises because particles in the
gas are identical; in this book, we do not discuss it, because monomers in the polymer
chain are not identical, each of them has its own place along the chain! Besides, this
extra term is also not relevant for the determination of pressure, for it cancels away upon
di↵erentiation. Thus, using equations above you can derive an equation of state. Check
that this leads to the ideal gas equation pV = NkBT if one takes B = 0 and C = 0. For
non-zero B and C, compare your answer with the van der Waals equation of state; they
are not the same, but prove that your equation, just like van der Waals one, indicates a
single value of volume (or density) for any pressure at high enough temperatures (e.g.,
B > 0 and C > 0), but predicts two possible stable densities (i.e., phase segregation) in
a certain interval of pressures at lower temperature. Good luck!
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point where the second virial coe�cient goes through zero: B = 0. It is
usually called the ✓-point (or ✓-temperature — obviously this is the temper-
ature when B = 0). At the ✓-point, attraction and repulsion between the
segments completely cancel out, and the behavior of the polymer becomes
ideal. When T > ✓, repulsion dominates. This is the excluded volume (and
good solvent) region. In contrast, when T < ✓ attraction prevails, making
the solvent bad. We can now rephrase our initial problem. The swelling of
a polymer due to the excluded volume e↵ect is the same as the swelling of
a polymer in a good solvent, that is, at T > ✓.

You may wonder why such ✓-conditions are possible in the first place. Is
it a mere coincidence that at a certain point repulsion and attraction are so
perfectly balanced? For instance, such balancing, or compensation, never
quite happens in a real gas. Historically, Boyle found that his law (pV =
const for a gas at fixed temperature) is followed at some temperatures more
accurately than at others, but never quite perfectly; in modern language,
we can say that the gas should be close to ideal at the temperature (called
Boyle’s point) when B = 0, but it is not quite ideal because C �= 0. By
contrast, compensation between attraction and repulsion is indeed nearly
perfect for a polymer coil. Why? The answer is that the cancelation only
works because three-body interactions (and all the higher ones) are not
important. Their contribution to U is always very small. As for the binary
collision term (8.8), it is proportional to B, so it falls to zero at the ✓-
point. Hence, all that really remains of the free energy F at T = ✓ is
the entropy term (see (7.19)). This is why the coil’s behavior becomes
ideal.

Thus, the existence of the ✓ point (where the segment interactions have
no influence on the shape of the chain) is yet another peculiarity of poly-
mers. It is all to do with the very low segment concentration n � N � 1/2.

8.6 The Swelling of a Polymer Coil in a Good Solvent

Let’s consider an isolated polymer coil in a good solvent (B > 0), and
try to find its swelling coe�cient ↵. The first calculation of this sort was
done by P. Flory in 1949. His approach was as follows. The main cause of
the swelling is repulsion between the segments inside the coil (the binary
collisions). However, there is also an e↵ect that hinders swelling, arising
from the elastic forces whose origin is due to entropy (we discussed them
in Chapter 7). These forces emerge because there are fewer di↵erent shapes
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that the chain can take when it is straightened out (or swollen). So Flory’s
idea was to obtain the swelling coe�cient ↵ from a balance condition be-
tween the repulsive and elastic forces.

Both factors contribute to the free energy of a swollen polymer coil
(with swelling coe�cient ↵), F (↵) = U(↵) � TS(↵) (see Section 7.8, Equa-
tion 7.19). The potential energy term U(↵) is determined by the repulsive
interactions (see (8.8)):

U(↵) = V k
B

Tn2B � k
B

TR3BN2

R6

� k
B

TBN1/2

`3↵3

. (8.9)

To write (8.9), we used the following straightforward relationships: V � R3,
n � N/R3, ↵ = R/R

0

= R/N1/2`, where R
0

� N1/2` is the size of an ideal
polymer coil. As usual, we leave out numerical factors as we are only
making estimates. Likewise, the entropy term S(↵) in the free energy of
the swollen coil is in one-to-one correspondence with elastic forces. We can
work it out from (7.4):

S(↵) = const � k
B

3R2

2N`2
= const � k

B

3N`2

2N`2
↵2 = const � 3

2
k
B

↵2 . (8.10)

Thus, the free energy F (↵) should be obtained by combining (8.9) and
(8.10). In doing so, we should be careful about the fact that we left out (and
do not know) the numerical coe�cient, e.g., in formula (8.9) for internal
energy. To make sure that this unknown coe�cient does not corrupt all our
theory, let’s denote it by some letter, say �, and introduce it to the formula
(8.9), replacing then the sign � with definitive =; then we can write

F (↵) = U(↵) � TS(↵) = const + �
k
B

TBN1/2

`3↵3

+
3

2
kT↵2 , (8.11)

where “const”, as before, is independent of ↵.
The function F (↵) is sketched in Figure 8.4. You can see a minimum in

the curve at a certain ↵. The minimum of the free energy always gives the
equilibrium state. So the equilibrium swelling coe�cient is just the value
of ↵ at the minimum. Notice that the unknown numerical value of the
coe�cient � does not a↵ect the qualitative shape of F (↵) curve, but does
somewhat a↵ect the value of ↵ in the minimum.

Can we find out where exactly the minimum is? The usual way is to
di↵erentiate F (↵) with respect to ↵, and to set the derivative equal to zero.
We obtain

@F

@↵
= � 3�

k
B

TN1/2B

`3↵4

+ 3k
B

T↵ = 0 . (8.12)
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Fig. 8.4 The dependence F (↵) given
by Equation (8.11). In order to present
the most universal plot possible, indepen-
dent on the values of parameters, such
as N, B, and `, we re-write Equation
(8.11) in the following way, using our re-
sult (8.13) for the equilibrium value of ↵:

F = 5
2

�
�B

�
N

`3

� 2/5
�
2
5

�↵eq
↵

�3
+ 3

5

�
↵
↵eq

� 2
�

where we also dropped the irrelevant addi-
tive constant. In this form, the F/Feq ratio
becomes a universal function of the ↵/↵eq

ratio; this function is plotted in the figure.

From here, the equilibrium value of ↵ is

↵5

eq

= �
BN1/2

`3
or ↵

eq

�
�
N1/2B

`3

�
1/5

. (8.13)

In the latter formula we returned to the use of the sign � (i.e. “of order
of”): we dropped again the numerical factor �, because it does not a↵ect
the most important feature of the result, namely, the dependence of the
equilibrium value of swelling parameter ↵ on the number of monomers N

and on the properties of monomers B/`3. We would not be able to find �

anyway within this simple theory. All that Flory’s theory really gives are
the power indices in equations like (8.2). Indeed, from (8.13), the size R of
the coil is estimated as:

R � ↵R
0

� ↵N1/2` � `N3/5

�
B

`3

�
1/5

. (8.14)

The theoretical result R � N3/5 agrees reasonably well with the outcome
(8.2) of computer simulations.

In the future, we will ignore coe�cients similar to � when combining
various contributions to the free energy.

Using a similar method, we can also explain Equation (8.3) which is
the two-dimensional equivalent. Fortunately, the expression (8.10) for S(↵)
remains the same. As for U(↵), we need to be careful. The two-dimensional
“volume” is not V � R3 as usual, but V � R2 � ↵2N`2. Therefore, instead
of (8.9) we arrive at:

U(↵) � k
B

TR2BN2

R4

� k
B

TBN

`2↵2

. (8.15)

The free energy is calculated as F (↵) = U(↵)�TS(↵), where U(↵) and S(↵)
are given by formulas (8.15) and (8.10), respectively. This time around, we
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don’t have to worry about introducing the � coe�cient, because we know
by experience that it will be dropped out at the end anyway. Therefore,
we simply work out where F (↵) reaches a minimum, using the same idea
as before. The answer is:

↵ �
�
BN

`2

�
1/4

. (8.16)

Finally,

R � ↵R
0

� ↵N1/2` � `N3/4

�
B

`2

�
1/4

, (8.17)

in total agreement with (8.3). In fact, it turns out that the result of Flory
theory happens to be exact in two dimensions, while in three dimensions it
is only approximate, even if reasonably accurate.

Thus, if we allow for the excluded volume e↵ect, the average size of a
polymer coil will no longer be proportional to N1/2 (as for an ideal chain),
but to N3/5 in three dimensions, and to N3/4 in a plane. So, just as we
expected, the excluded volume e↵ect is quite significant. This is despite the
coil being extremely loose, and the collisions between the segments being
very unlikely. Indeed, if N � � the swelling coe�cient also grows without
limit. The analogy with a Brownian particle no longer makes sense for a
swollen coil. If a Brownian particle were not allowed to cross its own path,
it would move much further away from its starting point in a given time.

8.7 The Excluded Volume E↵ect in a Semi-Dilute Solution

As we discussed in Section 4.6, isolated polymer coils are typical for dilute
solutions, where the volumes taken up by the coils do not overlap (Figure 4.7
a). Things change when the polymer concentration exceeds the threshold
value c? (which is defined by Equation (6.14) for an ideal polymer). In this
case we have a semi-dilute solution (Figure 4.7 c). Although the fraction
of the volume taken up by the polymer is still rather small, the coils are
already highly intermingled. Can we work out what the excluded volume
e↵ect does to the coils in this case (i.e., when the polymer concentration
c � c?)?

First of all, we need to know the value of c? for a semi-dilute solution.
When c = c?, the average segment density in the whole solution becomes
equal to the average segment concentration inside each coil (see Section 6.6).
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Therefore, taking into account the excluded volume, we get:

c? � N

R3

� `� 3

�
B

`3

� � 3/5

N � 4/5 . (8.18)

Since N � 1, the threshold density c? is fairly small (just as it was for an
ideal polymer solution; see (6.14)). Thus the semi-dilute regime is appro-
priate for a wide range of concentrations.

In the same way as for a dilute solution, we can describe the swelling of
the coils by means of

�
R2

�
. (As always, R is the end-to-end vector of the

coil.) Obviously, the average size of the coil R is estimated as R �
�
R2

�
1/2

.
Now we need to calculate the value

�
R2

�
in a semi-dilute solution.

Choose a certain polymer chain and fix in space one of its monomer
units. Now look at a strand of the chain near the fixed unit. Suppose
this strand contains g e↵ective segments. If there were no other chains
around, the excluded volume e↵ect would swell the strand roughly to a
size `g3/5(B/`3)1/5 (see (8.14)). The volume taken up by such a g-strand

would be of order
�
`g3/5(B/`3)1/5

�
3 � `3g9/5(B/`3)3/5. The monomer

concentration in this volume would be estimated as g/
�
`3g9/5(B/`3)3/5

�
�

`� 3g� 4/5(B/`3)� 3/5. It decreases as g is increased. This is not surpris-
ing. Since the neighbors are tied to the fixed monomer with a piece of
polymer chain, there is a sort of “correlational” thickening round this area.
(We call it “correlational” because it results from interactions or correla-
tions between the monomers in the chain.) We must not forget that this
strand is not alone. It is in an ocean of intermingled, overlapping polymer
chains, with monomer concentration c. Do the surrounding chains manage
to penetrate into the densest region near the fixed monomer? The answer is
no. There is just no room, since the monomers cannot go through each other
(the excluded volume e↵ect). In this region, the correlational density is
higher than c. We can find the size ⇠? of this region (i.e., where there is cor-
relational thickening), and the number of monomers in it g? from the follow-
ing conditions: `� 3(g?)� 4/5 (B/`3)� 3/5 � c, and `(g?)3/5(B/`3)1/5 � ⇠?.
Hence,

⇠? � `(c`3)� 3/4

�
B

`3

� � 1/4

; g? �
�
c`3

�� 5/4

�
B

`3

� � 3/4

. (8.19)

Note that (8.18) and (8.19) lead to g? < N provided that c > c?.
Now that we have a clearer picture, let’s draw some conclusions. In

the case of a semi-dilute solution (c > c?), it helps if we divide each chain
into a sequence of strands, or blobs, of a certain length g?. Each blob,
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taken separately, looks like a normal isolated polymer chain, swollen by
the excluded volume e↵ect. The size ⇠? of the blob provides an important
length scale. That is, there is no correlation between the monomers of the
chain at distances longer than ⇠?. You could say that, due to the excluded
volume e↵ect, the “inner lives” of neighboring blobs are screened from each
other. So a blob in a semi-dilute solution does not really “care” whether the
neighboring blobs belong to the same chain as itself, or not. Now, this is
interesting. Let’s zoom out, and look at a chain at a less detailed scale. We
shall see a sequence of blobs. What if we regard the blobs as new, bigger
monomer units? The chain of blobs will behave as an ideal one, so we can
apply the usual theory of a Gaussian chain. The number of blobs in the
chain is about N/g?, and the size of each of them is of order ⇠?. Therefore,
we have:

R �
�
R2

�
1/2 � ⇠?

�
N

g?

�
1/2

� `N1/2

�
c`3

��1/8

�
B

`3

�
1/8

. (8.20)

Figure 8.5 gives an idea of how R depends on the concentration c of
the solution. When c < c?, the size of the coil is not a↵ected by c; it is
simply described by Equation (8.14). If c is increased, we shall reach the
regime c > c?, that is, a semi-dilute solution. Here the swelling coe�cient
starts dropping, just as (8.20) predicts. By the way, for c � c?? � B/`6,
Equation (8.20) leads to R � N1/2`. Thus, when the density becomes very
high, the excluded volume e↵ect no longer causes swelling. This conclusion
refers, in particular, to polymer melts, where there is no solvent at all and c

R

N1/2ℓ
lnc

c**c*

Fig. 8.5 A sketch of the dependence R(c), where R is the size of the coil and c is
concentration. Notice that concentration on the abscissa must be in the Log scale, otherwise
the region of dilute solutions, c < c

? ⇠ c

??
N

�4/5 ⌧ c

?? would look so narrow as not to be
visible at all. The interval between c

? and c

?? corresponds to semi-dilute solution.
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reaches the highest possible value. If you still remember the Flory’s theorem
(Section 7.10), you will not be surprised by this.

8.8 The Near Immiscibility of Polymer Blends

We have a “debt” left over from Section 4.7: we have not yet proved that,
if contact between monomers of types A and B in a polymer A/polymer
B blend is even slightly energetically unfavorable, phase separation into
almost pure A and B phases will occur. Now, at last, we are equipped with
all we need to prove this.

Let’s take a mixture of A and B monomers that are not linked into
chains. Can we compare the phase separation in this mixture (Figure 8.6
a) with that in a polymer blend (Figure 8.6 b)? In each, the number
of energetically unfavorable A� B contacts drops dramatically during the
phase separation into almost pure A and B phases. These contacts may
only take place along the surface separating the two phases. We can say
that the gain in energy due to the phase separation is the same in both
cases.

However, the phase separation not only gains energy, but also leads to
a loss of entropy. This is because the number of possible conformations of
the system is lessened. When mixed, A and B molecules had access to the
whole volume. Once separated, they can only reach a part of it (compare
Section 7.7). Are these losses in entropy the same for Figures 8.6 a and
b? The answer is “no” — due to how many possible conformations can be
realized in either case. Obviously, this number is many orders of magnitude
greater in a low molecular weight mixture of A and B than in a polymer
blend. Unattached monomers in the mixture can move independently of

a

b

Fig. 8.6 A cartoon illustrat-
ing phase separation in (a) a
low molecular weight mixture
and (b) a polymer blend. A
and B components are shown
with empty and shaded circles,
respectively.
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Fig. 8.7 Two
examples of how
to arrange N

molecules on V

cells of a square
lattice: N

independent
molecules (a);
N molecules
linked together
into a chain (b).

a b

each other, whereas in the case of the polymer blend they are linked into
chains.

To give an illustration, we will calculate the number of possible con-
formations of N molecules on a square lattice containing V cells (Figure
8.7). We shall consider two cases: N independent molecules, each taking
up just one cell (Figure 8.7 a), and N molecules linked together into a chain
(Figure 8.7 b).

In the first case, the answer is obvious. There are V possibilities for each
molecule. (Let’s assume that N � V , and neglect the excluded volume of
the molecules.) Therefore, the total number of conformations is V N .

Now, let’s look at the second case. The first monomer unit can be
positioned in V di↵erent ways, the second one in four ways (i.e., in the cells
sharing edges with the first), the third and all the following ones in three
ways (Figure 8.7 b). Thus, we get 4V �3N�2 ways altogether.

Obviously, if N � 1,
V N � 4V �3N�2 . (8.21)

This proves that the number of conformations is much less, and therefore
the entropy is much lower for the polymer system.

This is why the entropy losses due to the phase separation are much
smaller in a polymer blend (Figure 8.6 b) than in the corresponding low
molecular weight system (Figure 8.6 a). However, the energy gain is the
same (see above). Thus, it is the energy that dominates. Even a very
weak repulsion between A and B monomers is enough to compensate for
some minor entropy losses due to the phase separation. How weak can
the repulsion be? Suppose you mix two polymers, A and B, containing N

units each. Theory shows that the contact energy " between them, which
is su�cient to induce the phase separation, can be estimated as:

" � k
B

T

N
. (8.22)

Clearly, for large N , this value is really very low.
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Chapter 9

Coils and Globules

His kingdom was very small, but still
quite large enough to marry upon.

Hans Christian Andersen,
The Swineherd

He may be only little,
But he’s a good boy.

V. Mayakovsky,
What Is Good And What Is Bad? (Russian children’s poem)

9.1 What is a Coil-Globule Transition?

In the previous chapter, we focused on the excluded volume problem. We
learned to appreciate that each monomer has a certain volume, and the
monomers cannot penetrate each other. This leads to repulsion at short
distances. In the case of a good solvent, repulsion is the prevailing tendency
overall, so the polymer coils swell. But what if the quality of the solvent
grows worse? For example, you could add some precipitant into the solvent,
or change the temperature. As a result, the solvent may go through the ✓

point (as we discussed in Section 8.5) and the binary interactions between
the monomers will become mainly attractive. Segments will tend to stick
to each other from time to time, so there will be lots of temporary couples.
What will this do to the coil as a whole?

W. Stockmayer (1914–2004) in Dartmouth College in New Hampshire
was the first to predict, in 1959 that, if the attraction between monomers

167
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becomes strong enough, the polymer undergoes a phase transition of the
same sort as the transition from gas to liquid. Bits of the polymer “condense
on to themselves”, and instead of a loose coil you end up with a dense “drop”
— a polymer globule. This is just what is meant by the name coil-globule
transition.

A typical globule with strongly interacting monomers is portrayed in
Figure 8.3 c. Compare it with Gaussian (a) and swollen (b) coils shown
in the same figure. These images were obtained by computer simulation.
How is attraction modeled on a computer? First, you can figure out the
attractive potential energy of the binary interactions (of the same kind as
shown in Figure 8.1 a). Then you will know the forces of interaction. Then
you can use Newton’s laws and trace, on a computer, how the chain would
move under these forces. You will see some shapes similar to Figure 8.3 c.
In contrast to the coil, the globule is very dense and compact, and there are
no vast “holes” inside it. The only real di↵erence between a globule and an
ordinary liquid is that the globule’s “molecules” (i.e., the monomers) are
all linked together.

Another image of a globule, also produced by computer simulation, is
shown in the Figure C9.1. One can notice that the structure is overall
spherical, its surface layer consists of some loops, while the interior is quite
dense in the sense, that most spatial neighbors of every monomer belong
to the very distant parts of the chain. Fundamental di↵erence between
coiled and globular states of the polymer is also revealed by considering
their fractal properties, as we will discuss in the Section 13.4.

Polymer globules and coil-globule transitions came in from the cold
thanks to molecular biophysics. Some of the most important biological
polymers — protein enzymes — usually appear in living cells in globular
form (we mentioned them in Chapter 5). If something nasty happens to the
solvent surrounding the proteins (say, it gets overheated, or the contents
are disturbed), the proteins may be denatured. In other words, they lose
all their biochemical activity. Denaturation of proteins usually implies a
dramatic change in shape, and is accompanied by a strong absorption of
heat. The first scientists who worked on the coil-globule transition were
inspired by the thought that it might shed some light on the denaturation
of proteins. It seemed quite plausible that when denaturation occurred, the
dense globular structure is destroyed, and the protein takes on the shape
of a coil.

Only later did it turn out that there is no straightforward analogy be-
tween the coil-globule transition and protein denaturation. However, the
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coil-globule transition appeared to be quite extraordinary and exciting in
its own right. This stimulated further interest in the problem. The stud-
ies have expanded, covering all kinds of polymers. A globular state has
been discovered for many other systems. Not only proteins, but also DNA
molecules and macroscopic polymer networks, for example, can have a glob-
ular structure. This explains quite a few unusual polymer e↵ects, such as
the existence of the compact form of DNA, and the so-called collapse of
polymer networks. We shall talk about some of them a little later. This
very broad view of the coil-globule transition was initiated in 1968 by the
pioneering work of the Russian physicist I.M. Lifshitz.

9.2 The Free Energy of a Globule

Let’s now take an isolated polymer molecule, and try to build a simple
theory for the coil-globule transition. For our purposes, we do not need
to go into the details of Lifshitz’s consistent approach. Instead, we will
stick to the same logic as when we used Flory’s approximate arguments to
tackle the excluded volume problem (see Section 8.6). As you remember,
we introduced the swelling coe�cient ↵; the free energy of a swollen coil was
written as the sum of two terms (see (8.11)). One term was the free energy
associated with stretching the coil by the factor ↵, U

e↵

= � TS(↵). The
other term was the energy of the monomer interactions in the coil, U(↵).
Then we found the equilibrium value of ↵; it was the ↵ corresponding to
the minimum of the free energy F (↵).

Where did the term U
e↵

(↵) come from? It has to do with the poorer
choice of shapes that a straightened polymer can take. Fewer possibilities
means lower entropy, and a lower probability of the elongated state (see
Section 7.5). Meanwhile, we have already said that the other term, U(↵),
is the energy of the monomer interactions. Thus, when we write the free
energy in the form (8.11), we automatically distinguish its entropy and
energy parts. Notice that we never use the fact that ↵ > 1. It applies just
as well if the molecule shrinks (↵ < 1 ) instead of swells (↵ > 1 ). We still
have the free energy in the same form:

F (↵) = U
e↵

(↵) + U(↵) . (9.1)

Here U
e↵

(↵) is determined by the entropy of the final state of the coil,
when it is either swollen or shrunk by the factor ↵. (Although in the case
of shrinking, ↵ is less than one, we would like to keep its previous name,
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the “swelling coe�cient”. After all, its mathematical definition (8.4) is still
the same.)

9.3 The Energy of Monomer Interactions

If we want to cater for both regimes — a swollen coil (↵ > 1 ) and a
shrunken globule (↵ < 1 ), we need to express the two terms in (9.1) in a
slightly di↵erent fashion than Section 8.6. Consider the energy U(↵) first.
We used to estimate it, as in (8.9), by taking into account only the binary
interactions between monomers (described by the second virial coe�cient
B). We had the right to do this, since the monomer density is very low in
both ideal and swollen polymers. However, when a polymer shrinks (i.e.,
↵ < 1 ), the monomer density goes up. Many-body collisions may now
become important. This is why we can no longer stop after just the first
term in expansion (8.7). Let’s see what we gain if we keep the second term
too. We shall have:

U(↵) � R3k
B

T
�
Bn2 + Cn3

�

� R3k
B

T

"
B

✓
N

R3

◆
2

+ C

✓
N

R3

◆
3

#

� k
B

T


BN1/2

↵3`3
+

C

↵6`6

�
(9.2)

(cf. (8.9)), where R � ↵`N1/2 is the size of the molecule, and C is the third
virial coe�cient, which represents three-body interactions. (In estimate
(9.2), as before, we have dropped all numerical coe�cients of order of one.)
Will it do just to include the three-body interactions and ignore the rest?
The answer is yes. If we did a more detailed calculation, we would see that
the first two terms in expansion (8.7) are enough to give a correct account
of the coil-globule transition. In principle, higher terms would be needed
to describe the actual state of a dense globule. However, as we shall show
later, a globule tends to swell before turning into a coil. So during the
actual transition a globule’s density is not so high.

What are the signs of the two terms in (9.2) in the transition region?
Since the transition can only happen in a bad solvent (i.e. below the
✓-temperature), the second virial coe�cient B < 0, and the binary in-
teractions are mainly attractive. As for the third virial coe�cient C, it
turns out normally that C > 0 in the transition region. So repulsion is
the predominant type of three-body collision. In general, the higher the
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order of interaction, the wider the range where they are e↵ectively repul-
sive. Roughly, we can explain this in the following way. Suppose a particle
(or a monomer) interacts with a clump of m other particles. The excluded
volume for this particle will be proportional to m. However, attraction
emerges only in the surface layer. The volume of this layer is proportional
to m2/3. This is why, as long as m is large enough, repulsion will always
prevail. It is actually quite fortunate — otherwise no substance would be
stable, and all things would shrink without limit. To conclude, the energy
U(↵) can indeed be approximated by (9.2); in particular, it works in the
case B < 0 , C > 0, which we are considering in this chapter.

9.4 The Entropy Contribution

Now let’s concentrate on the entropy contribution U
e↵

(↵) to the free energy.
In the case of a swollen coil, this contribution was described by Equation
(8.10) resulting from (7.5). Would it be valid for ↵ < 1 as well? Let’s
think. Equation (7.5) gives the free energy of an ideal coil whose end-to-
end distance is of order R � ↵`N1/2. This is the only condition on the coil’s
shape that we used when deriving (7.5). Now suppose we have a shrinking
coil (↵ < 1). In this case, the number of available conformations is reduced
not only due the fixation of the end-to-end distance, but also because the
whole coil has to be fitted into a volume of linear size R (see Figure 9.2 a
and b). Hence, Equation (7.5) and its consequence (8.10) would be no good
in the case ↵ < 1. It would seriously underestimate the entropy loss.

So how can we find a reasonable estimate for U
e↵

(↵) = �TS(↵)? Let’s
look at the Boltzmann equation (7.2). It suggests that the entropy (as
well as the entropy loss) should not depend on the actual cause of the

R

a

b

Fig. 9.2 (a) — An ideal
polymer chain with a short
end-to-end distance R; (b) —
A polymer chain squashed to
the size R in all directions.
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shrinking. This is good news. We no longer have to worry about a real
polymer with some attractive forces between the monomers. We might as
well just consider an ideal chain with no interactions between the monomers
whatsoever. All we need to do is to imagine that this ideal chain has been
squeezed into a cavity the sides of which are of length R = ↵`N1/2.

Take a certain monomer unit of the chain. Suppose it is currently far
away from the cavity walls. What can we say about a strand of the chain
near the chosen monomer? It does not seem to “know” anything about the
surroundings. It can “sense” neither the walls of the cavity (since they are
far away), nor the presence of other bits of the chain (since the chain is
ideal). Therefore, this strand merely acts as a Gaussian coil. If its length
is g, then its size will be about ag1/2. Of course, this would only be right
if ag1/2 < R, that is, g < g? � (R/a)2.

Now let’s look at a g?-strand. The monomers deep inside it can arrange
themselves in any sort of shape. Therefore, they do not contribute to the
entropy (since they do not reduce the choice of possible conformations of
the chain). On the other hand, the ends of the g?-strand must be near the
walls, even though they cannot leave the cavity. This restricts the number of
possible conformations, so that each end loses a bit of entropy, of order k

B

.
(To see this suppose the number of conformations ⌦ of a monomer segment
in (7.2) drops by half. Then the entropy decreases by k

B

ln 2 � 0.76 k
B

).
In a chain of N monomers, there are N/g?-strands altogether. So the loss
of entropy is

U
e↵

(↵) = � TS(↵) � k
B

T
N

g?
� k

B

T
N`2

R2

� k
B

T
1

↵2

. (9.3)

For comparison, let’s remember what we had for a swelling polymer, (i.e.,
for ↵ > 1) (see (8.10)):

U
e↵

(↵) � k
B

T↵2 when ↵ > 1 . (9.4)

In (9.4) we left out a constant term (independent of ↵), since it does not
a↵ect any physically measurable quantities.

Now we know how the function U
e↵

(↵) looks when ↵ < 1 or ↵ > 1.
Can we use this to figure out the form of U

e↵

(↵) in the intermediate regime
↵ � 1? Since we only want a qualitative answer, we can just do a simple
interpolation (as first suggested by T.M. Bistein and V. Pryamitsyn in St.
Petersbourg):

U
e↵

(↵) � k
B

T
�
↵2 + ↵�2

�
. (9.5)

Estimate (9.5) gives the right result for ↵ � 1 and ↵ � 1, and is approx-
imately correct (to an order of magnitude) at ↵ � 1. By the way, the
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function (9.5) has a minimum at ↵ = 1. This is not surprising. Indeed,
if there are no excluded volume interactions, the chain has to behave as if
ideal; in other words, when U(↵) � 0, and so F = U

e↵

(↵), which, therefore,
must have a minimum at ↵ = 1.

9.5 The Swelling Coe�cient ↵

Now we can summarize what we have learned. Based on (9.1), (9.2), and
(9.5), we can write the free energy F (↵) of a polymer molecule of size
R = ↵N1/2` taking into account both attractive and repulsive volume in-
teractions:

F (↵) � k
B

T


↵2 + ↵�2 +

2

3

x

↵3

+
1

3

y

↵6

�
. (9.6)

Here x � �
1

BN1/2/`3 and y � �
2

C/`6, where �
1

and �
2

are numerical
constants of order one. This estimate gives a qualitatively correct answer
for the whole range from ↵ > 1 (the swelling of a coil), through ↵ � 1 (the
coil-globule transition), and to ↵ < 1 (collapsed globule). What do we do
next? Just as before, we need to minimize the free energy (9.6) as a function
of ↵ (see Section 8.6). The condition for a minimum, @F (↵)/@↵ = 0, leads
us to the equation for the equilibrium value of ↵:

↵5 � ↵ = x+ y↵�3 . (9.7)

This equation determines the size of a coil, R = ↵`N1/2 as a function of
two characteristic “governing” parameters, x and y.

A graphical interpretation of (9.7) is shown in Figure C9.3. Let us start
with Figure C9.3 a, where we have plotted a set of curves ↵(x) for di↵erent
values of y. How did we manage to do it? We could not possibly solve Eq.
(9.7) to obtain an explicit expression for ↵(x). The trick is that you can
easily find the reciprocal function x(↵) from (9.7), for every given ↵ and y.
It is single-valued, and you can plot it on the graph of ↵(x).

To understand the meaning of ↵(x) curves, we have to get an idea
about the parameters x and y? The sign of x merely matches the sign of
the second virial coe�cient B. In a good solvent, B > 0 and so x > 0.
At the ✓-point, B = 0 and so x = 0. And, finally, in a bad solvent (i.e.,
a precipitant), B < 0 and x < 0. What is the magnitude of x? In a very
good solvent, the second virial coe�cient B is neither especially large or
small; in this case x � 1 (because x � N1/2 and N � 1). In a similar
way, in a very bad solvent x is negative, and �x� � 1. From all this we can
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conclude that as long as �x� � 1 we can be pretty sure that we are close
to the ✓-point. It looks like the parameter x always mirrors the quality
of the solvent. As x ranges from � � to +� , the quality of the solvent
varies from very bad (�x� � 1 , x < 0 ) to moderately bad (�x� � 1 ,
x < 0), then to the ✓-solvent (x = 0), a moderately good solvent (�x� � 1,
x > 0), and finally to a very good one (�x� � 1 , x > 0). According to
Section 8.5, the quality of the solvent is controlled, in particular, by the
temperature. So you can relate the parameter x to the temperature. The
range x < 0 corresponds to temperatures T < ✓, and x > 0 to T > ✓; x is a
monotonically increasing function of temperature. This is why the curves
↵(x) plotted in Figure C9.3 reflect the dependence of a polymer’s swelling
coe�cient on the temperature or on the quality of the solvent.

As you can see from Figure C9.3, the main changes in the function ↵(x)
occur in the vicinity of the ✓ temperature. This is the region where the
parameter y = �

2

C/`6 hardly varies, so we can set it to some constant value
(as in fact we did when making Figure C9.3). By definition, y depends on
the third virial coe�cient C, that is, on the make-up of the polymer chain.
We shall skip the details of the theory, and just tell you some results.
The study of the coe�cient C for di↵erent types of monomers has shown
the following. If a polymer chain is flexible (which means that the Kuhn
segment ` is of the same order as the characteristic thickness of the chain d),
then C � `6, so that y � 1. For rigid chains (d � `), the sti↵er the chain,
the smaller the parameter y. Thus, all the di↵erent curves in Figure C9.3
correspond to di↵erent amounts of rigidity of the chain. The parameter y
describes the rigidity.

You may have noticed that all the curves ↵(x) in Figure C9.3 a fall
into two significantly di↵erent groups, depending on the value of y. If
y > y

cr

= 1/60 (i.e., if the chain is fairly flexible), ↵ grows monotonically
with x, although the rate of this growth varies. It changes slowly in the
range x � � 1, and also when x > 0 , but goes up rather rapidly for x � � 1,
(i.e., just below the ✓ temperature. On the other hand, if y < y

cr

, there is
a characteristic “loop” just below the ✓ temperature. It looks pretty much
like the loops on isotherms of a van der Waals gas familiar from physics
or chemistry. So the function ↵(x) becomes multi-valued: there are three
values of ↵ for each value of x within a certain range of x. This is because
the free energy F (↵) in (9.9) has as many as three local extrema (Figure
C9.4), two local minima and one maximum.

The two local minima we are interested in correspond to the smallest
and the largest of the three values of ↵ for each given x. Now we need
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to compare the values of F at the two minima, in order to discern which
is smallest. It will give us, as usual, the equilibrium value of the swelling
coe�cient ↵. This is illustrated in Figure C9.3 b. Let’s look at one of the
curves. You can see that, as long as x is less than some critical value x

cr

, one
of the two branches of the “loop” in Figure C9.3 a provides the equilibrium
solution for ↵. However, as x increases, there is a sudden “swapping over”
between the branches. Now the equilibrium solution is represented by the
other branch. Thus, if y < y

cr

(which means that the chain is fairly sti↵),
the polymer suddenly rearranges its own shape just below the ✓ point.
When it does this, it changes in size in a very abrupt, jump-like manner.
The smaller the parameter y the more dramatic this “jump” (see Figure
C9.3 b).

9.6 The Coil-Globule Transition

Let’s explore the dependence ↵(x), given by (9.7), in more detail in the
range y < y

cr

. When x > 0 (so that the solvent is good), this dependence
provides the correct qualitative description of how a polymer coil swells
due to excluded volume interactions (see Section 8.6). In this case we can
neglect the second terms on both sides of Equation (9.7); mathematically,
this neglect is obviously justified at ↵ � 1, but one can check that it works
OK everywhere at x > 0. Then we shall have:

↵ �
✓
BN1/2

`3

◆
1/5

, i.e., R � ↵`N1/2 � `N3/5

✓
B

`3

◆
1/5

, (9.8)

in complete agreement with (8.14).
Now, what if x < 0? Let’s look at the region x > x

cr

first, which
corresponds to higher temperatures than that where the jump in polymer
size occurs. We can deduce from (9.7) that ↵ is close to one in this case.
This means that the molecule takes the shape of a nearly Gaussian coil,
and is hardly at all disturbed by volume interactions. What happens if
x < x

cr

(on the bottom branch of the “loop”)? In this case, normally, the
equilibrium swelling coe�cient is very low (↵ � 1 ). So the molecule looks
terribly “squashed” by attraction between the monomers, when compared
with an ideal coil. The terms on the left-hand side of Equation (9.7) will
be much smaller than those on the right. Where did the terms on the left
come from? You can easily trace that they have to do with the entropy,
Equation (9.5).
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From here we conclude that the entropy contribution U
e↵

(↵) to the free
energy is not significant for x < x

cr

. Thus, the equilibrium size of the
molecule is only controlled by the free energy of the monomer interactions
U(↵). If we neglect the terms ↵5 and ↵ in (9.7), we shall have:

↵ � C1/3

(� B)1/3 N1/6`
. (9.9)

(Since x < x
cr

< 0 , the second virial coe�cient stands for attraction and
so must be less than zero.) We can rewrite it for the equilibrium size R:

R � ↵`N1/2 �
✓

C

� B

◆
1/3

N1/3 . (9.10)

Then the concentration (or density) n of monomers inside the globule is
estimated as:

n � N

R3

� � B

C
. (9.11)

According to Equation (9.11), the shape of the molecule for x < x
cr

is
totally di↵erent from that of a typical polymer coil (e.g., Figure 2.6). First
of all, the monomer density does not fall as N grows (compare (9.11) with
(8.5)). Moreover, the size of the molecule is proportional to N1/3 (not
to N1/2 as for an ideal polymer, or N3/5 as for a polymer with excluded
volume interactions). Such unusual properties are actually similar to those
of an ordinary liquid drop of constant density. This suggests that if x < x

cr

the molecule might have a globular structure, just like the ones in Figures
8.3 (c) or C9.1. This turns out to be true.

The zoomed part of Figure C9.1 explains why density of the globule is
independent of polymer length N : we see that there are many completely
di↵erent pieces of the chain, how close they approach each other — which
is another way to talk about density — is determined by the balance of
attractive and repulsive forces, and this balance establishes itself locally, in
every piece of globule.

Thus, it is the coil-globule transition that is reflected by the “jump”
in the molecule’s size in Figure C9.3 for y < y

cr

. You can see that this
transition occurs at x

cr

� � 1 which is only slightly below the ✓ temperature.
What does this mean? Suppose you have a loose polymer coil at the ✓ point.
Then it does not take much to make the coil “condense onto itself” and
form a globule. Just a slight worsening of the solvent quality — that is,
just a tiny bit of attraction between the monomers — would be enough.

So far, we have only considered the coil-globule transition for y < y
cr

.
This is when it is accompanied by a “jump” in the molecule’s size. Can the
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coil-globule transition also happen in the case of y > y
cr

, that is, when the
polymer chains are fairly flexible? Certainly it can. If the temperature falls
far below the ✓ point, attraction between the monomers becomes strong
enough in this case too. As a result, a condensed globular state is formed.
Mathematically, we can describe it in the same fashion as before, skipping
the terms on the left-hand side of Equation (9.7). We end up with the
same estimates (9.9)–(9.11). Still, there is an important di↵erence from
the previous case y < y

cr

. Now the formation of the globule is not step-
like, but is a smooth and gradual process. However, although it happens
smoothly, it only spans over a fairly narrow temperature interval, somewhat
below the ✓ point. You can see this in Figure C9.3. The transition region
for y > y

cr

is just where the function ↵(x) changes most rapidly. All this
region lies within �x�� 1 , which corresponds to a temperature variation of
the order of

✓ � T

✓
� N�1/2 � 1 . (9.12)

If the relative temperature variations are much greater than N�1/2, you
can be absolutely sure that the molecule is in the globular state, even for
y > y

cr

.

9.7 Pre-Transitional Swelling

There is an extremely important feature of the coil-globule transition that
we can draw out of Equation (9.9). We have already said that the transi-
tion occurs in the vicinity of the ✓ temperature. However, at the ✓ point
the second virial coe�cient B goes to zero, and is very small around that
temperature. What does this tell us? Suppose we approach the ✓ temper-
ature from below (i.e., we move towards the transition region). We shall
notice that the globule grows significantly in size. Meanwhile, the average
concentration n of the monomers inside the globule decreases just as sig-
nificantly. In other words, the globule gradually swells. (This is certainly
because B decreases and tends to zero as T � ✓.)

This is good news. It means that we need to keep no more than the
two first terms in the virial expansion (see (9.2)). That will do for globules
near the ✓ temperature (i.e., near the coil-globule transition point). Indeed,
since the monomer concentration in the globule is fairly low, we can ignore
many-body interactions. Thus, all we need to describe a globule near the
✓ temperature are the second and the third virial coe�cients, B and C.
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Now you see that the analogy between the coil-globule transition and
an ordinary gas-liquid transition has its limits. A liquid condensed from a
gas always has a fairly high density. In contrast, a “newly born” globule is
usually quite tenuous at the transition point. This explains why a theory
for the coil-globule transition is much more straightforward than for a gas-
liquid one. In the case of the globule, we are equipped with a nice small
parameter — the monomer concentration inside the molecule. This really
helps when constructing a strict mathematical description.

Thus, when nearing the ✓ point, the globule swells. This gives rise
to fluctuations. An interesting question is this. At what stage will the
growth in fluctuations cause the actual transition? In fact, when the globule
is swelling it remains a globule, until it gets really very close to the ✓

temperature. In other words, the correlation radius of the concentration
fluctuations remains much shorter than the size of the molecule. The actual
transition to the coil (i.e., to much stronger fluctuations) only occurs at the
temperature T estimated by (9.12). If the chain is fairly flexible (i.e. y >

y
cr

), the transition is smooth. The globule goes on swelling more and more,
until it reaches the size of a normal polymer coil at the ✓ point. In contrast,
if the chain is sti↵ (i.e., y > y

cr

), the transition has the form of a jump,
which happens at some critical value x

cr

(i.e., at the critical temperature
T
cr

).

9.8 Experimental Observation of the Coil-Globule
Transition

There have been a fair number of experiments on the coil-globule transition
with decreasing temperature. The most detailed studies were carried out by
scientists from three laboratories. One was the group of E. Anufrieva at the
Institute of High Polymers in St. Petersburg where they used a polarized
luminescence technique. The other was the group of T. Tanaka (1946–
2000) at the Massachusetts Institute of Technology (MIT) near Boston,
by means of inelastic scattering of laser beams by polymer solutions, and
lately the main contributions were made by the groups of B. Chu at State
University of New York (SUNY) at Stony Brook and Chi Wu at The Chinese
University of Hong Kong, also by the light scattering. We shall not go into
the details of how these experiments were done. In general, they measured
some quantities related to both translational and rotational di↵usion of the
molecules, from which the average size R of a molecule can be deduced.
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As to the system examined, most of the initial experiments were done
on polystyrene macromolecules diluted in cyclohexane. The ✓ temperature
for this system is within the convenient range; it is close to 35�C. What
was noticed in the experiments? Below the ✓ point, the molecule exhibits
a very abrupt shrinkage in an interval of only a few degrees. Its volume
changes by ten times or more. Obviously, this is where the molecule turns
into a globule. However, at the very point of the coil-globule transition,
the monomer density inside the globule is still much less than for a dry
polymer. In other words, the globule is still rather loose, just as the theory
predicts.

Some other methods have also been employed to observe the coil-globule
transition for isolated polymer molecules (e.g., ordinary light scattering, vis-
cosity and osmotic pressure measurements, and elastic neutron scattering
o↵ polymer solutions). However, the two techniques we mentioned before
are the best for this purpose. They are very sensitive and allow measure-
ments of solutions at extremely low concentrations.

The reason the low concentrations are so crucial is this. Suppose we re-
duce the temperature below the ✓ point. Attraction between the monomers
starts to prevail. This certainly enhances the “condensation” within the
molecule (i.e., the formation of a dense globule). This is not the only
tendency, however. Another is for di↵erent molecules to stick together to
form huge “lumps”, or aggregates, and these molecular aggregates precipi-
tate out. Obviously, we want to avoid such a process. Therefore, we need
to make sure that — at least at the transition point — the condensation
of monomers inside the molecule is much more likely than that between
macromolecules in solution. The only way is to restrict ourselves to low
concentrations. The less concentrated the solution we choose, the further
below the ✓ temperature we can go without worrying about molecular ag-
gregates. In reality, the experiments go to a concentration that is as low as
c = 10�2 g/l for the chains that are as long as about 107 monomer units
each. Nevertheless, it remains unclear whether this concentration is low
enough to study the entire region of the coil-globule transition.

Despite various tricks, the problem of chain aggregation has not
quite been solved. The experts still argue. Research continues, and
experimentalists have now reached remarkably low concentrations. In fact,
at these concentrations averaged macromolecule has to di↵use for almost
ten minutes before it meets another macromolecule. It seems then that
the most promising direction for further studies is to try making all mea-
surements within these ten minutes, before macromolecules can aggregate
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fully. Unfortunately, even this strategy is not free of di�culties, because al-
though most molecules keep wandering around still not seeing each other,
there are relatively few atypical ones which happened to be close at the
beginning of the experiment, which can aggregate — and contaminate the
signal (because aggregates scatter light much stronger than non-aggregated
molecules).

Very interesting experimental results on the coil-globule transition were
obtained by the group of K. Yoshikawa in Kyoto by taking DNA instead
of a synthetic polymer. We will discuss this a little further in the Section
9.12.

9.9 Dynamics of the Coil-Globule Transition

Whatever transition you explore, it is not just the initial and the final states
that you are interested in, but the actual process of the transition. You
are not only concerned with water, steam, and so on, but also with boiling,
vaporization, and condensation; nor only with ice, but also with melting
and solidification. We know that the kinetics scenarios of phase transitions
are quite diverse and vary quite wildly depending on the circumstances. For
instance, water is water and vapor is vapor, but the transformation of water
into vapor may be a slow hardly noticeable process (as, e.g., a wet road after
a rain) or it may be a violent explosion (as, e.g., in an overheated steam
boiler); boiling may be by formation of bubbles throughout the volume of
water, or it may proceed only from the surface — and so on.

What can we find out about “globulisation”? How does it proceed? How
do polymer networks collapse? How does coil-globule transition develops in
biopolymers, such as DNA and proteins? It turns out that the scenarios are
about as diverse as in the case of water and vapor — or more diverse. We
will discuss later some other cases, but here we would like to concentrate on
one particular possibility for a single chain collapse which we like because
we think it is beautiful.

Figure 9.5 sketches the first stages of one of the mechanisms of globule
formation. At the very start, lots of little “droplets” emerge. They are
the “embryos”, or — in a more scientific language — nuclei of the globular
phase. Then the “embryos” grow and merge with each other, until a larger
spherical globule is formed.

But theorists think that this may not yet be the equilibrium globule, be-
cause its chain has not yet become entangled. To form the entanglements,
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a b c d

Fig. 9.5 A few initial stages of the coil-globule transition as it develops in time. This
looks self-similar! Compare at what we write about the self-similarity in the Chapter 13. The
figure is courtesy of S. Nechaev.

it needs to go through an extra stage, which is to do with the so-called rep-
tation motion. We shall discuss reptation a little later, in Chapter 12. The
interesting thing is that there is a very simple experiment which you can
do yourself to check this theoretical idea. Take a piece of rope (a “macro-
molecule”), crumple it (the “coil-globule transition”), and try to disentan-
gle it without much shaking (“thermal motion”). People like mountain
climbers, who are familiar with ropes, know that this is quite straightfor-
ward, as long as you don’t pull the ends! This suggests that mere crumpling
(i.e., collapse) is not enough to create the knots.

It sounds quite a nice theoretical idea, that the chain has to be crumpled
first and then entangled. Subtle experiments by B. Chu in SUNY Stony
Brook o↵er some indirect support for this view. However, if you believe it,
you will have to face another bunch of questions. Imagine a very entangled
globule. What if we tried to transform it back into a swollen coil? Using
the same analogy with a rope, we can anticipate that the knots will tighten
up, and. . .Well, we all know how long it often takes to undo a tight knot!
Speaking of the molecular chain, would thermal motion ever be able to
undo the knots? Would it take only a microscopic instance of time, or a
minute? Or a couple of hours? Many years? Eternity? We do not know
yet and the uncertainty is tantalizing!

9.10 Some Generalizations

Let’s summarize what we have found out about the coil-globule transition
in an isolated homopolymer molecule. Its experimental and theoretical
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investigation is certainly very important. It is the simplest of the inter-
molecular condensation phenomena. If you understand it, you will be able
to move on to more complex situations. On the other hand, it can only be
observed under very special conditions (like low concentrations of polymer
in solution). Fortunately, it turns out that there are many other transitions
of a very similar sort in the physics of polymers and biopolymers, and not
all of them are so capricious; quite often the problem of precipitation is
nonexistent, or not that crucial.

We compared the coil-globule transition with a gas-liquid one. For more
complex polymer systems, you can also think of some analogies. The local
microstructure of a globule may sometimes resemble a liquid or plastic
crystal, an amorphous solid, a glass, an ordinary crystal, a solid or liquid
solution, and so on. This is why such strange things as a globule-globule
phase transition become possible. (What happens is that the globule’s core
just rearranges its structure.) Another interesting thing is liquid-crystalline
ordering in a concentrated solution of rigid polymer chains. (This is when
the chains have a predominant orientation, see Section 4.5.) It turns out
that this ordering can also be regarded as the formation of a globule! You
only have to imagine it in a special sort of space, the space of the segments’
orientations, not in the usual three-dimensional space.

In the next few sections, we shall look at three di↵erent e↵ects that
have something in common. In a way, they are all similar to the coil-
globule transition. These e↵ects are the collapse of polymer networks, the
formation of a compact DNA, and denaturation of proteins. Of course,
there are many more such phenomena. If you are intrigued, you can find
lots of details, for example, in our book (Ref. [3]).

9.11 The Collapse of Polymer Networks

Suppose we have a piece of polymer network, swollen because it is in a
good solvent. Let’s look at one of the subchains (that is, a part of a chain
between two adjacent cross-links, see Section 7.5). Naturally, it tends to
take the shape of a loose polymer coil typical of a good solvent. Now, say
the solvent becomes worse. The subchains will shrink, which leads to the
shrinking of the whole network. If the temperature drops below the ✓ point,
each of the subchains will undergo a coil-globule transition. As a result,
the entire network will rapidly collapse. Unlike single molecule case, the gel
collapse is easy to observe by the naked eye, as illustrated by the cartoon
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in Figure C9.6. When we are dealing with the collapse of networks, there is
no such problem as the precipitation of molecular aggregates. We have only
one macroscopic sample which shrinks as a whole when all the subchains
collapse.

This is exactly the phenomenon called the collapse of polymer networks.
It was discovered by T. Tanaka (1946–2000) and his colleagues at the Mas-
sachusetts Institute of Technology (MIT) in 1978. They used networks of
polyacrylamide diluted in a mixture of acetone and water. In these exper-
iments, the temperature was not varied. To make the solvent worse, they
just poured some extra acetone into the solution. (This worked because
acetone, in contrast to water, is a bad solvent for polyacrylamide.) Fig-
ure C9.7 gives an idea of what was found. It sketches how the size of the
network depends on the acetone concentration. You can see that if you
“dump” 42% of acetone, the network collapses suddenly. Its volume drops
by a factor of nearly 20.

It seems that to develop a theory for the collapse of networks, we could
follow the same logic as for the coil-globule transitions. After all, they both
have the same cause. However, this does not work. Such a theory was
indeed created, but experiments did not support it. You can even spot a
contradiction in Figure C9.7. The data are for polyacrylamide which is a
flexible polymer. So we are in the regime with y > y

cr

, and the coil-globule
transition should happen smoothly. Yet, the curve in Figure C9.7 b drops
down in a step, and exhibits hysteresis on return.

Furthermore, T. Tanaka carried out a detailed investigation and found
the following. The height of the step depended strongly on the time interval
between preparing the network, and starting the experiment. The longer
the delay, the higher the step. If a network was kept for two months after it
was made, changes in volume by factors like a few hundred were observed.
In contrast, freshly prepared networks manifested a nice, smooth collapse.

Can we find an explanation for all these oddities? The clue is that poly-
acrylamide chains are not stable in water. They are prone to the chemical
reaction called hydrolysis. As a result, monomers which were initially neu-
tral dissociate. This means that small light ions split o↵ from the monomers,
leaving behind segments of the opposite charge. (Such small ions are usually
called counterions; we have talked about them in Section 2.5). The released
counterions float on their own inside the swelling network. The hydrolysis
of polyacrylamide occurs extremely slowly. So, over a short period of time,
only a very small proportion of the monomers will gain an electric charge.
However, the “older” the network (i.e., the longer ago it was prepared),
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Fig. 9.8 The “gas” of counterions in a charged
polymer network.

the higher will grow the proportion of charged monomers. Now we can
explain T. Tanaka’s experiments, if we make just one assumption. We need
to assume that even a small proportion of charged monomers can a↵ect
the collapse rather strongly, and that the step becomes even higher as this
proportion increases.

What gives us the right to make such an assumption? Let’s see.
Together with the charged monomers, there are floating counterions in
the swollen network (Figure 9.8). Note that the counterions do not drift
out of the network into the pure surrounding solvent. Why not? If they
did, the system would lose its electrical neutrality on a large, macroscopic
scale. Strong Coulomb interactions would arise between the charges on the
network and the counterions outside. The energy of these interactions is
extremely high. This is why such a state is energetically unfavorable and
never occurs.

Thus, the counterions move freely inside the network, but are not al-
lowed outside. You could say that the “shell” of the network (i.e., its
outside surface) stops them. Evidently then, a crowd of counterions exert
some pressure on the “shell”. This pressure favors stretching the network
in all directions. We are going to show now that this is exactly what makes
the collapse so di↵erent from what you might expect.

The free energy of the whole network is the sum of the free energies
of all the individual subchains. The free energy of each subchain, in its
turn, consists of entropy and energy terms, U

e↵

(↵) and U(↵) (Equation
(9.1)). (Here ↵ stands as usual for the swelling coe�cient — this time,
swelling coe�cient of either any particular subchain or the entire network.)
The dependencies U

e↵

(↵) and U(↵), calculated from Equations (9.5) and
(9.2), are plotted in Figure C9.9 a, together with their sum F (↵), for an
electrically neutral polymer network. The chosen value of the parameter
x = �

1

BN1/2/`3 lies in the coil-globule transition region. At the same time,
the value of y = �

2

C/`6 is set to just over y
cr

, so that the function F (↵) has
only one minimum (this corresponds to the “no loop” case in Figure C9.3).
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What will change if we create just a small proportion of charged
monomers in the network, and the same number of counterions? The en-
ergy U(↵) will hardly alter. There will certainly be some extra contribution
to it, due to Coulomb interactions, but it will not really matter, given that
the number of charges is small. As for U

e↵

(↵), we must not forget what we
have just discussed. The counterions cause osmotic pressure, which inflates
the network. What di↵erence does this make? First of all, the minimum
in U

e↵

(↵) is shifted towards higher ↵ (Figure C9.9 b). As a result, the
function F (↵) may now appear as in Figure C9.9 c. This corresponds to
the “loop” in Figure C9.3 and implies a step-like collapse.

Thus, the charged monomers in the network extend the range of param-
eters for which a step-like collapse may occur. Even networks of flexible
chains (y > y

cr

) which are normally expected to have a smooth collapse
(when they are neutral, Figure C9.9 a), may exhibit a step (Figure C9.9
c). Calculations show that if you have just a few charges per subchain,
you can nearly guarantee that the transition will be step-like. Now you
can see why partially charged networks, although made from flexible poly-
acrylamide chains, collapse so abruptly (Figure C9.7). Look at Figure C9.9
again. The more charged monomers you have (i.e., the higher the inflat-
ing osmotic pressure from the counterions), the higher the step. This fully
explains the observations.

The collapse of polymer networks has recently attracted a lot of atten-
tion. This boom is partially due to some important applications, which all
stem from the fact that you need only slightly change the quality of the
solvent to make the network collapse rapidly. It is especially useful that the
collapse is very sensitive to the presence of charged monomers and coun-
terions in the solution. Thus collapsing networks can be adapt to detect
small ion impurities in a solution, as well as to clear the impurities away.
Besides all this, the collapse of networks can also serve as a good model for
some other processes in biology (e.g., in the vitreous body in the eye).

T. Tanaka’s group at MIT have assembled a sort of a large “collection”
— cases of network collapse transitions in a variety of systems and circum-
stances. For example, the collapse can occur if the temperature changes
— to complicate matters, some networks collapse on cooling, and some
on heating! It can also be caused by ionic strength, by adding certain
molecules, by light, etc. This is pictorially illustrated in the Figure C9.10
drawn by T. Tanaka himself. Moreover, a network can be made to collapse
in patches, to give an irregular density. In this case we would obtain a
special kind of di↵raction grating, or a hologram of the object.
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We should not forget also gel swelling. As you should be ready to
appreciate, all the subchains of the gel will swell once placed in a good
solvent, and this will make the macroscopic gel sample swell. What is
interesting about it is that good solvent di↵uses rather slowly into the
volume of the gel, and thus surface portion of the gel swells faster than
the balk. This leads to the formation of beautiful and sometimes strange
looking patterns of buckles on the gel surface, making polymer scientists to
joke about swelling gel looking not unlike a brain.

To conclude, we will mention just one more peculiarity of polyelectrolyte
gels. It can be easily understood if we use some things that we discovered
before. We saw that the counterions of polyelectrolyte gels cause an extra
pressure that makes the network swell. This pressure is really rather high.
So the gel can swell quite dramatically, to the extent that there will be no
more than 0.1% of polymer inside the gel, and the rest will be taken up
by water. In other words, 1 g of a “dry” polymer gel can absorb up to
1 kg of water! This is why they say sometimes that polyelectrolyte gels are
super-absorbers of water. This property has found plenty of applications.
Perhaps, the most impressive one is babies’ nappies (disposable diapers).
How do they manage to take in so much liquid? What happens is that
the water is absorbed by granules of polyelectrolyte gel made of polyacrylic
and polymethacrylic acids; the dry diaper is a collapsed network, water
makes it swell abruptly through a very sharp step thus increasing its volume
dramatically and thus opening up the room for a large amount of water.
Such gels are also used in agriculture, to keep the upper layers of soil humid
in dry areas.

9.12 The Globular State of the DNA Double Helix

Each cell of your body contains about ten centimeters to one meter of DNA,
and this DNA must fit into a micron-sized cell nucleus. The DNA is far too
big to fit into the cell not only as a straight stick, but even as a Gaussian
coil (we mentioned this already in Chapter 5). Therefore, DNA in the cell
must be somehow condensed and, from a polymer physics point of view, it
must be in the state of globule, albeit quite peculiar one (see also Section
9.13 about the concept of globule in this case).

This conclusion is true not only for our cells and other eukaryotic cells
(i.e., sophisticated cells which store their DNA in the special cell organelle
called nucleus), but also for more primitive procaryotic cells (which do not
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have nuclei), such as bacteria. You can see this in Figure C2.7: when the
outer membrane of bacteria is almost completely destroyed, DNA — and
the impressive amount of DNA! — spills out. Even this released DNA looks
like it remains a globule, it is definitely much more compact than any of the
typical coils shown, say, in the Figure 8.3 a or b; it must have been a much
denser globule while still inside. Hence, DNA in bacteria has to be stored
in a compact globular shape. In fact, it makes a very complex globule.

Furthermore, the same dimension argument applies even to viruses. As
an example, consider a bacteriophage (meaning, virus which infects bac-
teria) called � — one of the most studied ones. It represents a sort of a
box made of protein subunits and called capsid, with double helical DNA
genome stored inside. The capsid diameter is about D = 55 nm, while
DNA length is 48,000 base pairs, or about L = 16, 300 nm (about 0.34 nm
per base pair). If you remember the diameter of the double helix (close to
d = 2 nm), you can estimate the fraction of volume occupied by the DNA
inside the capsid. It turns out huge:

� =
L(⇡(d/2)2)

(4⇡/3)(D/2)3
� 60 % . (9.13)

This is astoundingly high degree of compactness. If you want to use units
more traditional for biochemistry, this corresponds to DNA concentration
about 500 mg

ml

. By every measure, DNA inside the capsid is very dense
indeed! One may want to know what is the structure of such a dense DNA
globule formed inside the virus capsid. Of course, it has pretty little to do
with the loose homopolymer globule close to the ✓-point. In fact, as you see,
the capsid size is not only tight for the given amount of DNA, it is pretty
close to the DNA persistence length, which is about 50 nm. That means, it
must be pretty di�cult to bend DNA tightly enough to place it inside the
capsid. Both theoretical considerations and experiments indicate that the
DNA is organized inside the capsid as an inverse spool, with turns going
parallel to each other in a very ordered manner. Nevertheless, the detailed
structure of this spool, as well as the processes by which DNA unpacks from
the virus head and infects the cell, remain the subject of current research
and heated debate among the experts. In this sense, Figure C9.11 is only
a cartoon, showing that the DNA is very densely packed inside the capsid.

The image of an elastic DNA tightly bent inside the capsid may remind
to you “The Story of Keesh”, by Jack London. There, the main character,
named Keesh, invented a way to kill a polar bear by freezing a tightly coiled
thin strip of the whalebone into a round ball of chunks of blubber. Once
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the ball was swallowed, the blubber melted — with the dire consequences
for the poor animal.

Organization of DNA in the cell is more complex, because more DNA
has to be stored, and stored in a manageable form. Overall, it seems fair to
say that the organization of DNA in either a prokaryotic or eukaryotic cell is
not completely understood. It is believed, however, that DNA is organized
in a sort of hierarchial fashion. To be specific, in eukaryotic cell there are
special proteins, called histones; eight histone molecules of a certain types
assemble together, and this histone octamer serves as a spool on which
roughly two turns of DNA (containing 147 base pairs) are tightly wound
— forming a “bead” on the DNA “string”, called nucleosome. And now we
can imagine that the whole DNA represents a string with beads; a physicist
would call it a new “renormalized” polymer, while biologists call it a ten
nanometer fiber (because 10 nm is about the diameter of nucleosome). The
structure of nucleosome is known to atomic details, but the positioning of
nucleosome beads along the DNA is hotly debated — the main question
being whether (and/or to which extent) nucleosomes prefer certain features
of the underlying DNA sequence. What happens to the ten nanometer
fiber on a larger scale is not completely clear; the consensus among the
researchers seems to be that it crumples somehow to form a thicker thirty
nanometer fiber. The DNA forming a ten nanometer fiber and then ten
nanometer fiber forming a thirty nanometer one is not entirely unlike the
initial stages of our theoretical speculation Figure 9.5). And how the thirty
nanometer fiber is organized on larger scales, up to the entire chromosome,
is at present anybody’s guess. One can find pictures of it in the literature
or on the web, some of the pictures are truly beautifully executed — but
they reflect more on the artist’s imagination than on the solid scientific
knowledge.

It is very hard to study natural organization of DNA in a cell or even
in a virus. This is why it is interesting and makes a lot of sense to start
with a model system — to place DNA in a poor solvent, and to see what
we can find out about the globules and the coil-globule transition in this
case. When experimenters thought to try this idea, the first rather obvious
problem was this: It is not easy to force DNA to collapse, because DNA is
strongly charged. Under normal conditions, almost every base pair in the
DNA double helix in water solution carries two elementary negative charges
(on the phosphate groups, that is, on the outside surface of the double helix)
— which is why, a chemist would not miss to add, DNA has an A in its
abbreviated name (indeed, A stands for acid). We discussed the role of
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counterions and their pressure in the collapse of weakly charged networks
(see Section 9.11). The counterions pressure is at play for DNA, too; but
DNA is so strongly charged that Coulomb repulsion between segments is
also of huge role, it has to be overcome for DNA to collapse. Of course, this
problem exists not only for experimenters wishing to model DNA collapse,
this problem exists also for nature which must pack and store DNA in tight
spaces. Thus, scientists — as they usually do — can look at nature for
inspiration.

Once you give it a thought, it becomes not surprising at all that the
nucleosome core particles, the histone octamers, are strongly positively
charged. Isn’t it beautiful that negatively charged DNA wraps around a
positively charged spool, with Coulomb forces stabilizing the whole thing?
Similarly, internal surface of a virus capsid is also positively charged. Thus,
a good idea to collapse DNA in a model system is to add multiply charged
ions in solution. It turns out that even ions with charges +4 (spermine)
or even +3 (spermidine) work pretty well and do help DNA to collapse.
Another useful trick is to add some neutral polymers (usually polyethyle-
neoxide, PEO); the coils of this added polymer are comparatively short and
flexible, so that they will be expelled when DNA shrinks and condenses,
and so they will not get in the way of the condensed DNA inner structure:
the “gas” of such coils causes a kind of external pressure on the “walls” of
the DNA globule.

What was observed in these model DNA condensates is pretty inter-
esting. First of all, DNA “globules” typically have the shape of a torus
(like a doughnut) in which segments of DNA going around the torus hole
are arranged rather closely and more or less parallel to each other — see
Figure 9.12. Linguistically, this sounds admittedly bizarre (which is why
we took “globule” in the quotation marks): the word “globule” comes from
Latin globulus, diminutive of globus, which is a sphere, so when a physi-
cist says that DNA globules are of doughnut shape — it can be translated
into English as “DNA sphere is toroid”. Nevertheless, however clumsy this
terminology may be, as far as physics is concerned it is not surprising and
quite natural that DNA condensates adopt a torus shape. Indeed, there are
no places in the double helix where it can be easily kinked. (In other words,
DNA behaves as a worm-like chain, see Section 2.3.) This is why it cannot
possibly fill in the core of the spherical globule, and we end up with a hole
in the middle. Of course, the finding of doughnut-shaped DNA conden-
sates was very exciting, and it did help to establish the DNA organization
in virus heads.
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50 nm a 50 nm b

Fig. 9.12 Toroid-shaped “globules” of DNA. Panel (a): Cryoelectron micrograph of �-
DNA toroid-shaped globule (�-DNA is the dsDNA from bacteriophage called �, the length
of this DNA is close to 50,000 base pairs). The turns of DNA are clearly visible. The image
is courtesy of N. Hud, reproduced with permission from the paper: N. Hud and K. Downing,
Proceedings of the National Academy of Sciences USA, v. 98, n. 26, pp. 14925–14930,
2001. Copyright 2001, National Academy of Sciences, USA. Panel (b): Electron micrograph
of two torus-shaped DNA globules attached together. Each torus is formed by �-DNA. The
image is courtesy of J.-L. Sikorav.

9.13 Why do We Call Them Globules?

Here we must digress and discuss an important point — so important in
fact that we made it a separate section. We mentioned already that toroid
globule is a linguistic nonsense. One could argue — and some people do
argue — that even the DNA toroid condensates, not to mention much
more complex and sophisticated in organization DNA in the cells, have
rather little to do with the simple collapsed homopolymer globule which we
discussed earlier in the this chapter and described in terms of second and
third virial coe�cients (see, e.g., Sections 9.5 and 9.6). In the next chapter
we are going to discuss protein globules, also in no way the subject of a
primitive theory.

Not entering any terminological disputes, we would insist that both
DNA organized in cells, viruses, and model toroid systems, as well as glob-
ular proteins do share something fundamental with the homopolymer glob-
ules. One way to explain it is to discuss the balance of forces. Consider
one monomer deep inside homopolymer globule, or one aminoacid residue
deep inside protein globule, or one piece of DNA also deep inside. In all
these cases the forces acting on a selected unit are balanced locally, they
are forces of interactions with near neighbors in space. Accordingly, for
instance, the density of a homopolymer globule is estimated by the formula
(9.11), which does not involve the chain length N . This is to be contrasted



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

Coils and Globules 191

with the coiled polymer in which the density is a function of N (like N�1/2

in Gaussian case, see (8.5)), bearing witness to the fact that forces are only
balanced on the scale of the polymer molecule as a whole.

In a more formal language, the signature property of the globular state
is the short correlation length — much shorter than, and independent of,
the overall molecule size. Once again, this is to be contrasted with the coil
in which correlation involves the coil as a whole. In this deep sophisticated
sense both DNA in cells and viruses and proteins in their native form are
globules indeed.

9.14 What is the Order of Coil-Globule Transition?

We begun our discussion of globules from the very simplest flexible ho-
mopolymer chain, and found that globule interior in equilibrium looks sim-
ilar to the disordered solution of independent chains (see Figure C9.1).
Subsequent analysis revealed the immanent features of globular state in a
variety of polymer systems, for instance, in a toroidal DNA; we will meet
some other examples of globules later on in this book. Similarly, coil-globule
transition we considered in Section 9.6 for the same simplest homopolymer
chain, assuming that monomers stick (attract) pairwise (B < 0), but re-
pel in triple or any higher order collisions (C > 0). Using this model, we
established, that the transition between states of coil and globule occurs
rather smoothly if the chain is flexible, but becomes sharper for the sti↵er
polymers. In fact, even rather sti↵ macromolecules in this scenario undergo
sharp, but not very sharp transition: globule swells significantly before the
transition (Section 9.7), while the amount of absorbed or released heat,
i.e., so-called latent heat of the transition1, as it turns out, is rather small,
proportional to

�
N and not to N . But this is the case only for the simplest

basal model of a macromolecule. In reality there are a number of polymer
systems in which coil-globule transition is so sharp that it represents, in
physics parlance, the first order phase transition. In this type of transi-
tion, the latent heat is large and it can be straightforwardly measured by
a calorimeter, while pre-transitional swelling of the globule is practically
absent; upon heating, globule does not feel any signs of the approaching
catastrophe — and then suddenly breaks apart and completely unfolds. Not
going here into any details, it might be useful to present a list of systems

1For the readers who do not remember the concept of latent heat we explain it in
Chapter 10.
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and situations when this scenario is realized:

� Polymer chains with peculiar interactions, in which third (or higher)
virial coe�cient becomes negative at a temperature (or solvent condi-
tions) where second virial coe�cient is still positive. An example is the
system in which monomers can form complexes, similar to micells, with
a defined number of participants. Following de Gennes, this is sometimes
called p-cluster model.

� Macromolecules capable of internal local orientational ordering, usually
of nematic type, in the globular state, like in toroid DNA case.

� Macromolecules with other types of symmetry or organization in the
globule, up to a crystal.

� Polymers in which monomers can have two di↵erent states, such as helical
or non-helical, when globule can be formed due to the jump in, e.g., the
degree of helicity.

� Polymers in which monomers can absorb ligands from the solvent, such
that globule can be formed due to a jump in the number of absorbed
ligands.

� Polymer chains in multicomponent solvents, when globule formation can
be achieved by the re-distribution of solvent components between the
globule interior and the outer solution.

� Polymer chain or network with ionizable groups and in a poor solvent
(e.g., with hydrophobic monomers), when osmotic pressure of counterions
is responsible for the sharpness of the transition.

� Last but not least, the heteropolymers with properly selected sequences.
The latter is the most interesting case, and it is the subject of the next
chapter (see Section 10.6).
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Globular Proteins and Folding

I am practically perfect in every way.

P.L. Travers,
Mary Poppins (screenplay)

10.1 Anfinsen’s Experiment: Renaturation

There are many globular proteins in a living cell, and they play a key role.
We have already discussed this in Chapter 5. However, the theory of such
systems is extremely hard; a protein globule is perhaps one of the most
complex objects in modern physics. What is striking and unusual is that
proteins have a strictly defined spatial tertiary structure (see Sections 5.6.4
and 5.7). In a protein globule, not only averaged density, but the entire
spatial structure of the whole chain is fixed.

You may wonder why we are so worried about the tertiary structure
in particular? There are other things, like the primary structure, for in-
stance, which means that the whole sequence of monomers is also fixed! It
all has to do with how di↵erent structures are formed. To produce pro-
tein chains with the right primary structure (as determined by the genetic
program, DNA), there is a special complex “machine” in the cell, called
a ribosome. Unfortunately, we do not yet know how to synthesize specific
proteins without cells. Scientists certainly hope that they will eventually
figure out how things work in a cell, but, at present we here cannot do
much better than brush the question aside, saying: “Well, there is some
mechanism of biosynthesis. . . ”

By contrast, how is the fixed tertiary structure created? Perhaps there
is some other mysterious “machine”, of which we know nothing at all, but

193
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which is actually in charge of packing protein chains into globules of the
right shape? Note: this is where we reach the crucial point. The answer is
that such a “machine” does not have to exist. We can pretty well manage
without it. This was first shown in 1961 by the biophysicist Christian
Anfinsen at the National Institute of Health near Washington DC (he later
received a Nobel prize for this work).

We can explain Anfinsen’s idea in the following way. We have already
mentioned denaturation of proteins. Denaturation, like coil-globule tran-
sition, can be caused by heating (and sometimes by cooling); it can be
caused by adding a special substance to the water (such as urea), to re-
duce the hydrophobic e↵ect (see Sections 5.1 and 5.7); yet another way
is to add some alkali or acid (in the latter case, certain amino acids gain
a positive electric charge in an acidic medium, and others gain a negative
charge in an alkaline medium, making globules unstable in either case due
to repulsion between similarly charged segments). Denaturation is a sharp
conformational transition. The sti↵ globular structure is destroyed, and
the protein — say an enzyme — ceases to be chemically active. Anfinsen
wondered if the protein could be returned to the native state. He tried —
and succeeded: in a dilute solution, away from any cell machinery, when
every protein molecule was left on its own in the medium of water and salt
and nothing else, proteins were able to renature — provided that temper-
ature change and other conditions were su�ciently slow and smooth. It is
wonderful discovery indeed! It means that the single molecule of protein,
completely unsupervised, is capable of correctly reproducing its own spa-
tial structure. We do not have to employ a living cell, or to borrow some
special living “machine”. The correct tertiary structure can be restored or
renatured in vitro. All you need is to be careful and make sure that the
process is very gradual, and that the concentration is low, and so on.

As a matter of fact, as usual in biology, every rule seems to have at
least some exceptions. Some complex proteins fold with the help of special
molecules, called chaperones. Nevertheless, a firmly established fact is that
many proteins do not need any assistance and are able to do this amazing
job easily and reliably on their own. Moreover, from the physics point of
view, does it really make a great di↵erence whether it is just one protein
molecule that organizes itself, or a pair of molecules, such as a protein and
a chaperone?

Thus, in contrast to the primary structure which can only be produced
in the living “factory”, the tertiary structure is capable of organizing itself.
In this sense, the formation of primary structure is in the subject of biology,
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while self-organization of spatial ternary structure is physics. And it is
extremely important: the capability of self-organization is exactly what
enables all proteins to function, and all life to live. To try to understand it
has been a challenge for physicists for over a quarter of a century.

10.2 Aperiodic Crystal or Equilibrated Glass?

At first glance, self-organization seems very straightforward. Suppose we
have a certain chain with a fixed sequence of monomers. In the right sort
of circumstances, left on its own, it will always roll up into a coil in exactly
the same way. We take up the same thing every time, and obtain the same
outcome; is this really so strange? Yet this phenomenon is unique, it is
completely unlike anything else in physics. Let’s discuss this problem in
more detail.

Look at a cartoon in the Figure C10.1: a sequence of units of a protein
chain is similar to a sequence of letters in a certain text or message, but
we immediately discover that we cannot read it — simply because we do
not understand the language! It turns out that the meaning of the message
can be revealed when the fluctuating coil collapses and self-organizes. You
could say that the tertiary structure reveals the meaning of the primary
text. Thus, in addition to a simple collapse of a chain, which may not be
so much unlike the familiar homopolymer condensation, a self-organized
collapse of a protein chain can be described as reading with understanding,
or as decoding of a message.

In one way, a protein globule has something in common with a solid
crystal. They both have a very well defined three-dimensional structure,
and rather small fluctuations of atoms around their “right” positions. How-
ever, this analogy does not extend much further than just the rigidity, the
well defined character of the spatial arrangement. There is no similarity
between the two structures themselves. Crystals are distinguished for their
periodicity. In contrast, a protein globule consists of assorted amino acid
residues, and so is completely non-uniform and irregular in shape.

Erwin Schrödinger (1887–1961), one of the founders of quantum me-
chanics, in his famous essay [37] on “What is Life?” based on lectures
delivered in Dublin in 1943, at the height of the war (by the way, in
our opinion — a must reading for anyone interested in biological physics),
coined the special term: aperiodic crystal. This is intentionally an oxy-
moron. Aperiodic crystal is a crystal in the sense that every atom or
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molecular group somehow “knows” its space position up to small fluc-
tuations, and it is aperiodic in the sense that the defined positions are
not obtained by simple translations. Contextually, Schrödinger suggested
this concept in quite general way to describe biological cell constituents
in terms of physics; he did not know anything about globular proteins at
the time — they were not yet discovered as such, but his idea fits them
aptly.

But, as we also mentioned, protein globule consists of so diverse molec-
ular groups, that their arrangement in space is inevitably very irregular.
In this sense, a protein globule resembles so-called disordered systems, also
known to physics, such as an amorphous solid or a glass. Alas, we shall see
shortly that this analogy is very limited too. It does not go much deeper
than the very fact of the lack of spatial periodicity.

To make the point clear, we have to digress and summarize briefly what
do we really mean by “a glass”? In Chapter 4 we talked briefly about both
polymer and non-polymer glasses. We can describe them as substances
that have been “frozen” in a somewhat non-equilibrium state. Glasses
have enormous relaxation times (i.e., the time for the system to reach equi-
librium) — far longer than any sensible physical experiment you can think
of: for instance, ancient Greek vases were made of glass which did not come
to equilibrium by now. We could say that the glass has “memorized” the
structure (i.e., the positions of the atoms) that it happened to have when
it was made (i.e., as it was cooled). If we melt the glass and then cool it
down again, a completely new (although statistically similar) microstruc-
ture is created, and so the previous “memory” will be totally washed away
and lost. Equilibrium is never reached. That is exactly why glasses are
disordered.

Thus, the analogy with glasses does exist, because arrangement of atoms
in a protein globule is irregular (or seems irregular to an untrained eye), but
at the same time protein globule, as Anfinsen’s experiment suggest, is in
equilibrium1. Thus, we should talk about equilibrated glass — positively,
another oxymoron.

In fact, there is a remarkable, even though also limited, resemblance
between a glass and the primary structure of biopolymers. Indeed, if we take
a protein molecule and place it in the solution conditions when it is stable,
then more or less spontaneous rearrangements of the primary structure

1Strictly speaking, it might be that protein globule is the long living metastable state,
like overheated water, but let’s brush aside this detail for simplicity, it does not a↵ect
the overall logic of our discussion.
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take unthinkably long times; in practice, it never happens. Thus, we can
also talk of “memory”: in glass, there is a memory of spatial positions of
molecules; in protein, there is memory of positions of amino-acids along the
sequence. The analogy goes further: as soon as the primary structure is
destroyed (i.e., the chemical bonds of the chain are broken), the “memory”
is completely lost. But then there is the di↵erence: for proteins, we have
cell machinery capable of producing a new exact copy of the same sequence,
while for glasses we do not have any practical way to re-create exact same
positions of all atoms.

Unlike primary sequence, tertiary structure of proteins does not have
that much in common with a glass, except merely the lack of periodic-
ity or other spatial regularity. The tertiary structure is never “forgotten”,
even after denaturation. If it were, it would never be able to reorganize
itself, Anfinsen’s experiment would not work. Of course, all the “memo-
ries” are kept in the primary structure; the reason why tertiary structure is
not forgotten upon denaturation is because primary sequence is preserved.
Therefore, all the information needed to reconstruct tertiary structure is
contained in the primary sequence, engraved in some as yet unknown se-
cret language. We see that something novel enters physics: we need to
understand the behavior, specifically — collapse behavior, of a system with
engraved information. Never before was there anything like that in physics.

Thus, the tertiary structure can rebuild itself just like a stable crystal,
and is irregular in shape just like a amorphous glass — but the crystal is
aperiodic, and the glass is equilibrated.

10.3 Levinthal’s Paradox

Many medicines are based on proteins; pharmacological companies would
love dearly to be able to predict, by a cheap computation, what is the
equilibrium spatial shape of a polypeptide chain with a given sequence. This
prediction of tertiary structure based entirely on the sequence is really a
multi-billion dollar problem. What people try to do to address it in practice
is to invoke an additional information, a hint apart from the sequence itself
— to find other known proteins with elements of sequence similarity, and
then to guess the new tertiary structure based on the elements of the known
ones. This might be a nice practical solution, particularly when it works,
but here in this book we are not interested in such things, for us it is almost
like cheating. We want to discuss the heads-on approach; in the end, this
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is now purely physics problem: having a molecule one needs to find its
minimal energy conformation.

Can we approach this problem computationally? Since it is so important
a problem, we could perhaps take a very large supercomputer and just
compute energies of all conformations! Does this sound convincing? Not
really. Let’s make an estimate. Say the chain is as short as 100 units.
For the sake of argument suppose further that each bond of the chain can
take two di↵erent conformations only, for example, “right turn” and “left
turn”. (This is certainly an underestimate!) Even then the chain can have
as many as 2100 = (210)10 = (1, 024)10 � (1, 000)10 = 1030 conformations in
total. Now, suppose the conformation is computationally updated at every
tick of a computer clock (take it generously at about 10�9 s) and even
neglect the time needed to compute energy. The process will then require
1030 � 10�9 s = 1021 s � 1013 years — really not very practical! Needless
adding, if you take a parallel computer with 100 or 1,000 processors (or
as many as you can practically think of) — it won’t change the verdict:
enumeration of all conformations in order to find the lowest energy one is
impossible.

But how about proteins themselves, how do they manage to find their
lowest energy conformation? And they do manage, as Anfinsen’s experi-
ment suggests. Let’s stay with the same estimate 1030 for the number of
conformations, and suppose conformation changed by every single atomic
collision, that is, every 10�11 s (definitely, a much too generous overesti-
mate). How long would it take for a protein molecule to go through all
the conformations in search of the stable state? Our calculation gives the
incredibly long time of 1030 � 10�11 s = 1019 s � 3 �1011 years. Just for
comparison, the age of the Universe is about 1010 years!

This problem is known as Levinthal’s paradox (as it was formulated
by Cyrus Levinthal (1922–1990) at Columbia University in New York):
protein molecule certainly cannot search through all of its conformations,
yet it does find the particular one with lowest energy. It is a paradox, isn’t
it? How does the chain manage to find the equilibrium?

Alas, we seem to be getting nowhere. We had hoped to learn about self-
organization through some analogies with other physical objects. However,
we have found none. That, roughly, was the state of a↵airs in the field in
1970s and 1980s.
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10.4 Denaturation and Renaturation are Sharp
Cooperative Transitions, with Latent Heat

Remember, we are talking about physics of protein folding. Surely,
Anfinsen-style experiments were repeated numerously, on many systems,
and huge body of knowledge was accumulated on various proteins — but
that is not what we are talking about. We want to know how protein utilizes
the information encoded in its primary sequence and finds the lowest en-
ergy state overcoming the Levinthal paradox. In this regard, the extremely
important hint came from the simple minded experiments first performed
by P.L. Privalov in Pouschino near Moscow. He measured the calorimetric
e↵ect of protein denaturation and renaturation.

The name “calorimetry” goes back to the time when people did not yet
realize that heat was just another form of energy. The technical sophistica-
tion in the field grew enormously, but the assortment of quantities measured
remains pretty much the same as almost two centuries ago. Remember, if
you heat a piece of ice in an open air, and start at pretty low tempera-
ture, then your sample gradually warms up, and the speed of temperature
growth is proportional to the amount of heat power (energy per unit time)
provided (the coe�cient is heat capacity of the sample, that is, the specific
heat of ice times the sample mass). This boring situation continues up until
the sample reaches the melting temperature — 0�C at normal atmospheric
pressure. At this point, what happens is you keep providing energy at the
same rate as before, but the temperature does not grow and remains at
0�C; instead of warming the sample up, the energy provided is spent on
melting, on destroying the ice. Only when all of the ice is melted, the tem-
perature starts growing again. Thus, the point is that you have to provide
a certain amount of energy, called latent heat to destroy (melt) the solid
ice and transform it into liquid water. Conversely, the same amount of
energy has to be taken away to freeze water and make it solid. By the way
of example, the latent heat of ice melting is about 80 cal

g

� 330 J

g

; latent
heats of melting for most other simple substances are of the same order,
give or take a factor of 3.

Privalov discovered, that protein denaturation, when it is caused by
elevating temperature, requires some latent heat, just like melting of a
solid, and in about the comparable amount per unit mass; knowing the
latent heat per unit mass of ice melting and the molecular mass of each
amino acid monomer (around 110 Dalton), you can estimate the latent
heat of denaturation: for a typical protein of about 200 amino acids, it
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is about a few hundred of k
B

T per one protein macromolecule (remember
that absolute temperature is always not too far from 300�K when we talk
bio-molecules).

This is intriguing. The heat absorbtion at the transition tells us that
in the transition point and in its vicinity both states (water and ice; na-
tive and denatured) exist as two distinct local minima of free energy (look
again at the Figures C9.4 and C9.7). We should then be able to see both
of them simultaneously; do we see them? As it turns out, yes, we do.
How? Imagine, for instance, that you measure an optical absorbtion spec-
trum and it peaks at one wavelength for denatured protein and at another
wavelength for native one; then, in the vicinity of the transition, we do see
both peaks. Some fraction of the material is in the denatured state, some
in the native state, and the proportion changes as we change temperature:
not that the states move towards each other and become similar, no; only
the relative population of each state changes. For instance, if the energy
di↵erence between the two states is �E, then the ratio of their populations
should be proportional to e��E/kBT . Therefore, watching how the relative
strength of the two absorbtion peaks changes with temperature, we should
be able to measure �E. This was of course done, and the result is truly
beautiful: �E measured this way is equal — up to the experimental errors,
but for pretty much every protein tested — to the amount of latent heat
per macromolecule. This means that protein globule denatures as a single
cooperative unit.

10.5 Random Sequence Heteropolymers are Not
Protein-Like, for They Have No Latent Heat

Discovery of latent heat and cooperative character of protein denaturation
transition added much more food for thought for physicists working on
protein folding.

First, cooperativity of denaturation is to be contrasted to globule-coil
transition in a simple homopolymer — see Section 9.6. As a rule, that
transition is accompanied by a rather small heat absorbtion, which changes
with chain length N proportional to N1/2. At the same time, the study of
various proteins of di↵erent lengths did not reveal any systematic tendency
of latent heat reduction for longer species. Second point which we will
not develop in any details here is that there are some types of monomer
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interactions in homopolymers which lead to large latent heat transitions
(see section 9.14), but they, too, did not seem relevant to proteins.

Third and most important, theorists were able to look at the denatu-
ration transition of a random sequence heteropolymer, and to show that
it, too, does not have a significant latent heat. This was achieved first
in 1987 by J. Bryngelson and P. Wolynes at the University of Illinois at
Urbana-Champaign, who suggested a phenomenological description, and
soon thereafter (and independently) by E. Shakhnovich and A. Gutin in
Pouschino near Moscow, who developed a real microscopic model. Let’s
discuss briefly the main idea of their arguments.

The central point is to adopt the properly coarse-grained view of the
protein conformations and their energies. Think for instance of the inter-
action energy between two aminoacid residues, of chemical names A and
A0. Of course, energy depends in general on the mutual orientations of the
given residues, as well as positions of other residues around, and also wa-
ter molecules nearby; furthermore, most of the aminoacids are themselves
bulky molecules, with quite a few rotational isomeric states of their own. It
is admittedly quite complex — but let’s brush all these details aside, and
say that two residues are either in contact, and then their interaction energy
is some known quantity ✏AA0 , or they are not in contact, with vanishing
interaction. One can think that we used interaction potential energy of Fig-
ure 8.1 (a) and further simplified it by making “rectangular” — exact zero
at large distances, then vertical drop to the flat bottom of the potential well
at the level � ✏AA0 , followed by the vertical “wall” signifying the excluded
volume repulsion. Such simplification is very much open to criticism from
a number of directions, but it is better to have some theory and criticize it
than having nothing at all — so let’s adopt the simplification and see what
we can do with it.

As soon as we know contact energies for all pairs of amino acids, ✏AA0 ,
we can write down, at least formally, the expression for the total energy
of a molecule having a certain sequence A(i) and folded into a particular
conformation:

E (seq, conf) =
X

✏A(i)A(j)

C
ij

. (10.1)

This is simple, but we have to explain the notations. First, i and j label
monomers along the chain, from 1 to N . Second, sequence is described in
terms of A(i) (or A(j)): chemical name of aminoacid for each position along
the chain. Third, and final, C

ij

is the so-called contact matrix, it is simply
1 if i is in contact with j and it is zero otherwise. Thus, formula (10.1)
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says the following: take all contacts presented in the given conformation
and sum together their energies. If one imagines having composed a table
of contact energies ✏AA0 for all pairs of aminoacids (and such tables can be
found in the literature), then we can compute energy (10.1).

Alas, this does not look promising on the first glance, because we remem-
ber Levinthal’s lesson — we cannot compute energies of all conformations,
and, therefore, cannot find the lowest energy conformation. But at least we
can estimate the lowest energy itself, that is, presumably, the energy of the
most stable conformation. For that, we first argue that the average energy
over all conformations is proportional to N , let’s say it is E = N✏. This is
because the total number of contacts in the globule is about N . Of course,
in the coil conformations there are fewer contacts, but energies of those
conformations are small and we do not have to worry about them. In fact,
the number of contacts in the globule is several times larger than N (due
to the fact that each monomer in the globule makes several contacts), but
we can, for simplicity, absorb this extra factor in the definition of energy ✏

— all we really need to know about this energy is that it does not depend
on N . Admittedly, though, average energy over all conformations is not a
very interesting quantity. The real question is how far below in energy is
the lowest energy state. We now argue that this most important energy
must be also proportional to N :

E
g

� E � � N�
�
2s . (10.2)

where s is the factor of order unity which will be defined below, while �
is the energy scale characterizing the diversity of di↵erent contacts, which
we imagine distributed over the interval ✏ � �. The formula (10.2) means
that in the lowest energy state a significant (� N) number of contacts are
the favorable ones, each having energy about ✏ � �. In general, it might
be di�cult to find a conformation which realizes all favorable contacts and
avoids all unfavorable ones. For instance, if monomers i and j are strongly
attracting ones, that is, ✏A(i)A(j)

is strongly negative, while i � 1 and j � 1
strongly attract some other completely di↵erent parts of the chain, then an
attempt to realize all these contacts would create an impossible congestion,
because all the monomers are connected by the chain. Factor s describes
this e↵ect, as we shall see.

Furthermore, formula (10.1) contains a hint of a di↵erent sort: this for-
mula is a sum of many-many contributions, and such sums are subject to
Central Limit Theorem — see Section 6.7, and so the value of the sum —
the energy E — should be Gauss distributed. It is almost like the polymer
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is again a Gaussian random walk — except this time it is “walking” along
the single coordinate which is energy. Once again, this view is open for
criticism, the main one being the questionable independence: it is conceiv-
able that energies of contacts are random for random sequence polymer,
but how independent are they? For instance, if one particular aminoacid
A is in contact simultaneously with B and with B0, then ✏AB and ✏AB0 are
unlikely completely independent. This is of course a serious question, but
we mentioned already in Chapter 6 that Central Limit Theorem is very
robust; besides, once again, it is better to have something to be improved
than nothing at all — therefore, let’s accept the idea of Gaussian distributed
energies and see what happens2.

As the reader may realize from Chapter 6, the Gauss distributed en-
ergy should obey the square-root law, it should typically deviate from the
average by about � �

�
N . Comparing this to our earlier estimate (10.2),

we see that the lowest energy state is actually much lower than typical
— the former is proportional to N , while the latter to

�
N . This means,

if the energies are treated as random, then the lowest energy state must
belong to the very far tail of the probability distribution. We can con-
firm this quantitatively. Indeed, given that energy is the sum of about
N contributions which we view as independent, the probability density

of the energy is proportional to p(E) � exp
h
�
�
E � E

�
2

/2N�2

i
. If we

take one conformation and look at its energy, it is typically within the

range of energies such that exp
h
�
�
E � E

�
2

/2N�2

i
� 1; this of course

returns the familiar square root law. But if we take some M conforma-
tions, and look at the lowest of their energies, it should correspond to

the condition M exp
h
�
�
E � E

�
2

/2N�2

i
� 1. Remembering that the

number of conformations is exponential in the chain length, M � esN ,
and performing a few lines of simple algebra, one arrives exactly at the
estimate (10.2). Thus, s in the formula (10.2) is the conformational en-
tropy per monomer: previously, we made estimates assuming two possi-
ble states for each monomer leading to 2N = eN ln 2 conformations; here
we are a bit more general, assuming esN conformations. Thus, s char-
acterizes flexibility of the chain. It is then not surprising that s ap-
pears in the formula (10.2): the more flexible is the chain, the larger is

2We should mention here that independent Gauss distributed energies were first con-
sidered by Bernard Derrida (in the French Center for Nuclear Research in Saclay near
Paris) in a completely di↵erent context, and this is known in the literature as Random
Energy Model (REM).
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s, the more favorable contacts can be realized, the lower is the lowest
energy.

We made a good progress, but we should not forget the goal. The goal
was to understand if the random sequence heteropolymer exhibits a large
latent heat characteristic of real proteins. For this purpose, it is not enough
to know the energy of the lowest conformation. When the globule “melts”,
the lowest energy conformation competes with other states. Therefore, we
need to know energies of other low-lying states, for instance, the second
lowest one. To this end, we just give here the result (we will hint on the
origin of this result in the next Section 10.6): the gap between lowest and
second lowest energies of conformations is independent of N , it is about
�/

�
2s. Naturally, it is governed by the energy scale of chain heterogeneity,

�, and decreases with increasing chain flexibility, s (because more favorable
contacts can be made also in the second lowest state).

Thus, heteropolymer is a better candidate to model proteins than a
homopolymer — because heteropolymer globule does have a unique lowest
energy state, at least in the coarse grained consideration. But random
sequence heteropolymer is not good enough, for it does not have the latent
heat as proteins do.

10.6 Selected Sequences

Our results of the previous section can be rephrased in the following useful
way. Since the lowest energy conformation is about �/

�
2s below second

lowest, random sequence heteropolymer has to freeze at some temperature
T
fr

such that k
B

T
fr

� �/
�
2s: below this temperature even the second

lowest conformation is prohibitively expensive and the system can a↵ord
nothing else but staying in the lowest energy state. When first discovered,
this freezing transition caused considerable excitement among the theorists
working on proteins. Indeed, does not it sound like a protein — the system
stays in one particular conformation, unique, albeit in a coarse grained
sense?

Alas, this frozen state is not good enough — although unique, it does
not stand any further tests. We mentioned already that it melts without
latent heat. Furthermore, imagine that we subject our molecule to one
point mutation, that is, replace one amino acid with a di↵erent species. It
would mean changing several of the ✏AA0 terms in energy (10.1), which can
easily overcome the �/

�
2s gap, thus leading to a complete revolution: the
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former ground state ceases to be the lowest energy and some completely
new unrelated conformation assumes that role. Proteins are surely not like
this, they have a significant mutation stability and typically keep essentially
unchanged folded state after several mutations. Even worse, energies ✏AA0

can be a↵ected by the environment. Imagine, for instance, that you ate a
pickle, the amount of salt in some places in your body changes a bit, leading
to some changes in ✏AA0 and . . . to renewal of protein conformations, with
subsequent loss of protein functions? No, luckily to all of us (even those who
do not like pickles), this is not how real proteins work. Indeed, compare it
with the opinion of Miguel de Cervantes: “It is a true saying that a man
must eat a peck of salt with his friend before he knows him.” (Don Quixote,
Lockhart’s Translation).

Thus, we need something better than the random sequence heteropoly-
mer. But this is not really surprising. We compared folding of a protein
with reading and understanding of a message. But not every message, not
every sequence of letters, can be understood — meaningful ones have to be
written by someone knowing the same language. Indeed, elementary school
kids are taught reading and writing practically at the same time, concur-
rently. How to write, or design, heteropolymer sequences with protein-like
properties is the subject of active current research. People try to do it com-
putationally and experimentally, with the goal to reproduce one or several
of protein properties, not only unique folding, but also mutation stabil-
ity, stability against precipitation, ability to selectively absorb molecules
or particles of certain shapes and sizes, and many others. Unfortunately,
all of this goes far beyond the scope of this book. But we cannot resist
mentioning that in 2003 D. Baker and his co-workers at the University
of Washington in Seattle were able to “design” a completely artificial se-
quence such that when the molecules were synthesized with that sequence
— they did fold into the prescribed three-dimensional structure, which was
intentionally chosen to be unlike any other known in living nature3.

In line with our desire to outline only the most basic physical principles,
we will discuss just one question: how many foldable sequences are there?
The full importance of this question will become apparent in Chapter 14
on the origin of life problem. For now let’s just make an estimate. For
that, we have to understand better the formula (10.2). We said E

g

was
the lowest energy (ground state) of a random sequence heteropolymer. But

3B. Kuhlman, G. Dantas, G. Ireton, G. Varani, B. Stoddard and D. Baker, “Design of
a Novel Globular Protein fold with Atomic-Level Accuracy”, Science, v. 302, n. 5649,
pp. 1364–1368, 2003.
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what if we take two, or three, or several di↵erent random sequences — will
their lowest energies be exactly the same? Of course, not. In fact, E

g

given
by the formula (10.2) is only the most probable value of the lowest energy.
We need to work a little harder and find not only the most probable value,
but the whole probability distribution of ground state energy W (E); thus,
E

g

(10.2) is where W (E) is maximal.
Determining this probability distribution requires slightly more mathe-

matics than we use in this book. The necessary mathematical technique is
called extreme value statistics. But the idea is simple. First, we will argue
that ground state energy for any sequence is hardly ever higher than E

g

(10.2). Indeed, for that to happen, all M = esN conformations should have
energies above E

g

— this is extremely improbable. This is as if you were
to ask how tall is the tallest teacher in your school? Presumably teachers
are hired irrespective of their heights, which creates a good case for inde-
pendence. Therefore, teachers are like energy levels, except upside down
— we are looking for tallest teacher, but lowest energy. Thus, what we
are saying is this: it is unlikely that the tallest teacher at school is below,
say, 170 cm, because for this to happen all of the other teachers — and
there are many — must be smaller. On the other hand, the probability for
the tallest teacher to be 220 cm is also small but for a completely di↵erent
reason — simply because such people are rare. Similarly, the probability
of the ground state energy to be below E

g

(10.2) is given simply by p(E)
— the Gaussian distribution resulting from summation of contact energies.
Since E

g

is itself already in the tail of p(E), we can simplify4 the expression
for p(E) in this region and obtain

W (E) �
( p

2s

�

exp
h
(E � E

g

)
p
2s

�

i
when E < E

g

0 when E > E
g

. (10.3)

4Suppose ground state energy equals Eg � E, that is, some interval E below Eg , such
that E ⌧ Eg � E. Then the expression in the exponent in p(E) reads

�
Eg � E � E

�2

2N�2
'
�
Eg � E

�2

2N�2
� 2

E
�
Eg � E

�

2N�2
'
�
Eg � E

�2

2N�2
+

E
p
2s

�
,

where we used formula (10.2) in the last transformation. Plug this into the exponential,
find normalization — and arrive at formula (10.3). More accurate formula, called Gumbel
distribution, reads

W (E) =

p
2s

�
exp

"
(E � Eg)

p
2s

�
� exp

 
(E � Eg)

p
2s

�

!#
.

We encourage the reader to plot it carefully alongside the approximate version to see
how similar they are.
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First of all, this formula allows us to return the debt to the reader and
to explain our statement about the gap between lowest and second lowest
energy states: characteristic scale at which W (E) decays is �/

�
2s —

exactly as we claimed before. Second, we are now in a position to estimate
the number of sequences, as we planned.

For instance, if we wish to have sequences with some value of the latent
heat Nq (that is, q per monomer), these sequences should deliver ground
state as low as E

g

� Nq, which means that the fraction of such sequences
should be proportional toW (E

g

� Nq) or to exp
⇥
� Nq

�
2s/�

⇤
. These same

sequences exhibit also mutation stability and environmental stability, all
governed by the same energy scale Nq. Thus, only an exponentially small
fraction of all sequences are protein-like in the sense of all these properties
(latent heat, stability, etc). To find and select protein-like sequences is a
hard work indeed! But the total number of sequences is also exponentially
large, say, QN = exp [N lnQ], where Q is the number of monomer species
(Q = 20 for proteins, which gives QN � e3N ).

Therefore, we can draw a number of very interesting conclusions. First,
there are no sequences with too large latent heat q (with q >

�
�/

�
2s
�
lnQ).

Second, the larger is q, the fewer sequences there are, and the more di�cult
is finding them. Third, when q is modest, there is still an exponentially
large number of sequences to choose from. Fourth, to make stable proteins
the alphabet should be rich enough, i.e., Q should not be too small; for
instance, the favorite toy of every protein theorist, heteropolymer with just
two monomer species, is definitely not good enough. All these conclusions
are of great importance to understanding the protein evolution, which we
will discuss some more in Chapter 14.

10.7 Memorizing (and Confusing) More Than
One Conformation

The above ideas are really far reaching. As an example of their application
in a more subtle context, let’s consider the possibility of a protein having
not one but several distinct low energy folded states. Such phenomenon is
known to biologists and medical doctors: some proteins have two or some-
times even three di↵erent folded states, and depending on the conditions
(or even on chance) they can fold into either one of them. Sometimes this
has bad medical consequences: in one of the folds protein performs some
useful function, while in the other it causes some deadly disease, such as,
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e.g., so-called “mad cow disease” (the discovery of these proteins, called
prions, in 1982 was the Nobel Prize winning work by S. Prusiner).

A useful starting point to explain the physics of this phenomenon is to
resort again to the idea that protein folding is the decoding of the message
contained in the sequence. In this sense, protein is an information pro-
cessing device, while folding process is akin to pattern recognition. But we
know that pattern recognition is sometimes ambiguous. For instance, some
of the sentences in our common language have more than one meaning 5.
Some visual images are also like that, as, for instance, some drawings by
M. Escher, where you can see in one picture either white birds flying to the
right or black birds flying to the left. Similar thing can happen also in a
protein, and we are in a good position to make even quantitative estimates
about it.

Note that protein sequence can serve as a code because the number
of possible sequences, QN , is greater that the number of possible confor-
mations, esN . Indeed, imagine that in a country of esN inhabitants you
want everyone to have a distinct, unique last name; having an alphabet
of Q characters, you must have the length of last names, N , such that
QN > esN . In reality, for proteins Q = 20 and es is usually about 5;
therefore, QN is indeed far greater than esN . This is why there is extra
“information capacity” left in the proteins to memorize more than one con-
formation. We can imagine that in fact some part of the sequence of only
M < N residues is su�cient to memorize (to code for) any conformation of
an N -monomer protein, that is QM = esN , or M = sN/ lnQ (these M need
not be in any way close to each other in the sequence). The other residues
are then free to memorize another information, and if there are M or more
of them — they can record a second, entirely independent conformation!
Generally, the number of conformations possible to memorize is, therefore,
K � N/M = lnQ/s.

This truly exciting result was first obtained in 2001 by T. Fink and
R. Ball at Cavendish Laboratory, Cambridge University in England6. We
mention three interesting consequences of this result. First, the number of
possible memorized conformations does not depend on the chain length, N .
Second, given that ln 20 � 3, we see that regular proteins can memorize

5An example from a scientific biography: “XYZ was a great scientist, but his addiction
to smoking finally caused his death, and appropriately a meeting of . . . Society was
dedicated to his memory”. It was appropriate to dedicate the meeting to his memory
because he was a great scientist or because of his addiction to smoking?
6Physical Review Letters, v. 87, p. 198103, 2001.
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typically not more than two independent conformations (for the attentive
reader, we emphasize the word “independent” here!). Third, we see that
two letter alphabet (Q = 2) is not enough, two letter heteropolymers —
these favorite toys of theorists — cannot be protein like, they cannot reliably
memorize even a single conformation.

One can then speculate that the existing alphabet of Q = 20 amino
acids is the result of evolutionary trade-o↵: having smaller Q would not
allow su�ciently stable proteins (restricting the latent heat q); having a
larger Q would make too many possibilities for prions.

10.8 Landscapes and Funnels

The coarse grained view of protein conformations, as we see, turned out
extraordinarily fruitful. It gave us at least a glimpse of physics under-
standing for otherwise seemingly mysterious properties of proteins. And
the potential of this approach is far from exhausted.

Nevertheless, people think of course about more detailed and more spe-
cific aspects of proteins and protein folding. A popular metaphor in the
discussions of this subject is that of an energy landscape. The idea is to
imagine a plot of potential energy of a protein — not the coarse grained
model (10.1), but the real full potential energy — as it depends on all the
internal degrees of freedom of the molecule, such as coordinates of all atoms,
valence and dihedral angles, and so on. Since it is not a one-dimensional
plot, one imagines a mountainous country, such as Switzerland, Caucasus,
Colorado, or Chile, with peaks, ridges, valleys, passes, etc. And now one
can think that folded state corresponds to one deep valley, while unfolded
states perhaps form a large shallow flatland, etc.

The landscape is by no means simple. To realize that, let’s mention that
apart from folded (native) and completely denatured state there is also so-
called molten globule state. O.B. Ptitsyn and his colleagues in Pouschino
near Moscow discovered in 1982 that, in many cases, denaturation is not
a globule-coil transition, but rather a transition from the native globule
to the molten globule. During this transition, the blocks of the secondary
structure remain sti↵, but open up a little. This gives more room to the
amino acids’ side groups. They can now oscillate and rotate more freely.
However, the globule as a whole remains stable. The openings are too
narrow to let in water molecules, so the hydrophobic e↵ect is not disturbed.
There is some evidence that molten globule might be an intermediate state
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on the way of renaturation. If that is the case, we can imagine that the
first stage of folding is reasonably quick, it roughly repeats the scenario
sketched in Figure 9.5 and ends up with a molten globule. Molten globule
already has some vague features of the tertiary structure, correctly outlined
but unfinished (e.g., particular positions of atomic blocks of the secondary
structure, etc.) The second stage takes then much longer. This is when all
the structural details are properly set (e.g., positions of individual atomic
groups, etc.) This is a possible scenario, but likely not the only one.

One important conclusion one may draw from thinking about the land-
scapes is the danger of local minima, which can serve as traps slowing down
the finding of the minimal energy native state. To emphasize the necessity
of sliding down without significant traps and barriers, yet another metaphor
is popular, that of a funnel: the landscape should be funnel shaped in order
for the native state to be readily accessible.

Landscape and funnel are nice images to keep in mind when thinking
about proteins. The trouble with them is that they exist in the space of
many-many dimensions. We know that the image of a mountainous coun-
try (two-dimensional landscape) is much more rich than just a curve with
maximums and minimums (one-dimensional landscape). It is reasonable
to think that things become proportionally more rich every time that we
add one more dimension. The complexity of landscapes arising when the
dimension becomes as large as proportional to N is tremendous, our brain
is not equipped to imagine it in any useful way. In this sense, landscapes
and funnels are even dangerous, for they often create a deceiving illusion
of understanding where real understanding is still elusive and very far. In
practice, whenever people say they use landscapes and funnels, they in fact
also use something else — they exercise physical intuition and guess the
few most important degrees of freedom to construct the imaginable low
dimensional landscapes. This is easy to say, but very di�cult to realize,
moreover, it is not always possible, and there are no systematic ways to do
it. . .

10.9 Nucleation, and the Resolution of Levinthal’s Paradox

Since we know from the coarse grained considerations that the protein-like
sequences provide for a very low lying ground state energy, corresponding
obviously to the very deep valley, we can use the landscape metaphor to
hint on the resolution of the Levinthal paradox (see Section 10.3).
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To explain the idea, let’s point out that a similar paradox could be for-
mulated for a more trivial case — formation of a crystal, say, crystallization
of water: how do molecules find their unique positions while they obviously
cannot manage to try all of the exponentially large number of possible ar-
rangements? Indeed, there are exponentially many eN configurations, so
an attempt to test them all would require an exponentially long time.

How is this later paradox resolved? In general, one useful way to
resolve a paradox is to reformulate it. In this case, we can view the
exponentially long time as arising from crossing a very high free energy
barrier. Indeed, let’s remember boiling water for the morning co↵ee and
think how liquid is transformed into gas. Obviously, liquid and gas are
vastly di↵erent in density, and we can, therefore, try plotting a “free en-
ergy landscape” as a function of density. We should remember that in
liquid phase molecules are close to each other and enjoy the attractive in-
teractions; this is energetically favorable. By contrast, in the gas phase,
molecules enjoy the freedom of independent relative motion, this is fa-
vorable entropy wise. Let’s now start from liquid phase and decrease
density a few percent; the system will loose virtually all of the energetic
advantage, because molecules are not close enough any more, and will not
gain entropy anywhere close to compensate the energy loss. It means,
free energy will be quite large, larger than in either liquid or gas phase
— which means there will be an energy barrier. Importantly, both energy
loss and entropy disadvantage in this scenario happen to each and every
molecule in the system, which means the height of free energy barrier will
be proportional to N , the number of molecules. Given that the time to
cross the barrier is exponential in barrier height, we arrive at the con-
clusion that liquid-gas transformation should take an exponentially long
time. . . This is another formulation of Levinthal’s paradox, and it is an
obvious absurdity: we do know that water does boil in a not so long
time!

The resolution of this later paradox is well known: crystallization, con-
densation, boiling and every other phase transformation of this type (so
called first order) occurs via nucleation. Indeed, rain water falls in little
droplets instead of the whole cloud suddenly condensing and falling on us
all at once. This means, plotting free energy as a function of density was
a bad idea; the landscape constructed this way turned out dramatically
misleading — and in this example it is pretty clear why: the system can
circumvent the high barrier by moving around it in a multi-dimensional
space. The landscapes should not be taken lightly! But with nucleation in
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mind things become clear: in crystallization, for instance, only a modest
size nucleus of the crystal has to be formed, the corresponding barrier height
is determined by the size of the nucleus instead of the whole system, and
once the nucleus overcomes the barrier — the rest is the downhill process
in the landscape language. In other words, the system does not perform
random walk in search for the crystal state, but rather it is forcefully driven
there, because every new arriving molecule is forced to the right place.

Similarly then one would expect the landscape of a foldable protein to
feature not only a very deep valley with the ground state at the bottom,
but also a funnel shaped region around this deep valley, such that molecule
slides straight down, not meeting significant energy barriers on the way and
not encountering large flatland to do the time consuming random walking
(the later also corresponds to entropy barrier).

We should emphasize that completely denatured coil-like protein chain,
when it is placed under the conditions of folding (e.g., temperature at which
folded state is stable), has to perform some search through a flatland (or
it has to overcome an entropic barrier), but it does not search for the
particular ground state conformation (which would be prohibitive according
to Levinthal). Instead, it searches for a very large region in the space of
conformations, the region which is the basin of attraction of the ground
state, or, for those who like the funnel metaphor, the upper entrance of
the funnel. In other words, the height of the barrier is not determined by
the size of the entire protein (which would correspond to the Levinthal’s
paradox), but rather by the much smaller nucleus size.

10.10 In vivo, in vitro, in virtuo . . .

Not only in the field of proteins, but virtually in any part of biological
physics scientists are usually not unanimous even about how to begin. Some
say, “To learn about living things, we have to study them while they are
still alive”. This is called in vivo. Meanwhile, others argue: “Life is too
complicated. We will understand nothing if we don’t experiment with rel-
atively simple pieces of living nature in the lab.” This is known as in
vitro. The discussions have been going on for decades, causing mutual irri-
tation, as well as progress on both sides. However, nowadays a third way
has appeared, which could be called in virtuo. We are talking about the



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

Globular Proteins and Folding 213

Fig. 10.2 Heteropolymer of 27 di↵erent monomers can fill a 3⇥ 3⇥ 3 domain on the
cubic lattice.

so-called “virtual reality” that does not exist anywhere but in the memory
of a computer7.

Let’s give an example from a familiar field. Imagine a “polymer“ that
consists of 27 units (monomers). Suppose the monomers can be positioned
at the vertices of a cubic lattice (Figure 10.2). In a close-packed state,
such a polymer would occupy the volume of a 3 � 3 � 3 cube (this is why
we chose the number 27 in the first place). Now, it turns out that a “27-
mer” can be arranged on a cubic lattice in surprisingly many ways. There
are about a hundred thousand possibilities (103,346, to be precise)! So you
could say that there are 103,346 di↵erent globular conformations. Although
the number is large, it is still possible for a computer to “churn out” the
energies of the polymer in all its conformations.

How can this be done? Say, there are monomers of Q di↵erent sorts
(we can think of them as di↵erent “colors”). How do they interact? Let’s
assume that, if two monomers of the same sort happen to be “neighbors”
on the lattice, they attract each other with a certain energy, �J . Mean-
while, two neighboring monomers of di↵erent sorts repel each other with
an energy +J . We could also look at various other kinds of interactions.
7Some people call it in silico, because present day computers use silicon-based semi-

conductor materials. We believe that the idea of computational studies does not depend
on the particular hardware; maybe, there will some day be other, non-silicon based
computers? What could they be based on? For this book, we must mention that there
are polymer-based organic semiconductors — maybe they will replace the silicon! Thus,
we prefer to use in virtuo.
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As a result, we would find that, for very many primary sequences, one of
the conformations has a much lower energy than any of the others.

The reader should of course notice that this lattice model is very closely
related to the coarse grained view of proteins that we discussed earlier
in this Chapter. Physicists often call lattice models toys — but this is
actually just a joke of restraint: humor is the best way to avoid pompous
seriousness which is incompatible with science. Lattice proteins is a very
serious business. They are used to test the theories, to get the hints on how
to improve the theories. For instance, we mentioned that only properly
selected sequences are foldable; this idea was tested with lattice models
and beautifully proved right.

Computer models (i.e. experiments in virtuo) can take us even farther,
but not really that far, unfortunately. Suppose you wish to explore a longer
polymer. The “magic” numbers that you have at your disposal are the
following: 36, 48, 64, 80, 100, 125, . . . . A “36-mer” can be close-packed on
a 3� 3� 4 lattice, a “48-mer” can be fitted on to a 3� 4� 4 lattice, etc. No
modern supercomputers have managed even to list all the possible states
of a “64-mer”. And you do need to list them all, before trying to discover
the state with the lowest energy. Nature may have learned somehow to
disregard Levinthal’s paradox, but we and our computers have not yet! A
“48-mer”, for example, has as many as 134,131,827,475 close-packed states.
This is too big a number to handle, in terms of calculating all the energies.
Thus, a “36-mer”, with its 84,731,192 close-packed states, and a “27-mer”
are the only two models that are manageable so far. They (along with some
models on a flat surface) have become the workhorses of in virtuo studies
of lattice proteins.

Not only the di�culties, but also the possibilities of the model grow
really fast with the chain length. For example, “36-mer” is the shortest of
the “magic” once that can have a knot, as shown in Figure C11.7.

The models can be improved in a di↵erent way. Look at the picture
Figure C10.3. Here is a lattice globule with a pocket, where we can put
a “substrate”. Figure C10.4 shows that this globule is able to “renature,”
i.e. to self-assemble its correct structure. In this sense, it is indeed similar
to a real protein molecular machine. Moreover, one can easily imagine the
whole machine shop, as in the Figure C10.5. In a way, this reminds us of
a well-known joke about a theoretician who decided to do biology. This is
how he started: “Suppose a horse has the shape of a cube, with a 1 m edge,
and weighs 1 kg. . . ” Indeed, just compare Figures C5.14 and C10.3! Well,
whatever you say, sometimes even a cubic horse might be useful.
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Sure enough, computational studies of proteins are not restricted to cu-
bic (or any other) lattices. O↵-lattice, the most ambitious approach is to
do the all-atom simulation, integrating Newton’s equations of motion for all
atoms in a protein along with the thousands of surrounding water molecules
(this is called molecular dynamics). Unfortunately, in the straightforward
approach, even the most powerful of modern supercomputers can only fol-
low the averaged size protein for at most several nanoseconds — about six
orders of magnitude short of a typical folding event, and this is not to men-
tion the host of other di�culties, like the choice of potentials, the role of
electrostatic forces, etc. People use a large variety of inventive strategies to
overcome these problems. One nice idea is to use thousands and thousands
of idling computers around the world — the so-called Folding@Home pro-
gram; we encourage the reader to visit the web site of the program and to
see for him- or herself.

Thus, together with the familiar in vivo and in vitro experiments, studies
of proteins in virtuo are going on as well at full speed.

10.11 Do We Understand Protein Folding?

Let’s summarize: do we understand folding?
In the opinion of a maximalist, the folding problem is the one of pre-

diction: if we knew the primary structure, could we in principle predict
the tertiary one? As we mentioned before, the latter question is a practical
one. If the answer were “yes”, we would no longer need complicated and
expensive X-ray and NMR analysis of proteins. Unfortunately, the ideal
full prediction is far from being true despite impressive achievements in
some cases. At present, we can guess the secondary structure with decent
accuracy (i.e. ↵- and �-segments), but predicting the tertiary structure
remains elusive. In this sense, protein folding is definitely not resolved.

An analogy might be useful here. At the dawn of computer era peo-
ple started working on computer chess — trying to instruct computer to
play chess. In fact, the overarching goal was to learn how human intellect
is working. Eventually computers became so powerful, they became able
to memorize so many positions and parties played by great chess masters,
that a specially build machine won a match against greatest of human chess
players, Kasparov. In our opinion, this is a highly unfortunate outcome:
the interest in computer chess is lost perhaps forever, while the goal to
understand human intellect remains as elusive as before — and the pursuit
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of this goal is, therefore, left for other approaches. Similarly, protein struc-
ture prediction may some day be solved by brut-force computing. If this
happens, it might become a useful achievement, but, unfortunately, it may
contribute nothing to the understanding of fundamentals.

But in terms of these fundamentals, we would dare to say that an im-
portant progress had been achieved over the last several years. Previously,
at the time of Anfinsen, protein folding seemed a fundamental physics mys-
tery. People could not imagine how it could be happening even in principle.
Now, there is at least an overall understanding of the basic physics behind
folding, as we tried to outline in the present chapter. There are lattice
models, which are very much unlike proteins in many respects (too many
and too obvious to list) — but which are like proteins in two most impor-
tant aspects: they have the same fundamental di�culties, such as Levinthal
paradox, and they do fold. And we understand this model pretty well! But,
of course, the study continues in many directions. . .

10.12 Wooden Toy

Some people like brain teasers, and there are special stores (including some
on the internet) selling puzzles of various kinds. We want to describe here
one of such puzzles, called “snake cube”, as it presents a surprisingly deep
analogy with protein folding problem. Sure enough, the analogy is limited,
and the reader should certainly exercise his or her sense of humor — but
the story is interesting. Here is how it goes.

The toy consists of 27 equal size wooden cubic blocks, usually about 1
centimeter each, connected as a snake (you can Google it as “snake puz-
zle”). Each pair of neighboring cubic blocks in the snake is connected by an
axis around which both of them can rotate freely; axis connects centers of
cubic blocks, and its length ensures that neighboring faces touch each other.
The rotation around these axes is similar to the rotation around �-bonds in
real polymers (see Chapter 2). Due to this rotation the snake as a whole is
“flexible”, it can be easily shaped into zillions of di↵erent shapes, or confor-
mations; in that it is also similar to a polymer chain with rotational isomer
mechanism of flexibility. In particular, among all other conformations, the
snake can adopt a fully folded conformation in the shape of a 3� 3� 3 cube.
This is illustrated in the Figure C10.6, where photographs are presented of
both unfolded (left) and folded (right) conformations.
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The toy is subject to Levinthal paradox: it is virtually impossible to test
all of its conformations, there are too many of them. Some people find the
way to fold the toy quite easily; others, some of them very clever, cannot
do it easily or fail altogether. We do not know what kind of mental ability
controls the toy folding success, and, like in proteins, we do not know how
to formulate the algorithm leading to successful folding and beating the
Levinthal estimate.

What makes this toy exciting for us is the fact that it has a sequence.
Apart from the two ends, where cubic blocks have only one connection axis
each, the two types of “monomers” assembled along the chain are shown
in the lower panel in Figure C10.6: they are blocks with two axes for two
neighbors going either in opposite directions on two opposite faces (one
type), or forming the 90� angle on two adjacent faces (another type). The
chain in the corresponding places is straight (first type) or makes a 90�

turn (second type), accordingly, we call these two types of monomers S
and C, respectively. The specific sequence of C and S for our particular
toy can be read o↵ the left panel of the Figure C10.6. Interestingly, we
examined several copies of the toy, manufactured in a number of di↵erent
countries, and all of them, although di↵erent in sizes, color, and material,
have nevertheless the same sequence. This seems highly unlikely to have
happened by chance, for the number of possible sequences is too large,
almost 17 million.8 It is more plausible that someone designed the first
toy, and then people copied it (similar events can also happen in biological
evolution of protein sequences — see Chapter 14).

This leads us to the question: are all of the possible almost 17 million
sequences foldable? The answer is, of course, no. For instance, if there are
even two S in a row anywhere in the sequence — such snake cannot fit into
the 3� 3� 3 cube. It is not completely trivial, but possible to calculate the
number of sequences having no double-S places; the result is substantially
smaller than 17 million, namely, it is 98, 514. Of course, this is only an
upper bound for the number of foldable sequences, because there might
be some other less obvious restrictions. This situation is similar to the

8At the first glance one may think that the number of sequences is 225, because for
the two blocks at the ends there is no choice, while for all other 25 positions there
are two choices for each. However, this way we double count, because we include for
every sequence also its reverse, so the closer estimate would be 224. In fact, we double
counted all of the sequences except the palindromic ones. The number of palindromes
is 213, because we have to choose arbitrarily only first 13 monomers, while the other
12 are determined uniquely to make a palindrome. Therefore, total number of distinct
sequences is 1

2

�
225 � 213

�
+ 213 = 224 + 212 = 16, 781, 312.
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real proteins: not all of the sequences are foldable, and in many cases we
can formulate some “grammar rules” (similar to “no S � S pairs” above)
substantially reducing the estimate of the number of foldable sequences
down from the enormous 20N . In real proteins, it is di�cult to identify all
such rules.

Another similarity, as well as the di↵erence with real proteins become
apparent if we compare the number of foldable sequences with the total
number of possible conformations. The former number, as we have just
seen, is not greater than 98, 514; the latter number (conformations of the
lattice 27-mer filling the 3� 3� 3), as we mentioned already (Section 10.10),
is 103, 346. The conclusion is that there are some sequences which can fold
into two (or maybe even more) di↵erent conformations! This is indeed
similar to the story we told in Section 10.7. Of course, the analogy with
proteins is limited, for instance, in proteins the number of sequences is
larger than the number of possible conformations. Still, the snake cube is
a great fun for someone thinking about proteins!
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Color Figures for Chapters 9–10

zoom:

Fig. C9.1 A computer simulated globule of a long chain. Notice that the globule is pretty
accurately spherical, its surface consists of loops, while its interior, particularly well seen
in the zoomed part, reminds a concentrated solution of di↵erent chains (compare Figure
C12.3) — even though in reality they are all distant parts of the same chain. The chain
is a homopolymer in terms of chain flexibility and monomer–monomer interactions being
the same for all monomers. However, to help the eye, the chain is colored, smoothly going
through the rainbow colors from one end to the other (e.g., one end is red and the other
is violet, with all intermediate colors in between). What one should notice is that any
particular color is not located in a particular region of the globule; just the opposite, every
color is reasonably uniformly distributed throughout the globule, and the local surrounding
of any monomer is full of all sorts of di↵erent colors, confirming that very distant parts of
the chain form contacts in the globule. The figure is courtesy of L. Mirny.
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Fig. C9.3 The dependence ↵(x) given by Equation (9.7) for di↵erent values of y ; from
top to bottom, the curves correspond to the following values of y : 10, 1, 0.1, 1/60, 0.01,
0.001, 0.0001. Here ↵ is the swelling parameter, that is, the ratio of the actual polymer
coil size to ideal coil size; ↵ < 1 corresponds to chain collapse, or formation of a globule.
Parameters x and y are defined such that x is controlled by the solvent quality and chain
length (x ⇠ BN

1/2/`3), while y is determined by the chain sti↵ness (y ⇠ C/`6); small values
of y correspond to rather sti↵ chains. In the panel (a), the dependencies ↵(x) for some values
of y are multivalued for certain interval of x (i.e., they have van der Waals like loops). In
the panel (b), one solution is selected for each x , such that the values of ↵(x) correspond to
the absolute minimum of free energy for every x .
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Fig. C9.4 The dependence of free en-
ergy F (↵) on the swelling parameter ↵
in the case where ↵(x) is multi-valued
function of x , characterizing the solvent
quality. As x changes (which can be
controlled by, say, temperature change),
the shape of F (↵) dependence changes
such that one minimum is getting deeper
on the expense of the other. Deeper
minimum corresponds to the more sta-
ble state. For this figure, we choose the
value y = 0.001.
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Environment change

Fig. C9.6 A cartoon showing gel collapse and swelling upon change of environment con-
ditions, such as, e.g., solvent composition, temperature and so on. The figure is courtesy of
T. Tanaka.
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Fig. C9.7 (a): A cartoon showing how free energy profile changes with the change of
environment, and how phase transition occurs when the barrier between states becomes very
low. (b): The volume of a polyacrylamide network in a mixture of acetone and water, as a
function of the percentage of acetone. (V0 is the volume that the network had when just
prepared.) The figure is courtesy of T. Tanaka.
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Fig. C9.9 (a): The dependencies
F (↵), Ue↵(↵) and U(↵) for a neutral
network. (b): The change in Ue↵(↵)
when the network acquires an electri-
cal charge. (c): F (↵) for a charged
network.

Fig. C9.10 A variety of factors that
can cause gel to collapse. The figure
is courtesy of T. Tanaka.
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Fig. C9.11 A cartoon of dsDNA packing into a virus head. The double helix, shown as
a worm-like polymer inside, is packed very densely, forming a globule. Figure is courtesy of
P.G. Khalatur.
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Fig. C10.1 This cartoon does not pretend to be very serious, but it explains why we
compare the protein folding transition to “reading with understanding”, or to the decoding
of a message. Indeed, the extended chain is a meaningless string of letters, but when it
has been folded correctly, it clearly states: “I am a protein”. Notice that it may also fold
incorrectly to ask: “Am I a piton?” — particularly if r and e masquerade themselves as a
question mark.
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Fig. C10.3 Lattice globule
with an “active site” capable to
specifically recognize a “target
molecule.”

Fig. C10.4 If, for some reason, the globule
shown in the Figure C10.3 is denatured, it is
able to renature back, with restoring the correct
“active site”. It is important that it does not
need any assistance to do that. In this sense, it
is indeed like a molecular machine. The figure
is courtesy of V.S. Pande.
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Fig. C10.5 Somewhat ficti-
tious picture presenting many
molecular machines working in
the water medium. The figure
is courtesy of V.S. Pande.

Fig. C10.6 Wooden Toy. The upper panels are the photographs of the toy in unfolded
(left) and folded (right) conformations. The lower panel presents two types of cubic blocks
in the toy, called S and C in the text, because they give rise to straight pieces and corners,
respectively.
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Chapter 11

To Knot or Not to Knot

My soul is an enchanted boat . . .

Percy Bysshe Shelley (1792–1827),
Asia: From Prometheus Unbound.

We bet every reader of ours have been annoyed — and perhaps more than
once — by a rope, or a thread, or a fishing line tangling and knotting
out of control. Does not this also happen to molecular “ropes” — polymer
chains? Do they spontaneously knot? This question was first asked by Max
Delbrück (1906–1981) in the DNA context in 1962 and, independently, by
Harry Frisch (1928–2007) and E.Wasserman for regular polymers in 1961.
In this chapter, we will discuss what is known about knots in polymers, but
first we have to digress into the exciting history of the subject.

11.1 Knots in Physics: What are Atoms?

Knots entertained people’s imagination since the time immemorial. People
used them for all sorts of purposes, as, e.g., in the legend about Gordian
Knot and Alexander the Great, and people did observe knots in nature, as,
e.g., some medieval sources mention finding knots in the umbilical cords
of some babies1. But the start of the scientific study of knots can be
dated pretty accurately to the year 1867, when William Thomson (1824–
1907, later to become knighted and named Lord Kelvin for his role in
the construction of Transatlantic telegraph cable) was thinking about the

1Modern statistics indicates that as many as about 1% of all newborn babies have their
umbilical cords knotted; some sources even suggest that these babies statistically tend
to have somewhat higher IQ later on in their lives.

227
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01 31

31

31#31
41 51 52 61

prime composite Fig. 11.1 Several
simple knots. For the
trefoil knot 31, two
isomers are shown, they
are mirror impages of one
another. Also, two
distinct composite knots
are shown (called granny

and square), combining
di↵erent trefoil isomers.

nature of atoms and came up with the following idea. Remember that at the
time perhaps the biggest puzzle in the whole of physics and chemistry was
why there are discrete species of atoms, that is, why there is no intermediate
forms between hydrogen and helium, between helium and lithium, and so
on. At the time people imagined space filled with ether — fictitious fluid
whose waves and ripples carry electric and magnetic forces. Thus, Thomson
imagined several “if’s”: if there are vertex lines, like little tornadoes, in
ether; and if ether is an ideal liquid, then the two vertex lines cannot
cross (i.e., would we say now in this book, vertex lines behave like polymer
chains); and if vertex lines could be closed — then there could be several
sorts of species, sketched in Figure 11.1. And the nice thing is that these
objects are definitely discrete — there are no intermediate forms. Perhaps
we can speculate that the knots presented in our Figure 11.1 could be the
atoms of hydrogen, helium, lithium . . . and so on, all the way down the
periodic table of chemical elements.

Isn’t it a nice idea? In our opinion, it is extremely beautiful; it is a pity
it did not prove true, but maybe it will play out at some other level some
time, maybe in the theory of strings in subatomic particles — we can only
hope that such beauty would not be wasted. “Nothing of what is nobly
done is ever lost.” — Charles Dickens.

Returning to the story, W. Thomson got understandably excited and
asked his friend and collaborator P.G. Tait (1831–1901) to make a table
of possible knots and also try to compute the frequencies at which the
knotted strings could oscillate — maybe, they hoped, it could explain the
atomic spectra? Tait worked hard, made first large table of knots and
formulated several conjectures about classification of knots. The excitement
among physicists continued for some years, but eventually nobody lesser
than James Clerk Maxwell (1831–1879) grew sceptical, for there was no
experimental support for the idea, and in 1878 he wrote in his letter to
Tait:
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My soul is an entangled knot,
Upon a liquid vortex wrought
By Intellect in the Unseen residing.
And thine doth like a convict sit,
With marlin spike untwisting it
Only to find its knottiness abiding;
Since all the tools for its untying
In four-dimensional space are lying.

It is rather obvious that Maxwell was paraphrasing Shelley — see our epi-
graph to this chapter. Apparently, these lines by Shelley were a sort of
cultural cliche at the time in Victorian England; a popular song by M.V.
White and a famous painting by Walter Crane were both called “My soul
is an enchanted boat”, so Maxwell was not alone to adore it. But what is
even more interesting is that Maxwell thought about spaces of the dimen-
sion other than three — even though he still did not know about non-integer
dimensions (see Chapter 13).

The work by Tait jump-started the mathematics of knots. But as far as
physics is concerned, knots went largely o↵ the physics horizon for almost
a century, until Max Delbrück and Harry Frisch, in the beginning of 1960s,
revived the interest in knots in a completely new context of polymers and
biopolymers.

11.2 Table of Knots

Although we do not plan to delve into mathematics, a few words are neces-
sary about classification of knots, just to introduce terms. The problem is
that there is an incredible variety of di↵erent types of knots. Traditionally,
starting from Tait, they are presented in the form of tables, similar to the
one shown in the Figure C11.2.

Knots are presented by their two dimensional projection indicating the
over- and underpasses. Surely, every knot can be drawn in many di↵er-
ent ways, with the di↵erent numbers of crossings, but the table uses for
each knot the projection with minimal possible number of crossings. For
instance, an unknot and a trefoil have minimal crossing numbers 0 and 3,
respectively.

Each knot in the table is denoted by its minimal crossing number. In
most cases, there is more than one type of knot with any given minimal
crossing number; for instance, two knots with five crossings. These di↵erent
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types of knots with the same crossing number are then labeled by di↵erent
values of the index. The choice of index has no significance and is deter-
mined by the tradition only. Thus, there are knots 5

1

and 5
2

with five
crossings, while an unknot and a trefoil are denoted 0

1

and 3
1

, respectively.
Some knots are chiral, i.e., knot is di↵erent from its mirror image. For

instance, there can be two distinct types of the trefoil, left and right, they
cannot be transformed into one another continuously. Other knots, such as
4
1

, are not chiral, they are mirror symmetric.
Table of knots includes only prime knots. Obviously, several knots can

be tied on a single rope, in which case one talks of a composite knot (this
is very similar to prime and composite numbers). Figure 11.1 shows two
ways to combine two trefoils. Importantly, one can easily convince oneself
that there is not such thing as an anti-knot or knot annihilation: given any
knot on the rope, one cannot tie another knot on the same rope such as to
make the composite knot an unknot (in this sense composition of knots is
like multiplication of integers, there is no analog of division, therefore, no
inverse).

Equipped with this terminology, we can return to physics.

11.3 Are Knots Common?

Delbrück and Frisch hypothesized knots in various polymers based on the
common sense considerations: all other known strings tangle, why not poly-
mers? Indeed, we should remember that polymer chains are not phan-
tom (see Section 2.6) and cannot cross. While accepting this logic, people
thought that knots is perhaps something exotic for polymers. Although
general expectation was that the probability of knotting, P

knot

, must be
small, for a while nobody could suggest any practical method to find out
for sure, neither experimentally nor theoretically. The di�culty is, given
a chain, to find out if there is a knot or not, and, if yes, then which kind.
The problem is aptly illustrated by the Figure C2.7: the reader is invited to
guess whether the DNA spilled out of a bacteria is knotted or not. . . Indeed,
polymer coil typically is a complex random shaped object, a mess if we look
at it — how can we find out whether it is knotted or not?

The breakthrough came around 1970 mostly due to the work of M.D.
Frank–Kamenetskii and his young co-workers A.V. Lukashin (1945–2004)
and A.V. Vologodskii in the Molecular Genetics Institute in Moscow.
These researchers realized that a piece of very abstract mathematics, called
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algebraic topology (or the theory of polynomial topological invariants) and
thought totally useless for any applications, is actually perfectly suited to
recognize knots by a computer. Therefore, if one could generate many-many
closed random walks on a computer, one could measure what fraction of
them is knotted. And generation of these “polymer conformations” is not
really that di�cult: we discussed this procedure already (see Section 2.4)
for the linear chains; it is not completely trivial, but possible to modify the
algorithm such that it produces closed trajectories, coming exactly to the
beginning after the given number of steps, N .

We should mention that polynomial topological invariants were invented
in 1920s by Princeton University mathematician James Waddell Alexander
II (1888–1971). What are these invariants? Theoretically, given any contin-
uous and not-self-intersecting closed curve in three-dimensional space, one
can compute a polynomial such that this polynomial would not change upon
any continuous deformation of the curve, but would change upon crossing
— that is, this Alexander polynomial is a topological invariant. For in-
stance, for any shape of the trefoil knot the polynomial is �(t) = t2 � t+1
while for the unknot it is �(t) = 1: whatever the shape of the unknot,
however bent and crumpled it might be, its Alexander polynomial is guar-
anteed to remain �(t) = 1; but the moment two pieces cross and the knot
becomes a trefoil, its polynomial changes to become �(t) = t2 � t + 1.
And what is t here? Nothing! It has no physical relevance whatsoever.
Alexander �(t) is just an abstract algebraic object. . . This is the type of
mathematics to which most physicists are usually deaf. But science teaches
us time after time that prejudice of any sort is a bad advisor, that a scien-
tist, to deserve the name, should keep his or her eyes open. . . In our story,
the researchers in Frank–Kamenetskii group realized that their computer
could work out Alexander polynomial for several values of t for every loop
generated and, for instance, if the result was �(�1) = 3, then the loop is
most likely the trefoil. (Most likely and not for sure because some other
rather complex knots also have the same Alexander polynomial as the tre-
foil; also, Alexander polynomial does not distinguish left from right; this
was not a significant problem, so let’s skip it here.)

That was truly an exciting idea. For the first time instead of vague
qualitative arguments people started measuring knot probabilities quan-
titatively, as concrete numbers. And sure enough, knots were found in
random closed loops — in small but perfectly noticeable and measurable
quantities. When plotted against the chain length N , the knot probability
P
knot

showed clear, more or less linear, tendency to increase. This was an
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encouraging sign, for it promised a higher harvest of knots in longer loops,
but it was also a very disturbing sign: if it keeps increasing, it will soon hit
100%!

The first simulations tested loops up to about N = 70. As computers
were rapidly getting more powerful, longer and longer loops were stud-
ied, and soon it became clear that P

knot

does indeed approach 100% with
increasing loop length. Knots are not exotic, but rather typical for long
enough polymers. Tacitly the mood and interest of researchers flipped the
sign, and the question became now about the unknots — how common are
they in long loops, or what is the probability P

unknot

= 1 � P
knot

. Year
after year, loops of up to about N = 3000 have been studied, and a simple
looking result emerged:

P
unknot

= e�N/N0 . (11.1)

Thus, unknots are exponentially rare in long loops, almost all long loops
are knotted.

But what is N
0

— a parameter appearing in formula (11.1)? Well,
formally it is a characteristic chain length at which the probability of unknot
decays by a factor of e. It depends, as it turns out, on the chain mechanism
of flexibility, on its excluded volume, and perhaps on other properties. But
in any case it is surprisingly large. It is about N

0

⇡ 250 for very thin
freely-jointed chain of straight segments, and it becomes even much larger
for the “thick” chains (with excluded volume), reaching N

0

⇡ 200, 000 for
the chains on a lattice. In this sense, knots become dominant only for very
very long loops, particularly when excluded volume is significant.

This was about knots in coils. As excluded volume reduces knotting, the
“negative excluded volume” — the poor solvent e↵ect or globular conforma-
tion — dramatically increases the knot probability, which is not inconsistent
with our mundane experience with ropes and the like.

This prompts us to make another remark, to avoid disorienting the
reader. Among present day professionals the greatest familiarity with knots,
perhaps, can be claimed by surgeons (with fishermen and mountaineers
close behind). For obvious reasons, surgeons are taught to tie reliable knots
which will not loosen under any circumstances, even if the stitches become
wet and slippery. This hints on the important role of friction in such macro-
scopic knots. We are not talking about this friction, dealing with molecular
knots only; for instance, DNA segments are negatively charged, avoid ap-
proaching each other too closely, and so dry friction is out of question.

The result (11.1) was proven as a mathematical theorem for several dif-
ferent models of loops (on cubic lattice, freely jointed, etc) — one of the



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

To Knot or Not to Knot 233

very few analytical theoretical results in the field (we recommend interested
reader the review article [34] where rigorous facts about knots statistics are
explained for physicists and where complete list of references is provided).
Nevertheless, a simple hand waving argument explaining exponential de-
pendence (11.1) is still missing, and there is no analytical understanding
whatsoever of the parameter N

0

. Lion’s share of our knowledge about knots
in polymers comes from computer simulations.

11.4 Knots in DNA

And how about experiments on polymer knots? The most important and,
luckily, also the easiest subject of such experiments is double helical DNA.
One nice experiment can de done using DNA with “sticky ends” – a long
double helix with each chain extending at one end by 15 or so unpaired nu-
cleotides beyond the counterpart chain. If the sequences of these extending
pieces are complementary to each other, they will stick upon first collision
due to the random fluctuations of the double helical coil. Can we then
determine the topology of the product?

One can also extract the ring DNA plasmid from bacteria and ask what
are their topological states. Again, the question is how to determine the
topology. As in the theoretical studies, this is the most di�cult part.

A possible approach is to cover DNA with some suitable proteins (such
as recA) to increase its thickness, then to adsorb it on a suitable surface,
and then it becomes possible to make either an electron microphotograph,
or an atomic force microscope image of it. One fruit of this very labor
consuming procedure, coming from the lab of Nicholas Cozzarelli (1939–
2006) at the University of California at Berkeley, is shown in the Figure
11.3. The result is interesting, for it shows, that native DNA is frequently
knotted. But surely this is not the way to address any statistical ques-
tions.

Another method is based on the fact that DNA is negatively charged
and, therefore, moves when the electric field is applied (see below Section
12.10). It is easy to believe that DNA with a more complex knot is, on
average, more compact and, therefore, moves faster through the gel. It is
this electrophoresis method that is behind most of the experimental discov-
eries in the field. In particular, all knots with up to six crossings have been
positively identified both in native plasmid and in experiments on DNA
with sticky ends.
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100 nm

Fig. 11.3 Electron micrograph of circular DNA.
This particular molecule is seen to be knotted; the
lower image shows DNA in the style of a knot dia-
gram and allows one to identify this knot as 62 (see
Table of Knots, Figure C11.2). This particular knot
was produced as a result of an enzyme-catalyzed
reaction, the so-called site specific genetic recom-
bination. Determining the topological properties of
products of such reactions proved a very e�cient
tool in the study of their mechanisms. The figure
is reproduced with permission from the paper: S.
Wasserman, J. Dungan and N. Cozzarelli, “Discov-
ery of a Predicted DNA Knot Substantiates a Model
for Site-Specific Recombination”, Science, v. 229,
p. 171, 1985.

Furthermore, the probabilities of knots computed in simulations for
chains of various thicknesses and measured in experiments for DNA under
di↵erent salt conditions agree quantitatively almost perfectly well. (Salt
ions screen the Coulomb repulsion between DNA segments and thus con-
trol the e↵ective diameter of DNA.)

We want to note in passing that this creates a situation somewhat un-
precedented in the whole of history of science: researchers claim a rather
complete understanding of DNA knotting, based on the agreement between
simulations and experiments, but we have no theory. Will it stay that way,
or somebody will eventually be able to crack a theory — remains to be
seen.

11.5 Plectonemic DNA and Topological Enzymes

Double helical DNA is of course just a polymer, but a very peculiar one –
in many respects. One peculiarity is that double helix has twisting rigidity.
Usual chemical polymer chains, such as the ones shown in Figure 2.1, or
protein chains in Figure 5.4, if we twist one end with respect to the other,
can relax the deformation by turning around the single covalent bonds of
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their backbones. DNA is decidedly not like that. A useful way to think
about it is to imagine preparing closed circular DNA from a piece of linear
double helix: we should bend the double helix to align its two ends against
each other, and then connect the ends. Chemically, 50 end of one chain
can be connected to the 30 end of the same chain (see Figures 5.5 and
5.6 about these ends). This is why closed circular DNA always has two
strands topologically linked to each other, like it is sketched in Figure 2.10
(e). Still, this leaves one degree of freedom: the loop can be prepared with
di↵erent values of the linking number between two strands. We recommend
the reader to practice this process with a long narrow strip of paper (say,
25 cm by 0.5 cm). Label the two long sides of your strip with markers
of two di↵erent colors (representing two strands of the DNA) and now try
making a loop by gluing the ends together matching the colored sides. The
later “color-matching” condition rules out Möbius stripe as well as other
similar one-sided constructs with half-integer number of turns, and leaves
only the possibilities to make an integer number of turns. In reality, the
double helical DNA already has turns, about one turn per ten base pairs,
so what we can do is we can force some integer number of super-turns,
positive (if we tighten the double helix) or negative (if we loosen it).

By making a certain number of super-turns we fix the linking number
between DNA strands. Notice that linking number is a topological invariant
and cannot be changed without breaking the chemical bonds. A beautiful
mathematical theorem establishes that the amount of twist and the linking
number are related to each other depending on the shape of the double
helix in space. The discovery of this theorem and its subsequent use to
decipher many biologically relevant properties of DNA is one of the most
beautiful success stories of the interdisciplinary development involving bi-
ologists, physicists, mathematicians, etc. It is a pity that this story is too
complex to be told here. We only mention that, since the linking number is
a topological invariant and cannot be changed without breaking the bonds,
the molecule minimizes its free energy by balancing the torsional deforma-
tion energy, the bending deformation energy, and conformational entropy.
This leads to interesting forms which are called plectonemic and which can
be realized not only in DNA, as exemplified in the Figures C11.4 (a) and
(b), but also in a telephone cord C11.4 (b) (the latter happens because we
take the receiver and put it back by di↵erent moves, introducing each time
360� of torsional deformation).

To conclude our brief visit to the subject of DNA topology, we should
mention that the cells have developed the special machinery to deal with
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topological constraints in DNA. This of course only confirms the importance
of topological properties for molecular biology. The sheer number of di↵er-
ent types of topologically-relevant enzymes and the list of cellular processes
(including, e.g., DNA replication) in which these enzymes are involved goes
far beyond the framework of this book. We will only mention that there
are two broad categories of topological enzymes — the ones which do not,
and the ones which do, consume energy. The latter ones are in many ways
very similar to molecular motors (see Section 5.8). Why some topological
processes require energy while others do not is an intriguing question; some
answers to it are known, some are not, and the reader who continues to
study the subject beyond the present book has a good chance to learn lots
of exciting stu↵.

11.6 Knots in Proteins

The logic of a biologist is unlikely to make parallels between DNA and
proteins, for they are of completely di↵erent roles in the cell. By contrast,
the logic of polymer physics makes such comparison quite natural. Thus,
are there knots in proteins? Proteins are, of course, much shorter, but they
are globular, so the question is delicate.

This question is delicate also in a more fundamental sense: proteins are
never loops, they are linear polymers with free ends. Because of that, the
question of knots in proteins is not legitimate in the strict mathematical
sense. But we should not be too rigid applying mathematical rigor — any-
one with shoe laces will confirm that there is di↵erence between a knot and
an unknot for polymers with available ends. More to the point, the more
compact is the linear polymer with open ends — the less ambiguous is the
question of its knots. Indeed, consider a closed loop consisting of a poly-
mer and a straight segment connecting its terminals. Its topological state
is perfectly defined, and it is believable that the role of straight connector
is small when the ratio of its length to the polymer length is small, which
is particularly well obeyed for globules. In fact, there are better and more
sophisticated ways to close the loop, using a not-necessarily-straight con-
nection of terminals — but we shall not touch upon this here. The essence
is that the question of knots in proteins can be formulated and should be
addressed.

The answer is positive: yes, there are proteins with knots. Sometimes,
these are simple trefoil knots, but a few cases are known with rather complex
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Fig. 11.6 A slip knot. It is not really a knot,
because you can untie it if you just pull the ends.
Nevertheless, it is an interesting long lived feature
of some proteins. Some data on slip knots in real
proteins can be found in the paper: J. Sulkowska, P.
Sulkowski and J. Onuchic, Proceedings of the Na-
tional Academy of Sciences, USA, v. 106, p. 3119,
2009.

knots. For instance, Figure C11.5 shows the protein called human ubiquitin
hydrolase featuring the knot as complex as 5

1

. Other proteins feature so-
called slip knots, as illustrated in Figure 11.6. Not much is known beyond
the fact that the knots exist. For instance, the fraction of proteins with
knots in the protein data base is much smaller than one would expect if
conformations were random; the reason for this fact is not known, although
there is no shortage of speculations. Are knots of some special importance
for protein function? There are speculations that this is the case for the
human ubiquitin hydrolase mentioned above. But in general the question
of the role of knots in proteins is wide open.

Knots can of course be addressed also for toy lattice “proteins” discussed
in section 10.10. The shortest cubic lattice knot has 24 monomers (Figure
C11.7 a), but it is not space filling. The shortest space filling (open ended)
lattice polymer to have knot is 36-mer. Its conformation with a trefoil knot
is shown in the Figure C11.7. By the way, if the sequence of monomer
species in it is properly selected (see Section 10.6), it folds (in virtuo, of
course) quite successfully, and not much slower that the corresponding chain
without a knot — which opens even wider the question as to why real
proteins are statistically less likely to have knots than random.
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Chapter 12

Dynamics of Polymeric Fluids

So he started to climb out of the hole.
He pulled with his front paws, and
pushed with his back paws, and in a
little while his nose was out in the open
again. . . and then his ears. . . and then
his front paws. . . and then his shoul-
ders.. and then. . .

A. Milne,
Winnie The Pooh

12.1 Viscosity

What do we mean by a polymeric fluid? It is a viscous liquid, made of
heavily entangled polymer chains. In particular, it could be a polymer
melt, a concentrated or a semi-dilute polymer solution. You can easily get
a feel for what these are like. All you need to do is melt a piece of ordinary
plastic, so that it starts flowing. Obviously the most significant reason
why polymeric liquids are important is because they are encountered in
all technological processes of plastic production. Polymeric fluids are quite
peculiar. In many ways, they are nothing like water or any other ordinary
fluid that we are used to.

The first thing that strikes you is the high viscosity. It is normally much
higher than for water. The physical cause of viscosity is internal friction.
This acts between adjacent layers of the flowing fluid. Thus, we can say
that internal friction in fluid polymers is greater than in water.

239
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x=v t

h

Fig. 12.1 A liquid layer between
two parallel plates. The upper plate
is moving at a speed v causing a sim-
ple shear flow.

Let’s bring some maths into it. Figure 12.1 shows a very simple ex-
periment. Some liquid is confined between two flat horizontal plates, a
distance h apart. The lower plate is at rest, but the upper plate is moving
at a constant speed v. How will the liquid at di↵erent heights move? A
thin layer of liquid at the very bottom will stay at rest, due to internal
friction. This layer is e↵ectively “glued” to the lower plate. Similarly, the
uppermost layer will be dragged by the upper plate with speed v. The
distribution of the speed across the liquid, shown in Figure 12.1, is called
a simple shear flow. Of course, the upper plate does not move of its own
accord, but is pulled by an external force. The question is: can we calcu-
late the force f which must be exerted on the upper plate to maintain its
motion with speed v and, therefore, to maintain a simple shear flow of the
liquid? The first point is that the force necessary to exert must be equal
(in absolute value) to the friction force — because we are interested in the
motion with a constant speed (sometimes called terminal velocity in some
physics textbooks). The second point is that the internal friction in liquid
is usually proportional to the speed and, therefore, the necessary force must
be proportional to the velocity v; further, it is quite natural that the force
is proportional to the surface area of the upper or lower plate, A, because
friction acts everywhere along the plate. Finally, force has to be inversely
proportional to the spacing between plates, h, because the smaller is h the
sharper is velocity profile, and greater is the friction between neighboring
layers of liquid. This problem is one of the most classical in physics, it was
studied in great detail by the likes of Newton and Stokes, they came up
with equation

f = ⌘
Av

h
, (12.1)

where ⌘ is the property of liquid known as the coe�cient of viscosity, or just
the viscosity. It gives a measure of how viscous the liquid is. For example,
water has ⌘ � 10�3

kg

m�s (at room temperature and normal atmospheric
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pressure), ketchup or honey has ⌘ � 10 kg

m�s , whereas polymeric liquids in
practice often have ⌘ as much as 103 kg

m�s — depending on how long the
chains are, and whether there is any solvent1.

12.2 Viscoelasticity

The unusually high viscosity is not the only surprise that polymeric fluids
o↵er. Another interesting and maybe even more important property is
the viscoelasticity. Depending on how rapidly the external force changes,
polymeric fluids can behave either like normal, low molecular weight liquids,
albeit very viscous, or like elastic solids.

A whole series of nice experiments to demonstrate viscoelasticity can
be easily performed at home, as demonstrated in Figure C12.2. Take a toy
widely known as “silly putty” (or sometimes “jumping putty”). It repre-
sents nothing more than a piece of the polymeric material called silicone,
but it has a potential to entertain children and grown ups alike, for quite a
while. To begin with, you can easily give the toy virtually any shape you
like by, e.g., rolling it between your palms (Figure C12.2 a). If you make it
into a ball (Figure C12.2 b) and drop it on the floor — it will bounce and
jump just like rubber (Figure C12.2 c and d ; remember the Native Ameri-
can balls made from natural, unvulcanized rubber?). Now shape the same
piece of silicone into a sausage (Figure C12.2 e) and leave it for some time;
in a few hours there remains no doubt that it is a flowing liquid (Figure
C12.2 f ).

How can we explain such a “double life”? The polymer behaves as a
liquid when steadily a↵ected by gravity over a long period of time (Figure
C12.2 f ). On the other hand, when the action of the force is very short
(when hitting the floor, Figure C12.2 c), the reaction is elastic. This is
viscoelasticity. In general, viscoelastic bodies tend to show a viscous re-
sponse to a slowly changing force, and an elastic response to one which
varies quickly.

Peculiar combination of viscous and elastic properties can be also see in
the following siphon e↵ect (Figure C12.2 g). Place a sample of viscoelastic
polymer (such as properly shaped “silly putty”) in a tilted glass container
(A) such that a su�cient part of the material extends beyond the container

1A purist will say that glasses (see Section 4.3) are also liquids, and their viscosities
are many orders of magnitude higher. Purist is right, as usual — but we are also right:
polymeric liquids are very viscous even far from glass transition.
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and continues below its bottom (B). It looks amazing, but the polymer will
not stop oozing from the A to B, until A is completely empty! Thus, A and
B behave as if they were connected by a tube (a siphon), except there isn’t
one — the role of the tube is played by the flow itself. Clearly, this would
not work with water or another ordinary liquid whose behavior is mainly
viscous. There must be some elasticity as well to achieve this e↵ect.

There is yet another interesting experiment on viscoelasticity. Get hold
of a cylindrical jar full of a concentrated polymer solution. Install another,
smaller cylinder inside the jar, so that it can turn around the common axis
of both cylinders. Make the inner cylinder rotate at a constant angular
speed for a while, and then suddenly let it go. Guess what will happen.
Before stopping, the inner cylinder will turn back a little in the opposite
direction! The angle of this backwards turn can reach a few degrees. Such
unusual behavior is certainly a sign of viscoelasticity.

All polymeric liquids are viscoelastic. This suggests that viscoelasticity
is not caused by something special in the chemical structure; it is a uni-
versal property. This is why theoretical physicists have flocked to study
viscoelasticity and, in general, the dynamics of fluid polymers.

Is the viscoelasticity of polymeric fluids really so unexpected? Imagine a
bunch of very long, very mixed up, and entangled chains; a plausible image
of this mess is shown in the Figure C12.3. How can it flow? Obviously, a
certain chain, if it wants to move, has to slither along a little wiggly corridor
inside the bunch, undoing the knots on its way. This sort of picture inspired
the theory of reptations (named after the snaky motion of reptiles). As the
first successful molecular theory of fluid polymer dynamics, it was developed
back in the 1970s by the physicists P.G. de Gennes (1932–2007) at College
de France in Paris, M. Doi at the university of Tokyo, and S.F. Edwards
from Cambridge University in England.

Before we tell you more, we’ll just make one comment. Some readers
may have heard of L.D. Landau’s scepticism about molecular theories of
liquids. He thought it was impossible to create such a theory. All liquids
are so di↵erent, they just don’t seem to have enough in common for a
common theory. Compare, for example, liquid helium and ordinary water.
Another awkward thing about liquids is that there are no obvious small or
large parameters. Most of the important dimensionless parameters are of
order 1. This is a nuisance. As we have seen in Section 8.1, if you want
to simplify a system’s behavior, and build an ideal model for it, you need
some small or large parameters.
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However, it is not so bad with polymeric liquids. There is a natural
large parameter, the number N of monomer units in a chain. This is why
it would be helpful to know how parameters such as the viscosity and
molecular di↵usion coe�cients depend on N , in the limit of N � 1. The
form of this dependence will determine how the polymer behaves. Such a
situation allows us to use a very common approach of theoretical physics.

12.3 The Reptation Model

Let’s pick a test chain in a polymeric liquid. Imagine for a minute
that all the other chains are “frozen” and cannot move. What can the
test chain do in such a “frozen” jungle? It cannot go through other
molecules. So it will be confined in a sort of tube formed by the neigh-
boring chains (Figure 12.4). This is a fundamental concept. The chain
cannot move through the walls of the tube, so all it can do is to crawl
along. This is very clearly seen in a two-dimensional version in Figure
12.5. (In this figure, the “frozen” surroundings are modeled by fixed ob-
stacles on the plane, which cannot be crossed by the chain whilst it is
moving.) If there are no external forces, the motion along the tube is ob-
viously purely di↵usive. It is like Brownian motion (see Chapter 6): the
chain makes random steps in one or other direction, with equal probabil-
ity.

Now, let’s “defrost” the surrounding chains. Then more opportunities
for the test chain will arise. Some of the neighboring chains will start
moving away. Therefore, some constraints and entanglements that had
formed the tube (Figures 12.4 and 12.5) will gradually disappear (or “de-
cay”). However, as P.G. de Gennes showed, this e↵ect is not important.
The chain will snake out of the “frozen” tube much sooner than it takes the

Fig. 12.4 A polymer chain among other
chains, in a concentrated system.
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Fig. 12.5 A sketch of a polymer chain in a network of “frozen” obstacles (two dimensional
case).

constraints to decay. This is why the motion in a fixed tube of obstacles is
the main mechanism for the dynamics of a highly entangled chain.

The snakelike motion along the tube is called reptation, from the Latin
reptare, “to crawl”. The corresponding model of polymeric liquids is known
as the reptation model.

12.4 The Longest Relaxation Time

It is interesting to see what we can learn from the reptation model. The
best way to see it is to look at a simple experiment. Take a polymer melt
or a concentrated solution and place it between two plates, similar to the
geometry shown in Figure 12.1 (in practice it can also be a gap between
two co-axial cylinders). At time t = 0, apply a constant shear stress �, and
measure the relative deformation, or strain �, as it develops in time after
the stress is switched on at t = 0. If � is small, the deformation will be
proportional to the stress:

�(t) = �J(t) . (12.2)

The function J(t) is called the compliance of the material. On a logarithmic
scale, it looks like the curve in Figure 12.6 a. After a sharp rise at the start,
it reaches a plateau, J(t) = J

0

= const. If we set this constant J
0

= 1/G,
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then, in the plateau region, we have

� = G� , (12.3)

which is essentially the Hooke’s law, and G is shear modulus. Strictly
speaking, the most common formulation of Hook’s law Equation (4.1) is
di↵erent from formula (12.3) in the sense that the former describes elon-
gation while the latter describes shear. But since the volume of polymer
samples hardly changes, we can brush aside the di↵erence between these
types of deformations; in particular, shear modulus G and Young modu-
lus E are not significantly di↵erent for these systems. Thus, the system is
elastic in the plateau region, with Young’s modulus E � 1/J

0

.
Only after a long enough time, t > ⌧? (Figure 12.6 a), does the defor-

mation become irreversible, and the polymer starts to flow. In this case,
the compliance is a linear function of time, J(t) = J

1

t+ J
2

, where J
1

and
J
2

do not change with t. Let’s compare this dependence with the definition
(12.2) of the function J(t). We can conclude that in the range t > ⌧? the
stress is no longer proportional to the strain, but rather to the rate at which
the strain increases

� � J� 1

1

d�

d⌧
. (12.4)

This is the typical behavior of fluids. If you are not convinced, just compare
Equation (12.4) with the Newton–Stokes law (12.1). Figure 12.1 indicates
that tan � = x/h, where x is the displacement of the top plate from where it
was at t = 0. Hence, if � is small, � � x/h. Remembering that v = dx/dt,
we can re-write formula (12.1) as

f

A
= ⌘

v

h
= ⌘

d (x/h)

dt
= ⌘

d�

dt
. (12.5)

Further, we can replace the ratio f/A in the left hand side with the tan-
gential shear stress �. The most interesting result we can draw is that the
coe�cient J� 1

1

in (12.4) is nothing else but the viscosity of the polymer
liquid ⌘. Thus,

� = ⌘
d�

dt
. (12.6)

Let’s summarize. At t < ⌧? the polymer melt behaves as an elastic
body (see (12.3)), whereas at t > ⌧? it is rather like an ordinary fluid (see
(12.6)). Just for comparison, we have also sketched the compliance function
J(t) for a typical non-polymeric liquid (e.g., water) in Figure 12.6 b. You
can see that this graph has no intermediate plateau region corresponding
to elastic behavior (12.3).
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Fig. 12.6 Mechanical response of any material can be tested in many ways, of which the
ideologically simplest is the “switch-on” experiment (panels a and b), while technically most
robust is the “oscillating load” experiment (panels c and d). The corresponding load versus
time protocols are shown in the insets. In a “switch-on” experiment, the time evolution of
the strain after step-wise application of stress is described by the compliance function J(t)
plotted schematically in double logarithmic scale in panel (a) for a polymeric liquid and, for
comparison, in panel (b) for a regular low molecular mass fluid (solid line) and for a solid
(dashed line). The major feature of a polymer system is the presence of plateau region at
t < ⌧⇤. Comparing with the dashed line in panel (b), the plateau of the compliance for
polymeric system means elastic type of behavior at times up to about ⌧⇤ (compare bouncing
ball in Figure C12.2 c and d). By contrast, the linear increase of polymeric compliance J(t)
at t > ⌧⇤ is characteristic of viscous behavior, similar to solid line in (b) (compare flowing
liquid behavior in Figure C12.2 e and f). Panels (c) and (d) convey the same physical idea,
they show the results of real oscillating load experiment. The results of such experiment
are reported in terms of the two parts of the response, elastic part, which stays in phase
with the driving force, and viscous part, which lags behind by ⇡/2 in phase; they are called
traditionally G

0 and G

00, respectively, and they are plotted in the double logarithmic scale
against frequency !. The data are obtained for polystrene at 160�C, and exhibit clearly
the characteristic plateau behavior at the range of frequencies whose periods correspond to
t between microscopic time and ⌧⇤. Di↵erent curves correspond to samples with di↵erent
chain lengths. Panels (c) and (d) are reproduced with permission from the paper S. Onogi, T.
Masuda and K. Kitagawa, “Rheological Properties of Anionic Polysterens”, Macromolecules,
v. 3, n. 2, pp. 109–116, 1970.
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The time ⌧?, when the polymer’s type of response to the stress changes,
is called the longest relaxation time.

What came before the reptation model? Experimental data like the one
in Figure 12.6 a used to be explained in the following way. A polymeric
liquid was thought to contain some kind of e↵ective cross-links. In contrast
to the usual chemical cross-links (formed by chemical bonds), the e↵ective
ones do not live for long. They can only last for a period of the order of
⌧?. Then they break (or “decay”), and new cross-links are created at other
places, and so on. Thus, when t � ⌧?, the cross-links do not have enough
time to vanish. They hold the sample together, so it behaves like an elastic
body. In contrast, when t � ⌧?, the cross-links start decaying, and the
sample flows.

The reptation model makes this picture clearer. It tells us what these
cross-links really are, at a molecular level. For example, pick two chains in
a polymer melt. They are both confined in their own fixed tubes. Suppose
these tubes pass near to one other (Figure 12.7). Then the two molecules
will have to enjoy each other’s company, until one of them abandons the
part of its tube that comes close to the other tube. You could say that,
while the two tubes are next to each other, there is an e↵ective cross-link in
that area. However, as soon as one of the chains leaves the neighborhood
area, the cross-link will disappear.

Now you can see the microscopic meaning of ⌧?, which we introduced
as a typical relaxation time of e↵ective cross-links. The cross-links decay

Fig. 12.7 Two polymer chains
forming an e↵ective cross-link.

Fig. 12.8 Successive stages of a polymer chain leav-
ing its original tube.
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because of the chains’ reptation, that is, because the chains slither out of
their tubes. Therefore, ⌧? gives an idea of the time it takes for the chain to
abandon its original tube (where it was at t = 0). After this period of time,
the chain finds itself in a brand new tube into which the random motion
of its ends has led it (Figure 12.8). You can say that the tube has been
fully “renewed”. All the original cross-links (i.e., the neighboring parts of
di↵erent tubes) have totally vanished.

Let’s go back to the simplest experiment shown in Figure 12.6, where
we applied a small constant stress � at t = 0. What estimates can we
make for the compliance in the ranges t � ⌧? (viscous flow) and t � ⌧?

(elasticity)? From (12.6) and (12.2), we deduce that J(t) � J
1

t � t/⌘ for
t � ⌧?. On the other hand, from (12.3) we have J(t) � 1/E for t � ⌧?.
Can we tell what happens for t � ⌧?? Obviously, the two estimates should
merge smoothly into one another. This idea leads us to a very important
relationship between the viscosity ⌘, the longest relaxation time ⌧?, and
Young’s modulus E for a network of e↵ective cross-links:

⌘ � E⌧? . (12.7)

This relationship can help us to learn about the viscosity of a polymer
solution. In particular, we can use it to figure out how the viscosity de-
pends on the number of monomer units N in a chain (in the limit N � 1).
Presumably, we need to know first how E and ⌧? depend on N . So we
should venture a little investigation. Let’s consider E and ⌧? separately,
and concentrate on the case of a polymer melt, to make it easier. In prin-
ciple, the same sort of logic should apply to concentrated and semi-dilute
solutions.

12.5 Young’s Modulus of a Network of E↵ective
Cross-Links

A network of e↵ective cross-links behaves as a normal elastic network for
t � ⌧?. We discussed the classical theory of high elasticity in Chapter 7.
The Young’s modulus of a network, as you remember, is of the order of
k
B

T multiplied by the density of cross-links. (As usual, k
B

is Boltzmann’s
constant, and T is the temperature.)

Thus, we have to work out roughly how many e↵ective cross-links there
are in a polymer melt. The tricky bit is to decide what exactly is an e↵ective
cross-link, and what is not. All the chains are highly entangled. An extreme
view would be to regard any contact between a pair of chains as an e↵ective
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cross-link. This is not completely illogical. Whenever a pair of chains come
close to each other, their further motion is constrained (since they cannot
go through each other). This is why the number of conformations allowed
for each chain is much less than it would be in free space. You could model
such topological constraints by e↵ective cross-links.

What sort of picture would we really get if we replaced each contact
between the chains by a cross-link? As you can imagine, it would be a
very densely woven structure. All the cross-links would make it extremely
sti↵, and so it would be nothing like an ordinary elastic body (i.e., nothing
like our melt for t � ⌧?). Suppose the chains in the melt are flexible, with
Kuhn segment `. The number of contacts per unit volume is approximately
1/`3. Let’s accept for a moment the extreme view we have suggested. Then
Young’s modulus of the melt (i.e., of the network of e↵ective cross-links)
would be E � k

B

T/`3. How good is this estimate? We can check it if we use
it to calculate the plateau value of the compliance, J

0

= 1/E, for various
melts. It turns out that the answers it gives are far too high compared with
experiments.

This is not surprising. In fact, there is a big di↵erence between an
e↵ective cross-link and a mere contact between the chains. Look at Figure
12.9 a, for example. The two chains pass near each other, so we can say that
they are in contact. However, this does not seriously restrict their freedom,
that is, the choice of possible conformations. In contrast, the contact shown
in Figure 12.9 b is much more constraining. It is really just the same as a
cross-link. In this case, the number of allowed conformations is obviously
much reduced.

Thus, there are contacts and contacts. Not all of them play the role of
e↵ective cross-links. Taking this into account, let’s modify the estimate for

a b c

1 2
3

Fig. 12.9 Contacts between polymer chains: (a) without an e↵ective crosslink; (b) with
an e↵ective crosslink. Panel (c) shows that in general presence or absence of an e↵ective
crosslink between two chains might depend on the other chains around: in this example,
chains 1 and 2 are linked if chain 3 is there, but would not be linked without chain 3.
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E:

E � k
B

T

N
e

`3
. (12.8)

Here N
e

is the average number of monomer units along the chain between
two nearest e↵ective cross-links. The parameter N

e

is the only phenomeno-
logical one in the modern theory of polymeric liquids (i.e., it has to be found
separately, from some other arguments or observations). Nobody has yet
worked out how to calculate it from a knowledge of the microscopic struc-
ture. All we can say is that it must be somehow related to the ability of
the chains to form knots with each other. Therefore, it must depend on the
chain sti↵ness and geometry (e.g., whether it has any side branches, and so
on). You can find N

e

experimentally, from the value of Young’s modulus
corresponding to the plateau in Figure 12.6 a. Typically, N

e

ranges from
50 to 500. In any case, N

e

� 1. This confirms that only a small number
of contacts work as e↵ective cross-links.

Given that that the “entanglement length” N
e

is large, one should ask
— how long should the chains be to make for a highly entangled polymer
melt? The reptation model talks about a chain in a tube. It only makes
sense if there is a great number of e↵ective cross-links per chain, that is,
N/N

e

� 1, or N � N
e

. We shall bear this in mind when deriving how the
viscosity ⌘ and the maximum relaxation time ⌧? depend on N .

12.6 The Tube

In order to find ⌘ and ⌧?, we will pick a chain and explore its tube in more
detail. The tube is created by other chains. If they come into contact with
the test chain, they act as obstacles to the chain’s motion. However, we
have seen that only a small proportion of such contacts can really limit the
chain’s choice of conformations. This proportion is of the order of 1/N

e

.
These are the contacts which can be regarded as e↵ective cross-links.

Therefore, we come up with the following picture of a chain in a tube
(Figure 12.10). First of all, there is a characteristic size d � `N

1/2

e

, which
roughly gives the distance between two nearest cross-links along the chain.
On the scale r < d, the chain does not “feel” the e↵ective cross-links. So
it has the full choice of allowed conformations. On the other hand, for
distances r > d, the e↵ective cross-links create the tube. This is why d

must be the same as the diameter of the tube. Now we can regard the
chain as a sequence of “blobs” of size d. Each blob contains N

e

monomers,
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Fig. 12.10 A chain in a tube.

and behaves as an ideal polymer coil. (The blobs are ideal because the
excluded volume interactions are completely screened in a polymer melt
(see Chapter 8).) They fill the tube, lining up along its axis. Hence, the
total contour length of the tube axis is ⇤ � (N/N

e

)d, since N/N
e

is the
number of blobs per chain. Remembering that d � `N

1/2

e

, we get:

⇤ � `NN�1/2

e

. (12.9)

Notice that this result for the length of the tube is much less than the full
length of the chain N`. This is because N

e

� 1.

12.7 The Dependence of the Longest Relaxation Time on
the Chain Length

Now let’s calculate the longest relaxation time ⌧? for a polymer melt. As
we have said, it is the time that a reptating chain takes to leave its original
tube. To do this, the chain obviously has to di↵use along the tube axis by
a distance of order ⇤.

When a chain moves in a dense system (like a polymer melt), the fric-
tional forces acting on each monomer are totally independent. Hence, the
total frictional force experienced by the moving chain is simply the sum of
the frictional forces on each individual monomer. How can we find these
frictional forces on the monomers? Let’s focus on one monomer; suppose
it has a velocity v. This is the velocity of di↵usion, so it is not too high.
(To be more precise, it is of the same order as the thermal velocity of the
monomer.) This gives us the right to take the force f of viscous friction
to be proportional to the velocity: f = �µv. Here µ is the coe�cient of
friction for a single monomer. Since the total friction is the sum over all
the monomers, the same must be true for the coe�cients of friction. The
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friction coe�cients for the single monomers add up to give the friction coef-
ficient for the whole chain. Say we have an N -unit chain crawling through
a tube. Then its coe�cient of friction µ

t

will be just N times the monomer
coe�cient of friction µ: µ

t

= Nµ.
How do we normally describe di↵usive (or Brownian) motion? An im-

portant quantity is the di↵usion coe�cient D. It determines the mean-
square displacement

⌦
x2

↵
of a Brownian particle over a period of time t

(along one of the axes):
⌦
x2

↵
= 2Dt . (12.10)

(It is just because the motion is Brownian that
⌦
x2

↵
is proportional to t;

cf. (6.2).) How does friction come into this picture? Evidently, the greater
the coe�cient of friction µ for some particle, the lower will be the di↵usion
coe�cient D, and vice versa. The exact relationship between the two was
found in 1905 by Albert Einstein, and is called the Einstein relation. It
states that

D =
k
B

T

µ
. (12.11)

Incidentally, this happens to be the most cited paper by Einstein - more
than relativity and more than everything else. The physics of why the tem-
perature T appears in Equation (12.11) is quite clear. For given values of
µ and t, the mean-square displacement (12.10) must increase with growing
temperature, that is when the thermal motion becomes more intense.

Now we can come back to the problem of the reptation of a long polymer
chain in a melt. We will estimate the di↵usion coe�cientD

t

which describes
lengthwise di↵usion of the chain along the tube. According to (12.11):

D
t

=
k
B

T

µ
t

=
k
B

T

Nµ
. (12.12)

As we know, the longest relaxation time ⌧? is roughly the time it takes the
chain to di↵use along the tube by a distance equal to the length of the tube
axis, ⇤ (Equation (12.9); see also Section 12.4). Therefore, using (12.9),
(12.10), and (12.12), we obtain:

⌧? � ⇤2

D
t

� N3`2
µ

N
e

kT
. (12.13)

We can tell from this that the longest relaxation time increases dramatically
with N , the number of monomer units in the chain: ⌧? � N3. This explains
why relaxation is so slow in polymeric liquids (compared to ordinary low
molecular weight liquids). As a result, polymeric liquids have a long-lasting
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memory of the previous history of the flow. (If there were no such memory,
for instance, the experiment shown in Fig. C12.2 would be impossible.)

How much can the factor N3 really slow things down? Let’s make some
estimates, to compare polymeric and low molecular weight liquids. We can
rearrange Equation (12.13) in the following way:

⌧? � ⌧
m

N3

N
e

, (12.14)

where ⌧
m

� `2µ/kT is the microscopic relaxation time, typical of a low
molecular weight liquid. Using (12.10), we can write: ⌧

m

� `2/D, where
D is the di↵usion coe�cient of a single molecule in such a liquid. Now
we can see the meaning of ⌧

m

. It is the time taken for a molecule to
move a distance equal to its own size `. Let’s take some typical values
` = 0.5 nm = 5 �10� 10 m, and D � 2 �1011 nm

2

s

= 2 �10� 7

m

2

s

. Then
⌧
m

� 10� 12s. Thus, we have found the typical microscopic relaxation time
for a low molecular weight liquid.2

According to (12.14), the longest relaxation time ⌧? of a polymer melt
is a factor of N3/N

e

greater than ⌧
m

. Suppose the polymer chains are
rather long, N � 104. Then, using the crude estimate N

e

� 102 (see
Section 12.5), we obtain N3/N

e

� 1010. This leads to a longest relaxation
time of ⌧? � 10� 2 s, which is a completely macroscopic value. It can be
even bigger. Strong interactions between the molecules may sometimes
increase the coe�cient of friction µ. This will, in turn, increase ⌧

m

�
`2µ/(k

B

T ), and hence ⌧?. The longest relaxation time may become as high
as a few seconds or even more. This is just what you are likely to observe in
experiments measuring macroscopic relaxation times of viscous polymeric
liquids.

High values of ⌧? are responsible for viscoelasticity in polymers, which
we can witness even in the simplest macroscopic experiments, like the ones
described at the beginning of this chapter. If an external force is quite

2The estimate ⌧m ⇠ 10�12 s gives a natural scale of time for liquids at room tempera-
ture. In fact, we could have obtained it in a di↵erent way. In dense systems, the size `
marks the border between two important length scales. On shorter scales, the motion of
each molecule can be described accurately as ballistic, very much like the free path of a
particle in a low pressure gas. In contrast, at larger scales the molecules are engaged in
di↵usion. What we are interested in is the particle’s displacement ` on the microscopic
scale, which is the cross-over between di↵usion, or random walk, type motion on large
scales and the ballistic motion on the small scales between collisions. To work it out,
we can use either the di↵usive relationship ⌧m ⇠ `2/D or the formula ⌧m ⇠ `/v, where
v is the average thermal velocity of the molecules. For light organic molecules at room
temperature, v ⇠ 500 m

s . Thus, ⌧m ⇠ `/v ⇠ 0.5 · 10�9/500 s ⇠ 10�12 s.



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

254 Giant Molecules: Here, There, and Everywhere

abrupt — that is, it acts for a period shorter than ⌧? (e.g., when a silicone
ball hits the floor), there is no time for relaxation to occur. So the polymer
behaves as an elastic body. On the other hand, if the force lasts for longer
than ⌧? (like gravity making silicone flow out of a jar), the viscous friction
comes into play.

12.8 The Viscosity of a Polymer Melt and the Self-Di↵usion
Coe�cient

Let’s now use the reptation model to find the viscosity ⌘ of a polymer melt.
We are going to use Equation (12.7) along with estimates (12.8) and (12.13)
of Young’s modulus E and the longest relaxation time ⌧?. This gives:

⌘ � E⌧? �
⇣µ
`

⌘ N3

N2

e

. (12.15)

If the chains are long enough (N � N
e

), the viscosity of the melt goes up
quite rapidly as N increases: ⌘ � N3 (just like the relaxation time).

We will also calculate the coe�cient of translational di↵usion D
s

of the
chain as a whole moving in the melt. While the chain completely leaves its
original tube in the time ⌧?, its center of mass must move by the distance
R � `N1/2, that is, about the size of a coil. The displacements of the chain
during each interval of length ⌧? are statistically independent. This is why
on a large time scale we can talk about the di↵usion of the center of mass.
It is just the same as the Brownian motion of a particle that has a mean
free time ⌧?. Between collisions it moves a distance of order R in a random
direction (see Chapter 6). Therefore, according to (12.10) we can write:

D
s

� R2

⌧?
� k

B

T

µ

N
e

N2

. (12.16)

Thus, the reptation model predicts thatD
s

decreases as N � 2 as the number
N of monomers in the chain grows. When N is quite large, the di↵usion
coe�cient is very low. As a result, if you bring two polymer melts together,
they will tend to intermingle very slowly, even if the thermodynamics sug-
gests that the mixed state is the most favorable one (i.e., if the two polymers
are miscible).
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12.9 Experimental Tests of the Theory of Reptation

Do the main results of the theory of reptation (12.13), (12.15), and (12.16)
agree with experiments? As for the estimate D

s

� N � 2, the agreement is
usually very good. However, it is not quite as pleasing with the power laws
for the longest relaxation time ⌧? � N3 and the viscosity ⌘ � N3. Most
experiments indicate slightly sharper dependencies: ⌧? � N3.4 and ⌘ �
N3.4. These are fairly close to the theory, yet not exactly the same. There
have been many attempts to account for such a discrepancy. At present,
the most widely accepted explanation is this. If the chains were infinitely
long, experiments would give just what the theory predicts, ⌧? � N3 and
⌘ � N3. But to the finite length of the chains that we observe the index 3.4;
the number of monomers N per chain is not big enough compared with N

e

.
The reptation model is more powerful than you might think. You can get

much more out of it than just the simplest basic laws for the viscosity, the
longest relaxation time, and the di↵usion coe�cient of a chain in a polymer
melt. This model allows you to describe, for instance, the relaxation of a
polymer after a stress has been released, or the response to a periodic force.
As a result, you gain a fairly complete picture of the dynamics of polymer
liquids, and of their viscoelasticity in particular.

The reptation model was the first to bring the large parameter N into
play. As a result, a molecular theory of fluid polymer dynamics has been
developed. All the previous theories of the dynamics of polymeric liquids
were basically phenomenological.

12.10 Reptation Theory and the Gel-Electrophoresis of
DNA

Now let’s dwell at some length on a rather unexpected, and probably one of
the most important, application of reptation theory. Genetic engineering,
DNA sequencing, and other branches of biotechnology are all dependent
on the high-precision techniques for analyzing DNA. In particular, it is
important to learn how to distinguish DNA strands that di↵ered slightly in
length, or in the amount of twisting or knotting (the latter two only make
sense for ring-shaped DNA), and so on. The method of gel-electrophoresis
has turned out to be amazingly suitable for that purpose.

The idea is the following. Suppose you have a solution containing the
bunch of DNA molecules that you wish to separate. Spread this solution
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c
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Fig. 12.11 Explanation of how DNA gel-electrophoresis works. DNA strands of di↵erent
sizes are separated because they di↵er in mobility: while subject to the same field, they move
with di↵erent speeds, and, therefore, in a given amount of time, cover di↵erent distances.
Starting from the situation (a), the system after some time arrives at the situation (b), where
short DNA moved much farther than the long one. Panel (c) represents a result of a real
experiment separating a mixture of DNAs of many di↵erent lengths on a strip of polymer gel:
the numbers to the right indicate lengths of the corresponding DNAs in base pairs, and it is
clearly seen that each length produces well resolved separate band. Figure (c) is courtesy of
A. Vologodskii.

on the edge of a polymer network (i.e., a gel). In water, each of the DNA
monomers will dissociate and acquire a negative electric charge. Therefore,
if you place the sample in an electric field of the right polarity (i.e., between
the plates of a capacitor), you can make the DNA chains move through the
gel. Such motion is called electrophoretic. You only have to hope that the
speed of the chains depends on their length and structure! If it does, the
problem is solved. Di↵erent chains will travel di↵erent distances and will
become separated (Figure 12.11).

Let’s consider, for example, separating linear DNA chains of di↵erent
lengths. Can we work out how the speed of electrophoretic motion depends
on the chain length, N? To get an idea, we will explore two limiting cases.

First of all, suppose the electric field is very strong. We follow the front
end of a DNA molecule which moves forward and creates new bits of the
tube. This end will spend more time traveling along the field direction
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Fig. 12.12 DNA molecule
in a gel in electric field is
stretched if the field is strong
(a), but remains an insignif-
icantly deformed coil if the
field is weak (b). The inset c
shows the dependence of the
electrophoretic speed v on
the chain length N; the de-
pendence flattens o↵ for long
chains, which means separa-
tion in a constant field only
works for chains of moderate
length.

rather than across it, or, even less likely, against it. As a result, the chain
will tend to be stretched in the direction of the field (Figure 12.12 a). The
stretching force f is proportional to N (because the total electric charge
on the chain is proportional to N). Now, the coe�cient of friction for the
whole chain µ

t

is also proportional to N , as we discussed when we talked
about reptation. This is unfortunate. The speed of motion in a strong
electric field is independent of N after all, v = f/µ

t

.
Maybe we shall be more successful with weaker fields? DNA molecules

will not stretch in this case, but rather remain in the shape of Gaussian coils.
The field pulls di↵erent parts of the chain in the same direction in space,
but this may (and frequently does) correspond to the di↵erent directions
along the tube (Figure 12.12 b). We end up with a sort of tug-of-war game.
Who will win? Obviously, it will be the end of the chain which happens
to be further forward in the field direction (and is therefore longer). The
extra force it exerts is proportional to the displacement of this end, that is,
to N1/2. However, the coe�cient of friction µ

t

is still proportional to N .
What a relief! The two dependencies do not cancel out this time, and we
find that the speed of the motion along the tube, v

t

, is:

v
t

=
f

µ
t

� N1/2

N
� N�1/2 . (12.17)
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(This is the speed of reptation. Don’t confuse it with the speed of the chain
as a whole which we are still trying to find!)

How fast will the molecule’s center of mass move? Suppose the chain
has crawled along the tube by a short distance �. The result of this motion
is convenient to represent as if you chop a piece of length � at one end of
the chain and stick it to the other end. When you chop the piece, you
transport it by a distance � N1/2. The center of mass will move by a
distance � N1/2�/N � �/N1/2. Hence, the speed of the center of mass is
a factor of N1/2 slower than the speed of reptation. Thus we obtain that
the speed of the center of mass is v � v

t

/N1/2 � 1/N in a weak field.
A more accurate calculation confirms our answer. It gives the following

formula:

v =
q

3⌘

(
1

N
+ const

✓
Eq`

kT

◆
2

)
E . (12.18)

Here E is the electric field vector, q is the charge per unit length of the
DNA chain, N is the length of the chain (measured in Kuhn segments), `
is the length of the Kuhn segment, ⌘ is the viscosity of the medium, and
“const” is a number of order one. The graph v(N) is sketched in inset c in
Figure 12.12.

When N is small, the dependence of v on N is rather strong. However,
it flattens o↵ as N increases, and becomes negligible. This means that only
fairly short chains can be easily separated. Of course, you can increase
the threshold length if you reduce the electric field. However, this is not
terribly helpful. In a very weak field, the whole process will be far too slow,
which is inconvenient, and may cause extra problems.

Many interesting little tricks have been devised in order to overcome
some of these di�culties. The external field is periodically switched o↵ (or
rotated through 90�). The time taken for the field to go through one cycle
should be roughly the same as the typical time of tube renewal, that is
⌧? � N3 (see (12.13)). In this case electrophoretic motion will only occur
for chains that have about the right N . There is also two-dimensional
electrophoresis and many other variants. Clever improvements proved to
work splendidly and to give extremely precise results.

12.11 The Theory of Reptation and the Gel E↵ect During
Polymerization

The theory of reptation helps us understand the gel e↵ect during radical
polymerization. We described how polymerization occurs in Chapter 3.
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Suppose we have added some initiator to the solution of not-yet-
polymerized monomers, and the reaction has begun. At first, the growing
chains appear in a kind of dilute solution, in which the monomer molecules
play the part of a solvent. With time, more and more molecules of the
monomer become involved in the reaction. The concentration of the chains
grows, and they begin to overlap. This is when the solution becomes semi-
dilute. From this moment on, the character of the chains’ motion changes
— they start moving by reptation. As we have already shown, this means
that di↵usion of polymer chains slows down substantially.

On the other hand, a polymer chain stops growing when, as a result
of di↵usion, two free radicals at the ends of two chains happen to come
together, react, and form a covalent bond (see Section 3). Obviously, if dif-
fusion slows down, such encounters of the chain ends become less frequent.

Thus, you may expect that as soon as the chains start overlapping,
polymerization should proceed much faster. The chains themselves should
be able to grow longer, because, their growth is not stopped as often as
before.

Indeed, all this can actually be observed, and is known as the gel e↵ect
during radical polymerization. The changes that occur are very dramatic.
The rate of reaction jumps by a few orders of magnitude while the fraction
of polymer increases only by a minute amount. This e↵ect was noticed fairly
long ago, well before the theory of reptation was proposed. However, it was
the theory of reptation that enabled a proper mathematical description of
the phenomenon.
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Chapter 13

The Mathematics of Complicated
Polymer Structures: Fractals

And so he got the answer:
Two and two thirds workers. . .

S. Marshak,
(Russian children’s poet)

“Very well,” said Stuart, “what’s the
first subject you usually take up in the
morning?”
“Arithmetic,” shouted the children.
“Bother arithmetic!” snapped Stuart.
“Let’s skip it.”

E.B. White, Stuart Little

13.1 A Bit More About Maths in Physics: How Does a
Physicist Determine the Dimensionality of a Space?

A good starting point for another very interesting yet unfinished story is
Brownian motion. As you remember, the displacement of a Brownian par-
ticle (or the end-to-end distance of a polymer chain) is proportional to
the square root of the time traveled (or the contour length of the chain).
Surprising as it may seem in a book on polymers, the story is about the
dimensionality of a space. Mathematicians have already been studying this
topic for nearly one hundred years, and know quite a bit about it. However,
it seemed of no particular relevance for physics until very recently, after two
books by B. Mandelbrot appeared in 1977 and 1982 [47]. We shall avoid
too much maths here, and basically talk about the physics side.

261
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The space we live in is, of course, three-dimensional. We know this
because three coordinates, e. g. x, y, and z, are needed to describe any po-
sition. You might have also heard that time is often regarded as the fourth
coordinate. Thus, space-time is four-dimensional. A two-dimensional space
is merely a plane, a one-dimensional space is a straight line. However, it
turns out that there are also objects with fractional dimensionality!

Let’s think of an object. As proper physicists, we can imagine that it
consists of certain particles; let’s agree to call them simply “atoms”. For
example, we can picture a volume lattice (like a crystal one) consisting
of atoms, or a flat film, or a straight-line chain. The dimensions of these
objects will be 3, 2, and 1, respectively. We can make sure this is true in the
following way. Take a sphere of the radius R, and count how many atoms
of the object there are inside the sphere. Say, this number is N(R). For
a volume lattice, N(R) will be proportional to the volume of the sphere,
(4/3)⇡R3. Meanwhile, for a flat film, it will be proportional to the area
of the cross-section through the center ⇡R2, and for a chain, to the length
of the diameter 2R. In all these examples, as you see, the dimension is
given by some power of R, and the power in every case is equal to the
dimensionality. In the general case, we can write:

N(R) = KRdf , (13.1)

where K is a number independent of R. To get rid of this uninteresting
constant, let’s take the logarithmic derivative of each side:

d lnN(R)

d lnR
= d

f

. (13.2)

The quantity d
f

defined by this formula is known as the dimensionality of
the object. More precisely, it is the so-called fractal, scaling, or Hausdor↵
dimensionality. (In maths, you may hear of lots of others, e.g. metric,
topological, etc., but we shall not talk about them.)

13.2 Deterministic Fractals, or How to Draw Entertaining
Patterns

“So what?” you may ask. “What’s the use of Equation (13.2)? Instead of
the simple idea that there are length, width, and height in three-dimensional
space, we now have a complicated formula, with a derivative and logarithms.
What’s the point?”

Look at Figure 13.1. These patterns are called Sierpinski gaskets (af-
ter the Polish mathematician Waclaw Sierpinski (1882–1969) who invented
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a

b

c

Fig. 13.1 Sierpinski gaskets —
simple geometrical models of self-
similar fractal patterns.

them in the beginning of 20th century). One can easily deduce the rule
from the picture, and use it to create all kinds of similar patterns. In all
the examples, there are two kinds of bricks, gray ones and white ones. (If
you have colored pencils or a computer with a color monitor, colored bricks
can be used.) The elementary bricks can be squares (e.g., see Figure 13.1 a
and c), triangles (e.g., Figure 13.1 b), or any other sort of shape. Let’s look
at gasket figure 13.1 a, for instance. It is quite easy to make the shape on
the left from the white and gray squares. We can now think of this shape
as a new large gray brick. Now let’s make the same kind of shape using
these large gray bricks, with white bricks of the same size. Obviously, we
can carry on like this ad infinitum. As we make bigger shapes, not only are
the white “holes” larger, but so are the gray areas.

As a matter of fact, people knew about this kind of patterns many years
ago. Look at Figure C13.2. This figure shows floor mosaics of the church
in the village of Anagni, Italy, which was built in the year 1104; isn’t it
similar to a Sierpinski gasket?

Suppose the gray bricks are “atoms”, whereas the white ones are just
cavities. Can we work out how many “atoms” there are in the system?
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Let’s stick to gasket of Figure 13.1 a: Having made ` steps, we shall have a
square of side 3`, therefore there are

�
3`
�
2

= 32` = 9` original elementary
blocks. There are 8 “atoms” (i.e., original gray blocks) in the first figure.
With every step, it gets multiplied by 8, so after ` steps it becomes 8`.
Hence, if the size of a square is R = 3`, then there are N = 8` “atoms”
inside it. Simple algebra gives us ` = log

3

R, and N(R) = 8log3 R = Rlog3 8.
Thus, the formulae (13.1) or (13.2) tell us that, in the case of Figure 13.1 a,
the dimensionality of the Sierpinski gasket is d

f

= log
3

8 = 3 log
3

2 � 1.89.
Similar calculations lead to the dimensionality log

2

3 � 1.58 for gasket
in Figure 13.1 b, and 4 log

5

2 � 1.72 for gasket Figure 13.1 c.
Thus Sierpinski gaskets are a simple model of objects with a fractional

dimensionality. Of course, the naive ideas of length, width, and height
cannot possibly help us when we try to determine the dimensionality of
these gaskets. From the point of view of these naive concepts, the non-
integer dimensionality is about as absurd as the answers with a fractional
number of people that some careless primary school pupils are known to
come up with occasionally. But the gaskets do have the fractional non-
integer dimensionality!

So what is the physical meaning of fractal dimensionality? Since
N(R) � Rdf , then the greater the value of d

f

, the more “atoms” can
be fitted into a fixed volume of the system, hence the fewer cavities there
are. In this sense, you can say that the fractal dimensionality shows how
“holey” the system is. More accurately, since the maximal number of gray
blocks in a Sierpinski gasket on a plane is proportional to N

max

� R2,
what really characterizes the “holeyness” of the system drawn on a two-
dimensional plane is the value 2 � d

f

. Indeed, you can see by eye that the
most “holey” gasket in Figure 13.1 is gasket b. And it really has the lowest
dimensionality of the lot.

From what we have said, by the way, it follows that, if the system is
situated on a plane, its dimensionality is d

f

� 2. Similarly, in a three-
dimensional space, d

f

� 3, and so on. (If one fractal is placed on another
one, d

1

� d
2

!)
The question one may ask is this. Can the “holeyness” be described in

a simpler way, for example, by means of density? Unfortunately, it can’t.
Take the gasket in Figure 13.1 a. At step `, the gray blocks are spread over
a fraction 8`/9` = (8/9)` of the area. This is what can be most naturally
thought of as the density. As you can see, since 8/9 < 1, it tends to zero
as ` grows. This is not surprising; it is a general law. The density is
proportional to N(R)/N

max

(R) � Rdf � 2, that is, it depends on R, and
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tends to zero as R increases, as long as d
f

< 2 (or, more generally, as long
as d

1

< d
2

).
It is very easy to write a computer program to draw Sierpinski gaskets.

All you really need to do is design a subroutine that composes the very
first shape out of the elementary bricks. Then you can just keep calling
this routine at each subsequent stage. In other words, you use the idea of
matryoshkas, little traditionally Russian dolls that you put into one another.
This principle works not only for Sierpinski gaskets, but for many other
patterns as well. Some of them are very beautiful, and they all are self-
similar.

13.3 Self-Similarity

Imagine an ideal geometrical straight line. Take a piece of it, say, 1 cm
long. Now “zoom in” and look at this piece on a larger scale. What do you
see? Again a piece of the same straight line. You can do the same thing
with a geometrical plane. To see this another way, examine a real physical
straight line drawn in pencil or made of string or wire. You can look at
it at higher and higher magnifications, through a magnifying glass, then
through a microscope, etc. What you see still remains a straight line, until
you can start to make out its width or the “atoms” of which it is made.

Sierpinski gaskets have the same property. There are two di↵erent gas-
kets in Figure 13.3. One of them was obtained from the other in two steps.
First, the larger blocks were put together using the same “recursive” pro-
cedure as for the smaller ones, like in Figure 13.1. The resulting shape was
then scaled down by a factor of 2. However, looking at Figure 13.3, you
can hardly tell which figure is which! This is just what we call the property
of self-similarity.

Fig. 13.3 The
idea of self simi-
larity. One of the
two figures shown
is the geometri-
cally rescaled part
of the other. It is
really hard to say,
which is which!
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Fig. 13.4 A circle is not self-
similar: this is how it looks like
at di↵erent magnifications.

So we can see that the word fractal merely means a self-similar object.
Are there any fractals in nature? What is their significance in physics,

if any? And what do polymers have to do with all this? Before at-
tempting an answer, let’s think about something slightly di↵erent — are
there any geometrical shapes which are not self-similar? Of course, there
are. Take, for instance, a circle. On a large scale it looks almost like
a piece of a straight line, whereas on a small scale it is more like a sin-
gle dot (Figure 13.4). Obviously, there is no similarity between the two
whatsoever! This is precisely why the question about self-similarity is so
important.

13.4 Natural Fractals

Figure C13.5 shows two photographs of what appears to be the head of a
cauliflower. Actually, we took a picture of the whole head first, then cut a
little floret out of the cauliflower and took a picture of it from much closer
up. The pen in the photos shows the scale; if it were not there, it would be
rather hard to tell one picture from the other. Moving the camera closer to
the object is just the same as making a similarity transformation. Thus, a
cauliflower is a self-similar object — a natural fractal.

This experiment had a nice side-e↵ect — we have the tasty cauliflower
left over! In our next experiment we shall end up with nothing but rubbish.
Take a sheet of aluminium foil and cut it into little squares of di↵erent sizes.
Then crumple them into little balls, and measure the balls’ diameters. Now
throw the balls away. . . (or recycle them). Figure 13.6 shows how a ball’s
diameterD depends on the size a of the square from which it was made. The
graph is plotted on a logarithmic scale; that is, we have plotted lnD and ln a
along the axes, rather than D and a, although the numbers indicated on the
axes correspond to D and a themselves. You can see that the experimental
points fit nicely on a straight line1. So, with a high degree of accuracy,

1The use of logarithmic coordinates is very useful whenever you search for a power
law dependence. When we wrote in formula (13.1) that N(R) = KRdf , we definitely
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Fig. 13.6 Log–log
plot of the size D of
a crumpled piece of
aluminium foil versus the
piece’s size a. Points
represent the data of our
measurements. The
solid line gives a best
fit of the form
lnD � �1.18+ 0.88 ln a,
which indicates a power
law dependence
D � a

0.88, thus
manifesting the fractal
structure of crumpled

foil with fractal dimensionality d

f

� 2/0.88 � 2.27 < 3. Two dashed lines are shown for
comparison, they correspond to hypothetical systems with fractal dimensions 2 (unfolded
foil) and 3 (dense piece of material), respectively. The inset shows the same data in linear
scale.

lnD � ↵ ln a+ b , hence D � const �a↵ . (13.3)

We are not interested in the value of intercept b, while the slope of the line
is such that ↵ � 0.88, and this reports on the value of fractal dimension.

What does it all mean? Let’s go back to Equation (13.1). The amount
of aluminium (the mass or the total number of atoms) in a square of side
a goes as a2, that is N � a2. Now, this aluminium is packed into a sphere
with diameter D, so R � D. Therefore, since D � a↵, we get N � D2/↵ �
R2/↵. This means that the fractal dimensionality of the crumpled foil is
d
f

= 2/↵ � 2.27 < 3. The foil is not completely squashed; there are many
little cavities left inside the aluminium balls, and that is reflected in the
fact that dimensionality is less than three. If we had a very sharp knife
that could cut without squashing, we could chop the foil ball carefully and
discover that the pattern at the cross-section is very much like the pattern
of holes in a Sierpinski gasket. Thus, crumpled foil is also a fractal.

The inset in Figure 13.7 shows a satellite photograph of the Norwegian
coastline. What can we say about the length of the coastline? We decided

view df as an important quantity, while K is frequently less important. Accordingly, if
we take the logarithms of both sides, we get lnN(R) = lnK + df lnR, and so expect
the straight line the slope of which, df , is of interest to us, while the intercept contains
information about K. Thus, whenever we need to fit to a power law, we use the log–log
plot. Also, on the same note, we usually use the sign � to indicate that we drop all the
pre-factors like K and carry only the power law; in other words, we carry only the part
of the formula which is responsible for the slope in the log–log plot. For instance, we
will most frequently write N(R) � Rdf instead of the full version (13.1).
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Fig. 13.7 The length
of the coastline, measured
from a map, depending on
the scale of the map (on
logarithmic axes). The
inset shows the real coast-
line and gives the idea
how wiggly it is. In the
main plot, horizontal axes
presents the scale of the
map, while vertical baxis
corresponds to the measure-
ment of distance on the
map in centimeters.

to make measurements and took three di↵erent maps of Norway. One map
was fairly detailed, with the scale 1 : 6, 000, 000. Meanwhile, two other maps
were less detailed, 1 : 12, 000, 000 and 1 : 25, 000, 000, respectively. How do
the three maps compare? The coarser maps miss out the finer details of the
structure, such as little fjords and promontories. So the coastline drawn on
a coarser map is not precisely the right shape; you could say the line is too
thick to show all the little “wiggles” of the real structure (look at Figure
13.7 again).

What can we tell about the length of the coastline from the maps?
Of course, the answer depends strongly on how detailed the map is. In
other words, the distance traveled between two points on the coast will be
di↵erent for a ship navigating in the open sea and for a little boat or canoe
which has to keep close to shore and follow all the shoreline’s ins and outs.
Measurements of the lengths of the coastline between the towns of Bodö
and Tromsö using the three maps mentioned above give 22, 10, and 3 cm
respectively. These results are shown as dots in Figure 13.7. The graph
itself plots the logarithm of the line’s length s as a function of the logarithm
of the map’s scale m. As you can see, the dependence is nearly linear:

ln s � �1.4 �lnm+ const , hence s � m�1.4 . (13.4)

From here we infer the fractal dimensionality d
f

of the coastline to be
approximately 1.4. What does it mean that d

f

> 1? It indicates that the
actual line is “thick” (see above). Why is d

f

< 2? That is because the
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coastline is not really a surface (like a piece of fabric), but rather a border
dividing the surface into two parts, sea and land. We should mention that
there is nothing particularly special about Norway; you can take any other
place of your liking, except Norway shoreline is so wiggly that the result
could be seen with a very modest set of maps, other place may require more
work.

The reader surely noticed that we mentioned the notoriously simple ex-
amples and intentionally described “experiments” (with cauliflower, crum-
pled foil, and geographic maps) which everyone can reproduce at home. In
the books and on the internet the reader will easily find many more seri-
ous examples, in which the logarithmic plots not unlike our Figures 13.6
and 13.7, span many orders of magnitude. But we hope our examples are
enough to prepare you to find it not so hard to believe that there are also
“rough” surfaces with dimensionality somewhat greater than two. And
some cosmologists say (and they are not joking!) that the Universe is a
sort of a “foam” with dimensionality greater than four.

Now let’s glance again at all the examples we have discussed. You may
notice that they fall into two di↵erent groups. Some, just like Sierpinski
gaskets, fit perfectly on top of themselves when you subject them to a sim-
ilarity transformation. This is just the way they have been constructed.
Such fractals are known as deterministic and are studied mainly by math-
ematicians. In contrast, fractals from the other group are self-similar only
in some average statistical sense, judged by the general character of the
pattern. The majority of “physical” fractals are like this.

Perhaps, for our purposes, the most important example of a fractal is the
path of a Brownian particle which we discussed in detail in Chapter 6. How
does an experimentalist detect a Brownian trajectory? He or she focuses a
microscope, linked to a camera, on to a fluid of suspended particles which
is lit by a flash, say, some k times a second. The result on the film is
actually not a trajectory, but merely a sequence of points. The subsequent
points are usually connected by straight lines — not because the particle
traveled straight, but simply because experimenter cannot do any better;
this gives a somewhat “straightened”, or “coarse grained” representation
of the trajectory. You can think this way about the image shown in Figure
13.8. Imagine now that we take a better equipment, for instance, a faster
camera, and make flashes and photographs twice as frequently, 2k times a
second. What we shall see is pretty much what is shown in the inset in
Figure 13.8. We would see a trajectory reduced in size, but generally of the
same kind. Hence, a Brownian particle’s path is also a fractal.
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Fig. 13.8 A
Brownian trajectory
is self-similar on
average. The
random walk (or
freely-jointed poly-
mer) of 106 steps
was generated com-
putationally. In the
main figure, every
103 steps are shown
together as a single
segment; there are
106/103 = 106 of
segments. In
the inset, the “inter-
nal structure” of one
segment is shown.
It has 103 steps in-
side, and it looks
very similar to the
entire figure. The
figure is courtesy of
S. Buldyrev.

It is useful at this time to look again at Figure C9.1, particularly at
the zoomed inset of that figure. Comparing it with Figure 13.8 reveals the
fundamental di↵erence between coils and globules: When we zoom in on
a coil (Figure 13.8), we see a coil, but when we zoom in on a globule
(Figure C9.1) we do not see a globule, we see a concentrated polymer
solution instead. Some people think that fractal dimension of globule is
3, because its size scales as N1/3; this is a mistake, globule is not a self-
similar object.

Brownian motion and geography, Universe and cauliflowers — it is really
astonishing how far mathematics can generalize. . . However, let’s get back
to polymers. How can all this stu↵ possibly be related to them?

13.5 Simple Polymer Fractals

The first “polymer” example is obvious. Indeed, we have already discussed
how a polymer chain is bent and entangled, just like a Brownian particle’s
path. So it is bound to be a fractal!

So what is the fractal dimensionality of an ideal isolated polymer chain?
The number of particles, that is, monomer units, is obviously proportional
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to the contour length of the chain, N � L. At the same time, according
to (6.3), the size of an N -monomer coil is R(N) � N1/2. In other words,
N(R) � R2. Hence we obtain d

f

= 2.
Thus, the fractal dimensionality of a free polymer chain turns out to

be two. Although the chain is a sort of a line, its dimensionality sug-
gests it must be more like a surface. To comprehend such a surprising
result, imagine you flatten a polymer coil out on to a plane. This hap-
pens, for instance, when a polymer is adsorbed on to the surface of a
solid. Alternatively, you could imagine random walks in two dimensions,
for example, a rambler lost in a forest. If you have a long enough chain
(or path), it will spread all over the surface more or less uniformly. (It
is for precisely this reason that the rambler keeps coming back to places
where he or she has already been!) You can think of this Brownian tra-
jectory as being like a thread. It goes round and round, and gradually
makes a piece of fabric, which is, of course, a two-dimensional object. In
contrast, a molecule in the shape of an ordinary smooth line (such as
a straight line) cannot possibly weave itself into any kind of fabric dur-
ing adsorption. By the way, this is exactly why it has dimension of only
one.

We shall give some more examples below. However, even now we can
conclude that the self-similarity and the fractal structure are not an excep-
tion but rather a rule in polymers and other complex systems.

We were talking in Chapter 8 about the swelling of a real (not ideal)
polymer coil — due to the fact that every monomer is not an infinitesimal
point, but a body of maybe small, yet still finite, size. We have seen that
the size of a swelling coil is R � N3/5. A swollen coil is therefore also a
fractal, with a fractional dimensionality d

f

� 5/3.
We have talked about linear polymers so far, but what can we say about

branched ones? Of course, a lot depends on what sort of branching exist.
For instance, if you have a long chain with tiny side bits, you can really
treat it as a linear polymer, except with somewhat peculiar monomer units.
A more interesting case, though, is a randomly branched polymer. You can
imagine it in the following way. Suppose a polymer molecule is gradually
growing. At each point it either stops or splits into two branches. Then
you get a “tree”, a bit like the one in Figure 13.92. As early as 1949,
Bruno Zimm (1920–2005), at the university of California in San Diego, and

2There is quite a funny muddle of terms here: a tree is the generally accepted word for
what we have described, yet its lattice model is known as a lattice animal. Does this
indicate how well-informed physicists are about biology?
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Fig. 13.9 Small piece of randomly branched
tree. A much larger piece cannot be drawn on
the paper, and cannot be fitted into space ei-
ther.

Walter Stockmayer (1914–2004), at Dartmouth College in New Hampshire,
showed that the size of such a tree containing N monomers is proportional
to R � N1/4. Hence, a tree of this kind is a fractal, and its dimensionality
is d

f

= 4.
“This is rather extraordinary!” an observant reader might remark. “We

have never come across a dimensionality greater than 3 before.” Clearly, a
straight line or a Sierpinski gasket can be laid on a plane surface, since the
dimensionality is less than 2. In contrast, a three-dimensional object cannot
be fitted on to a plane. In the same way, it is only natural to suppose that
a four-dimensional tree would not really fit into a three-dimensional space.
This conclusion is correct. In the process of branching polymerization, a
tree becomes thick, and either stops growing, or stops branching; in other
words, it acquires longer and longer parts without any branches. (If you
look around in a forest or in a park, you can convince yourself that this
is actually true for real trees.) For molecular trees, this thickening of the
structure appears very important in some cases. For example, it causes
blood to become denser and clot in the presence of air. Anyone who has
ever cut their finger will appreciate this e↵ect!

Of course, we did not need to talk about dimensionality to draw the
right conclusion about the thickening of a randomly growing chain in a
three dimensional space. Suppose a molecule consists of N monomers,
and its size is about � `N1/4. Each monomer occupies a small, yet finite
volume v. Then the fraction of the volume taken up by all the monomers
is proportional to Nv/

�
`N1/4

�
3 �

�
v/`3

�
N1/4. So it increases with N

indefinitely. On the other hand, in practice, a tree can only reach a volume
fraction of order unity, and certainly no greater than 100%. So it is always
true that N <

�
`3/v

�
4

, which is interesting: linear polymer can, at least
in principle, grow unrestrictedly long, while randomly branched polymer
cannot, there is a solid limit for its growth; the limit might be somewhat



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

The Mathematics of Complicated Polymer Structures: Fractals 273

larger or somewhat smaller numerically depending on the branch length `

and volume v, but there is a limit.
Which of the two types of argument is better, the dimensionality one or

the density one? We won’t try to conceal that there are currently di↵erent
views about this. Even the two authors of this book have had a number of
discussions on the question. You are welcome to eavesdrop on one of our
conversations (the names of the authors are abbreviated to A. and S.):

13.6 Why Worry About Fractals? (What the Two Authors
Said to Each Other One Day)

A.: I wonder about this stu↵ on fractals. It feels like it’s out in the cold.
What really new ideas will readers have learned from this chapter?

S.: Why, they’ll learn that such things as a Gaussian coil, a swollen coil,
and a randomly branched polymer are all fractals. This is interesting in its
own right. Mind you, there are more things in life than polymers. It might
be interesting to hear about other fractals, the scale invariance of di↵erent
objects, and the mathematical idea of fractional dimensionality.

A.: Perhaps you are right. But it doesn’t follow from our text what you
can do with fractals, what new problems they can help to solve.

S.: Yes, I see your point. But I don’t think it’s our fault! Suppose we
weren’t confined to simple examples, would we then be able to come up
with such problems?

A.: The trouble is we wouldn’t. As far as I know, no one has ever found
anything new about polymers using fractal geometry. It was more about
translating from an old language to a new one, rather than about deriving
new things. Of course, it’s a very beautiful language.

S.: Exactly! Remember Goethe’s comment “Mathematicians are like
the French. . . ” that we put at the start of Chapter 6? But, to be serious,
what I really want to emphasize is this. First, it is not just interesting — it
is often useful to master di↵erent ways of describing the same thing. (Never
mind that they are mathematically identical!) This is exactly what Richard
Feynmann illustrated for the law of gravity, in his wonderful book, Char-
acter of Physical Law [38]. Second, there are loads of examples in Physics
where new achievements (and sometimes rather exciting ones!) were not
expressed in the language of fractals, yet were very closely connected with
them, due to the use of power laws and fractional dimensions.
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A.: Yes, of course, it would be hard to disagree with you on that one.
One cannot help referring to the work by the Nobel Prize winner K. Wilson
on the properties of strongly fluctuating systems. It turned out that the
main problem was that the fluctuations do not “fit” into a three-dimensional
space, but with increasing dimensionality, the situation simplifies. Even in
just four dimensions it becomes trivial in some sense. So what did Wilson
do? He looked at how the fluctuations behave for dimensionality (4 � ").
If " is small, than we are close to the simple case. He then found that the
main features of what happens in reality (" = 1) can be spotted even if you
look at dimensionality 3.99.

S.: What a lovely example! I’ve just thought of yet another Nobel
laureate, P.G. de Gennes. His ideas, all this stu↵ about scaling and blobs,
which have proved so fruitful for polymers, are also connected with self-
similarity and power laws, aren’t they?

A.: Of course they are! But how much they have to do with all these
light-hearted conversations about Sierpinski gaskets and cauliflowers is a
matter of opinion. Mind you, we haven’t even explained how power laws
come into the question.

S.: Good point. Well, let’s give the readers an opportunity to judge for
themselves what has to do with what, and to what extent. And let’s talk
now about power laws.

13.7 Why Is Self-Similarity Described by Power Laws, and
What Use Can be Made of This in Polymer Physics?

Starting with the very first Equation (13.1), we have come across quite
a few power laws in this chapter. Just look at Figures 13.6 and 13.7.
The graphs are linear in logarithmic coordinates, which means that they
represent power-law dependencies. This led us to the conclusion that the
objects in question are fractals, that is, that they are self-similar.

As far as polymers go, the problem is to decide what monomer units
make up the chain. “What a stupid question”, a chemist would say. “If
the chemical formula of a compound is A

N

, and it is made up of lots of
A molecules, then surely A is the monomer unit.” However, why can you
not connect the A molecules in twos, and then link all the N/2 dimers A

2

together? Or, alternatively, why not link together groups of three monomer
units, etc, etc? So:

A
N

= (A
2

)
N/2

= . . . = (A
k

)
N/k

. (13.5)
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g monomers

Fig. 13.10 An arbitrary number of
links in polymer coil can be considered
as a “new e↵ective monomer”, such new
monomers are usually termed blobs.

There is even no need to talk about synthesis in this case. Let’s just take a
chain, choose a particular piece of it, say consisting of g monomers initially,
and regard it as the new “monomer unit” (see Figure 13.10). However,
the properties should not depend on the particular way we describe the
structure, that is, on g. How does this come about?

Let’s calculate the distance between the two ends of a polymer chain.
We already know that R � `N1/2 for a Gaussian coil — see formulae (6.3)
or (6.11). Now, if we are talking in terms of the “new” monomer units of
size g, we should still get the same size R, which would be expressed by the
formula of the same structure, but via the size of the new “monomer”, `

g

,
and the number of new units, N

g

:

R = `
g

N1/2

g

. (13.6)

So what are `
g

and N
g

? First of all, N
g

= N/g. As far as `
g

is concerned,
we have to think in the following manner. Each new monomer is a tiny
Gaussian coil in its own right. Therefore, `

g

plays the same role for this
tiny coil as R does for the normal one. Thus `

g

= `g1/2. Putting all these
arguments together, we obtain:

R = `
g

N1/2

g

=
�
`g1/2

�
�
�
N

g

�
1/2

= `N1/2 . (13.7)

Indeed, it does not depend on g!
We presume you might be interested in going through the same kind of

proof for a swollen coil (which we discussed in Chapter 8); we proved then
that R = bN3/5, where b is proper N -independent, that is, associated with
the monomer, length scale — see formula (8.14)), as well as for a random
tree (R = bN1/4). You would then be able to see for yourself that the power
laws do indeed correspond to self-similar objects, that is, to those which
have, say, a g-unit organized in the same way as the whole thing (obeying
the same power law as the whole chain).
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ln L

ln D

Dmax=bN3/5Dmin=b  

Lmin=bN

Lmax=bN3/5

Slope -2/3

L

L

Fig. 13.11 A real (self-avoiding) polymer chain in a capillary tube. A log–log plot of the
occupied length of the tube, L, vs. tube diameter, D, is linear, thus indicating the self-similar
character of the structure. Typical chain conformations are shown schematically in the insets.
At the smallest possible tube diameter, which is of the order of one monomer (Dmin � b), the
polymer chain is almost completely elongated (Lmax � Nb). On the other hand, the polymer
is not a↵ected by the tube at large D (D � Dmax � bN

3/5 ). In between, the polymer can
be viewed as a sequences of blobs, such that within each blob the chain is una↵ected, while
the chain of blobs is completely elongated.

Can we make any use of all this? Yes, of course, a lot! Look, for example,
at the following problem. Take a real polymer coil. All we really need to
know about it is just its size, R = bN3/5. Now try to “squeeze” it into a
capillary of diameter D, as Figure 13.11 demonstrates. You may just look
at Chapter 8, to see that even the simple question about a real polymer coil
with excluded volume is very complicated. Moreover, if the coil is placed in
a capillary, it is hard even to think how to start. However, imagine that it is
de Gennes himself who is tackling it, using the idea of self-similarity. He is
free to choose the monomer units in any way he likes. Suppose g is such that
the size of the unit is equal to the size of the capillary, that is, bg3/5 = D,
and therefore g = (D/b)5/3. The technical term for such monomer units
is “blobs”. Such blobs, obviously, go one after another along the capillary,
just like the cars of a train3. Since the size of each blob is D, and their
3A question that might crop up here is this. What if we look at the same capillary

problem for an ideal Gaussian coil? In that case, just as usual, we would choose a blob
of the size of the tube, that is, `g1/2 = D, so g = (D/`)2. However, the blobs will now
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number is N/g, then the polymer has a length along the tube

L � D

�
N

g

�
� ND� 2/3b5/3 . (13.8)

Is this all?? Yes, it is! Incredibly simple, and yet correct!
There is a useful habit which is certainly worth developing. As soon as

you come across a formula, no matter how easy it is, it is a good idea to
try and “get a feel for it” for some simpler limiting cases. What does this
imply for Equation (13.8)? There are two limiting cases here. Imagine a
spacious tube, whose width is comparable to the size of the coil. Obviously,
it should make no di↵erence to the coil. This is exactly what we get from
(13.8): if D = bN3/5 then R = bN3/5. (For even larger values of D,
this Equation (13.8) would no longer hold, of course.) Now assume the
opposite: the tube is as narrow as just a single monomer. Then the chain
cannot possibly meander, and has to stretch out into a straight line. This
is also easily derived from (13.8). Indeed, if D = b then L = Nb. Perhaps,
our story about fractals is getting a little too long, but there are two things
left which we must not miss out!

13.8 Other Fractals in Polymers, and Polymers in Fractals

Imagine little particles of soot flying out of a chimney, along with the smoke.
These particles are sticky (if you don’t believe it, touch them and then try
to wash your hands!) When two bits of soot bang into each other, they
get stuck together and make a larger particle. This flies on, picking up
more and more sticky “mates” and growing in size. Thus, we end up with
rather big flakes of soot. Some of them accumulate in the chimney, and
others fly away. Yes, you are right if you are thinking that the structure
of soot particles is self-similar, i.e. it is a fractal. Another example is
snowflakes. (Talking about snowflakes, we are tempted to recommend you
some reading, Letters to A Certain German Princess by Kepler, who is
indeed the Kepler, the discoverer of the laws for the orbits of planets.)
However, let’s leave snowflakes and soot for good. What really matters
for us is that many polymeric substances and materials are formed in a
very similar way, when pieces of the substance stick together step by step.

pass freely through each other. This is why Equation (6.1) will not do for the random
“walks” of the chain of the blobs in the tube, and we have to use (6.2) instead. It leads
us to L = D(N/g)1/2 = `N1/2. Thus, an ideal polymer squeezed into a tube does not
become more stretched in the tube’s direction.
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Take, for instance, blotting or filter paper. It consists of a complex fractal
structure of pores and channels. In a way, it looks like a piece of crumpled
foil, although the whole thing is smaller (and the fractal dimensionality is
slightly di↵erent).

Perhaps we should say no more about such materials, but rather discuss
how they are used in practice, and that will lead us to the other side of the
problem, “fractals and polymers”.

A medium with complex branched pores can be used to purify and
separate polymers.

This is because chains of di↵erent lengths and di↵erent chemical struc-
ture move in di↵erent ways in such a medium (cf. gel electrophoresis,
Section 12.10). Thus the question arises, how does an ordinary linear poly-
mer behave in a fractal medium? Let’s take a simple model, random walks
across the little gray shapes on a Sierpinski gasket. What will happen to
equations like (6.2)? What will be the mean square displacement, i.e. the
end-to-end distance, of the polymer chain? We hope that you are expect-
ing to get a kind of power law for the dependence of the coil’s size on the
length of the chain, i.e. R � N⌫ . The only question is, what is ⌫ equal
to? We suggest you play this game on a computer. It is quite fun as well
as instructive. For our part, we shall only say that ⌫ = d/2d

s

. Here d
s

is
determined by what sort of sound waves would propagate along the fractal
if it were made of little springs. It also depends on the heat capacity, C,
of the “springy” fractal at low temperatures T (C � T ds . It would be
interesting to talk about all this. Unfortunately, our book is not elastic,
even though it is polymeric!)

13.9 Geometry and Classification

Perhaps every teenager goes through the period of excitement reading the
adventurous novels by Jules Verne. One of the most charming characters of
Jules Verne’s is an absent minded scientist Jacques Paganel in “Les Enfants
du capitaine Grant”; as a matter of fact, this same character appears in
quite a few other Jules Verne’s novels, even if under a di↵erent name.
What Paganel does as a scientist, in Jules Verne’s description, is he collects
samples of everything — rocks, bugs, etc — and classifies them.

Indeed, classification of whatever subject of study is an important task
of science, and finding natural classification is usually a big scientific leap.
A few classical examples from very di↵erent fields will help to make the
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point. Natural classification of chemical elements was found in 1869 by
Russian chemist Dmitri Mendeleev and it has the form of periodic table,
i.e., it can be drawn on the plane. Natural classification of geographical
information is achieved by the map and, if we speak about Earth as a
whole or its large parts, the natural map is a globe, as we know since the
completion of Magellan expedition in 1522, i.e., it is drawn on a sphere.
Natural classification of the living creatures was found by Carl Linnaeus in
mid-1700s and it has the form of a tree; we do not want to scare the reader,
but the natural place where the tree can be drawn is the non-Euclidean
Lobachevsky plane.

Thus, we see that natural classification is always related to finding the
proper underlying geometry. In this sense, the discovery of fractal geometry
enormously widened our ability to classify various objects.
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Fig. C11.2 This table shows all possible prime knots with up to 8 crossings on the pro-
jection. For chiral knots, only one of the mirror images is shown. There are many ways to
identify certain separate classes of knots; for instance, knots 31, 51, 71 are called torus knots,
because they can be nicely placed on the surface of a doughnut (and there is obviously a
torus knot with any odd number of crossings). But the classification of knots relevant for
their physics is yet to be developed. The figure is courtesy of R. Scharein; the knot images
were produced by his software KnotPlot (see http://www.knotplot.com).
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a

c

Fig. C11.4 Computer simulated plectonemic DNA in the main figure (a), electron
microphotograph of real plectonemic DNA in the inset (b), and “plectonemic” telephone
cord in the inset (c). The image (a) was produced by computer simulation of the 4000
base pairs dsDNA with the density of super-turns equal to �0.05; the latter means that the
double helix was slightly untwisted before closing up the ring, by removing one turn of every
20 = 1/0.05 turns of the original spiral; given 4000 base pairs, the original dsDNA would be
expected to have about 400 helical turns, while the superhelical one was prepared to have
about 380. The image is courtesy of A. Vologodskii. The inset (b) is the electron microscopy
image of DNA rings about 3000 base pairs long with the same density of super-turns close
to �0.05, which corresponds approximately to the linking number of about 285 instead of
about 300 turns of relaxed double helix. The image is courtesy of D. Cherny.



August 19, 2010 10:54 World Scientific Book - 9in x 6in giant

The Mathematics of Complicated Polymer Structures: Fractals 283

Fig. C11.5 Three examples of knots in proteins, including the very complex knot 51 in
a protein called human ubiquitin hydrolase (the rightmost image). In each case, a simple
model of sticks shows the same knot as in the protein. To help the eye, each chain is colored
in rainbow colors from one end to the other. The figure is reproduced, with kind permission
by the authors, from the paper: P. Virnau, L. Mirny and M. Kardar, “Intricate Knots in
Proteins: Function and Evolution,” PLoS Computational Biology, v. 2, pp. 1074–1079,
2006.

ba

Fig. C11.7 (a):
24 is the minimal
number of
monomers on the
cubic lattice to have
a trefoil knot. (b):
36 is the minimal
number of
monomers for which
compact polymer,
filling a 3 � 3 � 4
domain on the cubic
lattice, can be
knotted. The

conformation shown does have a knot. You may wonder why monomers are shown as little
cubes here and as spheres in Figures 10.2 and 10.3. This is just to emphasize that these
shapes are a matter of aesthetic taste and of no real significance.
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a

c

d
b

e f g

Fig. C12.2 Experiments with “silly putty” toy (a silicone) performed at home by one of
the authors. By rolling between hands (a), the material can be easily shaped into a ball
(b). The red plastic case in which the toy is sold as well as the first edition of this “Giant
Molecules” book are shown for the scale. The ball-shaped “silly putty” bounces on the floor
(c), it makes several jumps before stopping. The set of images (c) of a bouncing ball was
made using regular digital camera in the movie mode with 30 frames per second. One of
the frames, (d), by chance, captured the moment of ball impact against the floor, where we
clearly see the temporarily deformed shape of the lower segment of the ball. Lower array
of images illustrates liquid-like behavior of the same silicone. In the morning, the toy was
formed into a sausage (e) and was left extending over the edge of a shelf; in the evening,
it was abundantly clear that the material was a liquid flowing down to the lower shelf (f).
Furthermore, the same sample was able to flow very slowly over the edge of the container,
demonstrating the siphon e↵ect (g).
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Fig. C12.3 A computer generated image of many tangled chains in a concentrated polymer
system. Compare this image also with the zoomed interior of a single chain globule – see
Figure 9.1. The figure is courtesy of A. Likhtman and T. McLeish. Reprinted with permission
from T. McLeish, Physics Today, v. 61, issue 8, p. 40, 2008. Copyright 2008, American
Institute of Physics.
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Fig. C13.2 Fractal pattern that
may be seen on the floor of the church
in the village of Anagni, Italy (1104).
The figure is courtesy of H.E. Stan-
ley, reproduced with kind permission
of Springer Science and Business me-
dia, from the book: Dietrich Stau↵er
and H. Eugene Stanley, “From New-
ton to Mandelbrot: A Primer in The-
oretical Physics”, Springer, 1995.

Fig. C13.5 A cauliflower and a part of it look similar to each other, except a pen shows the
scale: the left and the right photos show the full cauliflower and one floret of it, respectively.
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Chapter 14

Polymers, Evolution, and the Origin
of Life

What do we know about the fox?
— Nothing. And not all of us know
even that much.

B. Zakhoder,
(Russian children’s poem)

I cannot tell how the truth may be; I
say the tale as’t was said to me.

Sir Walter Scott

There is no doubt that thinking about evolution and studying it truly
elevates our spirits and broadens our horizons: “Living matter is the most
interesting object for research for the living matter capable of researching!”
(L.A. Blumenfeld). Also, this is a very big subject, and we have no choice
but depict it in a much larger brush strokes than anything else in this
book. Nevertheless, there is a very specific reason why we have to touch
upon evolution.

14.1 Why Evolution in a Book on Polymers?

Charles Darwin published first edition of his “Origin of Species” in 1859.
Ever since evolution remains the major organizing principle for all of life
sciences; the cliche quotation from T. Dobzhansky (1900–1975) says it all:
“Nothing in biology makes sense except in the light of evolution”.

To see evolution happening one does not have to go to a paleontological
museum: flu epidemic, for instance, happens every year, precisely because

287
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viruses evolve; indeed, for them, our bodies is the place where they live, and
their evolution selects the fittest of them, which are exactly the ones causing
greatest trouble for us. Similarly, bacteria populations evolve, driven by us
using the drugs, which is why, for instance, tuberculosis is on the rise after
the decades of hope to defeat it by antibiotics.

Possibly the most impressive example of evolution is our body’s reaction
to a flu or a similar infection. The initial symptoms are familiar to everyone:
head aches, body aches, eyes sore, nose runs; all we want is to stay in bed.
This continues for a few days, and then . . . then we feel better. How does
this miracle happen? In fact, what happens inside our body is . . . yes,
evolution. We will not go into details, but in one sentence the cells of our
immune system evolve to acquire a completely new ability to recognize and
destroy the virulent intruder.

Thus, evolution is a fact, and many aspects of it do not require eons.
But Darwin claimed much more in his book than the mere fact of evolu-
tion. He said that evolution is driven (mostly) by natural selection, famous
“survival of the fittest” (the full title of Darwin’s book reads “On the Ori-
gin of Species by Means of Natural Selection”). This aspect was decisively
clarified between 1920s and 50s in what is called modern evolutionary syn-
thesis, or neo-Darwinism, or synthetic view of evolution — the logical union
of Darwinian evolution with Mendelian genetics. It was started by Ronald
Fisher (1890–1962) in Great Britain, with the main idea being the role of
genetic diversity carried by the population. In this picture, natural selec-
tion acts by providing relative competitive advantages or disadvantages to
certain versions of the genotypes presented in the population, with the re-
sult that the population as a whole is statistically driven towards greater
fitness. This idea is well illustrated by the concept of fitness landscape —
something very similar to the free energy landscape which we discussed in
Section 10.8, except physical systems tend to the lowest free energy, while
biologists prefer the high fitness; minus free energy is thus an analog of
fitness — the idea introduced in 1930s by Sewall Wright (1889–1988). The
tricky part is that selective pressure is exerted on phenotypes, while geno-
types are inherited, and the relation between genotypes and phenotypes is
not one-to-one. Nevertheless, in the end evolution can be thought of as
di↵usion of a cloud of genotypes, presenting population, over the fitness
landscape [22]. The development of such statistical theory of evolution
was a real challenge, as evidenced by the fact that one of the world leading
mathematicians of the time, Andrey N. Kolmogorov (1903–1987) of Moscow
University, took active part.
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When this evolutionary synthesis was formulated, people did not know
what are genes. In this sense, the development of synthetic evolution the-
ory can be compared to the initial steps of thermodynamics: Fourier, for
instance, formulated correct heat conduction equation (and developed pow-
erful methods to solve it — Fourier series) without any knowledge of what
was heat. But once molecular nature of heat was understood, the science
of thermodynamics received its natural foundation in statistical mechanics.
Similarly, once the nature of genes, as the sequences of DNA coding for
particular proteins, was understood — it opened up the doors for molec-
ular understanding of evolution. And since the molecules involved are, of
course, biopolymers of DNA, RNA, and proteins — we should touch upon
this topic in this book. That is why we invite you to the discussion of
physics underpinnings of evolution.

14.2 Molecular Phenomenology of Evolution

14.2.1 Genealogic Tree and its Root: LUCA

Thus, at the molecular level, biological evolution is — at least in part —
about changes in the primary structures of biopolymers.

An important thing for physics is that a DNA double helix’s shape
does not really depend very much on the sequence of monomers. (This is
because the pairs are mutually complementary and are hidden inside the
double helix.) In this sense, DNA is like a piece of paper or a computer
memory — a media suitable for recording any message. It is for precisely
this reason that the DNA “texts” can be altered. Otherwise, the result
of evolution would be not the best suited organisms, but merely DNA
molecules with lower energy. In contrast, the tertiary structures of proteins
strongly depend on their primary structures; this allows di↵erent proteins
to carry out so many di↵erent functions, and does not allow proteins to
serve as inheritable information storage.

Typically sequences of DNA and the set of sequences of proteins do
not change during the life time of a particular cell, but changes do occur
infrequently, from time to time, due to mutations, replication errors, and
other mechanisms. What does it lead to?

Large scale sequencing of biopolymers and the growth of corresponding
rich data bases produced an unprecedented wealth of data to address the
genetic “closeness” of various species or even di↵erent individuals.
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Take, for example, the sequence of amino acids from the hemoglobin
(spelled also haemoglobin) — a globular protein present in red blood cells;
it carries oxygen from the lungs or gills to other organs and tissues. In
human population, about ten versions of hemoglobin sequence are known;
some of them are functionally equivalent, but some present a moderate
under-performance in terms of oxygen delivery function (partly compen-
sated for the individuals by, e.g., the better tolerance to malaria — which
is why this genetic version is more common in places where malaria is
wide spread). This confirms the idea of genetic diversity in the popula-
tion. But all these versions of hemoglobin sequences are di↵erent in only
one or two positions. Compare now hemoglobin of a human, a horse and
a shark. Out of 141 “letters” (aminoacids), the human and the horse have
123 in common and only 18 di↵erent ones. Meanwhile, the human and the
shark agree about 62 and disagree about 79 of the amino acids. Presum-
ably, this suggests that we are much more closely related to horses than to
sharks!

Similar comparisons were performed for many thousands of proteins
which have been sequenced for hundreds of species. Primary structures
are being gathered and catalogued with much vigor. Without doubt, it is
much easier to compare “texts” that are written out in a 20-letter alphabet,
than to deal with real creatures, either living or extinct. Most importantly,
comparing sequences can be formalized and entrusted to computers. The
results of such analysis are used to reconstruct the “genealogical” trees
of species. It is now established that there are three main domains of
life — archaea, bacteria and eukaryotes, and there is very convincing ev-
idence that the whole tree grows from one single root. That means, all
of life descended from common ancestry, and, therefore, some time ago
there must have been Last Universal Common Ancestor, an organism called
LUCA.

The idea of LUCA started to crystallize in 1960s, when genetic code was
cracked and turned out to be universal in all of the biosphere (with some
marginal variations) — that was naturally interpreted as a sign of common
ancestry. Now the idea of LUCA seems well established, although genetic
and other features of it are not yet clear.

In fact, things are somewhat more complex than we just presented them.
Indeed, there is evidence that some genetic material could be transferred in
ways di↵erent from direct ancestry, this is called horizontal gene transfer.
It may be realized by viruses or other means, but whatever the mechanism,
in the end it means the genealogic tree is not really a tree, it is rather a
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network of some sort. But a tree is a decent first approximation — good
enough for us here.

14.2.2 Further Observations

What else can we learn from studying the sequences? There are many
observations, but it seems rather hard to bring them into a system. We
just choose several examples by our subjective taste to list here.

Some types of proteins have more common features, and some have
fewer, when compared between di↵erent species. For instance, the so-called
histones di↵er far less than, say, fibrinopeptides. This tells us something
about the history of evolution. Indeed, this is perfectly logical that the job
that histones do (i.e. packing DNA chains into chromosomes) must have
emerged much earlier than the responsibilities of fibrinopeptides (blood-
clotting); DNA packing is an old evolutionary invention, because it exists in
all eukaryotic calls, including rather primitive ones, while blood and blood
clotting is of course relatively much more recent evolutionary achievement.
We can also conclude that DNA packing machinery did not evolve very
much in the most recent stages of evolution.

Here is another example of an interesting observation. Imagine that you
have a globular protein, and replace — not in an active center — one of
the hydrophobic amino acid by another hydrophobic one, or hydrophilic by
hydrophilic (see Section 5.7). Then, most likely, such a substitution will
not cause much trouble: the three dimensional structure of the globule will
not be violated, and the protein will still be able to do its job. Here, “most
likely” does not mean “always”, there are exceptions, some of them are
unfortunate, for they have to do with inheritable diseases, but overall pro-
teins have remarkable stability against mutations, as we already discussed
in Section 10.6.

Genetic code also seems to have some error correcting capabilities. One
particular property was noticed by M.V. Volkenstein, and can hardly be
accidental. To explain the point, let’s imagine that we have a gene — DNA
sequence coding for a certain protein. If one DNA nucleotide is acciden-
tally replaced by another, there is a more than even chance (in fact, about
2/3) that this will lead to the safest, that is, hydrophobic–hydrophobic or
hydrophilic–hydrophilic substitutions in the coded protein.

14.2.3 Power Laws

Very recently, in 2003, E. van Nimwegen compared some hundreds of species
and noticed something that we could have included in the Chapter 13 on
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fractals, speaking about power laws1. It seems reasonable to think that
more sophisticated organisms have generally longer genomes, and it does
not sound like a great surprise that the number of protein types in the
cell grows linearly with the genome length. But if we look specifically
at proteins involved in regulation of DNA activities, such as transcription
factors, their number in the cell scales as the square of genome length!
Everyone understands that Ax2 grows faster than Bx, irrespective of coef-
ficients A and B, and that means the fraction of proteins used for anything
but genome regulation decreases. Furthermore, if this scaling continues, at
some genome length a catastrophe must happen when all proteins are reg-
ulators and nothing else. It is like in a business: if the fraction of managers
among all employees increases with the company size, then the catastrophe
gets inevitable when at a certain size company ceases to do anything, be-
cause all its workers are managing each other. From the study of fractals
we know that the system must cross-over to a completely di↵erent scaling
regime (see, e.g., Figure 13.11). How this plays out in evolution — we do
not know yet.

Another group of evolution-relevant power laws is found in the relation
between sequences and structures in proteins — molecular counterpart of
classical biological relation between genotype and phenotype (see Section
5.9). Indeed, many — sometimes hundreds or even thousands — sequences
can code for essentially the same conformation. To describe this mathemat-
ically, let us pretend that we have counted all sequences that code for any
given conformation, S, and the number of such sequences is k(S). Further,
let us call p

n

the number of conformations S such that k(S) = n; in other
words, p

n

is the number of structures realized by n sequences each. Then
it turns out that p

n

⇠ n�� , where � is usually around 2.
Furthermore, power laws and underlying fractal properties are also seen

if one looks at the evolution from the point of view of protein conformations,
not sequences. Here, we should mention that protein conformation appear
to have been somehow selected. One aspect of it we already discussed in
Section 11.6: conformations with knots seem to be under-represented com-
pared at random. But quite apart from that, as C. Chotia of Cambridge
University in England pointed out, only relatively few conformations, not
more than several thousand, are featured in the proteins (his paper2 had
an interesting title: “Proteins. One thousand families for the molecular

1E. van Nimwegen, “Scaling Laws in the functional content of genomes”, Trends in
Genetics, v. 19:9, pp. 479–484, 2003.
2Nature, v. 357(6379), pp. 543–544, 1992.
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biologist”). Furthermore, it turns out that these selected protein conforma-
tions form a sort of self-similar network3.

Here, we refer to a branch of fractal science which we did not touch
upon before. To introduce it, let us imagine drawing a node on a (big)
piece of paper for every person living on Earth, and then connecting every
two nodes by a line if and only if the corresponding two persons ever had a
handshake. We obtain a network. Another example would be a network of
all physicists, where dots corresponding to two physicists are connected if
they ever published a paper in co-authorship. Network of actors is obtained
by making a bond for any two actors who participated in the same movie.
World wide web is already a network, its bonds are links from one site to
another. And there is also electric grid, a network of biochemical processes
in the cell, etc. The remarkable discovery of around 1999, due largely to
A.-L. Barabasi and colleagues at the University of Notre Dame in Indiana,
is that all these networks are scale-free, which means, for instance, that in
every network the number of nodes having some k bonds scales with k as
k�� . Although � might be di↵erent, in most cases between 2 and 3, the
likely conclusion is that typical natural processes lead to formation of (very
non-random) scale-free, self-similar networks — the ones with appreciable
number of very strongly connected nodes. This of course goes along our
everyday observations: some people around seem to know everyone, right?

It appears that protein conformations are also like that, they can be
viewed as nodes of a scale-free network. What plays the role of bonds in
this network, or “handshakes” between conformations? The answer would
appear natural if the reader remembers the protein conformation contact
matrix — we discussed it around formula (10.1) in Section 10.5. Indeed, the
“distance” between two conformations can be characterized by the number
of permutations by which the contact matrix of one conformation is trans-
formed into the other. Then, two conformations are declared “neighbors”,
and are connected by a bond (“handshake”), if the distance between them
is smaller than a certain threshold (and the results appear rather insensitive
to the specific value of this threshold, within reasonable limits). With such
definition, the network of protein conformations turns out to be scale-free.
Obviously, this fact must be somehow the result of evolution. But how did
it happen in evolution? And what does it lead to? Those are all topics of
active current research.

3N.V. Dokholyan, B. Shakhnovich and E.I. Shakhnovich, “Expanding protein universe
and its origin from the biological Big Bang”, v. 99, p. 13132, 2002.
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14.2.4 Statistics of Sequences

Can statistics be of any use to analyze the “letter” sequences in protein
“texts”? A similar problem exists for conventional human languages (for
instance, if you want to decode a message, etc.) The Russian language, for
instance, was studied from this point of view by the famous mathematician
A.A. Markov around the beginning of the 20th century. There are quite
a few useful things that mere statistics can reveal, with no knowledge of
the language whatsoever. For example, you can distinguish poetry from
prose. So what does “protein linguistics” tell us? It turns out that the
protein “texts” look nearly random for statistical tests. Of course, we know
that protein sequences are not really random (see Section 10.6), but their
non-randomness must be of a more subtle character, di�cult to reveal by
mere statistics of aminoacids. O.B. Ptitsyn summed it up rather nicely: A
protein is a slightly edited statistical copolymer.

Here, we would like to outline the mathematical way to look at corre-
lations in a long sequence of any nature — aminoacids in a protein, nu-
cleotides in DNA, letters in this book, etc. The method is to map the
sequence onto a random walk. It can be done in the following way. Let’s
classify all the symbols in the sequence into two groups (vowels and con-
sonants; purines (A, G) and pyrimidines (C, T); etc), and assign to every
symbol in the sequence the number ⇠

i

= 1 for the first group and ⇠
i

= �1
for the second. We can imagine that i labels clock ticks, and ⇠

i

= ±1
represent steps of the walker to the right or to the left. This allows us
to use Equations (6.6–6.11), even in a simplified version, so random walks
are confined to a straight line, and go only in two opposite directions, so
we shall not even need any vectors. Let R

t

be the displacement after t

steps. Then R
t+1

= R
t

+ ⇠
t

. When we did it before, we could square
this equation straightaway. This is because the average of R was zero.
However, now we may have a drift. (By the way, in the case of polymers,
the drift exists when we pull the chain by its ends in opposite directions
— see Figure 7.3.) So, bearing in mind the drift, and taking the average,
we obtain: hR

t+1

i = hR
t

i + h⇠
t

i. From here hR
t

i = t h⇠i (obviously, the
average value of h⇠i does not depend on t). Thus, the equation for the
average displacement will be of the same sort as (6.1). It describes a simple
uniform motion at a speed h⇠i. You may want to suggest: choose a di↵er-
ent frame of reference. Indeed, define the displacement as S

t

⌘ R
t

� t h⇠i.
Then S

t+1

= S
t

+ (⇠
t

� h⇠i). Obviously, S has no drift in this case. Its
average value is zero. So we can turn back to the formulae from Chapter 6.
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If the text is random, then no letter is determined by the preceding one,
which means, S

t

and ⌘
t

= ⇠
t

� h⇠i are totally independent, yielding the
“square root law”, i. e. S ⇠ t1/2, where S =

p
hS2

t

i. However, if the text
is not random, then one might expect S ⇠ t↵, where ↵ 6= 1/2. The value
of fractal index ↵ is one of the best measures of randomness (↵ = 1/2) or
non-randomness ↵ 6= 1/2) of a sequence.

In 1992, H.E. Stanley and his co-workers in Boston University claimed
that while ↵ = 1/2 for coding regions of DNA, it appears that ↵ ⇡ 0.7 for
non-coding DNA. This means the non-coding DNA sequence is not random.
Moreover, it is a fractal!

14.2.5 Meaningful and Meaningless, Random and Fractal

“Fractal linguistics” of non-coding, i.e. the “meaningless” part of DNA
texts remains a subject of controversy.

But how about texts that make sense? Does not it sound disturbing that
the coding DNA has ↵ = 1/2, i.e. looks statistically random along with
the corresponding proteins? It is not too surprising though. Meaning is
too subtle a thing to be revealed at such a primitive level when we are only
looking at the fractal power ↵, describing average over long chunks of the
sequence. Any mechanism for producing a meaningful piece of text, when
choosing the next letter of the text, relies entirely on the actual context,
and totally disregards any physical side of the process, i.e. what the letters
and symbols are made from (be it ink on paper, nucleotides, or anything
else). Just imagine a self-similar text. The whole book looks statistically
like each of its chapters (which means that all the chapters are statistically
similar!), and every chapter is similar to any of its sections, etc. This would
not be very meaningful, would it?

Trying to give an example of something most definitely meaningless,
Arthur Eddington (1882–1944), famous British astronomer, suggested once
to imagine what a monkey would produce on a typewriter — given the
opportunity! In fact, as far as poor monkey is concerned, we have a sec-
ond thought: the piece of literature it creates would, almost certainly, lack
meaning; but we think, it would be far from random, likely a fractal with
↵ > 1/2. Typing monkey is an excellent metaphor for a mechanism pro-
ducing meaningless text, but not a random uncorrelated sequence. In fact,
generation of purely random sequences is an important task in many areas
of computer science, and it turns out a very di�cult problem; there are
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many sophisticated computer programs called random number generators,
none of them is perfect.

Thus, non-trivial fractal correlations in the sequence may indicate some-
thing interesting, but most likely not a meaningful sequence. By contrast,
meaningful sequence will most likely look random for someone who does not
know the language. For instance, sequences of digits in decimal form of ⇡
or e look statistically completely uncorrelated, but they are definitely very
meaningful. Protein sequences, too, are not random as far as their folding is
concerned (see Section 10.6), but appear random for blind statistical tests.

14.3 Entropy and Evolution

14.3.1 Life in Evolving Universe

Lying in wait for us is the next question, how did it all start? We have
talked a little about the molecular picture of the evolution of life, in which
less complex forms develop gradually into more complex ones. But where
did the simplest forms of life spring from? In the spirit of Darwinism, the
answer is obvious: they evolved, step by step, from the inanimate world.
How did this happen? There are no surviving witnesses — but there are
scraps of evidence! And, of course, we can turn to theory and experiments.
So what do we know about evolution before life came on the scene?

Some scientists have suggested that life did not occur spontaneously
on Earth, but was carried here from outer space. However, even if there
were some firm evidence for this idea (which there probably isn’t), it would
not help. It just moves the goal posts. We would still have to answer the
question of how life appeared out there. But since we have started talking
about the cosmos, it is a good place to recall that the age of the Earth
(4.5 · 109 years) is comparable to the age of the whole Universe (14 · 109
years). This is why it is natural to regard the appearance and evolution of
life on the Earth in the context of the Universe’s evolution.

Our Universe started about 14 billion years ago in a “Big Bang”. At
the very beginning, the Universe was unimaginably dense and hot, and all
was light (photons). The pressure of light caused the Universe to expand.
Whilst expanding, the Universe became more rarefied and cooled down (and
this is still continuing). As it cooled, other particles started to materialize
— electrons and positrons, then protons, neutrons and their corresponding
antiparticles, etc. We cannot do justice to this topic here, except recom-
mending the book by S. Weinberg entitled “The First Three Minutes” [42],
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but the basic principle is very simple: each particle species “condenses out”
at the maximum temperature it can stand without “falling apart”4. Note
especially that at each temperature all the energetically possible particle
species are formed.

Initially, matter was nearly homogeneously distributed in the Universe,
but the Universe evolved and developed gradients — non-uniformities of
everything — temperature, density, composition, etc. Just like strong
imbalance of temperature and humidity in the atmosphere creates winds
and hurricanes, the su�ciently steep gradients of all scales lead to non-
equilibrium dissipative processes and structures, such as galaxies, black
holes, and planetary systems. We will argue that life, from this very gen-
eral view point, is just one of such non-equilibrium dissipative structures.

Some theorists argue that our Universe is just a part of the multiverse
— one of a very large (or infinite) number of quite di↵erent universes. In
any case, the conditions and physical laws in our part of our Universe are
conducive for life evolution, because if it were not — we would not be here
to discuss it. This is called anthropic principle, and we leave it for the
reader to view it as either a deep philosophy or a truism.

14.3.2 Life and the Second Law of Thermodynamics

Theory of evolution and thermodynamics were developed at about the same
time, in mid-nineteenth century. One of the tantalizing questions, much
confused by poorly educated writers, was the seeming controversy between
Darwinian evolution, with gradual development of increasingly organized
life forms, and the Second Law of Thermodynamics, suggesting the increase
of entropy in any isolated system. In fact, there is no contradiction what-
soever, because neither any particular organism, nor biosphere as a whole
is an isolated system: they consume free energy, which is possible precisely
because we live in the place of su�ciently steep gradients. In a sense, you
can say that the Earth with a surface temperature around 300�K reminds
us of a water wheel. What makes the wheel turn? Obviously, it turns
because it is in the way of a stream of falling water. In the same way,
the Earth is in the “stream” of light that rushes from the hot Sun (with
the surface temperature close to 6, 000�K) to cold outer space (where the
4Compare this with some facts from more everyday physics. Take water. At 287�K

(0�C) ice crystals “fall apart” (melt); at 387�K (100�C) water droplets “fall apart”
(evaporate); at 104�K molecules “fall apart” into separate atoms; at 105�K atoms lose
their electrons, turning into a plasma, etc. The higher the temperature, the smaller the
units which can exist.
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background radiation has a temperature of about 3�K). We all know that
this “stream” is still turning the “wheels” of life.

Sometimes people say that an organism or biosphere need to consume
energy. This is of course not a very meaningful wording, because energy
is conserved and so cannot be “consumed”, “spent”, or “wasted”: your
body, for instance, receives, on average, the same amount of energy as it
releases in all forms, and the same is true for any bacteria, any organism,
or a biosphere as a whole. But we mentioned already in Section 7.8 that
some forms of energy are “more equal than others”: life consumes energy
at low entropy and gets rid of the same amount of energy at higher entropy.
Indeed, we know that not all of the energy is available to extract a useful
work of any kind, but only part of energy, called free energy F = E � TS.
Unlike energy, free energy is not conserved, it can be consumed, because
entropy can be produced, and, indeed, entropy is generated in all sorts of
dissipative processes, ranging from ocean currents (such as Gulf Stream) to
life.

Let us make this a little more quantitative. The amount of energy
delivered by light from the Sun (mostly in visible and near infrared range)
is known rather accurately: the flux of solar energy at the distance of earth
orbit is called solar constant, it is about s ⇡ 1400 Wm�2. Given the radius
R ⇡ 6370 km, Earth receives Q = s⇡R2 ⇡ 1.8⇥1017 W of power (make sure
you understand why it is ⇡R2 instead of the full surface 4⇡R2; what counts
here is the cross-section which blocks the way of sunlight). Due to Earth
rotation, this power is distributed over the entire Earth surface; besides,
some fraction of the incoming light, called albedo ↵, gets reflected back into
space (mostly by snow and ice, by white clouds, and by deserts); ↵ ⇡ 0.3.
Overall, Earth receives about s(1�↵)⇡R2/4⇡R2 = s(1�↵)/4 ⇡ 245 Wm�2

of power per unit area. Very nearly the same amount of energy is emitted
by Earth back into space (mostly in far infrared range), because there is
not much accumulation of energy anywhere on our planet.

First of all, this balance determines the temperature on Earth, because a

body of temperature T emits power �T 4 per unit area, where � = 2⇡

5
k

4
B

15h

3
c

2 ⇡
5.7 ⇥ 10�8 Wm�2 K�4 is called Stefan–Boltzmann constant (we will not
derive or explain this result, except mentioning that it was one of the major
ingredients in Max Planck’s introduction of quant hypothesis; h and c are
Planck constant and the speed of light, respectively). Balancing incoming
and outgoing power amounts to a simple equation for Earth temperature:
�T 4

Earth

4⇡R2 = s(1 � ↵)⇡R2, yielding T
Earth

⇡ 256�K. The result of our
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estimate is some 30 to 40�K lower than real average surface temperature,
but instead of trying to improve it5, we say that our result is accurate to
less than 20%, and proceed further on this level.

Second of all, analyzing the flow of energy from Sun to Earth and then
to the outer space, we can estimate the amount of free energy consumed by
all active processes on our planet. For this purpose, a rather unexpected
analogy turns out useful, namely, between Earth and . . . heat engine, such as
a steam turbine. The idea is as follows. Idealized heat engine receives some
amount of heat energy Q

1

per unit time from a hot body with temperature
T
1

, for instance, from a hot steam; a smaller amount of heat energy Q
2

in
the same time is dumped to a colder body with temperature T

2

< T
1

, for
instance, to the surrounding air; the di↵erence, W = Q

1

�Q
2

, is the amount
from which the useful work can (does not have to, but can) be extracted.
Quite analogously, Earth receives energy from the sunlight, from the hot
gas of photons. They arrive to us directly from Sun, therefore, temperature
T
1

is nothing but T
1

= T
Sun

⇡ 5700�K — the temperature of Sun’s surface
layer. The amount of energy received from Sun is Q

1

= (1� ↵)Q (because
the part ↵Q is re-emitted into space “unprocessed”). The dumping of heat
occurs into the Earth’s surface layer, its temperature we just estimated:
T
2

= T
Earth

⇡ 300�K. The question is what is Q
2

and, most importantly,
W .

It may seem at the first glance that Q
2

= Q
1

: indeed, we have said that
all of the energy arriving from Sun gets eventually re-emitted into space.
This is true that everything ends up re-emitted — but this happens at
T
Earth

, a much lower temperature than T
Sun

, therefore, on the way from
absorption at T

Sun

to emission at T
Earth

some part of energy can be used
to drive all dissipative processes on Earth. Indeed, this situation is exactly
like engine. Consider, for instance, a car on a horizontal road: all of the
energy extracted from burning fuel is eventually dissipated as heat in the
environment, but part of this energy on the way performs the work against
friction forces — the work which car driver presumably considers useful.

Second Law of thermodynamics sets very rigid cap on the possible
amount of useful work W . To see this one has to realize that entropy
of a body receiving some heat �Q at temperature T increases by the

5For a better estimate, one has to include such details as the di↵erence between tem-
peratures on surface and in the clouds, the greenhouse e↵ect, geothermal energy (arising
from the fact that Earth interior in 4.5 billion years did not (yet!) come to equilibrium
and keeps dissipating), tidal waves in ocean (which dissipate kinetic energy of the Earth
rotation), etc. None of the neglected e↵ects changes the qualitative conclusions.
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amount �Q/T . We will not derive this result here; we hope that the
reader already realized the necessity to study thermodynamics seriously6.
But if the result is accepted, then it is easy to find the amount of use-
ful work for a heat engine or the amount of free energy available on
Earth. Specifically, the amount of directly dissipated heat must be suf-
ficient to increase overall entropy. To achieve this, it would be su�cient
to dump a fraction of the incoming heat such that Q

2

/T
2

� Q
1

/T
1

, or
Q

2

� Q
1

(T
2

/T
1

). For the regular heat engine this restricts the possi-
ble amount of useful work: W = Q

1

� Q
2

 Q
1

(1� T
2

/T
1

) — the fa-
mous Carnot theorem. The same statement applied to Earth informs us
that the amount of free energy available to drive the active processes is
(1 � ↵)Q (1� T

Earth

/T
Sun

) ⇡ 0.66Q ⇡ 1.1 ⇥ 1017 W, or 230 Wm�2. It is
this amount of free energy that drives all the dissipative processes on Earth,
ranging from huge hurricanes, winds, tornadoes, thunderstorms and ocean
currents, to the hydrological cycle (evaporating ocean water to produce
clouds, then rains, and then rivers), and to all forms of life7.

Let’s emphasize that radiating all of the incoming energy, in the “pro-
cessed” form at temperature T

Earth

, our planet releases also all of the en-
tropy produced. Therefore, both energy of Earth and its entropy remain
approximately unchanged.

Life is in fact only a marginal dissipator of free energy on Earth: all pho-
tosynthetic organisms together absorb about 1% of the incoming Sun light
(and all other organisms, including us, receive their free energy from the
photosynthetic ones), while ocean currents, hurricanes, etc. dissipate the
remaining 99%. That means evolution has plenty of free energy available.
This can be also confirmed by a simple estimate of entropy associated with
the high organization of biological world.

Indeed, we can use Boltzmann formula (7.2), for instance, to estimate
the entropic price of building a human body from its parts. There are
about 1013 cells in a human body, and if we assume that all of them are
di↵erent and each must occupy a uniquely defined position, the entropy loss
due to their arrangement will be k

B

ln
�
1013!

�
⇡ 1014k

B

. Similarly, each

6As an exercise, the reader can use the formula �S = �Q/T to establish that the
heat goes from a hotter body to a colder one: imagine that two bodies at di↵erent
temperatures are in contact, and exchange a small amount of heat; from the requirement
that entropy of the whole system increases one can establish in which direction heat flows
spontaneously.
7Note that “free energy driving dissipative processes” and “useful work” are the same

in fundamental physics sense, except we could not bring ourselves to call hurricanes
“useful”.
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cell contains about 108 molecules of biopolymers; again assuming that all
of them are distinct and irreplaceable, we obtain k

B

ln
�
108)!

�
⇡ 109k

B

for
each cell, or about 1021k

B

for all cells in the body. By far the largest amount
of entropy is associated with the fact that numerous proteins in every cell
have their sequences strictly fixed. All the cells together have about 1023

base pairs in their DNAs and about 1025 residues in their proteins. Even
if all of them are uniquely positioned, that corresponds to entropy price,
respectively, k

B

ln 410
23 ⇡ 1023k

B

and k
B

ln 2010
25 ⇡ 1026k

B

. Thus, all
the entropy associated with high organization of a human body does not
exceed 1026k

B

⇡ 103 JK�1. This is a very modest amount of entropy, the
corresponding free energy at 300 K is provided by the Sun light in a few
hours to every square meter of the Earth surface.

To summarize, life and evolution are realized on the expense of free
energy delivered by the Sun light, this free energy is — and always has been
in the history of Earth — plentiful. Of course, this only means that entropy
is not su�ciently good measure to characterize biological organization. But
now we have to ask: how could this plentiful free energy have been used by
the evolution?

14.3.3 Chemical Evolution on the Early Earth

What was there on the early pre-life Earth? There was the atmosphere,
water, and land. And there was certainly light coming from the Sun. Vi-
olent processes were occurring: winds blew, waves battered, rivers rushed,
thunder and lightning rent the air, and volcanoes exploded. . . . The atmo-
sphere consisted chiefly of the simplest gases, nitrogen, carbon monoxide,
steam and hydrogen. (The latter rapidly escaped from the outer layers of
the atmosphere.) Importantly, there was no oxygen, the atmosphere was
reducing, and oxygen appeared later, due to life.

What could have happened? Nitrogen N
2

and carbon monoxide CO,
together with hydrogen H

2

, gave rise to ammonia NH
3

and methane CH
4

(with the release of water). Other gases. . . well, do we need more examples?
After all, it is not that unlikely that any simple compound could have even-
tually been created, even given the scanty choice of original constituents.
There were just so many possibilities how it could have happened. In one
or other place, in deep or shallow water, in the air, or in the sand. At any
time, during millions of millennia (⇠ 109 years). In larger or smaller quan-
tities. Through one or other chain of chemical reactions. If a particular
reaction needed free energy, there was no problem with that. It could have
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been supplied by the ultraviolet irradiation from the Sun, electrical light-
ning discharges, hot volcanic products, or shock waves, etc. Clays could
have played the role of enzymes. There were 24-hour cycles of di↵erent
conditions of light, temperature, and humidity. . .

No doubt, this o↵ers a vast field for fantasies, but there are just as many
opportunities for scientific research. One type of experiment can be done as
follows. A hermetically sealed vessel is filled with the right mixture of solid,
liquid and gaseous ingredients. Appropriate light and electrical discharges
are provided. All the conditions (such as the brightness of the light, the
average frequency of “lightning” discharges, etc.) are chosen in such a way
that, say, a week of the experiment would be equivalent to some 50,000
years of history. At the end, the resulting mixture is analyzed carefully.
What do these studies show? The answer is: huge variety of things, up to
and including aminoacids in respectable quantities. You can learn all your
chemistry if you just go through the list of the final products.

To summarize, the chemical evolution of the early Earth obeyed the
same principle as the cosmological evolution that we mentioned before: at
each stage, you get the particles (or molecules, as long as we are talking
about chemical evolution) of all the possible sorts allowed by the energy
conditions. . . All? Really? How about polymers? Well, some protein-like
polymers — protenoids were found in experiments modeling prebiological
evolution8. But as soon as we start talking polymers — we are in a big-
big trouble. Polymerization could have really changed the whole character
of evolution: this is the stage which fundamentally delineates chemical
evolution from pre-biological and biological ones.

People with very keen insight never really doubted that biological evo-
lution was far more complicated than chemical evolution. As an example,
let’s just quote the great German scientist and philosopher Immanuel Kant
(1724–1804). (By the way, he was the first to suggest a scientific theory of
the evolution of the Universe, which was identified with the Solar System
at that time. In particular, he proposed that the planets were formed by
the condensation of hot nebulous matter.) This is what Kant wrote about
evolution, more than 200 years ago: “It is easier to understand the creation
of all the celestial bodies and the cause of their motion, in other words
the origin of the whole present-day organization of the universe, than to
find out by means of mechanics how a little blade of grass or a caterpillar
appeared.”

8S.W. Fox and K. Dose, “Molecular Evolution and the Origin of Life”, Marcel Dekker,
1977.
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14.3.4 Primary Polymerization

Out of m monomer species you can make mN di↵erent polymers each of
length N . Although they will only di↵er in the sequence of monomer
units, i.e. in the primary structure, this di↵erence might be very im-
portant. Thus, the number of possible polymers grows exponentially with
their length, mN = exp(N lnm).

Physicists know that if there is a large parameter in the argument of
an exponential, it needs to be treated with care. We have already come
across such a situation in this book. The expression mN is not as simple
as it looks. It tells us that the Earth is not old enough, nor is there enough
material on it, for all the possible sequences of monomers to have been
tried. Therefore the principle to which we referred when we talked about
cosmological and chemical evolution, no longer holds. (As you remember, it
was that all possible sorts of particles are formed.) This takes us to a new,
utterly di↵erent stage of evolution, and we will argue that it was precisely
at the stage of polymerization that the first “life-like” features started to
show up.

Let’s make some estimates to confirm what we have just said. For
example, how many protein chains of a given length (say, 200 monomers)
can exist? For proteins, m = 20, and if we take N = 200, we shall have
mN = 20200 = 10200 log 20 ⇡ 10260. This number is ludicrously huge. Even
if the whole surface of the Earth (roughly 5 · 108 km2 = 5 · 1014 m2 )
were covered with a 10-kilometer thick layer of protein-like polymers, you
would “only” manage to fit in about 1044 chains. (This is because the
volume taken up by each 200-monomer chain is roughly 200 ⇥ 0.1 nm3 =
2 ·10�26 m3.) Now imagine that every molecular collision (lasting for about
10�11 s) throughout the history of the Earth (4.5 ·109 years) led to renewal
of the primary structures of all the chains (which sounds even more unlikely
than anything else we have said so far!) Even then “only” about 1028

attempts would have been tried out by now. Hence, our super generous
overestimates give an answer of order 1044·1028 = 1072 of primary structures
that could have existed, which is a huge number, but still far too far from
the desired 10260. As you see, exponentials are not to be trifled with!9

Thus, there were too many sequences to try out. Far from it. By the
way, what sort of chains are we talking about? Over the last years, more

9This fact — the danger of exponentials — became painfully known to the king in the
legend about the invention of the chess game, but his problem was 264 ⇡ 1.84 · 1019,
while ours is incomparably bigger.
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and more evidence has been gathered that RNA played the main role in
prebiological evolution, that it was a sort of “RNA world”. Indeed, RNA
can carry out DNA’s “instructive” function, and could work as a catalyst
(although not quite as good as proteins).

Interestingly, the role of RNA puzzled scientists since the very dawn of
molecular biology. Already in 1954, Gamow10 founded the elite “RNA Tie
Club”. The aim was “to solve the riddle of the RNA structure and to under-
stand how it built proteins.” The club consisted of 20 regular members (one
for each amino acid), and four honorary members (one for each nucleotide).
Each member received a woolen necktie, with a helix embroided in green
and yellow (idea and design by Gamow). The club was quite influential, al-
though as it happened the genetic code was cracked not by the members. In
the very recent years, the interest in RNA grew up once again, this time it is
mostly about the non-coding short microRNAs that play crucial role in reg-
ulation — one more interesting subject beyond the framework of this book.

Here, we are not that worried about the particular chemistry of the
polymers. What is more important is the very fact of the chain structure.
It is just because all the monomers line up in a chain that we end up with
a horrendous number of possibilities, mN , which cannot all be tried out.

The mixture of early evolutionary products on the Earth is usually
called the primordial soup. In this soup, there were monomers which could
join up with each other, given favorable conditions, and they formed some
polymer chains. This is a well established fact, proved by laboratory exper-
iments. Moreover, some of the polymers created had a slight ability to act
as catalysts; this has also been confirmed by experiments. However, what
could have happened next is much less clear.

One scenario discussed in the literature is the formation, by chance,
of mutually catalyzing polymers. Manfred Eigen of Max Planck Institute
in Göttingen (Germany) and his co-workers worked out a model, called
hypercycle, which represents a sort of evolution on the level of polymers [25].
The model is dressed up in a beautiful mathematical clothes of di↵erential
equations, but its essence is simple.

10George A. Gamow (1904–1968) was a very non-usual scientific star, as he produced
three first rate ideas in three unrelated fields of science: Gamow was the first to explain
radioactive decay as quantum mechanical tunneling; he was the first to predict the cosmic
background radiation — the relict of the Big Bang; and Gamow was the first to formulate
the idea of genetic code. He was born in Odessa and educated in Leningrad (now St.
Petersburg) in the early years of Soviet Union, where he shared friendship with Lev D.
Landau and Matvei P. Bronshtein. In 1934, he managed to escape from the USSR and
emigrated to the USA.
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Suppose a polymer chain A
1

was created accidentally in the primordial
soup. Entirely by chance, it is a weak catalyst, and can speed up the pro-
duction of another polymer A

2

; in other words, it stimulates the monomers
from the soup to join each other, forming chains of A

2

. Similarly, we as-
sume thatA

2

helps makingA
3

, etc, up to some other polymerA
k

that helps
making A

1

. It should be clear why this is called hypercycle! As soon as
such a structure appears in the soup, it will cause a kind of explosion! The
system will start making its own copies, one after another. It will be a snow-
balling process, following a geometric progression, until all the monomers
in the soup are used up. Due to mutations and mistakes, hypercycles will
not be identical to each other. If one of the hypercycles has more e�cient
catalysis, it will reproduce itself more rapidly. Hence, there will be more
chains of the corresponding type. Meanwhile, the stock of monomers in the
primordial soup is limited, and is shared between all. Moreover, the chains
tend to break spontaneously from time to time. The monomers which are
released when some chains are broken are then reused to build new chains
— most likely they will be used by the most e�cient hypercycle, etc.

This story is remarkably similar to how Darwin’s “survival of the fittest”
is often described, at a primitive level. The monomers play the role of food,
and self-copying chains or hypercycles play the role of living beings who re-
produce themselves given enough food. As a result of the competition for
fodder, only the most gluttonous and prolific species will survive. Recently,
such mutual catalysis system was experimentally realized with RNA11. Nev-
ertheless, how it could have started in a primordial soup conditions remains
an open question.

The question is essentially that of the chicken and the egg, or, in molecu-
lar biology formulation, which function came first, that of a DNA carrying a
blueprint of how to make a protein, or that of a protein synthesizing DNA?
Since we know that not all of the sequences could be tried, we have to ask:
what is the fraction of sequences that are capable of, for instance, mutual
catalysis, hypercycle-style, strong and selective enough to start the feed-
back loop? Can we calculate the probability that a sequence of monomers,
picked at random, will be a functioning polymer? This is a similar task, in
a sense, to the prediction of the tertiary structure of a globular protein (see
Chapter 10). Neither problem has been solved, but both are intensively
studied. Who knows, maybe some of the readers of this book will manage
to clarify the matter?

11T.A. Lincoln and G.F. Joyce, “Self-Sustained Replication of an RNA Enzyme”, Sci-
ence, v. 323, n. 5918, pp. 1229–1232, 2009.
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14.3.5 Memorizing of a Random Choice

We concluded previous section with a question. Just in case if anybody
wants to give it a try, we ought to explain how is this problem related to
what we said in Section 14.2.5 about the di↵erence between meaningful and
meaningless texts? The Eddington monkey experiment suggests that it is
enormously unlikely to produce a meaningful text of any sensible length en-
tirely by chance. In the primordial soup we seem to face that very problem
— except . . .

When Eddington monkey sits at the typewriter, someone knowing lan-
guage watches over the monkey’s shoulder and waits for a piece that makes
sense in that language. But imagine that we ask the monkey to make a
password for our new computer account. That would be a totally di↵erent
story! Very likely, with probability close to 100%, the monkey will produce
an excellent password very quickly. And as soon as the password is entered
and memorized by the computer — it becomes highly meaningful, because
it opens the account up! In this case, the monkey is successful, because it
creates new information from scratch; you can say it creates the word and
the language in which this word makes sense.

For present day biopolymers, “meaningful” means compatible with all
other existing biopolymers, and its creation by chance is as unlikely as
writing by chance a literature masterpiece. But the situation in primordial
soup might have been di↵erent, when you only needed some polymer with
a decent catalytic function: it isn’t over until the fat lady sings.

By the way, if such spontaneous polymerization under any circumstances
is possible — why does not it happen right now? Well, the conditions might
have changed, present atmosphere, for instance, is oxidizing — but let’s also
recall a really wonderful piece from Darwin’s letter to his friend J. Hooker:
“They often say that at present there are precisely the same conditions
for primitive living creatures to appear as there used to be some time ago.
However, if now (oh, what a really big “if”!), in some warm little pond
containing all the necessary salts of ammonia and phosphor, and accessi-
ble for the action of light, heat, electricity, etc., a protein resulted from
chemical reactions that was capable of further, more and more complicated
transformations, then this protein would be immediately destroyed or ab-
sorbed, which could not have happened in the period before the appearance
of living creatures.” In other words, if nowadays a chain of a biopolymer is
accidentally synthesized, it is bound to be eaten before anything interesting
can happen to it.
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a b

Fig. 14.1 A mechanical illustration of how a random choice is memorized.

This situation is a bit similar to a simple mechanical model shown in
Figure 14.1. The first diagram, Figure 14.1 a, depicts a perfectly symmetric
yet unstable system. Then the symmetry is broken at random (or spon-
taneously, as they often say). As a result, the system comes to a stable
position (Figure 14.1 b). The stability means that the random choice that
has been made is now “engraved” into the system’s memory. Indeed, before
the polymerization starts great many polymer sequences are equally likely
— in this sense they were symmetric; similarly, all combinations of sym-
bols are equally likely candidates for password. But as soon as the choice is
made — because you have chosen the password or because some sequence
have actually appeared and catalyzed their products — this random choice
is memorized, and it gives things the meaning.

The memorizing of the random choice turns out to be a very interesting
thing. Let’s give a few examples.

14.3.6 Right and Left-Handed Symmetry in Nature

Most people have their hearts not in the middle of their bodies, but on the
left-hand side. In contrast, a DNA double helix, a triple helix of collagen,
and ↵ spirals of globular proteins all have a right-handed structure. In
engineering, except in some very special cases like the left-hand pedal of a
bike, only right-handed screws are used. Why?

Let’s start with engineering. A left-handed thread is no worse than
a right-handed one. However, imagine a child’s do-it-yourself kit where
right-handed screws and nuts are mixed up with left-handed ones. The
symmetry is, therefore, preserved. But it is quite awkward to play with, to
put it mildly! This awkwardness comes from the instability of the symmet-
rical state. The direction in which the symmetry was broken (right-handed
screws) was chosen more or less by accident in the past. However, now it is
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well established and is retained by standards and tradition. In other words,
this choice has been memorized, and the system is now fairly stable. It is
quite unthinkable that left-handed screws will suddenly come into fashion!

The situation with molecular “screws” in nature is a little more complex.
In atomic nuclei, there are mirror-asymmetric interactions which are called
“weak”. They are weak indeed. At least, they hardly a↵ect the properties
of the atoms. Some time ago, this influence was even disputed all together.
However, in the 1970s scientists managed to detect it, in very refined optical
experiments with bismuth vapor. Weak interactions make right-handed and
left-handed spiral molecules di↵er slightly in energy. This di↵erence is very
small, and it is estimated to be about 10�17 of the characteristic energy.
We personally subscribe to the view that such a minute discrepancy could
not have played any role, and the modern biosphere is asymmetric in the
way it is entirely by memorizing the random choice.

There is a curious fictional story on this subject. It is about a ship-
wreck. The victims die of starvation on an unknown island, although beau-
tiful fruits grow there in abundance. The clue is that this island is really a
land behind the looking glass. It is a country of left-handed DNA, collagen,
and ↵-helices. The fruits grown there are no good for eating.

Yet another example is the driving. People drive on the right in most
countries, though there are exceptions, such as England, Ireland, Japan,
etc. You can find on the Internet a map showing in di↵erent colors coun-
tries with left- and right- hand roads. You will see that most of the left-
driving countries are either on the islands or geographically quite isolated
from the neighbors. We can speculate that in this sense our planet is
like an island, where the initial random choice12 of chirality is memorized,
fixed by tradition, and remains unchanged without strong influence from
outside.

Many more fascinating details about the left-right asymmetry can be
found in the book [46].

14.3.7 QWERTY 12

Do you recognize the “word” QWERTY? Look at the keyboard of your
computer, upper left — see it? Why do (almost) all computers, at least

12For the driving, the initial choice in many cases was not independent, but rather
imposed by the British colonial administration — which is not related to our subject
here.
12This subsection was written by A. Aerov.
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in the English speaking world, have the same order of characters on the
keyboard?

Present day most common layout of the keyboard was first suggested in
1870s by Christopher Latham Sholes (1819–1890), a journalist and newspa-
per editor in Milwaukee, Wisconsin. He was concerned with the problem of
arms jamming in the mechanical typewriters in case of pressing two neigh-
boring buttons in a rapid succession. A common misconception is that he
was trying to reduce the typing speed; a more likely version is that he was
trying to allow for a high speed reliably, without jams. In any case, his idea
was to place the most common (in English) pairs of characters, such as th
or st, as far on the keyboard as possible.

Of course, jamming of the mechanical arms is not an issue for modern
computers, but QWERTY layout is still by far the most common. Further-
more, August Dvorak, a professor of education in Seattle, showed already
in 1940s that even a randomly reshu✏ed keyboard will most likely be more
convenient for the typist’s hands than QWERTY. . . But QWERTY still
survives. Why?

Of course, the explanation is the memorization of random choice. So
many people are so much used to the current keyboard layout, that chang-
ing it does not appear practical. And this is a very common situation in
economics, politics, etc. Arrangement of major controls in a car; the width
of the rail gauge; the set of accepted computer programs; the design of
appliances; the association of a firm with a certain groups of consultants,
customers, etc; voltage in the electric grid; obsolete laws and law implemen-
tation legal practices — all that and many other similar examples illustrate
again and again the role of random choice of one alternative, which is very
di�cult if not impossible to change later. QWERTY is a quintessential
example of such situation, and the very “word” QWERTY is an exam-
ple of a meaningless string of letters acquiring “meaning” because of the
memorization of random choice.

14.3.8 Emergence of Novel Information

The appearance and progress of life is not the only case of evolution based
on impossibility to test out all variants. There are other examples, such as
the emergence and development of languages, literature, art and science,
and even the game of chess. All these systems, in a way, do the same things
as living beings. You can say that scientific ideas and pieces of literature
are also born. Some of them die (but not all!). Many leave o↵spring. (For
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example, the first derivation of the heat conduction equation was based on
the belief that heat is carried by some sort of medium or ether. Thus, the
heat conduction equation is an o↵spring of a now dead concept. Similarly,
our old friend Don Quixote may not have appeared without a whole bunch
of medieval novels about knights, now happily forgotten.) What is most
important for us is that all such systems develop by memorizing random
choices. For instance, it is more or less by accident that English speaking
people use the word “number” for the concept of number. We could have
had another word instead (as, say, the Russians do; they call it “chislo”.)
However, once made, the random choice is cemented by books and people’s
memories. The attachment of the words to their meanings is no less stable
than the position of the ball in the little hole in Figure 14.1 b or the technical
standard of right handed screws.

It is interesting that in language there are some general laws which do
not depend on random choices, i.e. on the meanings that particular words
happen to have. Such are the laws of poetry, for example. This becomes
clear from the following absurd yet “proper” poem:

Hunkle, chinkle, mrony phar,
Brough I junder whow mee dar?
Up above the fye bo clar,
Hunkle, chinkle, lubby phar.

Is there anything similar in the physics of biopolymers, any general laws
that are not a↵ected by the random choices? There certainly are! They
control the formation of knots in DNA (see Section 2.6), the hydrophobic-
hydrophilic separation of a globular protein (Section 5.7), and many other
properties; most of these laws may still be unknown.

When you (or your a computer) solve equation 2x = 4 and obtain x = 2,
no new information is created. But when you start from x2 = 4 and obtain
x = 2 — you do create a bit of information, because you have chosen +2
and threw away �2. You brake the symmetry. Information is created by
erasing one of the two a’priori equivalent possibilities.

As Henry Quastler (who started as a medical doctor in Albania, and
ended up as biophysicist in Brookhaven National Lab, 1908–1963) showed
in 1962, in his essay [23] which appears to be under-appreciated in the
English speaking world, when a system memorizes a random choice — and
only in this case! — it creates a novel bit of information. This information
is about facts, which were never known or questioned, nor even existed
before. For example, in which hole is the ball in Figure 14.1 b? What sort
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of primary structure does the oxygen-carrying protein have, in human red
blood cells? Which words are used for one or another concept? How exactly
did Tom Sawyer manage to get the fence painted? And so on. As a matter
of fact, the memorizing of random choices is also relevant to creativity, both
in art and science — but we shall not discuss it any further.

14.4 Conclusion

From all we have said we can draw the following conclusion. There are
systems where you cannot physically try out all the possibilities, there
are just far too many of them. The only way such systems can evolve is
by memorizing random choices. This is how new bits of information are
created. The first in history as well as the simplest event of this sort was
probably the synthesis of polymer chains in the primordial soup. This is
why the entire field of evolution is intimately related to polymer physics.

There is another fascinating aspect of the origin of life. Is there life
elsewhere in the Universe? Who can tell. From physics prospective, the
main inhabitability condition is the presence of plentiful free energy, and
there are such places. It is worth searching for the signs of primordial poly-
merization even on the Mars. What we think must be the most promising
places in the Solar System are the methane seas on Titan, a satellite of
Saturn, or an ice-covered ocean on Europa, a satellite of Jupiter. Unfortu-
nately, we have not the foggiest idea of how to get there to check. This is
why, as it is often said in such cases in scientific books, we leave this as an
exercise for the reader. . .

To conclude, we would like to warn you that perhaps not all the ex-
perts would agree with what we have said in this chapter. Some may argue
that whenever physicists try to discuss such matters it is merely naive and
useless. We would like to respond to this with the following words from
the famous Feynman Lectures on Physics: “The most important hypoth-
esis in all of biology . . . is that everything that animals do, atoms do. In
other words, there is nothing that living things do that cannot be under-
stood from the point of view that they are made of atoms acting according
to the laws of physics. This was not known from the beginning: it took
some experimenting and theorizing to suggest this hypothesis, but now it
is accepted, and it is the most useful theory for producing new ideas in the
field of biology.” And more in the other place: “Certainly no subject or
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field is making more progress on so many fronts at the present moment13,
than biology, and if we were to name the most powerful assumption of all,
which leads one on and on in an attempt to understand life, it is that all
things are made of atoms, and that everything that living cells do can be
understood in terms of the jigglings and wigglings of atoms.”

We can only encourage our readers to continue exploring this wonderful
hypothesis. Good luck!

13It was written in 1963, and it is equally fair now, in 2009.
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�-strand 71
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✓ point 158, 178
✓ temperature 158
30 end 65
50 end 65

acetate fiber 35
acrylon 35
active center 20, 76
adenine 64
alanine 63
Alexander polynomial 231
algebraic topology 231
alphabet 207
amino acid 63, 302
amino acid residue 63
amorphous state 32
amphiphilic molecule 56
anisotropic polymeric liquid 40, 103
anthropic principle 297
aperiodic crystal 195
architecture 60
asparagine 63
aspartic acid 63
aspartic protease endothiapepsin 74
atactic polymer 24, 30

ATP hydrolysis 78
atomic force microscope 145

B-form of double helix 71
backbone 147
bacteria 13, 69
bacteriophage 187
bad (poor) solvent 157
bakelite 23
barrier 28, 210
base pair 65
bending energy 141, 142
bi-axial deformation 133
bicontinuous phase 45
biopolymer 14
biosynthesis 19
birefringence 58
blob 162, 163, 250, 251, 274, 275, 276,
277
block-copolymer 45
branched macromolecule 14

calorimeter 191
caoutchouc 110
capsid 187
carbohydrate chain 56
catalyst 24, 75
cell nucleus 186
cellulose 34
cellulose 7
chain confinement in a tube 139, 248,
250, 276
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chain propagation 21
chain structure 7
chaotic thermal motion 93
chaperone 194
charge density DNA 66
chitin 53
chromosome 13
circular DNA 16, 18, 234, 235
coarse-grained view of proteins 201,
214
coil 10
coil-globule transition 168, 177, 178,
181, 191, 192
comb 14
complementarity 64, 65, 72
compliance 244
composite knot 230
conformation 7, 104
conformation analysis 8
conformational entropy per monomer
203
construction 80
contact matrix 201, 293
cooperativity 73, 200
copolymer 13, 30
correlation radius (length) 178, 191
Coulomb interaction 150, 152
counterion 46, 66
counterions 15, 183, 185
covalent bond 55, 148, 151
critical concentration c? 43, 102
cross form of DNA 71
cross-link 25, 30, 182, 247
cross-over 43, 47, 103, 149, 253, 292
crystal 195
crystalline state 32
crystallization 28, 195
cyclohexane 179
cylindrical micelle 45, 57
cytosine 64

decoding 195, 208
deformation 37
denaturation 194, 199
design 80, 205
desoxyribose 64

diaper 186
diblock-copolymer 45
dielectric constant 48
di↵erential melting curve 74
di↵raction 77
dilute polymer solution 43
dimensionality 262, 264
dipole moment 54
dissipative structures 297, 300
DNA condensate 189
DNA e↵ective segment 100
DNA polymerase 24
DNA stretching 137
doping 50
double helix 10
downhill process 212
dynein 78

e↵ective diameter of DNA 234
e↵ective segment 100
e�ciency 79, 300
Einstein relation 252
elastic constant, same as elastic mod-
ulus 128, 129
elastic deformation 37, 110
elastic response 117, 118, 241
elasticity of a crystal 118
electrical conductivity 50
electrophoresis 233, 255, 256, 278
emulsion polymerization 58
end-to-end distance 153
energy landscape 209, 211, 288
energy part of free energy 127
engineering stress 38, 111, 132, 133
entangled polymer 14, 239
entanglement 16, 29, 250
entanglement length, Ne 250
entropy part of free energy 127
enzyme 75, 76
equation of state 120
eukaryote 186
evolution 80
excluded volume 148, 153, 154, 161
extreme value statistics 206

fabric 28
fashion 145
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fiber 28, 34
fibroin 34
films 28
fitness landscape 288
flexibility 8
flexible chain polymer 174
Flory theorem 129, 164
Flory theory 155
foldable sequence 205, 217
football 122
force spectroscopy 137, 144
free energy 127, 299
free radical 20
freely jointed chain 11, 99
freezing transition 204
frozen state 204
function 80

gas-liquid transition 178
Gauss distribution 105, 106, 137
Gaussian coil 107
gel 15, 115
gene 67, 70, 289, 290, 291
genome 18, 67, 187, 292
glass 29, 31, 196
glass transition 31, 115, 241
glycine 63
good solvent 157
granny knot 228
guanine 64

H-form of DNA 71
heat capacity 143, 191, 278
heat engine 79, 127, 299
helical fraction 73
helicity 73, 192
helix-coil transition 72-76, 145
hemoglobin 64, 290
heteropolymer 13, 22
Hevea brasiliensis 110, 114
high elasticity 112, 128
histone 188, 291
histone octamer 188
homopolymer 13, 187
homopolymer globule 187
Hooke’s law 33, 110, 111

horse, workhorse 214, 290
hydrogen bond 54, 150, 152
hydrolysis 183
hydrophilic 56
hydrophilic head 56
hydrophobic 56, 192
hydrophobic interaction 150, 152
hydrophobic tail 56
hysteresis 183, 220, 221

ideal chain 118, 148
ideal crystal 127, 147
ideal gas 120, 127, 147
ideal liquid 149
ideal polymer 127, 148
immunoglobulin 76
information 80, 197, 289
inhibitor 21
initiator 20, 259
internal energy 128
inverted cylindrical micelle 58
ion pair 46
ion-containing polymer 48
ionomer 46
ionomer multiplet 49
ions 15
irreversible deformation 39
isotactic polymer 30
isotropic polymeric liquid 41, 103

keratin 34
kinesin 78
kinetoplast 18
knot 16
Kuhn segment 100, 101

lamella 45, 58
Landau theorem 73
large parameter 147
latent heat 191, 199
lattice animal 271
lattice model 214
light scattering 179
linear memory 80, 148
linking number 235
liposome 59
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liquid crystal 41
liquid crystalline fiber 40
liquid crystalline state 40, 103
living polymerization 24
loop 16
lowest energy conformation 204
lucky ticket 107
lysine 63

Mackintosh 112
magnetic tweezers 117, 145
melting 73
melting curve 74
methionine 63
micelle 45, 57, 192
micro-domains 45
microphase segregation (separation)
45
minimal crossing number 229
minimum free energy 127
molecular dynamics 215
molten globule 209
monkey 14, 295 306
monomer 6
motor 78, 145, 236
mutation 289
mutation stability 205
myosin 78

native globule 209
natural rubber 109
neck 37
network 14, 17, 113, 115, 248, 293
neuron 78
neutron scattering 179
non-canonical secondary structure 71
nonpolar molecule 55
non-random sequence 294
nucleation 28, 211, 212
nucleosome 188
nylon 23, 35

oligomer 23
olympic gel 17
Onsager-Manning condensation 66
optical tweezers 117, 145

orientational entropy 140
orlon 35
oscillator 143
osmotic pressure 179, 185
oxidation 50

pair collisions (interactions) 156, 170
palindrome 71
pattern recognition 208
PCR 69, 73
peptide bond 64
persistence length 101
phantom 16
phase 28, 164
phase separation (segregation) 164
phase transition 60, 73, 75, 168, 180,
182, 191, 221
phonon 143
phosphate group 64
phospholipid 59
pickle 205
plasmid 69, 233
plastic 27, 32
plastic deformation 112
plateau modulus 244
polar molecule 55
polyacetylene 51
polyacryl nitrile fiber 35
polyacrylamide 183
polyacrylic acid 15
polyamide 23
polyamide fiber 35
polyampholyte 16
polyaniline 51
polycarbonate 23
polycondensation 22
polydispersity 24
polyelectrolyte 15, 46
polyester 23
polyether 23
polyether fiber 35
polyethylene 5, 6, 8
polyethyleneoxide (PEO) 189
polymer blends 44
polymer melt 29, 239
polymer synthesis 19



August 23, 2010 16:47 World Scientific Book - 9in x 6in index

Index 321

polymerization 20, 303
polymethacrylic acid 15
polypeptide chain 64
polypropylene 24, 30
polypyrrole 51
polysiloxane 23
polystyrene 5, 20, 179, 246
polysulfide 23
polythiophene 51
polyvinyl chloride 6
power laws 95, 97, 143, 160, 255, 262,
266, 267, 273, 274, 275, 278, 292
precipitant 173
preferential orientation 103, 192
primary structure 14
prime knot 230
prion 207
prokaryote 186
protein crystal 77
protein engineering 69
protein-like 205

quaternary structure 79

random sequence 204
randomly branched polymer 271
rayon 35
recursion relation 98
relaxation time 196
renaturation 194, 199, 210
reptation 244
reversible deformation 37, 110
ribosome 193
ring 16
rotational isomer, rotamer 8, 9, 10,
139
rubber 7, 28, 29, 110, 241
rubber elasticity 110

salt 66
scaling 262, 274, 292
screening 163
second lowest energy conformation
204
self-avoiding walk 153
self-crossing 94

self-similarity 265
semi-crystalline polymer 29
semi-dilute polymer solution 43, 103,
239
semi-flexible chain polymer 174
sequencing 67
serine 63
shear 133
shear flow 240
shrunken (collapsed) globule 170, 173
Sierpinski gasket 263, 286
sign ⇠ 102
silicone 241, 284
silk 7
silly putty 241, 284
single chain elasticity 118
single molecule experiment 137
slip knot 237
small parameter 147, 178
snake cube 216
solvent molecule 42
solvent quality 157
spermidine 189
spermine 189
spherical micelle 45
spontaneous ordering 103, 192
square knot 228
star 14
steel 33
stereoregular polymer 24
sti↵ chain polymer 174
strain 38, 111
stress 33, 111, 133
stress-strain diagram 38, 111, 133
subchain 182
sugar 64
sulphur bridge 112
super-absorber 186
super-strong fiber 40
super-turns 235, 282
swelling coe�cient 154, 170
swollen coil 169, 170
synthetic rubber 115

tadpole 57
Taq polymerase 73
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ten nanometer fiber 188
termination 21
thermodynamics 127, 289, 297
thermosetting plastics 32
thermosoftening plastic 32
three body collisions (interactions)
156, 170
thymine 64
timber 28
topological constraints 17, 236
topological enzymes 17, 236
topological invariant 231
toroid DNA 189, 190, 192
torsion 133
trap 210
tree 271
trefoil knot 228, 229
triacetate fiber 35
twist 235
twisting rigidity 234

ubiquitin hydrolase 237
undulation length 142
uni-axial deformation 131, 132
universality 137
unknot 229
unwinding 71
uracil 64
urea 194
useful work 299

van der Waals interaction 150
van der Waals loop 174, 220, 221
vectran 40
vertex line 228
vesicle 59
virial coe�cients 156, 170, 173, 192
virus 187, 288
viscosity 29
viscous response 241
viscous solvent 144
volume fraction 102
volume interaction 94, 148
vulcanization 25, 113
vulcanized rubber 113

water 53
wool 7
worm-like chain 10

Young’s modulus 33, 111, 132

Z-form of double helix 71
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