Supplemental Information: Revealing nanoscale dynamics during an epoxy curing reaction with X-ray photon correlation spectroscopy

Benjamin M. Yavitt^{1,3}, Daniel Salatto¹, Zhixing Huang¹, Yuto T. Koga², Maya K. Endoh¹, Lutz Wiegart³, Sascha Poeller⁴, Stanislas Petrash^{5,*}, Tadanori Koga^{1,*}

¹Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, USA

²Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, 14853, USA

³National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, USA

⁴Adhesives Technologies, Henkel AG & Co KGaA, 40589 Duesseldorf, Germany

⁵Adhesives Technologies, Henkel Corporation, Bridgewater, New Jersey, 08807, USA

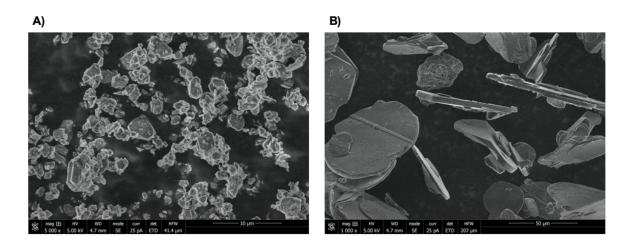
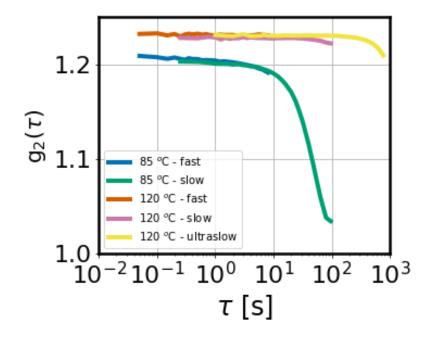
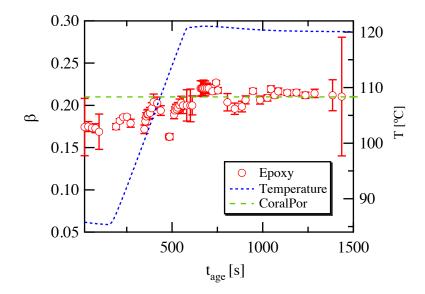
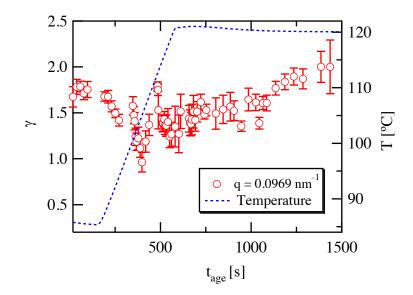
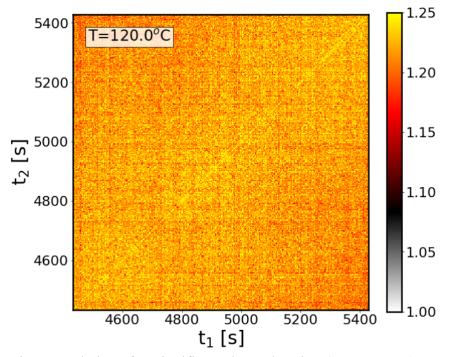



Figure S1. SEM images of A) alumina trihydrate and B) boron nitride fillers.

Figure S2. Comparison of one-time correlation functions g_2 from XPCS datasets with variable acquisition parameters at q = 0.0969 nm⁻¹. Total dose exposure (TDE) of each XPCS dataset (fast, slow, ultraslow) set below TDE threshold of < 1 s. Overlapping g_2 confirm dynamics are TDE-independent and radiation induced sample damage is mitigated. Each individual measurement is collected at a unique sample location to reduce accumulated radiation. In the out-of-equilibrium experiments, the dynamics are continuous between datasets (transition to a new spot on the sample), suggesting that the evolution of time-scales is not caused by accumulating X-ray dose.

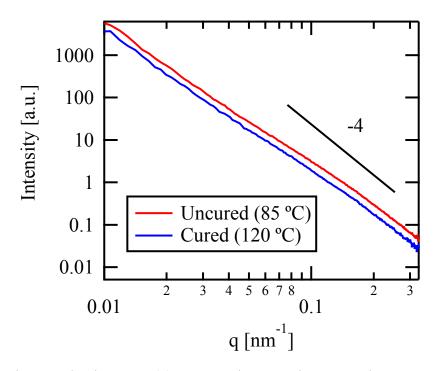

Figure S3. Siegert factor β as a function of t_{age} at representative q = 0.0969 nm⁻¹. Sample temperature is overlaid on secondary axis.

Figure S4. Compression exponent γ as a function of t_{age} at representative q = 0.0969 nm⁻¹. Sample temperature is overlaid on secondary axis.

Figure S5. Two-time correlation after significant thermal curing ($t_{age} \sim 5000$ s). No relaxation of $g_2(q, \tau)$ detected suggesting sample has adequately cured and vitrification has occurred. Representative plots shown at q = 0.0969 nm⁻¹

Figure S6. Time resolved SAXS I(q) at uncured state and post cured state. Power law scaling $I(q) \propto q^{-4}$ labeled.