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ABSTRACT: The development of novel biomaterials is a challenging
process, complicated by a design space with high dimensionality.
Requirements for performance in the complex biological environment
lead to difficult a priori rational design choices and time-consuming
empirical trial-and-error experimentation. Modern data science
practices, especially artificial intelligence (AI)/machine learning
(ML), offer the promise to help accelerate the identification and
testing of next-generation biomaterials. However, it can be a daunting
task for biomaterial scientists unfamiliar with modern ML techniques
to begin incorporating these useful tools into their development pipeline. This Perspective lays the foundation for a basic
understanding of ML while providing a step-by-step guide to new users on how to begin implementing these techniques. A tutorial
Python script has been developed walking users through the application of an ML pipeline using data from a real biomaterial design
challenge based on group’s research. This tutorial provides an opportunity for readers to see and experiment with ML and its syntax
in Python. The Google Colab notebook can be easily accessed and copied from the following URL: www.gormleylab.com/MLcolab
KEYWORDS: Biomaterials, Machine Learning, High throughput, Tutorial, Education and training

1. INTRODUCTION
Biomaterials development is a challenging enterprise�not only
does the material need to be engineered to achieve the desired
functionality, but it also needs to safely interface with the
complex environment of human physiology. This is especially
true as the field moves toward the development of “smart” or
personalized biomaterials. As such, the traditional empirical
approach to biomaterial product development including rational
design based on prior knowledge/intuition followed by iterative,
trial-and-error testing and redesign leads to a long development
cycle for biomaterial innovation.1

In recent decades, the field of data science has received an
explosion of interest as a means for efficiently and effectively
drawing conclusions from large amounts of data. This has been
partially stimulated by the continued development of computa-
tionally efficient artificial intelligence (AI)/machine learning
(ML) tools. AI andML are often used interchangeably sinceML
is a subset of the broader category of AI. In this tutorial, we will
refer to ML which is the use of algorithms that allow computer
programs to iterate and evolve to accomplish certain tasks
without being explicitly programmed. This is similar to how
humans learn via observation and trial/error, but on an
accelerated scale. The use of ML tools is particularly useful
when data sets are too large, complex, and/or time-consuming
to be practically understood by humans.2 While ML has seen
great success in computer science (computer vision, natural
language processing, etc.) it is being increasingly adopted in
other STEM fields, particularly in the fields of biology/
bioinformatics3 and chemistry/materials science.4

While the implementation of ML in biomaterials develop-
ment has been relatively limited, there are several examples in
the literature, which have been extensively covered by a number
of excellent reviews.1,5−7 Here, we briefly highlight several
studies we believe demonstrate the breadth of ML usage in
biomaterials. Our group has recently demonstrated the use of
ML techniques to accelerate the development of novel polymer-
protein hybrids capable of allowing proteins to maintain activity
in harsh environments.8,9 For other polymeric materials, ML
methods have been developed to predict whether peptide-
functionalized building blocks could form hydrogels,10 to model
the adhesion of cells and proteins on engineered surfaces,11,12 to
classify the immunomodulatory behavior of synthetic copoly-
mers,13 or to predict the physicochemical properties of
polyurethanes.14 ML models have also been developed for
inorganic biomaterials, including models to optimize the
mechanical properties of metal alloys for biomedical im-
plants15−17 and predict fracture behavior in ceramic materials.18

Additionally, ML techniques have been utilized for the
development of nanomaterials, including the prediction of
nanoparticle fate in vivo,19 the formation of the protein corona,20

and immunomodulatory activity.21
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The success of these studies in utilizing ML techniques to
facilitate and/or accelerate biomaterials innovation highlights
how transformative the adoption of ML can be in the
biomaterials field. The combinatorial complexity of most
biomaterials means that material properties exhibit high
dimensionality and thus rational design is a challenging and
time-consuming process. To mitigate this, high-throughput
combinatorial synthesis techniques have been developed to
screen libraries of materials and thus generate data more
rapidly,22,23 while enhancements in molecular modeling
techniques enable generation of predicted properties and
functions. ML is an efficient method of digesting large and
complex data sets to extract patterns, identify key drivers of
functionality, and make predictions on the behavior of future
iterations.24 ML algorithms are also helpful as a means of
generating predictions from theoretical data (i.e., molecular
dynamic simulations) in an effort to guide the synthesis and
experimentation of materials in a more cost- and time-efficient
manner.

We believe that the future of biomaterials development
resides in the use of a Design-Build-Test-Learn paradigm, in
which high-throughput material synthesis and characterization
is paired with ML to accelerate the data-driven design of novel
biomaterials with advanced functionality (Figure 1). Therefore,
the goal of this tutorial is to provide an introductory “how-to”
guide on using ML algorithms for biomaterial design, with the
hope that this provides a solid foundation for other scientists to
begin adapting and utilizing these tools for their own work. ML
can be initially intimidating, so we hope to provide the
community a concise, easy-to-understand introduction to the
vocabulary and topics. In Section 2, we cover some general
considerations for the collection of data necessary for training
and evaluating ML models. In Section 3, we provide an
introductory overview of ML implementation, focusing on the
process of setup, implementation, validation, and analysis.
Finally, in Section 4, we provide a hands-on tutorial utilizing data

from our lab to demonstrate how the topics covered are used in
practice. All of the code, along with the example data set, can be
found at www.gormleylab.com/MLcolab.

2. DATA COLLECTION
The first step in any study which seeks to use ML algorithms to
model or predict material properties or functionality is the
curation of data. In this section, we briefly cover considerations
for data compilation/collection, quantity, mined vs. collected,
and processing.
2.1. How Much Data Do I Need?
A common concern among researchers interested in pursuing
ML-based studies is the large quantities of data that are
seemingly needed to develop robust, accuratemodels.While this
is certainly true for some algorithms and applications, successful
implementation of ML can be done with much smaller data sets.
For example, previous modeling studies have shown that ML
processes can be successfully used on data sets including as small
as 50 to several hundred polymers.25,26 A recent publication
utilizingML to design random copolymers for RNA transfection
demonstrated successful model development with an initial
library of 43 polymers.27 Other work has shown that data sets on
the order of ∼100 observations had comparable predictive
capacity to larger libraries of ∼1000 observations, demonstrating
the diminishing returns that can be observed with large data
sets.21 In general, the choice of which ML algorithm to use is
heavily influenced by data quantity where some high-performing
models work well with smaller data sets. The choice of model as
it pertains to the size of the data will be discussed more in
Section 3.

There are other techniques and strategies which have been
developed to facilitate effective modeling from sparse data. For
example, one-shot learning, originally designed for computer
vision problems,28 has been demonstrated with small training
data sets in the area of drug screening and could be useful for
biomaterial-based projects.29 In one-shot learning approaches,

Figure 1. Schematic of an example Design-Build-Test-Learn paradigm for biomaterials development. Materials are initially designed with certain
chemical and physical properties based on either rational design or a comprehensive survey of material features. Materials are then built and tested for
desirable characteristics, ideally through high-throughput laboratory automation. This data, alongside design parameters, are then fed into a machine
learning (ML) pipeline, where key patterns are extracted to create predictive models. These models can then be used to help design new material
generations with targeted functionality. This figure was created with BioRender.
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model learning is accelerated by adding encoded chemical or
physical properties which can then be used to inform similarity
between known materials and new materials of interest. By
including such similarity metrics, one-shot learning has been
shown to be an effective method of informing models about
complex behavior of molecules in which much larger data sets
would normally be required to achieve.30 Similarly, transfer
learning (utilizing previously trained models as a starting point
for a new task), latin hypercube sampling (a statistical method
for generating random numbers that more closely represent the
full distribution of existing data), or Bayesian inference
(statistical technique in which a priori knowledge can be used
to supplement data, allowing the development of models with
minimal training data) are also strategies that can be used in
cases where training data sets are small in order to improve
model performance.

One ML paradigm that could be particularly relevant to
biomaterials development is active learning. In active learning,
ensemble or statistical ML methods return uncertainty values
alongside predictions to map parameter spaces with high
uncertainty. This information, along with techniques like
Bayesian optimization, can then be used to help initialize new
experiments with small, focused data sets that target regions of
feature space that would be most fruitful for exploration.31 This
explore vs exploit approach to active learning provides a
balanced approach to simultaneously exploit known informa-
tion, while exploring new feature spaces with high uncertainty.
Our research group has utilized this strategy for the design of
polymer−protein hybrids and demonstrated the superior
efficiency and efficacy of ML-directed active learning data
collection compared to large library screens.9

2.2. Mined vs Collected Data

Another consideration is whether to use mined or collected data.
Mining refers to the practice of curating data by pulling
information from previously published/developed studies,
typically in the form of an Internet database. Generating data
in-house allows precise control over the conditions under which
materials are built and tested and is necessary for evaluating
completely novel materials. However, mined data from
databases is much more cost and time effective if good
repositories are available. The use of mined data is common in
fields where the presence of curated, large data sets are publicly
available�this is especially true in the bioinformatics fields,
where big data−omics studies are routinely available for others
to access. Unfortunately, this kind of curation is rare in the
biomaterials space; while comprehensive high-throughput
combinatorial biomaterial studies have been undertaken over
the past three decades, there does not exist a centralized
repository for this data nor consistent methodology for its
collection and representation.

There is recent emphasis on the use of data science in
combination with high-throughput modular studies for
biomaterialomics.1 However, it is likely that the fruits of these
initiatives will not be readily available in the near future. While
limited relative to other areas of research, comprehensive
material databases do exist such as AFLOW library, ICSD, Open
Quantum Database, Materials Projects, and Citrine Informatic.6

Clinical trial data, some of which comes from studies of
biomaterial implants, can also be sourced from several different
areas, such as Vivli or YODA, to provide data for ML-driven
analysis. Polymer Genome is a web-based ML pipeline for
predicting polymer properties, which could be useful for

researchers looking to quickly and efficiently generate in silico
polymer data sets.32 Additionally, work focused on using text
mining tools to extract information from published biomaterial
studies offers an exciting opportunity for curating data sets for
machine learning moving forward.33

If you are investigating a problem or area in which existing
data sets might prove useful, it is important to keep in mind that
data preprocessing techniques to clean and validate the data are
especially critical. Investigation of the data set prior to training
should include identifying and addressingmissing or NaN (not a
number) values as well eliminating observations which include
spurious or obviously incorrect data. High level data set
investigation methods, such as .describe() and .info() in Python,
can be helpful tools for identifying outliers. An example of this
kind of validation and cleaning is included in the accompanying
tutorial (Section 4). It is good practice during preprocessing to
maintain detailed records of everymodification that was made to
the original data set, which helps to ensure reproducibility for
studies using ML.34 Keep in mind, a major downside of using
literature data is conditions for experimentation in biomaterials
research are not standardized, and thus pooling observations
across multiple studies can add unaccounted for variation into
the data set which can obscure key signals within the data.6

2.3. Biomaterial Synthesis and Characterization

For most biomaterial researchers, the data used for ML will be
collected in-house. Seed data experiments for initial model
training benefit from the Design of Experiments (DOE)
approach, which provides a framework for sampling independ-
ent variables from a range of possible options to maximize the
information learned.35 Starting with a DOE-inspired pilot
material set can help facilitate successful ML implementation
with smaller data sets.

It is important to consider how the throughput and scale of
synthesis and characterization will impact a planned design
campaign. High-throughput material synthesis is one area which
has seen considerable growth in recent decades, and thus several
well-established techniques exist for generating high quality
biomaterial libraries for screening. There have been several
excellent reviews with extensive coverage on different
experimental techniques for both synthesis and character-
ization.22,23,36 Here, we only provide a brief overview of various
techniques.

For the high-throughput synthesis of polymeric materials,
photoinduced free radical polymerization of polymeric micro-
arrays has been extensively used to generate large combinatorial
libraries.37,38 Oxygen-tolerant living polymerization techniques,
such as Enz-RAFT and PET-RAFT, are recent improvements in
this area which enable the synthesis of well-controlled polymer
architectures in well-plate formats that are ideally suited for
high-throughput synthesis and ML investigation.39−46 For
nano/microparticle development, layer-by-layer processes
offer an ability to easily synthesize combinatorial libraries of
particles with different characteristics based on the core/coating
combinations used during synthesis.47 Combinatorial libraries
of hydrogels can be synthesized in which material properties are
varied through the use of 3Dmolds,48 or chemical properties can
be varied through covalent modification of components such as
alginate.49 The introduction of gradients into a continuous
material is another efficient means of screening material
properties, and synthesis methods that allow for variations in
stiffness,50 topography,51 and biochemical properties52−55 have
been developed.
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After the materials of interest have been synthesized, their
properties and functionality must then be characterized to build
the data set for model training. Techniques for measuring the
mechanical properties of biomaterials in a fashion suitable to
high-throughput processing have been previously developed,
such as spherical nanoindentation.56 For polymeric materials,
experimental methods such as small-angle X-ray scattering
(SAXS) or dynamic light scattering (DLS) are available in high-
throughput for characterizing libraries.57 Biocompatibility
studies for cytotoxicity, immunogenicity, and blood compati-
bility can also be included in a high-throughput experimental
pipeline. This can include data on the gene expression profile of
cells cultured with different biomaterials.58 High-content
imaging (HCI) is a microscopy technique for monitoring cell-
material interactions in a high-throughput manner, allowing the
rapid testing of materials.59 Microfluidic devices can be used to
monitor the response of cell-material interactions on things like
chemical gradients,60 mechanical stress,61 or in environments
which more closely mimic in vivo conditions.62 Finally, the
process of barcoding materials using DNA-labels can be used to
label materials for tracking in complex/pooled environments,63

while barcoded heterogeneous cell mixtures can be used to
generate large data sets regarding material-biology interactions
with fewer materials but larger libraries of cell types/lineages.64

Computational simulations can also be used to characterize
materials and generate features for ML algorithms in a high-
throughput, time-efficient manner. Several techniques for the
theoretical modeling of polymers exist which can be leveraged
for data collection.65 The development of coarse-grainedmodels
used in conjunction with techniques such as Monte Carlo or
Molecular Dynamics simulations allows for the efficient

theoretical analysis of complex materials at spatiotemporal
scales inaccessible by traditional atomistic computational
processes.66,67 Some examples of computationally focused
biomaterial studies include the design of injectable biomaterial
scaffolds,68 the characterization of bulk mechanical and surface
properties of common polymeric materials,69 and the analysis of
pH-responsive protein adsorption to polymeric hydrogels.70

Additionally, a computational framework known as cellular
automata can be used to model phenomenon such as material
degradation and drug release.71

Nonexperimental data, such as material/polymer composi-
tion, can be used as inputs for ML algorithms. Polymeric
descriptors taken from existing databases or other software can
be used to generate additional features that do not necessitate
experimental determination.5 Additionally, techniques such as
composition-based feature vectors (CBFV),72 in which
categorical values of materials, such as element/monomer
composition, are encoded in a manner that facilitates ML-usage.
One-hot encoding, a method of converting categorical data into
numerical values that do not carry inherent ordinal assumptions,
is another common method for converting chemical composi-
tions into features that perform well in ML algorithms. Further
discussion of feature encoding and data representation is
included in Section 3.3.

Finally, it can be helpful to consider the final presentation of
data prior to collection, as this can save time in the future. All
data collected for ML-based biomaterials work should be
deposited into an online repository. Often, universities have data
storage infrastructure in place already�in our group’s recently
published work,9 the data was uploaded to a Princeton
University repository.73 This ensures transparency and

Figure 2. (A) Two-dimensional data set, split into training (blue) and test (orange) subsets, with the modeled function (dashed line) shown. In the
case of model underfitting (left), the modeled function does a poor job capturing the variance of the underlying data, leading to high errors for both
subsets. Model overfitting (right) leads to a function that perfectly fits the underlying training set profile, leading to low training set error but high test
set error. A properly fit function (middle), appropriately captures the underlying pattern in the data and is equally generalizable to new data in the test
set. (B) Bias/variance trade off showing loss function error for both the training set (blue) and test set (orange) as a function of model complexity. A
model with low complexity has high bias and does not accurately capture data patterns, leading to an underfit model. As the complexity increases, loss
function error decreases for both training and test data sets. Eventually, a point is reached where the model begins to overfit the training data, leading to
a rise in test set error and an increase in model variance. (C) Example of 5-fold cross validation, where data set is split in five bins containing equal
proportions of data and training/validation is completed five times, using different subsets for training (blue) and test (orange) data. Loss can then be
compared across all five iterations to get an average loss for the entire data set.
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reproducibility for the published work, while also serving as a
means for future researchers to potentially mine and utilize this
data for other data science-focused investigations. When
compiling these data stores, FAIR (findable, accessible,
interoperable, and reusable) guidelines should be followed.74

3. ML FOR BIOMATERIALS DEVELOPMENT
After data has been collected and curated, the next step is to
select and use a ML algorithm. Before discussing the specific
types of ML models as well as the steps necessary to effectively
utilize that model, we first start with definitions and a general
overview of the ML process. An alphabetized list of these
definitions, plus others, is included in the Supporting
Information. Two types of ML are most commonly used in
the biological/material fields; supervised learning, where the
data used to train the program contains labels that the program
uses to judge performance and to predict on new data; and
unsupervised learning, where unlabeled data is used and the
task is to find patterns/groups within new data sets so that the
data can be clustered or simplified via dimensionality reduction.
Of these, supervised learning tasks are the most commonly used
in biomaterials research, as labels/objectives are typically known
for an initial data set. Supervised learning can be further
subdivided based on the kind of labels that the program seeks to
predict. If these labels are defined classes (i.e., yes/no cell
adhesion, pro/anti-inflammatory, etc.), then the task is
classification and the algorithm is known as a classifier. If the
labels take the form of a continuous variable (i.e., degree of
cytotoxicity, % cell adhesion, etc.), then the task is regression
and the algorithm is known as a regressor. Often the same ML
models can be used for both classification and regression, with
only minor changes to their implementation. Features are the
predictive data that are fed into a ML algorithm, which the
program then uses to arrive at a prediction or grouping; these are
analogous to independent variables. Labels are the values or

classes that one seeks to predict for new data during supervised
learning; these are analogous to dependent variables.

During the process of ML, the program takes the feature
values and manipulates them in some way using preset
parameters. At the conclusion of one iteration, the program
thus has a predicted label (for supervised learning) or grouping/
pattern (for unsupervised learning). The quality of the output is
then assessed, typically through the use of a loss function, also
sometimes referred to as a cost function. There are numerous
kinds of loss functions that can be used, though common ones
are mean squared error for regressors and binary cross entropy
for classifiers. Based on the results of this loss function, the
algorithm proceeds through the training data set again, updating
the parameters to minimize the loss function (or error of the
model). This process repeats until the loss function has reached
a minimum. This is known as the training process. Hyper-
parameters are values that govern how the algorithm
accomplishes this goal; these values are chosen by the modeler
during model initiation and unchanged by the program during
the training process. Typically, a range of hyperparameter values
are sampled during modeling to tune or alter the performance of
a given algorithm for a given task.

Poor model performance can typically be classified into one of
two types: underfitting or overfitting (Figure 2A). When a
model is underfit, it does a poor job capturing the reasons for
variance within the data and thus the predicted labels or
groupings are often highly divergent from the actual values (i.e.,
large loss function). In comparison, an overfit model is one in
which the variations within the training data set are modeled too
well, to the point that noise within the data is treated as signal
and mapped efficiently. While overfit models perform very well
in regards to loss function minimization on the training data,
they are not generalizable and thus perform poorly when new
data is presented. There is typically a trade off in model
complexity as it relates to underfitting and overfitting. In general,
less complex models are more likely to underfit the data, while

Figure 3. General ML pipeline. The first step involves the conversion of material features and labels into tabular data where categorical data has been
encoded and numerical data has been scaled and normalized. In the second step, the model is trained such that the features are fed into the model and a
predicted label is compared to the actual label to generate a loss term. Training iterations focus onmodifying model parameters to minimize loss across
the training data set. Finally, the model is validated against a test data set and model hyperparameters can be systematically tuned to minimize test set
loss and find the optimal model design.
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more complex models can lead to overfitting. This is also known
as the bias-variance trade off (Figure 2B). Properly designed
models attempt to maximize the ability to capture complex
relationships within the data (low bias), while still maintain
generalizability to unseen data (low variance). The process of
validation/testing is done after training in order to assess the
degree to which a model suffers from underfitting and
overfitting. A common technique for validation is known as
cross-validation (Figure 2C) and will be discussed further in
Section 3.5.

The general process for a ML pipeline is described below and
illustrated in Figure 3. For novice users, the first choice to be
made will be which programming language to use (Section 3.1).
After the specific type of ML algorithm is chosen (Section 3.2),
the data must then be processed to be machine interpretable
(Section 3.3). The model is then initiated and trained (Section
3.4). Validation is then used to assess model performance
(Section 3.5), and hyperparameters can be tuned to optimize
model behavior (Section 3.6). Often ensemble methods are
used to generate more robust models as well as to estimate
model uncertainty (Section 3.7). Finally, the model can be used
to generate predictions on new data, or analyzed to provide
insight into the fundamental mechanisms behind the modeled
process (Section 3.8).

Finally, a number of other excellent tutorials/perspectives
have been written regarding the implementation of ML in
biology2 and materials science,34 which we highly recommend
readers use for additional reference.
3.1. Programming ML Models

At their core, all ML models are mathematical algorithms
attempting to replicate functions that describe the underlying
data. As such,MLmodels can be built in most modern computer
languages. However, the explosion inML interest in recent years
has led to the development of prebuilt libraries for running ML
in a number of common programming languages. These include
scikit-learn,75 Keras,76 and PyTorch77 in Python, as well as
caret78 in R and MLJ79 in Julia. These libraries greatly simplify
the implementation of ML by providing prebuilt functions for
training, validation, and analysis of many ML algorithms. For
those just getting started, we highly recommend the use of scikit-
learn and Keras within Python. Python is one of the more
common and generalizable programming languages in use
today, and numerous free online tutorials exist to help with
getting started. Scikit-learn and Keras are popular ML toolkit
libraries with excellent documentation and resources. Open-
source cloud computing services like Google Colab, which runs
natively on Python, are excellent for programming, running, and
sharing small ML models, and is another reason to consider
using Python. The tutorial section of this paper (Section 4) will

Figure 4. (A) K-nearest neighbors (KNN) classifier with unlabeled data point (gray) assigned a label (blue or orange) based on voting by the k = 4
closest labeled data points in feature space. (B) Two-dimensional support vector machine (SVM) classifier where optimal hyperplane separating
classes is chosen by maximizing the size of the margin (gray box) based on support vector data points. (C) Hypothetical decision tree used to classify
gene expression profiles based on hydrogel characteristics. Features are used as decision points at each node (blue), and observations are sorted into
child nodes based on feature values. Eventually, leafs (orange) are reached which contain no further subdivisions, and labels are assigned based on leaf
composition. (D) Artificial neural network consisting of an input layer, two hidden layers, and an output layer. Features (F1−F3) are fed into the input
layer, where they are subsequently sent to hidden layers for dot-product summation (Σ) and activation function processing ( f). This process repeats
until the final predicted label is calculated in the output layer.
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utilize the scikit-learn package within Google Colab. A wide
variety of online tools exist to facilitate learning both Python in
general and ML specifically. Our group has utilized DataCamp
(www.datacamp.com) and highly recommends it, though other
free/open-source resources also exist, including LearnPython
(www.learnpython.org) and CodeCademy (www.codecademy.
com), among others. Online course repositories such as Udemy
(www.udemy.com) and Coursera (www.coursera.org) also have
units on Python and ML.
3.2. ML Algorithms

Several differentML algorithms exist whose choice depends on a
number of considerations such as the type of task to be
performed, the type of data to be used, the size of the training set,
computational cost, etc. All models have an inductive bias that
favors them toward certain types of solutions based on either the
mathematical techniques used or the type of loss function that is
optimized. As such it is important to consider how the
characteristics of the data/experimentation matches the under-
lying mathematical process of the model used, known as
inductive bias.2 In this section, we will briefly summarize a few of
the more popular algorithms in use, which will hopefully provide
a good foundation for choosing how to build your first model.
However, the best course of action is to search the literature for
previous models which try to address a similar problem or
complete a similar task and use that as a starting point. It is also
recommended that different classes of algorithms be used to
develop models for the same task with the same training data,
such that the results can be compared to allow for selection of
the most appropriate/best performing model.
Dimensionality Reduction is an unsupervised learning task

that can be accomplished by several different algorithms, most
notably principal component analysis (PCA). PCA clusters data
by reducing the number of features/dimensions taken into
account while maintaining the relationships between data points
as much as possible.2 Ideally, this involves a reduction to either
two or three dimensions such that the clustering of data can be
visualized more readily. Dimensionality reduction algorithms
can be used on data with both linear and nonlinear relationships
and can be a helpful step to engineer features prior to the
introduction of other supervised ML models. Other algorithms
for dimensionality reduction include t-distributed stochastic
neighbor embedding (t-SNE),80 uniform manifold approxima-
tion and projection (UMAP),81 and diffusion maps.82

Logistic Regression is a simple, linear algorithm which
performs well for binary classification tasks, in which the
coefficients of a linear combination of features are optimized to
predict the probability of a certain event (or label) occurring.83

Linear Regression models can also be developed using ML
processes for regression-based tasks. In practice, most linear
regression models developed using ML strategies implement a
regularization process in which overfitting is minimized through
the restriction of the values of coefficients optimized during
training. Common regularization strategies include Ridge
Regression,84 which is useful when features are highly
correlated, and Lasso Regression,85 which acts to reduce or
remove the effect of features which have lower predictive power.
These techniques, while simple, are quick and powerful tools for
modeling linear relationships, and are frequently good starting
points for initial model development.
K-Nearest Neighbors (KNN) is a simple, robust supervised

learning algorithm well-suited for classification problems, in
which the identity of new, unknown observations is established

via the distance in the feature space from labeled data (Figure
4A).86 The hyperparameter k dictates the number of closest data
points which contribute to the prediction of the new observation
and can be varied to optimize model performance. While
primarily used for classification tasks, KNN can be used for
regression tasks, in which the assigned label is the weighted
average of the labels of the closest neighbors.
Support Vector Machines (SVM) are a class of algorithms

which are some of the more robust and heavily used within the
ML field.87 These models derive a mathematical equation,
known as a hyperplane, that is used to separate clusters of data by
focusing on observations that are closest to the decision barrier
between classes (the support vectors) (Figure 4B). While this is
inherently a linear-process, SVM uses a mathematical trans-
formation to the data, known as a kernel function, to add
additional dimensions, transforming nonlinear problems into
linear problems which are easier to solve. Different kernel
functions exist which allow for the ability to tailor SVMs to
different kinds of nonlinear data. A good practice is to train both
linear and nonlinear SVM models (a good option for initial
nonlinear models is the radial basis function kernel) in order to
quickly ascertain if the use of a nonlinear model will be
beneficial. While SVMs have been traditionally used for
classification problems, they can also be implemented for
regression tasks where the optimal hyperplane is chosen to
maximize data point inclusion and thus used as a line of best fit.
SVMmodels are robust and highly customizable due to nature of
kernel-function based implementation, in which different kernel
functions can be used based on the nature of the data/task.
Additionally, SVMworks well with smaller training data sets and
when there are a large number of features, which makes it an
excellent choice for certain ML tasks. However, the computa-
tional complexity of these algorithms limits their suitability for
larger data sets, and SVM models do not perform as well when
the data set contains overlapping classes or imbalanced data.
Gaussian Process Model (GPM) is a type of supervised

learning algorithm in which the optimal predicted function
describing the data is modeled as a distribution of a number of
possible functions that could all fit the data.88 Gaussian process
models can be used for both regression and classification tasks,
though it is typically used for regression and are typically known
as Gaussian process regressor or GPRs. These models make use
of Bayesian statistics as a means of estimating uncertainty, and
kernel functions are specified by the user as a means of
establishing a priori that are then updated using the training data.
A major advantage of GPMs is the inclusion of uncertainty/
variance within every predicted value, which can be very helpful
in terms of interpreting model outputs and identifying regions of
the feature space where the model does not perform as well.
However, these models are computationally expensive and thus
perform best with smaller data sets.
Decision Trees, of which the most common versions are

known as classification and regression trees (CARTs), are very
popular supervised ML algorithms useful for a wide variety of
tasks and data types.89 These algorithms utilize a sequence of if/
else questions about features in order to assign a label. Trees are
made up of nodes, at which point a certain feature is
interrogated; that feature of an observation is compared to a
set value, and the observation is thus sorted into one of two paths
to subsequent child nodes. This process repeats until a final
decision node, known as a leaf, is reached (Figure 4C). During
the training process, the nodes of a tree are grown recursively
and the choice of feature/set value at each node is varied to

ACS Polymers Au pubs.acs.org/polymerau Perspective

https://doi.org/10.1021/acspolymersau.2c00037
ACS Polym. Au 2023, 3, 141−157

147

http://www.datacamp.com
http://www.learnpython.org
http://www.codecademy.com
http://www.codecademy.com
http://www.udemy.com
http://www.coursera.org
pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.2c00037?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


maximize the information gain at each decision point. The
decision tree as a whole is optimized in order to maximize the
homogeneity of labels, known as purity, of the leaves. Leaf purity
can be assessed via various computational processes such as the
gini-index90 or mean-squared error. For classification tasks, the
label assigned to a new observation is simply the label that is
most prevalent in the leaf node, while regression tasks assign the
average value of the observations within the leaf. Decision trees
have a number of benefits that make them well suited for a
variety of ML tasks: they are able to capture nonlinear
relationships, they do not require features to be on the same
scale, they are easy to understand and interpret, and they are
capable of creating multiple rectangular decision regions within
a parameter space. However, models built from decision trees
are very sensitive to the training set data and are thus easily
overfit, and the values they output for regression tasks are
discontinuous. As such, ensemble methods such as Random
Forests or Gradient Boosted Trees are almost always
implemented�these will be discussed in Section 3.7.

The final ML algorithm to be summarized here are Artificial
Neural Networks (ANNs), often referred to as deep learning
techniques. These models can be used for both classification and
regression problems and have revolutionized the use of ML for
certain tasks, particularly those with large data sets or where
features are highly structured, as with images, text, or video.2

ANNs are built from a number of nodes situated in layers where
information from previous layers are fed into nodes of
subsequent layers, processed, and then passed along (Figure
4D). Features from an observation start in the input layer, are
modified during passages through hidden layers, and then
emerge as a predicted label in the output layer. This architecture
enables the model to take into account how features within an
observation are related or correlated, with patterns within the
data built into the hidden layers during the training process.
Typically, the values of subsequent layers are generated by
taking the dot-product of connections from nodes in the
previous layer, followed by modulation via the use of an
activation function, which serves to impart nonlinearity to the
algorithm. The choice of activation function is one area in which
models can be optimized or modulated for different tasks; some
common activation functions include tanh, recitified linear
activation (ReLu), and softmax, with the development of new
activation functions an area of active research.91 The training
process involves the generation of a predicted label based on
initial random weightings within the network (forward
propagation), the calculation of the loss function in relation to
the actual labels, and then the updating of the weights based on a
technique to find the loss function minimum known as gradient
descent (backpropagation). This process occurs iteratively
across the training set until the loss function has been
minimized.

ANNs are especially powerful ML algorithms because they
enable representation learning, in which case internal
components of the model are built to represent patterns
observed within the data. This minimizes the need for feature
engineering or a priori intuition about patterns within the data
set. For example, autoencoders are a type of ANN used for
unsupervised learning tasks, which works by creating a
compressed representation of the initial data (encoding) into
what is known as a latent space representation; this can later be
“extracted” to the original form (decoding).92 ANNs have other
benefits, including the ability to capture complicated relation-
ships between features, the ability to handle a wide variety of

data types (text, image, video, audio), and the ability to have
asymmetric feature presentation within observations. However,
ANNs traditionally require very large training data sets, which
mitigates their usage in certain areas, and it can be challenging to
natively interrogate feature importance or model logic, making
most ANNs a “black-box” model. However, improving upon
these limitations is an area of active research, and it is likely that
new techniques to mitigate these concerns will soon be
prevalent. Deep neural network implementation is not included
in the Python package scikit-learn, but must be used with other
libraries such as Keras or PyTorch.

There are several variations of neural networks that are worth
mentioning. The standard ANN described above is also known
as a multilayer perceptron. When multiple hidden layers are
included within the model, this is called deep learning. One
variation is Convolutional Neural Networks (CNNs), which
are models best suited for image-based data, where data
possesses a local structure and recognition of that structure is
the task.93 CNNs utilize single-layer convolutional layers, which
apply a “filter” to local groups of input features (i.e., smaller
regions of an image). The filter is then passed across every region
of the data to produce the output, and these convolutional layers
begin to learn the local structure of the input data. A related
variation are Graph Convolutional Neural Networks, which
utilize a similar process but are best suited for data in which
observations are connected by specific relationships or
interactions.94 In this case, interactions between observations
are graphed as edges and nodes, and the structure of this graph
guides the flow of information through the neural network.
Finally, Recurrent Neural Networks (RNNs) are another
variation that is best suited for data in which a direct connection
exists between subsequent observations in an ordered sequence
(i.e., time- or order-dependent data).95 In this instance, the
output of one observation is passed back into the network as an
additional variable, known as the internal state update, to be
used during the prediction of subsequent data points.
3.3. Data Processing

Most data sets, whether mined or generated in-house, need to be
preprocessed before model training. For simple categorical data,
techniques such as one-hot encoding can be used to make class
labels machine-interpretable. However, it can be much more
challenging to represent complex biomaterials and it is critical to
consider how features and data should be represented before
starting a new project. Doing so ensures that past, present, and
future data can be equally used to continuously evolve models as
new knowledge is gained. This is perhaps the most challenging
aspect of using ML for biomaterials science. For example, how
does one quantitatively represent a peptide-functionalized
hydrogel that mimics a stem cell niche? Proteins, peptides,
and nucleic acids are conveniently represented by the primary
sequence making them attractive candidates for data-directed
design. Further inspiration can be found in the small molecule
community which routinely uses “Simplified Molecular Input
Line Entry System” (SMILES) string notations that encode
chemical structure thus providing a machine-interpretable
format for representing molecules. BigSMILES is a modification
on this technique for polymeric materials which uses normal
SMILES syntax to represent polymeric fragments by a list of
repeating units.96 Composition-based feature vectors is another
technique for converting material structure and properties into a
machine-interpretable form.72 The Webb group at Princeton
also published a comprehensive study of different polymer

ACS Polymers Au pubs.acs.org/polymerau Perspective

https://doi.org/10.1021/acspolymersau.2c00037
ACS Polym. Au 2023, 3, 141−157

148

pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.2c00037?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


featurization techniques which can prove useful for biomaterial
modeling.97

Quantitative, continuous variable data also needs to be
manipulated for featurization. One common practice is the
scaling of data, particularly when certain features have values
which fall in drastically different ranges. Most ML algorithms
take the distance between values in a feature as an important
signal, and one feature containing values with a range of 0−3 will
be treated drastically differently from a feature containing values
with a range of 10 000−1 000 000. There are several different
techniques for scaling features, including converting data to have
a mean of 0 and variance of 1, or a minimum 0 and maximum of
1�the specific choice of scaling process will likely depend on
the data/task. Regardless of which scaling strategy you choose,
keep in mind that the values used for feature scaling (i.e., mean
and standard deviation) must only come from the training data
set in order to ensure that successful predictions are robust.34

Normalization of data can also be helpful for regressions tasks�
in all cases, scaling should be done first, followed by
normalization.34

Data augmentation is a preprocessing strategy that can be
used to alter and enhance the training data set and thus improve
the robustness of the subsequent model. This is especially
common with the use of image-based data sets and convolu-
tional neural networks: the addition of common image
transformations such as rotation, zoom, and reflection to the
training data set can be helpful in improvingmodel performance.
Augmentation can be used to improve training with other kinds
of data sets as well−for example, libraries have been created to
assist in the augmentation of chemical structure data sets for use
with graphical neural networks.98

Class imbalance is another example of an issue with data that
can benefit from preprocessing. Imbalanced data is where more
data exists for certain labels than others, which can hinder the
ability for the model to correctly predict the minority label. In
this instance, researchers can use resampling techniques to
overcome class imbalance problems. These techniques include
random oversampling, which simply involves resampling in-class
data, or more complex strategies like adaptive synthetic sampling
and synthetic minority oversampling, which create new
synthetic data points based on linear combinations of in-class
existing data.10 The dimensionality reduction techniques t-SNE
and UMAP can be used for visualizing high-dimensionality data
in ways that allows researchers to more easily identify class
imbalance or clustering issues prior to starting ML analysis.
3.4. Model Initiation and Training

The first step after data processing and before model training is
the establishment of training and test data subsets. Because all
ML models are built based on the training data given to them, it
is critical that models are evaluated and validated based on data
that was not available during training. Often, this involves the
fractionation of the data set into randomly distributed train and
test subsets, with some predefined proportion of the data
assigned to each group. Both scikit-learn and Keras have prebuilt
methods for accomplishing this task (train_test_split and
validation_split, respectively). It is important to make sure
that not only is the data split done randomly, but that the data is
properly stratified (i.e., average and standard deviation are same
between subsets and class representation is roughly equiv-
alent).5 This is also a point to be wary of data leakage, which is
where connections exist between data in the training set and test
set, such that validation overestimates the predictive capacity for

unrelated data.2 This is typically more relevant for biological
applications (ensuring no homologous proteins, data from same
patient, etc.) but is an important consideration for all studies to
ensure the developed model is as robust as possible.

After subsetting the data, the next step is to create and train
the model on the training data set. The development of ML
packages such as scikit-learn and Keras has drastically simplified
the initiation and training of models; in most instances, you
simply import the library containing the model you want,
instantiate the model, and then train the model using the .fit()
method. It is during these steps that the various hyperparameters
are established. It is important to keep in mind that models often
utilize the computers random number generator to produce
initial trainable parameters for the model (weights, etc.). Some
models can be sensitive to the initialization state, and thus it is
recommended to also assign a seed value to the RNG algorithm
during model initiation in order to ensure reproducibility.34

Sensitivity to initialization can then be assessed by comparing
model performance using different seed values.
3.5. Validation

At this point, you should have a model capable of making
predictions on unseen data. How good are these predictions?
The process of validation is done to assess model perform-
ance�observations with known labels are fed into the trained
model, and the validity of the predictions is established by
comparison to ground truth values. There are a number of
different metrics which are used to judge model performance.
For regression tasks, mean squared error (MSE) and r2 are
typically used to assess accuracy. For classification tasks, a few
different metrics exist, all of which provide slightly different
information on model performance. These metrics include
classification accuracy, log loss, receiver operating characteristic
(ROC) curves and the area under the curve (AUC), and F1
score.99

It is also important to highlight that there are two different
steps in the validation process. The first step involves
characterization of model performance during model develop-
ment, which subsequently allows for the tuning of model
hyperparameters as a means of improving performance. After
this process has been complete, a final testing phase on an
entirely new set of test data should be completed with the final,
optimized model, and then performance on this data set is what
should be reported. This paradigm necessitates two unique
testing subsets from the data, and thus has more stringent
requirements for the quantity of initial data. Another alternative
that is commonly used is the process of cross-validation on the
initial training data set. Cross-validation involves the fragmenta-
tion of the data set into a few groups, or folds (Figure 2C). The
model is then trained and validated on different subsets of the
folds, and the process is repeated until all of the data has been
used for validation. As an example, 5-fold cross validation
involves the fragmentation of the data into groups containing
20% of the original data set. The first iteration uses the first four
folds for training and the fifth fold for validation. The second
iteration uses the first, second, third, and fifth fold for training
and the fourth fold for validation, etc. At the completion of the
process, you thus have five different accuracy scores for the five
iterations with which to assess overall model performance.
Cross-validation is an excellent tool for minimizing model
overfitting and ensuring model generalizability, particularly
when using smaller data sets. Cross-validation can be easily
implemented using the cross_val_score method in scikit-learn.
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The use of cross-validation methods also allows for the
estimation of the bias/variance trade-off discussed previously. If
each individual validation score is lower than that overall cross-
validated score, the model likely suffers from high variance
where each individual training process leads to an overfit model.
In this instance, decreasing the complexity of the model can be
helpful. On the other hand, if the training and cross-validated
scores are similar but worse than the desired score, then the
model likely suffers from high bias and model complexity should
be increased to improve overall model performance.
3.6. Hyperparameter Tuning

Following the initial validation of a model to judge its
performance, the next step is likely the tuning of the model to
improve performance. This process is typically done through
modification to themodel hyperparameters and is thus known as
hyperparameter tuning. The choice of which hyperparameters to
vary and which to leave as default, as well as the extent of
variation, is a skill that is honed through practice, and we highly
recommend new users experiment with hyperparameter
modification extensively. One method for hyperparameter
tuning is known as the grid search method�in this technique,
a range of preset values for all hyperparameters are established
on a grid, and the model is subsequently trained and validated
using every combination. At the conclusion of the search, the
combination of hyperparameters giving the highest model
performance can be identified. This process can be automated
using the scikit-learn GridSearchCV class. This grid search
method is computationally expensive and can frequently offer
onlyminor improvements in model performance butmay still be
useful. Random search is a comparable technique which is
computationally less expensive but also less robust. Grid search
is limited in scope by the initial hyperparameter grid established,
and thus functions best when a relatively small number of
hyperparameters needs to be screened. In contrast, random
search is capable of sampling larger hyperparameter spaces due
to its lower computational cost, which increases the chances of
identifying promising hyperparameter regions at the expense of
overlooking optimal groupings. More complex hyperparameter
tuning methods, such as Bayesian optimization and genetic
algorithms, have been developed to address the inefficiencies of
grid/random search algorithms and can be excellent options for
certain applications/models.100

3.7. Ensemble Techniques

Ensembling refers to the process of creating multiple different
models and then combining their predictions together via some
form of weighted averaging to arrive at a single prediction.
Ensembling has several benefits, including the establishment of
more robust predictions which incorporate the complementary
strengths of different models, as well as the calculation of
uncertainty or variance within predictions. Ensembling can be
accomplished using a single type of ML algorithm, with different
models trained either with different data sets or different
hyperparameters, or it can involve the combination of multiple
different types of ML models. AutoML is a Python package
which automates the training of different classes of models on
the same data set, and it an excellent option for one wishing to
ensemble different algorithms. Similarly, VotingClassifier is a
method built into scikit-learn which ensembles various
classification models and outputs the best performer.

Decision trees in particular benefit from the use of ensemble
techniques, as a single decision tree is prone to overfitting and
only outputs discontinuous data. A common implementation of

decision trees is the use of a random forest model. Random
forests, as the name implies, involve an ensemble of numerous
different decision trees together in one model. Random forests
utilize a process known as bootstrap aggregation, or bagging, in
which individual decision trees are trained on a different random
subset of the training data set. Differences between trees are
further established by limiting which features can be
interrogated at each node, forcing individual trees to take new
paths through the data. The end result is a number of predictions
given for any new data, which can then be averaged (for
regression) or selected via majority voting (for classification) to
arrive at a single predicted label.

Another ensembling decision tree method are boosted tree
models, including adaptive boosting and gradient boosting
techniques. This process works by training numerous simple
decision trees in an iterative manner, with the results of one
decision tree being fed as an input into subsequent trees. For
adaptive boosting, incorrectly predicted observations are
weighted more heavily in subsequent iterations in order to
drive improvement, while gradient boosting involves the use of
residual prediction errors as a label in subsequent tree training.
The final predicted label is then assigned based on weighted
average or weighted voting from all predictors used. One form of
gradient boosted decision trees, known as XGBoost, has proven
to be an especially accurate ML model for a variety of different
tasks.101

3.8. Model Usage/Interpretation

After a ML model has been trained, tuned, and validated against
the final test data set, the final step involves actually using the
model. Often, this utility arises from the ability of the model to
predict values or classes from completely new data. These
predictions can then be used to help guide the design of new
materials or experiments in a time- and cost-effective manner.
Ideally, the results of the new experiments can then be compared
back to the original prediction to further validate the
effectiveness of the model.

Another important use for developed models is the inter-
rogation of the prediction process to understand the patterns or
insights gleaned by the ML algorithm. This interrogation serves
two purposes�it provides a useful check that allows users to
judge whether or not the model can be trusted, and it can be
used to gain a better understanding of the underlying structure−
function behavior the model is trying to simulate.102 Different
kinds of ML models offer different inherent capabilities for
understanding the mechanisms behind the prediction. For
example, the individual component weights of linear or logistic
regression models can be evaluated to conceptually grasp
relationship of different features to the prediction. For tree-
based models, feature importance can be extracted from the
trained models in scikit-learn to see what features were most
important in improving leaf purity. Saliency maps are used to
help identify which regions of data, like images, contribute most
to certain classifications, and can thus be a way to try to
understand the predictive behavior of neural networks.2

However, other models behave more as black-boxes, and
other tools are necessary to deconstruct those models and
provide a visual or textual description of feature importance.
Local interpretable model-agnostic explanations (LIME) is a
technique used to help explain predictions through the
development of an interpretable model which can recreate the
original model performance on small subsets of the data. LIME
works by making variations to features in a local (i.e., one
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observation) region and monitoring how these variations alter
the predicted output using a simple, interpretable model like
lasso regression or decision trees.103 A similar technique is
Shapely Additive Explanations (SHAP),104 an explanatory
model which assigns values to individual features in proportion
to the amount they contribute (both positively and negatively)
toward a given prediction in relation to the average prediction
across the whole data set. This technique is based on the concept
of Shapley values from game theory.103 In SHAP, Shapely values
are combined using a linear additive feature attribution method
and are thus a combination of Shapely values and LIME. The
SHAP process produces a plot of feature importance, as well as a
summary plot illustrating the Shapely value for each feature.
Observation/dependence plots are also generated to interpret
how different features interact with each other while influencing
model performance. SHAP has been used to interrogate
predictions of high performing polycationic delivery vehicles,27

to facilitate feature engineering for models of immunomodula-
tory osteoinductive biomaterials,105 and to conduct a sensitivity
analysis for models predicting the enzymatic activity of synthetic
nanomaterials.106 SHAP calculation can be implemented using
the Python package shap, works well with tree-based models in
scikit-learn, and is already implemented in several boosted-tree
frameworks.

4. HANDS-ON EXAMPLE IN GOOGLE COLAB
To provide readers with a hands-on demonstration of the
techniques and process described here, we have created an
example ML notebook for modeling a real biomaterial design
challenge. We hope this example provides insight into how
biomaterial-based problems support the need for ML-driven
experimentation and how that experimentation can be
successfully implemented. The scripts used to generate, train,
validate, and analyze the models are written in Python and
included in an open access Google Colaboratory (Colab)
notebook, which can be easily accessed using any Internet
browser and does not require the installation of any software.
This notebook can be accessed at www.gormleylab.com/
MLcolab. An introductory understanding of Python syntax
and the use of common data science libraries, including NumPy
and Pandas, is assumed though not necessary to get started. We
highly encourage interested readers to utilize this code as a
means of practicing the techniques we’ve discussed and
experiment on their own. After all, the best way to learn a new
technique is to practice using it yourself.

While we encourage readers to engage with the tutorial
through the interactive Google Colab notebook linked above, a
brief overview of the interactive tutorial is included here. This
work, including the data used,73 is based on published work by
our group to accelerate the development of novel polymer-
protein hybrids.9 The example focuses on a supervised learning
regression task in which the length and monomer composition
of complex heterocopolymers (features) are used to predict the
retained activity of polymer-enzyme complexes following
exposure to denaturing conditions (labels). In this tutorial we
will use a training data set consisting of an initial seed library of
copolymers complexed with the enzyme glucose oxidase to help
us design new polymer architectures with improved stabilization
performance.
4.1. Data Preprocessing

The first step is to import the data set into our working
environment within Python. The pandas python library can be

used to read .csv files hosted online. We follow this by removing
columns from the data set that are not relevant to our objective.

We can now do a high level examination of a data set using
dataset.info(), which provides information such as the data type
for each column, non-null values and memory usage. The data
type information is often quite useful in finding discrepancies or
issues within the data set, including situations where the values
of a column could have been stored as a string or non-numeric
data type.

Following the initial cleaning/quality check on the data set,
we can now prepare our train and test data. First, we will need to
import the train_test_split function from scikit-learn which will
be used to split our data into the different sets and
StandardScaler which will be used to scale our data

The next step is to isolate the feature columns (monomer
composition and length) as well as the label column (retained
enzyme activity or REA). We will save the data frame containing
the feature columns as “X” with the target column dropped from
this. Our target columnwill be saved as “y”. Once this is done, we
can populate the arguments of the train_test_split function,
passing our features (X), our target (y), the test_size which is the
portion of data that we want to save for testing, and a
random_state which will aid in assuring we have reproducible
results. In our case, since we have a small amount of data we want
to use as much training data as possible so we will use only 10%
of our data for testing and the rest will be used for training.

Now that we have split our data into the test and training sets,
we still need to scale our data as some of the features exists on
different scales (e.g., monomer composition in percentages,
polymer length in hundreds of units). For this, we will first
instantiate a StandardScaler() object to which we will fit our
training data and then we will transform this data to the scaled
form. It is important to remember that only the training data
should be fit to the scaler.
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4.2. Model Training
Once we have prepared our data, we can begin model training by
first importing RandomForestRegressor from scikit-learn and
instantiating a Random Forest Regressor. We will give this a
random_state argument to ensure reproducible results. Then we
can continue to train our model on the features (X) and labels
(y) of the training data set by passing these objects to the .f it()
function.

4.3. Validation
Following initial model training, one should validate model
performance. For this, we will use 5-fold cross validation,
imported from scikit-learn via the cross_val_score method. We
will look at three metrics to describe our model performance,
negative mean squared error (MSE), negative mean absolute
error (MAE) and R2 by passing each as a “scoring” keyword
argument. The final metric is reported as the mean of the result
of the 5 individual scores for each validation split.

The cross-validation results are displayed on the data frame
below. These metrics correspond to a relatively average
performance of the model, so the next step is to try to improve
model performance via hyperparameter tuning.

4.4. Hyperparameter Tuning and Model Evaluation
Once we have done an initial evaluation of ourmodel after fitting
to the training data, we can investigate improving model
performance through hyperparameter tuning. While there are a
number of hyperparameters that can be altered for a Random
Forest model (a full list can be found in scikit-learn’s
documentation), the hyperparameters that are tuned for this
tutorial include:

n_estimators - Number of decision trees (we will try 20 evenly
spaced values in the range 50−2000)

max_features -Maximumnumber of features to be considered
for a node split (we will try ‘sqrt’, ‘auto’, and ‘log2’)

min_samples_split - The minimum number of observations
necessary to split a node in a tree (we will try 2, 3, 5, and 10)

max_depth − The depth of a decision tree (we will try 5, 10,
20, and 30)

There are a number of different methods to perform
hyperparameter tuning in scikit-learn, each with their own
benefits and costs. For this tutorial, we will focus on two
common algorithms - Grid Search and Random Search. For
both methods, the user creates a grid which contains the
parameters to tune and the search space for these parameters. If
Grid Search is used, every parameter combination is used to
create a model and evaluate it, which is a robust but

computationally expensive task. A less computationally
expensive alternative is using Random Search, where only
some random combinations of hyperparameters are used to
create models and evaluate them. For this tutorial, we will use
Random Search as this will provide results in a more efficient
manner. Whether one used Grid Search or Random Search, the
models created will only be as good as your grid defining the
parameter spaces to test. Let us begin by setting up the
hyperparameters to tune and follow that by creating our grid
using a dictionary.

After choosing the hyperparameters to tune and the
parameter space over which to search, we can now import
RandomizedSearchCV, which is a scikit-learn function for
random search hyperparameter optimization with cross
validation. We will look at 100 random models created using
our grid, set a random_state, and use the negative MSE to
evaluate the models created. Some important parameters of
RandomizedSearchCV are

estimator - The model that we want to tune hyperparameters
for

param_distributions- The parameters and the space we want
to search

n_iter - Howmany models or combinations do we want to try
refit - When set to “True”, the best model will be stored for

future use and refit to the data
cv - The type of cross validation we want to do, here we are

doing 5-fold
scoring - Metric to evaluate the models, we will use MSE

The .best_score_ and best_estimator_ attributes on rf_RS can
be used to display the best score and best estimator found during
the search.

Here we see a slight improvement in MSE (from −56.3 to
−54.8) following hyperparameter tuning. We can also see that
our best estimator uses a max depth of 30, with 768 trees and
max features using ‘log2’. We can further evaluate our tuned
model by making some predictions with our test data and
calculating the three metrics we mentioned earlier. Here we can
use rf_RS.best_estimator_ and can call methods such as .predict()
as we would with any other model.
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We can see our tuned model improved its performance on the
test set, with lower error metrics (MSE and MAE) and a higher
r2 value. Another way to evaluate model performance is by
plotting predicted labels vs actual labels, which can be
accomplished using the python library matplotlib (Figure 5).

Within our training and hyperparameter tuning, we find that
our Random Forest model scores R2 = 0.71. This leads us to the
question of “How good is this score given our problem?″ While
the answer depends on the machine learning application and
difficulty of the problem that we are investigating, successful
demonstrations of using machine learning for biomaterials
design in our case study, and other examples have demonstrated
a wide range of R2 from ∼R2 = 0.5−0.98. Such differences in
accuracy are generally attributable to key factors: (1) Relevance
of training data to the target prediction label, (2) quantity of
training data, (3) data representation, and (4) many of the other
considerations discussed in this tutorial (model selection,
hyperparameter selection, etc.)

Some of these examples are provided below:
• Machine Learning on a Robotic Platform for the Design

of Polymer−Protein Hybrids9

• Machine-Assisted Discovery of Chondroitinase ABC
Complexes toward Sustained Neural Regeneration8

• Machine-Learning-Guided Discovery of 19F MRI Agents
Enabled by Automated Copolymer Synthesis107

• Featurization strategies for polymer sequence or
composition design by machine learning97

4.5. Using the Model
Finally, we want to use our model to make predictions on new
data. Here we will create a dictionary in which we will input the
values for each feature (monomer composition and degree of
polymerization) of new, untested polymer designs, followed by
feature scaling.

We can now pass these features into our tuned model to make
a prediction for the REA of the untested polymers.

4.6. Model Interpretation
Shapley values are one method for interpreting model
predictions that can be extremely helpful in validating model
performance and understanding the process behind model
predictions. After installing SHAP, we can create an explainer
object to which we pass the feature names and the model.

The summary plot is a helpful tool for evaluating the
contribution of each feature on model performance (Figure 6).
Each feature is given a separate row, with every observation of
the feature given a point that is color-coded based on feature

Figure 5. Model performance is evaluated by plotting the actual REA
labels from the data (x-axis) against the predicted REA labels from the
model output of the test data set (y-axis). The orange line shows the 1:1
equivalence that would be obtained with a “perfect” model, with values
below the line representing an underprediction of the actual REA and
values above the line representing an overprediction. Quantitative
metrics of model performance (Random Forest R2 score and MAE) are
listed above the graph for reference.

Figure 6. Summary plot of SHAP analysis of random forest regression
model built here. The relative impact of each feature on model output
(SHAP value) is displayed as horizontal position, and the relative
magnitude of the feature value for each data point is color-coded (red =
high value, blue = low value).
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value. The relative contribution of each point toward the
prediction (SHAP value) is then plotted on the horizontal axis.
In this instance, we see that the incorporation of cationic
monomers had the largest impact on model predictions, with
higher incorporation of thesemonomers (red dots) contributing
to higher REA (higher SHAP values). In contrast, the anionic 2-
sulfopropyl methacrylate monomer appears to have a hindrance
on enzyme protection, with observations containing higher
values of this monomer having negative SHAP values.

5. SUMMARY
Biomaterials offer the promise to help solve a wide variety of
pressing biomedical and biotechnological problems. However,
the highly dimensional design space for material development,
alongside the requirements for compatibility and efficacy in
complex biological environments, means the development of
novel biomaterials is fraught with time-consuming trial-and-
error experimentation. We believe that the adoption of high-
throughput experimental techniques alongside the implementa-
tion of ML driven data science can significantly accelerate
biomaterial design campaigns, and that these approaches will
become commonplace for the next-generation of biomaterial
scientists. The goal of this Perspective was to provide readers
with a solid foundation for understanding the definitions and
process of ML and how it can be implemented in biomaterials
science. It also provides a useful hands-on experience for
learning and practicing with real-life data sets.
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