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Melt Instability Identification Using Unsupervised Machine
Learning Algorithms

Alex Gansen, Julian Hennicker, Clemens Sill, Jean Dheur, Jack S. Hale, and Jörg Baller*

In industrial extrusion processes, increasing shear rates can lead to higher
production rates. However, at high shear rates, extruded polymers and
polymer compounds often exhibit melt instabilities ranging from stick-slip to
sharkskin to gross melt fracture. These instabilities result in challenges to
meet the specifications on the extrudate shape. Starting with an existing
published data set on melt instabilities in polymer extrusion, we assess the
suitability of clustering, unsupervised machine learning algorithms combined
with feature selection, to extract and identify hidden and important features
from this data set, and their possible relationship with melt instabilities. The
data set consists of both intrinsic features of the polymer as well as extrinsic
features controlled and measured during an extrusion experiment. Using a
range of commonly available clustering algorithms, it is demonstrated that
the features related to only the intrinsic properties of the data set can be
reliably divided into two clusters, and that in turn, these two clusters may be
associated with either the stick-slip or sharkskin instability. Furthermore,
using a feature ranking on both the intrinsic and extrinsic features of the data
set, it is shown that the intrinsic properties of molecular weight and
polydispersity are the strongest indicators of clustering.
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1. Introduction

Melt instabilities are a critical factor lim-
iting the maximum throughput of indus-
trial extrusion processes. These melt insta-
bilities appear with increasing shear rate.
For a typical polymer undergoing increas-
ing extrusion shear rates, one expects to
see the sharkskin instability at low shear
rates, followed by a transition to the stick-
slip regime, and finally gross-melt-fracture.

The sharkskin instability is a surface in-
stability of height far smaller than the thick-
ness of the extrudate. When sharkskin is
well developed it manifests as a periodic
structure with amplitude of a few tens to
hundreds of microns over the whole ex-
truded sample surface. Although the pres-
ence of sharkskin does not necessarily al-
ter the physical properties of the bulk ex-
trudate, it does lead to a change in the sur-
face texture of the extrudate. Sharkskin also
turns thin films, commonly used in pack-
aging industry from transparent to opaque
due to the light scattering on the rough

surface. The stick-slip instability, referred to as just stick-slip
henceforth, is characterized by alternating smooth and rough re-
gions at the extrudates surface. It is accompanied by important
pressure fluctuations of about 10% of the mean pressure mea-
sured by the pressure transducer in the main barrel of the capil-
lary rheometer. The gross-melt instability, is characterized by the
distortion of the whole extrudate. For a full review of melt insta-
bilities, the interested reader is referred to refs. [1, 2].

In the present work, the focus lies on the sharkskin and stick
slip melt instability. They are particularly interesting as many
polymers only show one of these instabilities. A given instabil-
ity is influenced by the intrinsic properties of the polymer like
polydispersity, molecular weight, branching etc.[3] and external
factors like temperature, interaction at the polymer/wall inter-
face, shape of die, and die entry. To investigate the impact of the
different intrinsic properties, machine learning (ML) techniques
can be applied. Many ML ideas and techniques like multilayered
neural networks,[4,5] backpropagation algorithms,[6–8] etc. have al-
ready been developed starting from the 60’s. However, only the
significant increase of computational resources like data storage
and increasing computational performance combined with many
open source libraries like for example, TensorFlow[9] and scikit-
learn[10] allowed the application of these techniques to the chal-
lenging problems of today. Generally, ML techniques can be split
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in two groups, supervised and unsupervised learning.[11] In su-
pervised learning, the algorithm learns on a labeled data set and
the ML algorithm uses the label (output) to adjust the model pa-
rameters. Unsupervised techniques on the other hand use unla-
beled data, the algorithms looks for similarities inside the data
and groups them accordingly.

Focusing on the field of rheology, there exist many publica-
tions applying supervised learning approaches like regressions
to predict the viscosity of materials for example refs. [12–14].
Lie et al.[15] on the other hand developed a predictive multiscale
method that allows them to directly predict the viscoelastic prop-
erties like dynamic moduli and zero-shear rate viscosity of poly-
mers. Tariq et al. used artificial neural networks to predict rheo-
logical parameters of cement with nanoclay.[16]

Saad[17] used supervised and unsupervised machine learning
techniques to study binary compounds and to predict their crystal
structure and then associate them to a specific class, like photo-
voltaic, superconductors, and ferromagnetic materials. Contrary
to this work, they applied dimensionality reduction techniques
whereas here the focus lies on clustering algorithms. Abbassi
et al.[18] apply unsupervised data classification to data sets from
nanoelectronics and spectroscopy to identify meaningful struc-
tures in data sets. In medicine, unsupervised machine learn-
ing methods are for example used to cluster patients based on
their genomic makeup without providing input parameters a
priori.[19] Another example would be the application of cluster-
ing algorithms to separate between high energy events in particle
physics.[20] Only recently, supervised,[21] unsupervised,[22] as well
as a combination of both ML techniques[23] have been applied to
the identification of phases and the prediction of phase change
behavior in polymers and polymer compounds.

However, focusing on unsupervised learning algorithms, espe-
cially clustering, to our knowledge no publications in the field of
polymer rheology could be found. This study is based on the pub-
lication in ref. [3]. All the data which are used in the present work
that apply the different ML techniques are taken from this publi-
cation. No additional measurements have been carried out. Filipe
et al. investigated the effect of polydispersity, molecular weight,
and topology (branching) on the melt instability. To understand
the effect of the intrinsic properties of a polymer on the melt in-
stability, an unsupervised machine learning technique, referred
to as clustering is used. In this paper, the aim is to establish a link
between a cluster and corresponding melt instability. Therefore,
nine different clustering algorithms are applied. To understand
which features (molecular weight, branching, polydispersity, etc.)
have the strongest impact on the clustering, a variety of feature
selection algorithms are used, once the sample has been clus-
tered. This results in a hierarchical ranking of the features, with
the features having the strongest impact on the clustering being
ranked first.

2. Data and Method

2.1. Supervised versus Unsupervised Learning

Machine learning algorithms can be split in two main groups,
supervised and unsupervised learning algorithms. Supervised al-
gorithms can further be divided in regression and classification
tasks whereas unsupervised algorithms can be divided in dimen-

sionality reduction and clustering. To illustrate the difference be-
tween a supervised and unsupervised problem a classification
task is compared to a clustering task. For a classification task,
the inputs are for example the images of melt instabilities like
sharkskin, stick-slip, or gross melt fracture with the correspond-
ing label, as illustrated in the top box in Figure 1a. A supervised
training algorithm is then trained on these images and labels. Af-
ter successful training, the classification algorithm should be able
to correctly label an unlabeled image (bottom box in Figure 1a).
A clustering algorithm on the other hand only receives pictures
(or other data as input) without any label. The algorithm should
then on group the images in corresponding clusters based on
their similarity. The shown unsupervised example corresponds
exactly to what we intend to do, except that we do not use pictures
of the extrudate but rather information about the polymer topol-
ogy to cluster polymers with similar properties in the same clus-
ter which then can be associated to a melt instability. In our case,
the algorithms should create clusters where the polymers in one
cluster show similar properties. Comparing the result of the clus-
tering algorithms with the melt instabilities should, in the best
case establish a direct link between melt instability and cluster.

2.2. Data Preparation

In this work, the data from the publication by Filipe et al.[3] is
used, as they investigated a variety of polyethylene samples. They
analyzed these samples using large amplitude oscillatory shear
(LAOS)[24] and Fourier transform rheology.[25] Our analysis is
only based on Tables 1 and 2 from ref. [3]).

Comparing Table 2 with Table 1 it becomes apparent that the
samples LCB 5 and LCB 2 are missing. However, with the help of
Figure 3 in the corresponding paper, it was possible to add them
to Table 4. The characteristic frequencies obtained from on-line
measurements with the Sharkskin option of a capillary rheome-
ter have been compared to the extrudate by investigation under
a microscope[26–29] and by optical Fourier analysis,[30] validating
this approach. This proves the ability of the sharkskin option to
correctly identify instability with the standard pressure deviation
𝜎p and the corresponding instability frequency f. Therefore only
columns 3 and 4 from Table 2 will be considered in the follow-
ing analysis and the LAOS data will not be considered anymore.
By including these two features directly linked to the instability
we expect samples to be clustered as expected. That is the sam-
ples with a rather high instability frequency belong to a cluster
which can be associated to sharkskin and samples with a rather
low instability frequency would be clustered in another cluster.
However, this is only done to get a better understanding of the
impact of the data on the clustering. The final aim would be to
see if it is possible to obtain two clusters, one that can be asso-
ciated to sharkskin, the other to stick slip by only using the data
from Table 1. To obtain the standard pressure deviation 𝜎p and
the corresponding instability frequency f Filipe et al. used the
Göttfert Rheo-tester 2000 capillary rheometer with the sharkskin
option.[3,26,28,31] A sketch of the sharkskin option is represented
in Figure 2. To obtain the characteristic frequency and standard
deviation of pressure of the instability (columns 4 and 5 of Ta-
ble 2) the authors of ref. [3] did the following steps. The slit die
has a length of 30 mm, a width of W = 3 mm and a height of
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Figure 1. a) Classification (supervised learning) and b) clustering (unsupervised learning).

Table 1. Description of samples from ref. [3]. Column 1: Investigated polyethylene samples. The designations L, SCB, LSCB, and LCB denote, linear,
short-chain branched, long and short chain branched, and long-chain branched, respectively. Column 2: Weight-average molecular weight Mw. Column
3: Polydispersity Mw∕Mn as determined by gel permeation chromatography (GPC). Column 6: The total number of all branches (SCB and LCB) of four
carbons and longer is identified (measured by melt-state) and represents an upper limit of LCB.

Sample Mw[kg mol−1] Mw
Mn

Comonomer Estimated topology LCB+SCB (> C4)/1000 CH2

L1 117 5.1 No Linear 0.0

SCB2 59 2.1 Yes SCB 4.5

SCB1 100 2.7 Yes SCB 2.1

LSCB1 71 2.3 Octene LCB and SCB 18.9

LCB4 145 8.6 Yes LCB-low SCB 0.8

LCB3 199 19.0 Very low LCB-low SCB 0.5

LCB6 206 18.0 Yes LCB-low SCB 0.9

LCB5 210 20.4 Yes LCB-low SCB 0.6

LCB2 234 15.6 Very low LCB 0.5

Table 2. Experimental data from ref. [3]. Column 1: Samples. Column 2:
Critical strain amplitude 𝛾0, c. Column 3: Maximum non-linear parameter
A as determined by LAOS at 180˜○C for 𝜔1/2𝜋 = ˜0.1 Hz. Column 4: Stan-
dard deviation of the pressure, 𝜎p, measured 3 mm after the entry of the
slit die (position P1 [Figure 2]), for capillary measurements performed at a
shear rate of 504 s−1 for T = ˜180 °C. Column 5: The frequency of the melt
flow instability was obtained from the Fourier analysis of the pressure sig-
nal at piezoelectric pressure transducer position P1 (Figure 2), for 180˜○C
and for an apparent shear rate of 504 s−1.

Samples 𝛾0, c A [%] 𝜎p [bar] finst [Hz] Instability

L1 1.00 7.0 9.65 1.93 Sharkskin

SCB2 >3.00 1.0 2.15 3.08 Sharkskin

SCB1 1.25 4.0 0.85 4.81 Sharkskin

LSCB1 1.50 8.0 1.06 3.08 Sharkskin

LCB4 0.75 10.0 2.02 6.16 Sharkskin

LCB3 0.45 11.0 2.75 0.243 Stick-slip

LCB6 0.50 11.0 11.08 0.075 Stick-slip

H = ˜0.3 mm. For this slit die 3 piezoelectric transducers with
a sampling rate of 20 kHz are located along the die. They are lo-

cated 3, 15, and 27 mm from the die entry. At the indicated shear
rate of 504 s−1 at 180 °C all the samples showed a melt instability
(sharkskin or stick-slip) with the corresponding standard pres-
sure deviation 𝜎p. Applying a Fourier transform to the pressure
signal of the three pressure transducers along the die leads to
the instability frequency f as indicated in Table 2. As all the three
highly sensitive pressure transducers record the melt instability
induced pressure fluctuations it is enough to only consider one
of the pressure transducers. In this case the pressure transducer
closed to the die entry has been selected (P1 in Figure 2). The pres-
sure signal recorded over time is converted in the frequency space
using the Fourier transform. In the case of an instability the fre-
quency spectrum shows a peak at a characteristic frequency that
can be associated to an instability.

Concerning the data, another problem is column 5 in Table 1
about the estimated topology. This column needs to be rewritten
to be used by the clustering algorithm as they require numbers
and not text as input. A rather simple approach is used where
column 5 (estimated topology) is split in two columns, namely
SCB and LCB.

With respect to Table 3, if no branching is present at all SCB
and LCB are both set to 0. If only SCB branching is present in the
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Figure 2. Sharkskin option of a capillary rheometer.

Table 3. Conversion of column 5 (“Estimated topology” ) of Table 1 into
SCB and LCB.

Estimated topology SCB LCB

Linear 0 0

SCB 1 0

SCB 1 0

LCB and SCB ⇒ 0.5 0.5

LCB-low SCB 0.9 0.1

LCB-low SCB 0.9 0.1

LCB-low SCB 0.9 0.1

LCB-low SCB 0.9 0.1

LCB 0 1

SCB column the value is set to 1 and in the corresponding row of
the LCB column to 0. As it is not clear what LCB-low means, in
this case it was simply set to 0.1 in the LCB column and 0.9 in the
SCB column. Here there is definitely room for improvement but
the program still should be able to handle these data. The final
data table used for the clustering algorithm is Table 4.

It should be noted that the final aim is to cluster all the samples
without using columns 7 and 8 in Table 4, as they are direct exper-
imental evidence of a melt instability. However, they are initially
considered to verify, via the feature selection procedure, how cru-
cial they really are for the clustering of the samples. In column 9,
the sharkskin and stick-slip instabilities have been enumerated
to simplify their identification in the graphs in Section 6. In ma-
chine learning jargon the columns in Table 4 are referred to as

features, whereas each column represents one feature. For ma-
chine learning applications, the data set under investigation is
rather small, therefore even computationally expensive cluster-
ing algorithms can be used. As unsupervised algorithms are em-
ployed it is crucial to keep in mind, that the column “instability”
(Table 4) will not be used during the clustering of the algorithm. It
will only later be used to check if the clustering was successful. As
the instability is available (labeled data), it would be possible to to
use a supervised approach, namely a classification algorithm. In
this case, classification algorithms like support vector machines
(SVM) could be used to identify two classes, namely stick slip and
sharkskin. After training the supervised algorithm, a new sample
could then simply be assigned to one of the two classes. Cluster-
ing algorithms however look for similarities on their own and
therefore could help to discover additional currently unknown
similarities between samples. Instead of choosing between clus-
tering and classification, they could also be combined. In this
case the clustering algorithm would group the samples in specific
clusters, hence, labeling them, where each sample belonging to
a specific cluster has the same label. Then the labeled data are
fed into a classification algorithm. This is reasonable for a large
number of clusters. As in our case only two clusters are expected
we restrict ourselves only to the clustering part.

3. Feature Scaling and Feature Selection
Procedures

There are many different steps that need to be considered before a
specific algorithm can make useful predictions. For more details
on machine learning we highly recommend the book Hands-on
Machine Learning with Scikit-Learn, Keras, and Tensorflow from
Aurélien Géron.[11]

3.1. Feature Scaling

Often features have varying degrees of magnitude, range, and
units. The weight-average molecular weight Mw ranges for ex-
ample takes values ranging from 59–234 kg mol−1 whereas the
frequency of the instability finst ranges from 0.08–6.16 Hz. Clus-
tering algorithms (K-means, mean-shift…) calculate the distance
between features and if the distance is below a given threshold,
a specific sample is assigned to a given cluster. Therefore they
are sensitive to features scaling. If features have very different
scales the features with the largest values are typically dominat-
ing although they are not necessarily the most important ones.
Therefore feature scaling methods needs to be applied to solve
this problem. The two common feature scaling methods are nor-
malization and standardization.

3.1.1. Normalization

A feature X is normalized to Xnorm according to Equation (1)

Xnorm =
X − Xmin

Xmax − Xmin
(1)

This shifts and rescales the values to Xnorm ∈ [0, 1]
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Table 4. Data used for clustering algorithms.

Sample Mw [kg mol−1] Mw
Mn

SCB LCB LCB+SCB (> C4)/1000 CH2 𝜎p [bar] finst [Hz] Instability

L1 117 5.1 0 0 0.0 9.65 1.93 Sharkskin 1

SCB2 59 2.1 1 0 4.5 2.15 3.08 Sharkskin 2

SCB1 100 2.7 1 0 2.1 0.85 4.81 Sharkskin 3

LSCB1 71 2.3 0.5 0.5 18.9 1.06 3.08 Sharkskin 4

LCB4 145 8.6 0.9 0.1 0.8 2.02 6.16 Sharkskin 5

LCB3 199 19.0 0.9 0.1 0.5 2.75 0.243 Stick-slip 1

LCB6 206 18.0 0.9 0.1 0.9 11.08 0.075 Stick-slip 2

LCB5 210 20.4 0.9 0.1 0.6 8.6 0.24 Stick-slip 3

LCB2 234 15.6 0 1 0.5 11 0.08 Stick-slip 4

Figure 3. a) Filter method, b) wrapper method, and c) embedded method.

3.1.2. Standardization

A feature X is standardized to Xstd according to Equation (2)

Xstd = X − 𝜇

𝜎
(2)

Xstd values are centered around the mean (μ) and the standard
deviation (𝜎) of the feature values with a unit standard deviation.

3.2. Feature Selection

Feature selection refers to the process where only those features
are selected (manually or automatically) which contribute most
to the correct prediction.[11,32] Feature selection has the following
advantages:

1) Reduction of measurements as some features, in our case
properties obtained from experimental results, might have
only a little impact on the outcome of the clustering.

2) Reduction of overfitting as less redundant data reduces the
probability to make decisions based on noise.

3) Reduced training time as the number of features, hence the
number of data points is reduced

4) Hierarchy of most important features.

Typically, feature selection methods are applied before training
the algorithm to reduce the number of features due to the be-
fore mentioned reasons. As our data set is very small, there is no
need to reduce it, therefore feature selection methods are rather
used to understand which features have the strongest impact on
the clustering. There exist feature selection methods for unsu-
pervised learning algorithms, however most easily accessible ma-
chine learning libraries like scikit-learn offers only supervised
feature selection methods. This is however no problem as cluster-
ing the samples leads to labeled data as all the samples belonging
to a specific cluster are labeled accordingly. The initially unsuper-
vised problem has now become a supervised one and hence addi-
tional algorithms can be applied. In the case of supervised learn-
ing there exist three kinds of feature selection methods. Namely,
filter methods, wrapper methods and intrinsic/embedded meth-
ods (Figure 3). These three methods differ in the way they se-
lect the best features. As at least one of each method will be later
applied, a brief explanation of the advantages and differences is
given.

3.2.1. Filter Method

Filter methods use statistical techniques to evaluate the rela-
tionship between each input and target variable. Based on these
scores the best features are selected. As can be seen in Figure 3a,
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Figure 4. a) Before clustering and b) after clustering.

illustrated by the blue dashed box, the filter method directly se-
lects the best subset of features before passing it to the learning
algorithm. The advantage is that filter methods are very fast, but
on the other hand, the statistical measures employed are typically
calculated for one input variable at a time with respect to the tar-
get variable. Therefore interactions between input variables are
not considered in the filtering process (univariate statistical mea-
sure).

3.2.2. Wrapper Method

In contrast to filter methods, wrapper methods need a machine
learning algorithm and use its performance as evaluation criteria.
There exist several approaches to determine the best subset of
features. The most common ones are:

1) Forward selection: Start with an empty set of features, then
the best feature is selected, next the second best, and so on.

2) Backward elimination: Start with all the features and remove
the worst one at each step.

3) Combination of forward and backward elimination: Add the
best and remove the worst feature.

4) Recursive feature elimination: Performs a greedy search to
find the best performing feature subset.

Wrapper methods usually provide the best subset of feature for
a particular model. Unfortunately they are computationally very
expensive. For the small data sets in this paper they however can
be applied easily.

3.2.3. Intrinsic/Embedded Method

Embedded methods are in contrast to the two other feature selec-
tion methods integrated part of the algorithm (Figure 3c). This
means they do not necessarily train the algorithm on a reduced
feature set (except when a filter method is applied prior to the
algorithm) but the feature selection is part of the applied algo-
rithm. This is for example the case for decision trees, Random

Forest and regularized models like the Ridge or LASSO Regres-
sion.

4. Clustering Algorithms

Contrary to classification, clustering is an unsupervised machine
learning technique that involves the grouping of data points. Data
points that are part of the same group should have similar prop-
erties, while data points in different group should have dissimilar
properties. This concept is illustrated in Figure 4a,b. In Figure 4a
it is apparent that two clusters are present but the third one is not
that obvious.

In total nine different clustering algorithms are used, namely:
Agglomerative hierarchical clustering,[33] density-based spa-
tial clustering of application with noise (DBSCAN), Gaussian
mixture, K-means, ordering points to identify the clustering
structure (OPTICS), mean shift, SPECTRAL, mini-batch K-
means, balanced iterative reducing and clustering using hierar-
chies (BIRCH). All these algorithms are part of the scikit learn
library and will not be discussed in detail here. Nevertheless, for
some selected algorithms the advantages and disadvantages will
be highlighted.

4.1. K-Means Clustering

Probably the most popular algorithm[34–36] due to its simplicity
and linear time complexity (n). On the other hand, one of the
major draw backs is that the number of cluster (k) needs to be
indicated in advance. The typically random initialization of the
cluster centers might lead to different results for different runs.
It works best for spherical clusters of similar size. In this work,
the number of clusters is known in advance. Two clusters are ex-
pected, one corresponding to sharkskin and another one to stick
slip. Fortunately, there exist some methods for the K-means algo-
rithms to obtain the right number of clusters, using an iterative
approach, by running the program several times with an increas-
ing number of cluster for each run.[11]
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Figure 5. Illustration of the mean-shift clustering algorithm.[38]

4.2. Mean-Shift Clustering

The mean-shift algorithm[37] is illustrated in Figure 5. The algo-
rithm starts with a circular sliding window of a given radius r (r
remains constant) centered around a randomly selected starting
point (circle 1).

At every iteration, the center of mass of all the data points in-
side the circle is calculated and the geometrical center is shifted
to the center of mass (circle 2). Hence, the circle iteratively shifts
to regions of higher density. The sliding window is shifted un-
til there is no direction at which a shift can accommodate more
points inside the kernel (circle 3) where geometrical center over-
laps with the center of mass. Figure 5 illustrates the case of find-
ing the center of a single cluster. To detect several clusters, the
algorithm starts with many sliding windows evenly distributed
throughout the whole xy. This is also one of the advantages
of this method as that the number of clusters does not need
to be set in advance. On the other hand the performance of
the algorithm is crucially dependent on the radius of the slid-
ing window which needs to be set manually. This is indeed the
only “human input” that is needed when applying the described
technique.

4.3. DBSCAN

DBSCAN[39] groups points together that are close to each other
(higher density), points with many nearby neighbors. In Figure 6,
each color, red, blue, and green corresponds to a cluster. Points
in a low density region for example, are considered as outliers
and are represented as white in Figure 6. To be considered part
of the same cluster, starting from a given point, referred to as
core point at least n other points should be within a distance r
of it where r is the radius of the neighborhood (circle) and the
minimum number of points which form a cluster need to be
defined.

4.4. Gaussian Mixture Model

Similar to K-means, the number of cluster needs to be indicated
in a Gaussian mixture model (GMM).[40] GMMs assume that the
data points are Gaussian distributed (elliptical shape); this is a
less restrictive assumption than saying that they are circular as in
K-means. Furthermore, GMMs use probabilities, therefore one
data point can belong to multiple clusters with a given probabil-
ity. A data point could belong with X% to cluster 1 and Y% to
cluster 2.

In Figure 7 each color corresponds to one cluster. The different
shadings, darker in the center and lighter at the edges represent
the top view of a Gaussian. At the center, in the darker shaded
area there is a higher density of points than at the edge.

4.5. Agglomerative Hierarchical Clustering

There exist two sorts of hierarchical clustering, namely agglomer-
ative or divisive clustering. In divisive clustering, also referred to
as top-down approach, all observations start as one cluster which
is then further divided until each observation corresponds to one
cluster. Agglomerative clustering is the exact opposite and is a
bottom up approach. In this case each observation starts in its
own cluster which is then successively merged into bigger clus-
ters until in the end all the observation form one cluster. The
main drawback of this approach is the time complexity of O(n3)
and memory requirements of Ω(n2). This makes it typically too
slow for even medium data sets. However, as in this work only a
very small data set is considered, it can easily be applied. A result
of hierarchical clustering is shown in Figure 8a where the molec-
ular weight versus the frequency of the melt instability is plotted.
The labels (sharkskin 1, sharkskin 2…) have only been added for
visualization and to make sure that the clustering worked cor-
rectly. All the violet samples belong to the sharkskin cluster and
all the red ones to the stick-slip cluster. The color is the result of
the successful clustering algorithm. If, for example, sharkskin 1
would be represented as red dot it means that it would have been
assigned to the stick-slip cluster. The corresponding dendrogram
to Figure 8a is represented in Figure 8b. The numbers on the hor-
izontal axis corresponds to the sample ID (0–8) where samples 0–
4 display the sharkskin instability and samples 5–8 stick-slip. The
vertical axis represents the distance between samples or clusters.
As example the stick-slip samples from Figure 8a are linked to
the dendrogram in Figure 8b. The significant distance between
the stick slip and sharkskin cluster becomes obvious.

4.6. Evaluation of Clustering Performance

Evaluating the performance of a supervised learning algorithm
is rather simple, as a test set (a subset of the data which has not
been used during the training of the models) can be used to test
the trained algorithm. As the data are labeled, the outcome of
the model can be directly cross checked with the labeled data.
Therefore, it can directly be verified how many samples have been
classified correctly. For an unsupervised algorithm this is by def-
inition not the case. Clustering algorithms are especially used to
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Figure 6. Illustration of cluster detection with DBSCAN in a 2D feature space.

Figure 7. Gaussian mixture model.

discover similarities in data which we were necessarily not aware
of. This means that typically a data set is fed to a clustering algo-
rithm and the output would be a list of the data points and their
association to the corresponding clusters. However, it is not clear
what samples from the same cluster have in common. Therefore,
experiments could be done to understand the relation between
samples from the same or different clusters. To check the perfor-
mance in terms of correct clustering several methods could be
applied.

1) Two features from experimental measurements (standard de-
viation of pressure and frequency of the instability) from
which we know that they directly correlate with the instability
are included in the data set. This is done in first step to in-
crease the performance of the clustering algorithms. They will
later be removed, to evaluate the performance of the cluster-
ing algorithms independent of experimental measurements
that are directly linked to the melt instability.

2) Although we do not use the labels in the clustering algorithms
we can use them to compare the result of the clustering to the

experimental data. In our case we checked if all the samples
assigned to a given cluster share the same instability.

3) Several clustering algorithms are tested to verify that they lead
to a similar output. The result is independent of the real ex-
perimental results as only the outputs of the clustering algo-
rithms are compared to each other. This furthermore shows
us the strength and weaknesses of the clustering algorithms
with respect to a specific data set.

4) If the number of clusters is known (as in our case), the num-
ber of data points not assigned to a specific cluster can be used
to check the performance.

These steps need to be done for each feature scaling method
(normalization, standardization) as they might influence the re-
sult. It is however crucial that no hyper parameter tuning is per-
formed on the clustering algorithms as otherwise their result
would be too specific for a corresponding data set and would not
generalize well.

Using the outcome of the experiments in this stage is only
done to better understand the outcome of the clustering algo-
rithms and the importance of the features. We create a bench-
mark which can then be used in the future for other samples.

4.7. Summary of Procedure

A quick summary of the different steps that are required to apply
clustering algorithms and feature selection.

1) Transform the available data into a reasonable format.
2) Apply normalization and standardization and compare the re-

sults as described in Section 4.6.
3) Use a variety of clustering algorithm to compare their results.
4) When all the samples have been assigned to a specific clus-

ter, the cluster corresponds to a label. Meaning that all the
samples in the same cluster have the same label. Hence our
initially unlabeled data set is now labeled and can be treated
as a supervised problem.

5) Use different feature selection methods to identify the most
important features.

Macromol. Mater. Eng. 2023, 2200628 2200628 (8 of 14) © 2023 The Authors. Macromolecular Materials and Engineering published by Wiley-VCH GmbH
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Figure 8. Agglomerative hierarchical clustering. a) Standardized molecular weight versus instability frequency and b) dendrogram corresponding to (a).

6) Remove the two features: “standard deviation of pressure”
and “frequency of instability” as they are directly linked to the
instability and run the clustering algorithms again.

5. Algorithm Validation

To create a benchmark, the results of the clustering algorithms
are compared to the experimental data. As it is experimentally
known that all the samples show an instability it is expected that
the number of outliers is zero. In the best case all the samples
showing the sharkskin instability should be associated to one
cluster and all the samples showing the stick-slip instability to the
second cluster. Such a result would look like:[000001111] which
corresponds to the last column in Table 4. This means that the
first five samples belong to cluster 0 and the last four samples
belong to cluster 1. For all the clustering algorithms, some man-
ual hyperparameter tuning has been performed to get the best
possible results that is, to reduce the number of outliers. As gen-
erally the number of clusters is not known, the aim was to obtain
the lowest number of outliers with the least possible amount of
fine tuning, as otherwise the parameters would be too specific for
general applications.

5.1. Raw Data

For the raw data, the results slightly varied for mini-batch K-
means and Gaussian mixture which is probably due to the fact
that the initial center for the cluster is randomly placed. The re-
sult looks like [000001111] (correct) or [000011111]. In the last
case, the fifth sample showing sharkskin has been incorrectly as-
signed to the stick-slip cluster. Spectral, on the other hand, was
never able to correctly cluster all the samples.

5.2. Standardized Data

For the standardized data, the output for DBSCAN looks like
[ − 100 − 10111 − 1]. This means it was able to identify two
clusters (cluster 0 and cluster 1), however it could not assign
three samples to a specific cluster (samples with −1). Mean shift
[000301112] basically created four clusters, where the fourth and
the ninth samples are clusters on their own. Also OPTICS [000
− 10111 − 1] could not assign sample 4 and 9 to a specific clus-
ters. These are the same that also Mean shift could not cluster
correctly.

Table 5. Effect of data scaling. The numbers indicate how many data points
are correctly assigned to the labels.

Raw Standardized Normalized

Agglomerative hierarchical 9 9 9

K-means 9 9 9

Mini-batch K-means 8-9 9 9

DBSCAN 9 6 6

BIRCH 9 9 9

Mean shift 9 7 8

OPTICS 9 7 9

Spectral 6 9 9

Gaussian mixture 8-9 9 9

5.3. Normalized Data

For the normalized data, DBSCAN was able to identify two clus-
ters, but it could not assign three samples to a specific cluster.
As for the standardized data, the same three samples [ − 100 −
10111 − 1] could not be assigned to a specific cluster. For mean
shift, the result looks like [000001112], very similar to the result
for the standardized data set, but in this case the fourth sample
has been correctly clustered, but a third cluster has been created
for the ninth sample.

There is not a big difference between the clustering of stan-
dardized, normalized and raw data. Normalization slightly per-
forms better as only two out of nine algorithms could not cluster
all the samples compared to three out of nine for raw and stan-
dardized data. Therefore normalization became the method of
choice. The impact that the scaling has on the result is clearly
visible in Table 5. The fact that the clustering results based on
raw data is similar to the normalized and standardized is only a
lucky coincidence for this data set as will be shown later. For the
normalized data, only DBSCAN and Mean shift fail to assign all
the samples to the corresponding clusters. This means that the
choices of the clustering algorithm is not very crucial and even
the most basic clustering algorithms as K-means can be used in
this case.

6. Feature Selection Results and Discussion

In this project, the samples showing instabilities are known (last
column in Table 4). This is typically not the case, actually it is

Macromol. Mater. Eng. 2023, 2200628 2200628 (9 of 14) © 2023 The Authors. Macromolecular Materials and Engineering published by Wiley-VCH GmbH
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Table 6. Ranking of all the feature selection methods.

SelectKBest f_classif (Filter) SelectKBest chi-square (Filter)

Ranking Score Ranking Score
Mw
Mn

72.2 Mw
Mn

2.9

Mw 36.6 𝜎p 2.7

f 18.6 f 2.3

𝜎p 16 Mw 1.8

LCB+SCB (> C4)/1000 CH2 1.4 LCB+SCB (> C4)/1000 CH2 0.8

LCB 0.8 LCB 0.4

SCB 0.0003 SCB 0.00008

RFE Logistic Regression (Wrapper) RFE linear SVC (Wrapper)

Ranking Ranking
Mw
Mn

Mw
Mn

𝜎p f

Mw Mw

f 𝜎p

LCB+SCB (> C4)/1000 CH2 LCB

LCB SCB

SCB LCB+SCB (> C4)/1000 CH2

RFE Decision Tree (Wrapper) Ridge Regression (Embedded)

Ranking Ranking Score

f Mw
Mn

0.34

𝜎p f 0.30

LCB Mw 0.26

SCB 𝜎p 0.23

LCB+SCB (> C4)/1000 CH2 LCB 0.08

Mw SCB 0.08
Mw
Mn

LCB+SCB (> C4)/1000 CH2 0.05

ExtRaT Classifier 100 est. (Embedded) ExtRaT Classifier 1000 est. (Embedded)

Ranking Score Ranking Score

Mw 0.28 Mw
Mn

0.3
Mw
Mn

0.27 f 0.22

f 0.22 Mw 0.21

𝜎p 0.15 𝜎p 0.18

LCB 0.05 LCB+SCB (> C4)/1000 CH2 0.04

SCB 0.02 LCB 0.04

LCB+SCB (> C4)/1000 CH2 0.01 SCB 0.01

RFE, recursive feature elimination; SVC, support vector classification; ExtRaT, extremely randomized trees classifier; est, estimators.

by definition never the case for an unsupervised problem. Ap-
plying a clustering algorithm to the data, leads to two clusters.
Comparing the clusters with experimental results confirmed the
link between a specific cluster and a given melt instability. (e.g.,
[000001111] (correct)) permits the use of supervised learning
methods, like feature selection. As the unsupervised clustering
problem (Table 4 without column “instability”) becomes now a
supervised classification problem (Table 4 with the column “in-
stability”). Hence supervising feature selection methods can be
applied. There also exist unsupervised feature selection methods,
they are however less common and typically not yet implement in
common libraries. The employed feature selection methods can

be divided in three groups as explained in Section 3.2, namely fil-
ter, wrapper, and embedded methods. The results will show that
every method leads to slightly different results. Therefore, to ob-
tain a final ranking, to each of the seven features a value is as-
signed (Table 6). For a specific method, the first ranked feature
obtains seven points, the second ranked six, and so on. In the end
the scores of all the features for every feature selection method
are averaged and a final ranking is obtained. Some feature selec-
tion methods even assign a score to each feature. If this score is
available it will also be shown. This allows to better understand
how different features compare to each other. It should how-
ever be noted that the score from one feature selection method

Macromol. Mater. Eng. 2023, 2200628 2200628 (10 of 14) © 2023 The Authors. Macromolecular Materials and Engineering published by Wiley-VCH GmbH
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Table 7. Final ranking after averaging the results of all the feature selection
methods.

Final ranking Average score

1 Mw
Mn

6.2/7

2 finst 5.5/7

3 Mw 4.9/7

4 𝜎p 4.7/7

5 LCB 2.8

6 LCB + SCB(> C4)/1000 CH2 1.8

7 SCB 1.8

Table 8. Clustering without using instability frequency and pressure data.
The numbers indicate how many data points are correctly assigned to the
labels.

Normalized

Agglomerative hierarchical 9

K-means 9

Mini-batch K-means 9

DBSCAN 0

BIRCH 9

Mean shift 4

OPTICS 6

Spectral 9

Gaussian mixture 7

cannot be compared with the score of another feature selection
method.

The final ranking with the averaged score of all the feature se-
lection methods is shown in Table 7.

As can be seen in Table 7, the polydispersity is the most pow-
erful criterion to create distinct clusters, this means it has also
the biggest impact on the melt instability. Surprisingly it is even
higher ranked than the instability frequency which is a direct
experimental measurement of the melt instability. In third and
fourth position the molecular weight appears followed by stan-
dard deviation of pressure which can also be directly linked to a
specific melt instability. Our result is confirmed by Filipe et al.:[3]

“When considering only molecular weight and polydispersity,
and for these particular shear rate, temperature and die geom-
etry, one can state that materials with high-molecular weights
and broad PDIs are more predisposed to develop stick-slip insta-
bilities.... Moreover, samples having lower Mw presented shark-
skin…” Branching only seems to have a minor effect on the
melt instabilities.

As final test, the experimental data from the sharkskin op-
tion, namely the instability frequency f and the standard devia-
tion of pressure 𝜎p are removed from the data and the unsuper-
vised clustering algorithms are executed again. The question is,
if the clustering is still successful after removing two powerful
features. The result is shown in Table 8. This time only the per-
formance on a normalized feature set is represented.

DBSCAN identified every sample to belong to the same cluster.
Optics could not assign three samples at all to any of the two clus-

ters and Gaussian mixture assigned two samples to the wrong
cluster. In the end five out of nine algorithms were able to cor-
rectly cluster all the samples from the reduced data set. In this
case the “simpler” clustering algorithms like K-means were able
to correctly assign all the samples, as they are less sensitive to out-
liers compared to DBSCAN for example. For much larger data set
with more outliers the results might be different. This approach
clearly shows that even with a rather small amount of samples
and features very good predictions can be made about the behav-
ior of the polymers during extrusion.

To visualize the results of the feature selection algorithm, some
features are plotted versus each other. These figures are the result
of the hierarchical agglomerative clustering algorithm. It should
be noted that these results depend on the clustering algorithm.
This algorithm was selected as it was able to identify all the sam-
ples correctly in every case. Compared to the results before, where
the clustering algorithm was applied to all the features simulta-
neously, here it is only applied to two features, as shown in the
following Figure 9e. In Figure 9a variety of features are plotted
against each other. The colors correspond to the result of the clus-
tering algorithm. All the samples with the same color belong to
the same cluster. The labels “sharkskin 1, sharkskin 2…” corre-
spond to the last column in Table 4. They are not used in the
clustering algorithm but only to verify if the clustering algorithm
assigned the samples to the correct cluster. Typically these labels
would not be available for unsupervised problems. But as they
exist in this case, they are used to cross check the result. For the
feature combinations presented in Figure 9 all the samples are
correctly assigned to the corresponding clusters. In contrast to
the feature comparison in Figure 9, Figure 10 shows two feature
combinations where the clustering algorithm partially failed as
the sample labeled stick-slip 1 has been assigned to the shark-
skin cluster. However, referring to Tables 5 and 8 it can be seen
that the agglomerative clustering algorithm assigned all the sam-
ples to the correct cluster if all the features are considered. This
is precisely the strength of the unsupervised algorithms, as they
compare all the features with each other, and not only two, to es-
tablish a feature ranking (Table 7). Therefore, although for some
specific feature combinations the clustering is not correct (Fig-
ure 10), by taking into account all the features the samples can be
correctly clustered. As can be seen in Table 7, the polydispersity
Mw/Mn, characteristic frequency of the instability finst, molecular
weight Mw and standard deviation of pressure 𝜎p are the highest
ranked features. As the molecular weight and polydispersity also
have rather high numerical values they have a considerable im-
pact on the clustering algorithm if the data are not normalized or
standardized. By coincidence, these features are also among the
highest ranked features, which explain why the clustering algo-
rithms performed very well on the raw data sets (5). A final, cru-
cial remark is that the samples have all been extruded at 180˜°C
and for an apparent shear rate of 504 s−1(Section 2.2). As can be
seen in Table 4, this has not been taken into account in the clus-
tering algorithms proving that the instabilities are an intrinsic
property of the polymer.

7. Impact of Data Set Size on the Results

With respect to machine learning applications the considered
data set is very small. However, it contains a wide variety of sam-
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Figure 9. Illustration of the clustering results for selected features. The label corresponds to the last column in Table 4. The colors correspond to the
result of the clustering algorithm. a) Molecular weight Mw versus frequency of instability f; b) polydispersity Mw/Mn versus frequency of instability f;
d) polydispersity Mw/Mn versus LCB and SCB branching; e) polydispersity Mw/Mn versus molecular weight Mw; and f) polydispersity Mw/Mn versus
standard deviation of pressure 𝜎p.

Figure 10. Illustration of the clustering results for selected features. The label corresponds to the last column in Table 4. The colors correspond to the
result of the clustering algorithm. a) Standard deviation of pressure 𝜎p versus frequency of the instability f and b) molecular weight Mw versus standard
deviation of pressure 𝜎p.

Macromol. Mater. Eng. 2023, 2200628 2200628 (12 of 14) © 2023 The Authors. Macromolecular Materials and Engineering published by Wiley-VCH GmbH
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ples with different molecular weights, branching, polydispersity,
and other properties. As an unsupervised method is employed in
this work, there is no training of the algorithms involved com-
pared to supervised algorithms. These algorithms would require
large data sets as the data need to be split in 80% training and
20% test data. For a data set it might happen that single data
points (samples) would be identified as small clusters or, more
commonly, are rejected as they are incorrectly considered as out-
liers. This can happen independently of the size of the clusters.
However, if a few data points are not considered on a small data
set it has a bigger impact on the result compared to a large data
set. To reduce the probability that a data point is considered as an
outlier a variety of different clustering algorithms, ranging from
rather basic ones like K-means to more sophisticated algorithms
as DBSCAN, are tested and compared to each other.

The results in Table 8 show that still five algorithms were able
to cluster all data points. This shows that even for such small data
sets, our approach works. The results also show that more ad-
vanced clustering algorithms are typically more sensitive to out-
liers, which can be very useful for large data sets but is a draw-
back for smaller ones. It should furthermore be noted that is not
clear from the beginning which algorithms lead to the best re-
sults. This is the same in supervised learning applications. In that
case, first, a variety of supervised learning algorithms are com-
pared to each other by fitting test data. The algorithms can range
from Ridge regression to regression trees over Random Forests
to Neural networks. The best algorithm is then selected and is fur-
ther fine tuned using hyper parameter optimization. The perfor-
mance of unsupervised learning algorithms cannot be evaluated
on labeled data sets. Therefore, we run different algorithms and
consider those with the lowest amount of outliers to be the most
suitable for our data. It is important to highlight that the aim is
not to add data points to a specific cluster but to only reduce the
amount of outliers as much as possible. In this work we have the
chance that the samples have been labeled through experiments,
so we can match later a cluster to a specific instability.

The presented approach and algorithms would not need to be
adapted even if the amount of samples is increased tenfold as
it would still be a rather small data set for ML applications. The
bigger the data set and the wider the range of samples, the more
likely additional unknown clusters could be identified. For exam-
ple, as we expected two instabilities (sharkskin and stick slip), we
expected two clusters. For some algorithms, the expected num-
ber of clusters even needs to be indicated. However, maybe there
exist some other unknown, less pronounced, instabilities which
are currently unknown to us, but which could appear as a third
or fourth cluster in a larger data set whereas they would be con-
sidered as an outlier in a smaller data set. Currently, no further
melt instabilities are known for the considered class of materials,
but it cannot be excluded that new kind of instabilities appear for
other polymers or composites. However, this has no impact on
the approach presented in this publication. Only an additional
cluster would appear in the results and as no such instabilities
have been observed they probably do not exist or are very simi-
lar to the already known instabilities and therefore would form a
cluster very close to an existing one. The more data points (sam-
ples) are clustered the higher the resolution and it would be possi-
ble to distinguish clusters that are very close to each other. Finally,
we would like to highlight that the data set has not been selected

assuming that the unsupervised learning algorithms could iden-
tify exactly two melt instabilities but because of the wide variety
of sample parameters.

8. Conclusion

In this publication, unsupervised machine learning methods,
namely clustering algorithms have been applied to relatively
small data sets of samples displaying melt instabilities. The aim
was to investigate, based on the topology of polyethylene sam-
ples, if a relation between a specific cluster and a melt instabil-
ity occurring during an extrusion process exists. The main fea-
tures under investigation were the molecular weight, polydisper-
sity, and branching. In total, nine different clustering algorithms
have been applied and depending on the number of features un-
der investigation five to seven clustering algorithms were able to
assign all the samples under investigation to a specific cluster.
Experimental investigation of the sample showed a clear relation
between a specific cluster and a specific melt instability. For this
rather small set of features, especially the basic algorithms like K-
means or BIRCH lead to excellent results. Clustering algorithms
sensitive to outliers like DBSCAN performed worse. Clustering
the samples, results in a labeled data set as each sample is now as-
signed to a specific cluster. Even without experimental validation
clustering the data leads to a labeled data set, for example, sam-
ples belong to cluster 1, other samples to cluster 2. Due to this
additional information supervised feature selection methods can
be applied, leading to a ranking of the features. The top ranked
features have the highest impact on the resulting melt instability.
For these samples, the ranking is : 1) polydispersity; 2) molecu-
lar weight; and 3) branching. Furthermore, the clustering algo-
rithms did not take the temperature or extrusion shear rate into
account, but still were able to cluster the samples in agreement
with the melt instabilities. This shows that the melt instability
itself is mainly governed by the topology. External factors like
temperature and shear rate are also known to have an impact on
the melt instabilities, as for example, higher temperatures shift
their onset to higher shear rates. However, our results demon-
strate that the polymer topology is a crucial component in order
to distinguish melt instabilities. Further investigation would be
necessary to investigate the effect of shear rates and temperature
in detail. All the algorithms and methods employed are a part of
the scikit learn library, an open source machine learning library
for Python.
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