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and stability in often denaturing and abio-
logical environments.[1–5] One strategy, 
which has resulted in remarkable hours-
long enzyme activity in toluene,[6] tailors 
the composition of random copolymers 
based on protein surface chemistry. In 
principle, copolymers might be precisely 
designed to stabilize any given protein 
without compromising activity. However, 
identifying such copolymers, whether 
via rational design or screening, is chal-
lenging due to a large combinatorial 
design space (e.g., monomer chemistry, 
chain length, architecture).[7] Thus, fit-
for-purpose PPHs could facilitate myriad 
applications—biofuel production,[8] plas-
tics degradation,[9,10] pharmaceutical syn-
thesis[11]—but a robust strategy for their 
design remains elusive.

Over the last decade, machine learning 
(ML) has dramatically accelerated mate-
rials discovery across disciplines,[12–14] 
enabling more efficient identifica-

tion of materials with target properties.[12,15–20] Nonetheless, 
ML-guided copolymer design is limited by several factors, 
including the availability of quality data necessary to train 
models.[7,21–24] Most polymer databases predominantly feature 
homopolymers,[25] and the laborious nature of polymer syn-
thesis and characterization severely limits the number of 
systems that can be examined “in-house”.[26] Several copol-
ymer design efforts have thus relied on data generated in 
silico.[20,27,28] Meanwhile, recent experimental work has used 
flow reactors or parallel batch synthesizers to provide modest 
data (<500 samples).[17,29,30] More scalable approaches would 
substantially extend capabilities to design copolymers for 
PPHs and other materials applications.

Here, we use active ML to rapidly design copolymers to 
form thermostable PPHs with glucose oxidase (GOx), lipase 
(Lip), and horseradish peroxidase (HRP) (Figure  1). To effi-
ciently acquire data, we use automated oxygen-tolerant radical 
polymerization for copolymer synthesis[31,32] and develop a 
facile, thermal-stability assay to characterize PPHs. With this 
platform and five iterations of a Learn–Design–Build–Test 
cycle for each enzyme, we successfully identify PPHs with 
significant enzyme activity; these PPHs generally outperform 
those derived from a systematic screen with over 500 unique 
copolymers. Notably, we demonstrate that our strategy, which 
utilizes active ML, appropriately adapts data acquisition to 

Polymer–protein hybrids are intriguing materials that can bolster protein 
stability in non-native environments, thereby enhancing their utility in 
diverse medicinal, commercial, and industrial applications. One stabilization 
strategy involves designing synthetic random copolymers with composi-
tions attuned to the protein surface, but rational design is complicated by the 
vast chemical and composition space. Here, a strategy is reported to design 
protein-stabilizing copolymers based on active machine learning, facilitated 
by automated material synthesis and characterization platforms. The ver-
satility and robustness of the approach is demonstrated by the successful 
identification of copoly mers that preserve, or even enhance, the activity of 
three chemically distinct enzymes following exposure to thermal denaturing 
conditions. Although systematic screening results in mixed success, active 
learning appropriately identifies unique and effective copolymer chemistries 
for the stabilization of each enzyme. Overall, this work broadens the capabili-
ties to design fit-for-purpose synthetic copolymers that promote or otherwise 
manipulate protein activity, with extensions toward the design of robust 
polymer–protein hybrid materials.

ReseaRch aRticle

1. Introduction

Polymer–protein hybrids (PPHs) have emerged as attractive 
materials that leverage polymers to improve protein solubility 
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yield chemically distinct sets of top-performing copolymers 
for each enzyme. Post hoc analysis of our data and ML models 
reveals important relationships between specific copolymer 
chemistries and PPH stability, while biophysical charac-
terization of our most efficacious PPHs provide mechanistic 
insight into how copolymers may preserve enzyme function 
under thermal stress. Overall, this framework will automate 
and accelerate the design of copolymers for stable PPHs 
across applications.

2. Overview of Design Space and Strategy

2.1. Design Space and Initial Screen

To test our ML-based design paradigm, we consider three 
chemically distinct enzymes–HRP, GOx, and Lip–with the 
design goal to maximize retained enzyme activity (REA) fol-
lowing thermal stressing. For reference, a PPH exhibiting 100% 
REA provides the same level of activity as the enzyme prior 
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Figure 1. Overview of study. a) Schematic illustration of the surface chemistry for horseradish peroxidase (HRP), glucose oxidase (GOx), and 
lipase (Lip). Amino acids are colored based on classification as ionic (blue), hydrophilic (green), and hydrophobic (magenta). Images for the 
protein are rendered using Visual Molecular Dynamics.[33] b) Monomers utilized for copolymer design. The colored boxes delineate rough clas-
sifications as ionic (blue), hydrophilic (green), and hydrophobic (magenta). c) Schematic representation of closed-loop Learn–Design–Build–
Test discovery process used in this work. After initialization with a seed dataset, the process consists of: training an enzyme-specific Gaussian 
process regression (GPR) surrogate model to predict the retained enzyme activity (REA) of a polymer–protein hybrid (PPH) based on copolymer 
characteristics (learn); Bayesian optimization of copolymers to satisfy an expected improvement acquisition function and subsequent filtering to 
propose new copolymers (design) (ii); automated synthesis of proposed copolymers via photoinduced electron/energy transfer reversible addi-
tion–fragmentation chain transfer (PET-RAFT) polymerization (build) (iii); and mixing of synthesized copolymers with enzyme to form PPHs that 
are thermally stressed and assessed for REA (test) (iv). The newly acquired and existing data is then used to begin a new Learn–Design–Build–Test  
iteration.
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to thermal stressing. Because these enzymes possess distinct 
surface chemistries and molecular weights (Figure 1a), we con-
sider a copolymer design space with eight possible monomers 
(Figure  1b) copolymerized with target degree of polymeriza-
tion (DP) between 50 and 200 in increments of 25. The chosen 
monomers are classified as hydrophobic (2-diethylamino ethyl 
methacrylate (DEAMA), hydroxypropyl methacrylate (HPMA), 
butyl methacrylate (BMA), methyl methacrylate (MMA)), 
hydrophilic (N-(3-(dimethylamino)propyl) methacrylamide 
(DMAPMA), poly(ethyleneglycol) (n) monomethyl ether mono-
methacrylate (PEGMA)), or ionic (3-sulfopropyl methacrylate 
potassium (SPMA), (2-(methacryloyloxy)ethyl) trimethylam-
monium chloride (TMAEMA)); this set enables various inter-
actions (e.g., van der Waals, hydrogen-bonding, electrostatic) 
with the enzyme, while balancing aqueous solubility. To 
encourage reproducible synthesis and minimize latency, up to 
four distinct monomers are selected for copolymerization for 
any given copolymer design. These choices (i.e., fractions of 
incorporation of up to four monomers and the degree of poly-
merization) result in a design space of ≈545  622 synthetically 
unique copolymers.

Before evaluating an iterative Learn–Design–Build–Test 
approach, we sought to gain perspective on the viability of a 
systematic search, relying on high-throughput experimentation 
and polymer chemist intuition. We first performed an initial 
screen with synthetic limits on certain monomers to ensure 
copolymer solubility and conversion. In particular, hydro-
phobic monomer content was limited to ≤70% mol fraction and 
ionic monomer content was limited to ≤50%. Additionally, in 
this screen, no copolymers were allowed to include both ionic 
monomers. Then, systematic composition-based perturbations 
were made to design copolymers with unique combinations of 
hydrophilic, hydrophobic, and ionic properties at three degrees 
of polymerization (50, 100, 200). This resulted in 504 unique 
copolymers; the systematic nature can be readily identified by 
principal component analysis (Figures S1 and S2, Supporting 
Information). All copolymers constituting this seed dataset 
were tested with each of the three enzymes using enzyme-
specific stability assays. To minimize wasted resources, the data 
obtained from the systematic screens are used to seed an active 
learning guided search.

2.2. Learn–Design–Build–Test Cycle

We iterate with a Learn–Design–Build–Test cycle (Figure  1) to 
identify high-performing PPHs. Each iteration consists of four 
steps: i) developing ML models to predict REA from copolymer 
characteristics; ii) identifying batches of 24 candidate copoly-
mers for PPHs using active and unsupervised ML; iii) syn-
thesizing candidate copolymers; and iv) performing thermal 
activity assays to determine REA for candidate PPHs. The 
results from step (iv) augment the dataset for a given enzyme 
before beginning the next iteration.

Our discovery process invoked five total iterations based 
on experimental resources and demonstrated feasibility of 
enhancements to REA. As such, copolymers proposed in step 
(ii) during the first four iterations are generated to simultane-
ously explore and exploit knowledge of the chemical space. In 

the final iteration, dubbed “exploit round” or iteration 5, we 
simply aim to maximize the REA of copolymers generated, sub-
ject to the constraint that they are unique (to within synthetic 
confidence) compared to other candidates. While our stopping 
criterion is principally exhaustion of a fixed budget for optimi-
zation, other reasonable criteria from active learning and opti-
mization may be devised and deployed.[34,35]

Below we further describe other methodological aspects of 
our Learn–Design–Build–Test cycle:

i) Learn: To cheaply assess the prospective stability of new 
PPHs, we trained Gaussian process regression (GPR) models 
to make surrogate predictions of REA directly from represen-
tations of the copolymer chemistry[36] (see Section 5). These 
models provided instantaneous estimates of the REA for any 
given PPH based on data collected to that point.

ii) Design: The GPR models were combined with Bayesian 
optimization (BO) in an active learning paradigm to identify 
candidate copolymers according to prescribed objectives. In 
each of the first four iterations, 200 initial copolymers were 
produced by maximizing a data-acquisition utility func-
tion that biased optimal designs to favor designs across the 
explore–exploit spectrum (see Section  5). Similar acquisi-
tion functions have been used in previous work related to 
polymer design.[37,38] To preserve the diversity of candidates 
and match experimental capabilities to minimize latency, 
unsupervised ML clustering algorithms were used to identify 
and select 24 distinct copolymer candidates (see Section  5) 
during iterations 1–4.

iii) Build: Proposed copolymers from the Design step were 
synthesized by automated photoinduced electron/energy 
transfer reversible addition–fragmentation chain transfer 
(PET-RAFT) polymerization in 96 well plates as previously 
described.[31,32,39,40] Briefly, synthetic information regarding 
copolymer designs is converted to synthesis procedures, 
which are undertaken by a Hamilton MLSTARlet liquid-
handling robot, enabling highly parallelized preparation (see 
Section 5).

iv) Test: Once copolymerizations are complete, copolymers 
undergo a dilution series into DMSO and then an enzyme-
specific assay buffer. Following this dilution, PPHs are 
formed through mixing copolymers with each enzyme (see 
Section  5). After PPH formation, REA is determined for 
each proposed PPH by measuring REA following enzyme-
specific thermal stress assays, providing new data for the 
next iteration.

3. Results and Discussion

3.1. Inefficiency of Screening

The vast majority of copolymers in the seed dataset did not 
result in substantial REA, with the mean values of 15.7% 
± 21.3% (HRP), 12.9% ± 10.3% (GOx), and 2.1% ± 7.6% 
(Lip). These poor results are partly explained by the lim-
ited chemical space surveyed during systematic screening 
(Figures S1 and S2, Supporting Information); copolymers 
in the seed dataset account for only ≈0.1% of the total design 
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space. Additionally, the REA for PPHs with Lip, HRP, and GOx 
vary significantly for any given copolymer design in the seed 
dataset, suggesting that copolymers should be tuned to specific 
enzymes and that systematic screening is likely to have mixed 
success across different enzymes.

3.2. Active Learning in a Combinatorial Design Space

Figure  2a–c shows that active learning facilitated identifica-
tion of numerous, diverse copolymers that enhanced retained 
activity for each of the three enzymes. The median REA of 
PPHs found in the intermediate and final iterations of active 
learning show progressive and significant increase over those 
in the seed dataset. In particular, there is a difference of 46.2%, 
31.5%, and 87.6% between the median REA of seed PPHs 
and those found in the exploit round for HRP, GOx, and Lip, 
respectively. Even within the intermediate iterations (1–4), we 
typically find improvements in median REA iteration-over-
iteration (Figure  S4, Supporting Information), despite data 
acquisition sometimes foregoing potentially promising designs 
in favor of diversity or uncertainty. For Lip and GOx, the best 
PPHs are found within the exploit round and exhibit remark-
able REA values of 107.9% and 67.4%, which significantly 
improve upon both the average and maximum values observed 
in the seed datasets. For HRP, the top-performing PPH is 
found during the initial screen with a measured REA of 93.1%; 
however, many of the top hybrids are still identified by active 
learning including one with an REA of 81.0%. More generally, 
we find that a large number of diverse copolymers offer reason-
able stabilization of HRP, and active learning identifies some 
promising regions of the chemical space that are not exposed 
by our systematic search. Quantitatively, copolymers discov-
ered using active learning are disproportionately represented 
as top performers, comprising 70.2%, 40.5%, and 42.5% of the 
top twentieth percentile of PPHs sorted by REA for Lip, GOx, 
and HRP, respectively. Interestingly, the exploit round also pro-
duces three PPHs for Lip that not only preserve but enhance its 
activity relative to the unstressed enzyme.

Figure 2d–i examines both the progression of active learning 
and PPH performance as a function of the chemical consti-
tution of copolymers. Based on the totality of measured REA 
values, we find that best-performing PPHs for each enzyme uti-
lize entirely different copolymer chemistries, which justifies a 
tailored design strategy. In particular, optimal copolymers for 
HRP stabilization predominantly feature hydrophobic and ionic 
monomers and smaller DP (<100) (Figure  2a,d). While active-
learning-generated candidates primarily focus on uncovering 
this region of the chemical space, there are also many effective 
PPHs that limit ionic content as identified by the seed dataset 
(Figure 2g and Figure  S2c, Supporting Information). In this 
case, a wide range of diverse, high-performing PPHs are identi-
fied by active learning, despite outlier points in the HRP dataset 
(Table S1, Supporting Information). For GOx, optimal copoly-
mers are either predominantly hydrophobic or hydrophilic with 
very little ionicity and have DP typically in the range of 100–150 
(Figure  2b,e). Accordingly, active learning for GOx stabiliza-
tion predominantly probed these regions of the chemical space 
and remained globally stagnant in its search (Figure  2e,h), 

fine-tuning relatively promising regions identified in the seed 
dataset (Figure  S2a, Supporting Information). Conversely, 
optimal copolymers for Lip stabilization possess sizable incor-
porations of monomers from all three chemical groupings with 
generally larger DP (Figure 2c,f). Active learning-proposed can-
didates progress toward this promising region of the chemical 
space with each subsequent iteration (Figure 2f,i). Notably, this 
region of the chemical space is completely avoided in the seed 
dataset (Figure  S2b, Supporting Information), suggesting that 
the Lip design campaign benefited from both exploration- and 
exploitation-based candidate proposals. Therefore, the active 
learning paradigm appropriately adapted optimization to iden-
tify high-performing PPHs for each enzyme across chemical 
space, accounting for less than 20% additional data beyond the 
initial systematic screen and ≈0.02% of the total design space.

3.3. Understanding Chemical Features Driving PPH 
Performance

Given the identification of highly stable PPHs for each enzyme, 
we sought to understand the specific chemical features of 
copolymers that gave rise to their performance. Figure 3a com-
pares the features of copolymers underlying PPHs with the 
top ten highest REA for each enzyme. While top-performing 
PPHs for a given enzyme tend to have some chemical simi-
larity across effective copolymers, there is substantial chemical 
diversity between PPHs for different enzymes. This suggests 
that copolymer pairing with HRP, GOx, and Lip may be highly 
enzyme-specific. To investigate this, we cross-evaluated the 
efficacy of the top-performing copolymers discovered for each 
enzyme to retain the activity of all three enzymes in our study. 
For example, the top ten copolymers identified as highly effec-
tive for stabilizing HRP were additionally formulated into GOx-
PPHs and Lip-PPHs. Then, respective GOx and Lip stability 
assays (see Section 5) were performed to determine the efficacy 
of top performing HRP copolymers in stabilizing GOx and Lip, 
for which the copolymers were not designed. We then repeated 
this process for the top ten performing GOx and Lip copoly-
mers to observe all combinations of top-performing copolymers 
with each enzyme in this study. Experimentally, we observe 
that the REA of PPHs designed for a specific enzyme are sig-
nificantly higher than that of PPHs formed by non-specific 
copolymers (Figure 3b). Further, virtual cross-evaluation using 
enzyme-specific GPR models trained on all iterations of data 
similarly suggest that REA is significantly diminished when 
top-performing copolymers for one enzyme are paired with 
another. Together, these results not only suggest an intricate 
connection between copolymer chemistry and size with the sta-
bility of PPHs, but such correlations can be effectively learned 
from data.

To further explore the relationship between copolymer fea-
tures and PPH activity, we computed Shapley additive explana-
tions (SHAP) values[41,42] to quantify how chemical features of 
the copolymers (fractions of incorporation and DP) contributes 
to REA predictions by our GPR models. Here, positive SHAP 
values indicate positive contributions REA (negative SHAP 
values suggest negative contributions), and we use the mean 
absolute SHAP value of a feature as a proxy for its overall 
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Figure 2. ML guides design of highly stable polymer–protein hybrids. a–c) Copolymer designs and their measured REAs for HRP, GOx, and Lip. Marginal 
axes at the top contain Gaussian kernel density estimate distributions of REA in the seed dataset (blue), Learn–Design–Build–Test iterations 1–4 (orange), 
and the final exploitation round (green). Medians of distributions are indicated by vertical lines. Main axes show the experimentally measured REA for all 
tested PPHs; individual markers are vertically located in bins according to their degree of polymerization with jitter added within bins to improve visual 
clarity. The marker color reflects the composition of the copolymer according to the ternary diagram (bottom right). d–f) Representation of active learning 
path traversed through copolymer chemical space for each enzymes. The chemical space is represented as a ternary diagram with coordinates providing the 
fraction of incorporation of hydrophobic, hydrophilic, and ionic monomers in copolymers. Colored stars indicate the mean composition of copolymers pro-
posed during a given iteration. The ternary diagrams are additionally colored by maximum REA observed for a PPH in a given region of the chemical space 
spanned by the ternary axes. g–i) Individual chemical compositions of copolymers proposed during each stage of active learning. The centroid of all points 
at a given iteration yields the position of the stars (d–f). The crosses denote copolymers that showed undesirable gelation during synthesis (see Section 5).
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importance to model prediction. Figure 3c shows that different 
copolymer features have distinct impact on REA predictions. 
To elucidate these differences, we compare SHAP values for 
the fractions of incorporation for each monomer (Figure 3d–f) 
and DP (Figure 3g–i) for each enzyme. Although we previously 
associated hydrophobic chemistry with high-performing PPHs 
for HRP (Figure  2f,i), Figure  3d reveals that the exclusion of 
BMA is favorable (higher REA), while the inclusion of MMA, 
a similar hydrophobic monomer, is associated with higher 
REA. Similar observations can be readily identified for Lip 
(Figure  3f), for which SPMA and TMAEMA monomers (both 
highly ionic) represent the most and least important features 
based on their mean absolute SHAP values. Such differences 
in SHAP values between monomers with the same chemical 

classifications underscore the intricacy of designing effective 
polymer–enzyme pairing.

Figure  3c–i also indicates that the relative importance of 
copolymer features varies across enzyme models. For example, 
we find that different chain length regimes favor high predic-
tions on REA, depending on the enzyme-specific GPR model 
(Figure 3g–i). For HRP, smaller copolymers (DP = 50, 75) dis-
play the highest SHAP values, while the highest SHAP values 
for Lip are observed for DP = 125 or 150. DP = 200 is gener-
ally associated with lower REA, perhaps suggesting that shorter 
copolymer sequences enable more facile pairing with enzyme 
chemical domains to promote stabilization.

To understand the evolution of feature importance during 
discovery, we compared mean absolute SHAP values for all 

Adv. Mater. 2022, 34, 2201809

Figure 3. Analysis reveals distinct priorities in copolymer features for each protein. a) Copolymer compositions and degree of polymerization (DP) 
for the top ten performing PPHs for HRP (orange), GOx (green), and Lip (purple). b) Cross-evaluation of top-performing copolymers across enzymes 
showing mean observed and predicted REA for each copolymer–enzyme pairing. Statistical significance was determined by Mann–Whitney U test. 
*(p < 0.05), **(p < 0.005), ***(p < 0.0005), unlabeled pairs are not significantly different. Top ten performers for each enzyme demonstrate high speci-
ficity in agreement with predicted activity. c) Normalized mean absolute Shapley additive explanations (SHAP) values calculated for HRP, GOx, and 
Lip for each model to quantify relative feature importance. d–f) Summary of SHAP values for GPR models calculated from available data after all five 
Learn–Design–Build–Test iterations. Each point corresponds to a uniquely evaluated PPH, and the point’s position along the X-axis shows the impact of 
a feature on predicted REA. g–i) SHAP value distributions demonstrating the effect of degree of polymerization on REA predictions. Black candlesticks 
range from second to third quartiles of SHAP values and white dots represent the distribution mean. j–l) Mean absolute SHAP values calculated for 
all model features after model training on the seed dataset and after each iteration of active learning.
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non-gelling copolymers derived from GPR models trained after 
each stage of data acquisition. Figure 3j–l shows that the impor-
tance of features can shift significantly, even with the addi-
tion of small amounts of data (typically 20 data points added 
per iteration or less than 4% increase in prior data available). 
This is most evident following for Lip, wherein mean absolute 
SHAP values for SPMA, MMA, DMAPMA, and DP all substan-
tially increase after the third and fourth iteration. This behavior 
might be related to data acquisition over previously unexplored 
regions of chemical space, which is partly shown in Figure 2e. 
The effects for HRP and GOx are overall less dramatic; most 
rankings are unchanged between iterations, with occasional 
shifts of one or two ranks upon exposure to new data. Nonethe-
less, even if the rank-ordering of features is unchanged, mean 
improvement in measured REA for PPHs across iterations sug-
gests that GPR models had sufficient fidelity to effectively opti-
mize REA, at least within a local chemical space.

3.4. Revealing Mechanisms with Biophysical Characterization

Although mechanisms of stabilization for PPHs based on 
random copolymers have been hypothesized and studied 
in limited fashion using molecular dynamics simulation,[6] 
experimental examination of these biophysical interactions is 
nascent. Therefore, we characterized (Figure  S5, Supporting 

Information) and investigated a particular PPH for HRP iden-
tified in the exploit round—dubbed HRP-Exploit Polymer 
1 (HRP-EP1)—using circular dichroism (CD) spectroscopy, 
small-angle X-ray scattering (SAXS), dynamic light scattering 
(DLS), and quartz crystal microbalance with dissipation (QCM-
D). HRP was selected due to its amenability to these charac-
terization techniques, while detailed characterization of other 
enzyme systems proved challenging due to weak CD spectros-
copy signal-to-noise and solubility limitations. We first inves-
tigated the impact of heating and cooling on the secondary 
structure of HRP by CD spectroscopy (Figure  4a). The corre-
sponding measured α-helix, β-sheet, and random coil content 
is provided in Table S2, Supporting Information. We initially 
hypothesized that the addition of copolymer EP1 would reduce 
thermally induced unfolding of HRP; however, the CD data 
suggests only a slight retardation of unfolding. Upon heating, 
the α-helix content for HRP degrades from ≈34.8% to 17.4%, 
while the α-helix content for the HRP-EP1 system is 20.3% 
after heating. However, following cooling, HRP-EP1 exhibited 
31.6% α-helix content compared to just 24.6% for HRP alone. 
This suggests that EP1 facilitates significant refolding of HRP 
in a chaperone-like manner.

To further understand the nature of the HRP-EP1 interactions, 
we used SAXS to compare the physical dimensions of HRP 
and its complexes in pre- and post-stress states. Guinier anal-
ysis of the data (Table S3, Figure  S6, Supporting Information) 

Adv. Mater. 2022, 34, 2201809

Figure 4. Biophysical characterization indicates copolymer-assisted refolding. a) Circular dichroism wavelength scans of HRP (dashed lines) and HRP-
EP1 (solid lines) at room temperature (black), upon heating (red), and after cooling for 24hrs (blue), demonstrating that HRP-EP1 promotes retention 
of secondary structure in HRP during thermal stress and promotes significant protein refolding in comparison to HRP control. b) Pair-distance distri-
bution function of HRP and HRP-EP1 by small-angle X-ray scattering demonstrating retained HRP-PPH morphology and size after exposure to thermal 
stress in comparison to native enzyme. c) Guinier analysis of HRP and HRP-EP1 before and after heating suggesting the development of a denatured 
or aggregated sub-population of HRP (blue line) in comparison to a single species observed in HRP, HRP-EP1, and HRP-EP1 after thermal stress (red 
lines). d) Dynamic light scattering size distributions of HRP with and without polymer EP1, demonstrating that no larger structures were observed 
after mixing. e) Surface thickness measured by Quartz crystal microbalance with dissipation after direct adsorption of HRP (t = 22 min) followed by 
injection of polymer EP1 (t = 82 min).
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showed that both HRP and HRP-EP1 have the same radius of 
gyration (Rg, 24.6–25.0 Å) in the pre-stressed state. Similarly, 
in the pre-stressed state, the pair-distance distribution function 
P(r) remains highly similar upon complexation of HRP with 
EP1 (Figure 4b). Post-stress, the differences are dramatic in the 
pair-distance distribution function. While the maximum par-
ticle diameter (Dmax) of native HRP increases from 80 to 200 Å, 
that of HRP-EP1 increased only to 94 Å (Table S3, Supporting 
Information). Additionally, while the Rg of HRP-EP1 increases 
only slightly to 26.9 Å, a larger 51.9 Å component appears in the 
Guinier plots of HRP (Figure 4c, blue line), likely indicative of 
a denatured or aggregated sub-species of HRP created through 
thermal stress. Additionally, Kratky plots (Figure S7, Supporting 
Information) show peaks at q = 0.065 and 0.075 Å−1 in HRP and 
HRP-EP1, respectively, which indicates a compact structure sim-
ilar to that of the native protein. This clearly suggests that the 
complex promotes a certain level of conformational integrity in 
HRP even if secondary structure is impacted.

Finally, DLS was performed to complement the SAXS results 
by providing the distribution of hydrodynamic radii (Rh) in the 
samples (Figure 4d). All samples show peak intensities between 
3.0–3.3 nm with minimal signal intensity for Rh > 10 nm. Addi-
tionally, measured polydispersity index remained under 0.2 
for all samples, suggesting relatively monodisperse solutions 
(Figure  S8, Table S4, Supporting Information). These results 
indicate that stabilization of HRP in PPH-EP1 is indeed driven 
by the formation of a complex rather than via larger macro-
molecular assembly. Further support of complex formation by 
QCM-D showed significant differences in the Sauerbrey mass 
thickness following injection of EP1 onto surface immobi-
lized HRP (Figure 4e and Figure S9, Supporting Information). 
While native HRP exhibited a thickness of 3.6 nm, HRP-EP1 
increased to 5.1 nm post injection at 80 min.

4. Conclusion

Polymer–protein hybrids offer a powerful approach to stabi-
lize sensitive proteins in a range of environments. Here, we 
developed a robust design framework integrating automated 
polymer chemistry and ML to efficiently discover polymer–pro-
tein hybrids with enhanced thermostability for three chemically 
distinct enzymes. Notably, the ML-guided acquisition of data 
was effectively tailored to each enzyme. In addition, by analysis 
of developed surrogate ML models, we determined particular 
chemical features of copolymers that drive increased retained 
activity for each enzyme. Furthermore, the biophysical charac-
terization of a successful polymer–protein hybrid design reveals 
chaperone-like assistance in structural refolding as a possible 
mechanism of stabilization. Taken together, these results high-
light the existence of a complex structure–function relationship 
underlying protein-polymer hybrid activity that can be learned 
and exploited for materials optimization.

This discovery platform for polymer–protein hybrids can 
be extended in numerous directions. First, it provides an 
exemplary approach that can be extended to other proteins, 
other copolymer chemistries, and/or alternative design objec-
tives, such as other environmental stresses. Furthermore, ena-
bled by the vast and flexible chemical space spanned by the 

copolymer chemistries, the platform can be expanded accom-
modate the simultaneous pursuit of multiple design objectives. 
Advancement in this area could significantly accelerate their 
use as functional, commercial materials in myriad applica-
tions. One intriguing possibility is also to generalize the sur-
rogate models to incorporate chemical features of both proteins 
and their encapsulating copolymers. This would not only be a 
step toward constructing more physically informed surrogate 
models, but it would also open the door to using protein fea-
tures as additional degrees of freedom for design. In a similar 
vein, the assay data collected in this study can be used in con-
junction with simulation-based models to further elucidate and 
validate molecular-level mechanisms for stability. Such simula-
tions might also aid in identifying and selecting key features for 
surrogate models or even provide in silico figures of merit that 
correlate with stability. Last, while our ML workflow appeared 
generally insensitive to the biased nature of the seed dataset, it 
is possible high-performing PPHs could have been discovered 
starting from a smaller, more targeted selection of experiments. 
Insights in this area could help reduce resources required for 
high-throughput materials discovery efforts.

5. Experimental Section
Materials: Hydroxypropyl methacrylate (HPMA), 2-diethylamino ethyl 

methacrylate (DEAEMA), (2-(methacryloyloxy)ethyl) trimethylammonium 
chloride solution (TMAEMA), and N-(3-(dimethylamino)propyl) 
methacrylamide (DMAPMA) were purchased from Sigma-Aldrich; 
methyl methacrylate (MMA) and 3-sulfopropyl methacrylate potassium 
salt (SPMA) from VWR; butyl methacrylate (BMA) from Alfa Aesar; and 
poly(ethylene glycol) (n) monomethyl ether monomethacrylate (PEGMA, 
Mn  ≈ 400 g mol−1) from Polysciences. PEGMA was deinhibited prior 
to use by passing over mono-methyl ether hydroxyquinone inhibitor 
removal resin. Ethyl 2-(phenylcarbonothioylthio)-2-phenylacetate, 
4-nitrophenyl butyrate (PNB), hydrogen peroxide (H2O2), d-(+)-
glucose, sodium acetate, lithium bromide were purchased from 
Sigma-Aldrich; zinc tetraphenyl porphyrin (ZnTPP), dimethyl sulfoxide 
(DMSO), 3,3′,5,5′-tetramethylbenzidine (TMB) from Fisher Scientific; 
and potassium phosphate (mono and dibasic) and sodium acetate 
anhydrous from VWR.

Automated PET-RAFT Synthesis: Copolymers were prepared by 
automated photoinduced electron/energy transfer reversible addition–
fragmentation chain transfer (PET-RAFT) polymerization in 96 well 
plates as previously described.[31,32,39,40] Briefly, the sequences and 
processes to be conducted by the Hamilton MLSTARlet liquid-handling 
robot were programmed in Python, indicating information on sample 
concentration, reagent volumes, and well position. Files containing 
reaction information were transferred to the Hamilton MLSTARlet to 
prime the robotic transfers. Stock solutions of monomer (2 m), ethyl 
2-(phenylcarbonothioylthio)-2-phenylacetate (RAFT chain-transfer agent 
(CTA), 100 or 50 × 10−3 m) and ZnTPP (photocatalyst, 4 or 2 × 10−3 m) 
were prepared in DMSO as 1 mL aliquots. Aliquots were loaded into the 
Hamilton MLSTARlet liquid-handling robot and automatically pipetted 
into 96-wells clear flat-bottom well plates (Greiner Bio-One). Monomer/
CTA ratio was varied from 50–200 to control degree of polymerization 
while ZnTPP/CTA remained at 0.01. Polymer mixtures were dispensed 
to a total volume of 200 μL and final monomer concentration of 1 m. 
The mixtures were then covered with well-plate sealing tape and radiated 
under 560 nm LED light (5 mW cm−2, TCP 12 Watt Yellow LED BR30 
bulb) for 16 h.

HRP Thermal Stability Assay: The activities of PPHs for HRP 
were evaluated by its ability to oxidize TMB in the presence of H2O2. 
Copolymers were synthesized and diluted in DMSO before further 
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dilution into assay buffer (50 × 10−3 m sodium acetate, pH 5.0) 
to a final concentration of 22.7 × 10−6  m (<1% DMSO). From the 
22.7 × 10−6 m polymer samples, 50 μL were mixed with 50 μL of 10 μg mL−1 
HRP (0.11 × 10−6 m) in polystyrene 96 well plates. The solutions were 
thermally sealed with plate-sealing film and then thermally challenged 
in a water bath at 60 °C for 30 min. This temperature was chosen as it 
reliably diminishes all HRP activity and is above HRP’s reported melting 
temperature of 55  °C.[43] Substrate solution was prepared by diluting 
40 × 10−3 m of TMB in DMSO to a final concentration of 0.4 × 10−3 m in 
1% H2O2 assay buffer. 5 μL of polymer–enzyme mixtures were added to 
245 μL of substrate solution. Absorbance was measured in kinetic mode 
for 5 min in 20 s intervals; measurements were made at 653 nm, which 
is the maximum of the absorption peak. The initial rate of change of 
absorbance (ΔOD) was used to calculate the activity of HRP. Native HRP 
activity without heating served as a positive control (PC), while HRP 
heated at 60 °C for 30 min served as the negative control (NC). REA was 
calculated for each PPH by the following equation

REA
( OD OD )
( OD OD )

PPH NC

PC NC
= ∆ − ∆

∆ − ∆
 (1)

GOx Thermal Stability Assay: The activities of PPHs for GOx 
were evaluated using an assay buffer containing glucose, TMB, and 
HRP. Copolymers were diluted in DMSO and then in assay buffer 
(50 × 10−3 m sodium acetate, pH 5.0) to a final concentration of 
12 × 10−6 m (<1% DMSO). Resulting solutions were mixed with equal 
volumes of stock GOx solution (5 μg mL−1,  30 × 10−9 m) in polystyrene 
96 well plates. The solutions were thermally sealed with plate-sealing 
film and then thermally challenged in a water bath at 65 °C for 30 min. 
This temperature was chosen as it reliably diminishes all GOx activity 
and is above GOx’s reported melting temperature of 60  °C.[44] After 
heating, 20 μL of the PPH samples were added to 100 μL of substrate 
solution (5% glucose, 0.4 × 10−3 m TMB, 0.11 × 10−6 m HRP in assay 
buffer). Absorbance was measured in kinetic mode for 5 min in 20 s 
intervals; measurements were made at 653 nm, which is the maximum 
of the absorption peak. The initial rate of change of absorbance (ΔOD) 
was used to calculate the enzyme activity. Native GOx activity without 
heating served as a positive control (PC), while GOx heated at 65 °C for 
30 min served as the negative control (NC). REA for all GOx-PPHs was 
calculated as previously described.

Lip Thermal Stability Assay: Activities of PPHs for Lip were evaluated 
using PNB as the substrate. Copolymers were diluted in DMSO and 
then in assay buffer (50 × 10−3 m K2HPO4, 16.66 × 10−3 m K2HPO4, 
pH 7.4) to a final concentration of 120 × 10−6 m (<1.5% DMSO). From 
the 120 × 10−6 m copolymer solutions, 50 μL were mixed with 50 μL of 
stock lipase solution (0.8 mg mL−1   24 × 10−6 m) in polystyrene 96 well 
plates. The solutions were thermally sealed with plate-sealing film and 
heated in a water bath at 70 °C for 1 h. This temperature was chosen as 
it reliably diminishes all Lip activity and is above Lip’s reported melting 
temperature of 60  °C.[45] Substrate solution was prepared by diluting 
stock PNB solution (5.4 m) first to 10 × 10−3 m in DMSO, followed by a 
final dilution to 0.5 × 10−3 m in assay buffer. Absorbance was measured 
in kinetic mode for 10 min in 20 s intervals; measurements were made 
at 410 nm to monitor the production of p-nitrophenol. The initial rate of 
change of absorbance (ΔOD) was used to calculate the enzyme activity. 
Native Lip activity without heating served as a positive control (PC), 
while Lip heated at 70  °C for 1 h served as the negative control (NC). 
REA for all Lip-PPHs were calculated as previously described.

Circular Dichroism Spectroscopy: CD wavelength and temperature 
scans of samples were collected using an AVIV Model 400 CD 
spectrometer (AVIV Biomedical Inc.). Wavelength scans consisted of 
measurements from 260 to 190 nm, collecting points every 0.5 nm with a 
1 nm bandwidth for 5 s, at all required temperatures. Temperature scans 
were consisted of measuring mean residue ellipticity at 222 nm from 
30 to 90 °C with a 5 s averaging time and 1.5 nm bandwidth. The ramp 
rate was 2  °C min−1, and samples were equilibrated for 5 min at each 
temperature before measurement. The fraction of protein unfolding at 
different temperatures were calculated by assuming fully folded state at 

30 °C and fully unfolded state at 90 °C. The melting temperature Tm was 
determined by fitting the temperature scans to a Boltzmann sigmoidal 
equation. The fractions of α-helices and β-sheets in the protein samples 
were calculated using CD deconvolution algorithms for wavelength 
scans (Table S2, Supporting Information).

Dynamic Light Scattering: DLS of copolymers and polymer–
enzyme mixtures were performed on a DynaPro DLS Plate Reader III, 
Wyatt Technologies. Concentration of HRP for DLS experiments was 
maintained at 0.2 mg mL−1 while polymer concentration was at 
1 mg mL−1. The data was collected using a wavelength of 830 nm and 
a scattering angle of 173°. Fifteen acquisitions were collected for each 
sample with an acquisition time of 5 s per acquisition using auto 
attenuation. Regularization analysis was performed using Rayleigh 
spheres model for hydrodynamic size measurement.

Small-Angle X-ray Scattering: All scattering experiments were carried 
out at the Life Science X-ray Scattering (LiX) beamline 16-ID of the 
National Synchrotron Light Source II (NSLS-II) at Brookhaven National 
Laboratory (Upton, NY, USA). HRP was prepared at a final concentration 
of 1 mg mL−1 in 50 × 10−3 m sodium acetate (pH 5.15) while lyophilized 
copolymers were reconstituted in sodium acetate buffer and mixed with 
HRP at a final concentration of 2.61 mg mL−1 (10:1 molar concentration 
of polymer:HRP). Samples were denatured by heating in a water bath 
at 65 °C for 1 h. All solutions were loaded into 96-well PCR plates and 
mailed in for data collection. An X-ray energy of 15.14 keV was utilized 
for solution SAXS. Three Pilatus detectors were employed to provide 
a q range of 0.005–3.13 Å, while the range 0.005–0.25 Å was taken as 
the small-angle region. For background subtraction, sodium acetate 
buffer blanks were run for every three samples. The subtracted data 
were analyzed in BioXTAS RAW 2.1 with ATSAS 3.0.4-6. Guinier analysis 
was performed to quantify the radius of gyration Rg, whereas pair-
distance distribution analysis by an indirect Fourier transform method 
was conducted to quantitatively assess Rg, maximum dimension, and 
macromolecular structure.[46–48]

Quartz Crystal Microbalance with Dissipation: All quartz crystal 
microbalance experiments were carried out on the Q-Sense Omega 
Auto (Biolin Scientific) with 5 MHz sensitivity, less than 1 nm surface 
roughness, and theoretical mass sensitivity of 17.7 ng cm−2 Hz−1. 
HRP was dissolved in 50 × 10−3 m sodium acetate buffer (pH 5.15) at 
0.2 mg mL−1 whereas the final concentration of lyophilized copolymers 
was set to 0.52 mg mL−1 (10:1 molar concentration of polymer:HRP). 
Sodium acetate buffer was flowed as an initial equilibration step at 
20 μL min−1 for 25 min. HRP, polymer, and mixtures of HRP with 
polymer were flowed at 40 μL min−1 for 10 min. Sodium acetate was 
flowed after each step at 20 μL min−1 for 25 min to remove any loosely 
associated enzyme or polymer. Transformations using the Sauerbery 
equation[49,50] were completed on the fifth harmonic frequency and 
dissipation responses to obtain surface thickness.

Polymer Characterization: The molecular weights (Mw and Mn) and 
dispersity (Đ) were measured by gel-permeation chromatography using 
an Agilent 1260 Infinity II. Polymer samples were eluted through a 
Phenomenex 5.0 μm guard column (50 × 7.5 mm) preceded by superose 
Phenogel 12 10/300 GL column (Cytiva 17-5173-01, column L × I.D. 
30 cm × 10 mm, 11 μm avg. part. size) in 0.5× PBS (0.2% N3) using a 
flow rate of 0.5 mL min−1. GPC calibration was completed with Agilent 
PEG standards. Copolymers were prepared at 50:1 eluent/polymer ratio 
in 0.5× PBS (0.2% NaN3) and filtered with a 0.45 μm nylon filter. Polymer 
conversion was calculated by obtaining 1H NMR spectra using a Varian 
VNMRS 500 MHz spectrometer with mesitylene as an internal standard 
and processed using Mestrenova 11.0.4.

Machine-Learning Surrogate Models: All copolymers were featurized 
as DP-explicit composition vectors with one-hot encoding vectors used 
as fingerprints for monomer units.[36] With eight possible monomers, 
the resulting feature vector possesses nine dimensions, with the first 
containing the DP of the copolymer divided by 200 and the remaining 
eight containing the fractions of incorporation for each monomer; the 
division in the first dimension represents DP on a similar scale as the 
remaining features. Gaussian process regression (GPR) models, trained 
to predict the Yeo–Johnson transformation[51] of the REA for a PPH, 
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were preferred due to their superior predictive performance compared 
to other ML algorithms (Figure  S3, Supporting Information). The 
Yeo–Johnson transformation is given by
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and is used to transform REA measurements, which resemble random 
variables sampled from power-law distributions, to values that exhibit 
draws from a Gaussian distribution. The exponential parameter λ was 
found using maximum likelihood estimation, as implemented by python 
package scikit-learn. Use of this transformation was empirically found 
to improve predictive performance of models. In addition, preliminary 
comparisons amongst GPR models trained over the seed datasets 
revealed no evident advantage to using more advanced fingerprinting 
strategies over simple one-hot encoding (Figure  S3, Supporting 
Information). Using available experimental data of various PPHs, 
enzyme-specific datasets were constructed wherein each datum is 
described by this feature vector and labeled by REA.

The relationship between the copolymer features and REA was 
modeled using GPR to both capture the nontrivial, nonlinear mapping 
and to facilitate active learning as GPR naturally provides uncertainty 
estimates on predicted labels. Covariances modeled by the Gaussian 
Process are calculated using the squared exponential kernel basis 
function

( , ) exp( 1
2

( )
)2

2

2
2k x x

x x
l n

 

 

σ σ= − − +′
′  (3)

where x


 is the feature vector of the copolymer, and l, σ, σn are kernel 
hyperparameters. Anisotropic kernels were explored but did not improve 
model performance. GPR models for each enzyme were constructed 
as follows: the dataset was first split into fivefolds. Four of five of the 
folds were then used to tune the GPR model hyperparameters, which 
were identified with 20-fold cross-validation and optimization by the 
Tree-structured Parzen Estimator (TPE) approach[52] to minimize the 
mean squared error of labels. The optimal hyperparameters, along with 
data from four of five folds, were used to train a GPR model that made 
predictions on the remaining fold of data. This process was repeated 
four more times, such that all five of the original folds served as test 
sets. The five sets of optimized hyperparameters were then averaged and 
used to define a final GPR model with the full set of data available for an 
enzyme at a given iteration. The five sets of held-out test performance 
metrics were also averaged to quantify and validate the predictive 
capabilities of the model.

Candidate Copolymer Generation: Bayesian optimization (BO) was 
used in tandem with a GPR model to propose promising candidate 
copolymers. For the first four rounds of active learning, candidates that 
maximize the expected improvement (EI) acquisition function were 
selected and given by
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where ( )f x


 is the predicted mean REA from the GPR, f′ is the current 
largest mean REA observed by the model, ( )x

σ  is the standard 
deviation from the GPR, Φ and φ are the cumulative and probability 
density functions of the normal distribution, respectively, and ξ is a 
hyperparameter that controls the balance between exploring unobserved 

regions of the chemical space and exploiting known regions of it to 
obtain high performing copolymers.

To effectively sample copolymer designs across the exploit–explore 
spectrum, 200 copolymer candidates were sequentially generated for 
distinct ξ values that logarithmically vary from 0.001 to 30. To avoid 
proposing previously synthesized copolymers or those within the 
margin of synthetic experimental error previously synthesized or already 
proposed copolymers, an additional penalty function was added to the 
acquisition function based on x



 (see also Supporting Information). In 
the final iteration or exploit round, copolymers that simply maximize REA 
predictions from the GPR model were proposed as candidates, although 
the penalty function was retained to avoid redundant proposals.

Candidate Copolymer Down-Selection: While copolymer candidate 
generation is performed by maximizing acquisition functions that 
uniquely weight the balance between exploration and exploitation, it 
was found that weightings over a similar range yield similar optima, 
or designs. Unsupervised clustering methods were used to select 
24 diverse candidates for synthesis from the larger set of 200 candidates 
generated by the BO procedure. In general, this strategy helped to 
ensure that final candidate proposals were optimal, mutually diverse, 
and could be synthesized and characterized with minimal latency. 
Related clustering methods have been deployed to enhance candidate 
diversity in other polymer design campaigns.[29]

In particular, the following protocol was used for candidate selection 
in the first four active learning iterations. First, a filter was applied to 
ensure that no copolymer featured fractions of incorporation of any 
given monomer that was less than 5%. This filter was imposed to 
establish reasonable margins of experimental control over the process 
of dispensing the monomer reagents with the robotic arm used to 
automatically synthesize the copolymers. Second, candidates were 
subsequently clustered using density-based spatial clustering of 
applications with noise (DBSCAN) using a distance threshold of 0.05 2 
and a minimum of three points per cluster. Following the formation 
of clusters, the copolymer with the shortest Euclidean distance to the 
centroid position of the cluster in the copolymer feature vector space 
was selected as a representative candidate for further consideration. 
All non-clustered candidates, or noise-points, were also considered 
in this fashion, the procedure produced a set of relatively diverse and 
representative copolymer candidates that fairly considers “outliers.” 
Third, in cases where DBSCAN produced more than 24 candidates (this 
always occurred), precisely 24 candidates were proposed by application 
of k-Means clustering. Again, representative candidates were chosen 
based on proximity to the cluster centroid. If a cluster consisted of 
only two points, then the candidate with the higher REA was used. A 
different downsampling procedure was used in the exploit round, 
since diversity was no longer a priority for selection. Specifically, after 
producing the 200 polymer designs with BO, candidates were ranked by 
their REA in descending order and iteratively chosen for the final set of 
24 candidates, provided they had compositions that were unique (within 
synthetic precision) from any copolymers that constituted the growing 
list at that point.

Handling Polymer Gelation: Upon construction of the seed dataset 
and throughout the active learning, a handful of copolymers were found 
to seemingly undergo gelation. While gelling copolymers recorded 
nonzero REA values, they were excluded from the dataset used to 
train the GPR models from iteration 1 onward due to the potential 
uncontrolled differences in copolymer–enzyme interaction environments 
that could obfuscate model training. However, the penalty function was 
used during the active learning procedure to avoid suggesting polymer 
candidates proximate to gelling copolymers across discovery campaigns 
across all three enzymes up to that iteration. While this strategy 
limited the number of gelled copolymers per iteration per enzyme to 
an average of six copolymers in the first two rounds of active learning, 
it ultimately proved ineffective for GOx as hydrophobic monomers 
were found to be effective for GOx stabilization but increased polymer 
gelation (Figure  S11, Supporting Information). To combat this issue, a 
classifier that leveraged knowledge of prior polymer gelation across all 
enzymes and iterations up to that point was designed and integrated 
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in the active learning scheme. The use of the classifier was limited to 
and ultimately facilitated the discovery of primarily soluble copolymers 
for iterations 4 and 5 of active learning for GOx. Further discussion 
on the development and integration of the classifier into the active 
learning scheme is supplied in the Supporting Information (Table S5, 
Figures S11 and S12, Supporting Information).

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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