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ABSTRACT: We consider the concepts of reptation and constraint release to model the dynamics of poly-
disperse linear polymers. The mechanisms of constraint release at work in concentrated polymer solutions
can be divided into two categories. Tube dilation occurs when constraint release causes a widening of the
effective tube confining the chain. Tube reorganization refers to relaxation of the tube due to motion of the
surrounding chains without changing the effective tube diameter. By comparing the motion of the chain with
the motion of the tube, we determine the effective tube diameter and conclude that the tube only dilates when
some of the constraints are below the entanglement molecular weight. In binary mixtures of long and short
chains that have entanglements between the long chains, Rouse motions of the tube are only allowed up to
the length scale of entanglements between the long chains, ol. We suggest that tube reorganization beyond
those length scales occurs by reptation of the tube in the supertube of diameter ol. Experimental tests are

suggested to distinguish between the predictions of the newly proposed process of tube reptation and the
older idea of tube dilation.

1. Introduction
The dynamic properties of monodisperse high molec-

ular weight (entangled) polymers are qualitatively well
described by the reptation model.1·2 Each chain is
supposed to perform a curvilinear 1-dimensional diffusion
along a tube1·3 representing the topological constraints
exerted by the surrounding chains. The simplification of
the many-chain problem to a single chain moving in a
tube of permanent obstacles enabled a solution to be
reached, but this picture was rapidly shown to be over-
simplified.

In actual polymer melts (or entangled solutions), the
lifetime of obstacles is finite, leading to some constraint
release4-8 not accounted for in the original theory. This
process was originally termed tube reorganization by de
Gennes.4·5 Constraint release has also been referred to as
"tube renewal”, but this has led to some confusion because
reptation also leads to a “renewal" of the tube. We use the
term tube reorganization here to describe relaxation
processes of the chain due to constraint release, whenever
the effective diameter of the tube is unchanged.

The first models proposed to account for constraint
release6·7 treated the tube itself as a Rouse chain, with
elementary segments of the size of the tube diameter, and
a jump time proportional to the lifetime of the obstacles.
In this approach, the relaxation of a chain results from
two independent and concurrent processes, reptation
inside the tube and tube reorganization, the latter de-
pending on the environment. For a homopolymer melt,
tube reorganization was shown to be slower than repta-
tion and have little effect on diffusion properties.6·7 Later
on, Graessley8 showed that tube reorganization could,
nevertheless, significantly affect viscoelastic properties,
because of the very different mode spectra of Rouse and
reptation dynamics.

Another consequence of constraint release, called tube
dilation, was later proposed. If the time taken by a chain
to explore the volume between obstacles is longer than
the lifetime of these obstacles, they become irrelevant to

1 ESPCI.
* Eastman Kodak Company.

the dynamics of the chain. The chain feels a tube “dilated”
up to the scale at which its dynamics eventually becomes
comparable with the lifetime of the “walls" of the tube.
This idea, first proposed as an alternate treatment of tube
reorganization,9·10 was then recognized as an independent
process and has recently been applied to polydisperse melts
of linear chains,11·12 melts of stars,13 and branched polymers
of more complex topology.14"16

In spite of this significant amount of work, we believe
that the problem of constraint release is still not well
understood. Our view of both tube reorganization and
tube dilation17 leads to some predictions that are quali-
tatively different from those of ref 11. The purpose of
this paper is to describe these predictions.

We start by reviewing Rouse and reptation dynamics in
section 2, followed by a review of the solved problem of
a chain surrounded by mobile obstacles with a single
lifetime in section 3. We next consider the problem of a
chain surrounded by mobile and immobile obstacles in
section 4, where the new concept of reptation of the tube
is introduced. This leads us to the case of mixtures of
long chains (polymerization index Nl) and short ones (po-
lymerization index Ns) of the same species, in section 5.
Finally, we compare our predictions with those of Doi,
Graessley, Helfand, and Pearson11 in section 6 and suggest
experiments to distinguish the two ideas.

Throughout the paper, we make the following assump-
tions:

(1) We restrict ourselves to screened excluded-volume
interactions, i.e., cases in which the longer chains are not
swollen by the smaller ones18 (this would occur for TVl >
Ns2, roughly). The mean-square end-to-end distance of
a chain is therefore always R2 = Nb2, where b is the Kuhn
length and N is the number of (Kuhn) monomers.

(2) Hydrodynamic interactions are also assumed to be
screened. This assumption is certainly a reasonable one
for melts.

(3) In order to focus on constraint release, we ignore
crossover effects due to the finite size of real chains such
as tube length fluctuations19·20 and the divergence of the
tube diameter21 as N approaches Ne. We therefore always
consider unentangled modes of relaxation to be Rouse-
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like and entangled modes of a single chain to be purely
reptative.

(4) We neglect all numerical prefactors of order unity
to focus on physical concepts.

2. Rouse and Reptation Dynamics
The Rouse model was originally developed to describe

the dynamics of a chain in free space (or dilute solution).
Each of the N monomers (of Kuhn length b) is represented
by a bead, and the beads are connected by springs. There
is a fundamental time   associated with the motion of a
monomer. The longest relaxation time of the free Rouse
chain is

npchain _ rp1 Rouse
“ 11Rouse,( ,N) s tN2 (1)

The mean-square displacement of a monomer in the free
Rouse chain is1

  chain
Rouse

  ^awi{t-,T,N,b) s

, bHt/r)1'2   < t < Tr^WV)
VM/Tr^WV) t > TRouse(r,N)

In the reptation model for dynamics of entangled polymer
melts and solutions, the Rouse motions of the chain are
confined to a tube made up of surrounding chains. The
tube diameter, a, has a phenomenological status, although
some rather general connections with molecular param-
eters have been recently exhibited.21·22 The number of
monomers in an entanglement strand, Ne, is determined
from random-walk statistics

Ne = a2 fb2 (3)

The longest relaxation time of the reptation model is

TJepin
= Tlep(r,N,Ne) s TRowe(rM) N/Ne s rNs/Ne (4)

The mean-square displacement of a monomer in the rep-
tation model is1

'

b2(t/T)1/2

^.( / ^  .))1'4
b2Mt/Trep(T,N,Ne))1/2

. b2Nt/Tnp(r,N,Nt)
Throughout the paper we use the symbols T and   to

denote relaxation time and mean-square displacement,
respectively. Moreover, the functions defined in eqs 1,2,
4, and 5 will be utilized to describe other Rouse and repta-
tive motions, with different parameters entering into the
functions (for example, the Rouse time of an entanglement
strand,     ßß  , ) = rJVe2, has already been used).

The mean-square monomer displacements of the Rouse
and reptation models (eqs 2 and 5) are compared in Figure
1. For times shorter than the Rouse time of an entan-
glement strand, the predictions are identical (the chain in
the reptation model has not yet “discovered” that it is
confined to the tube). Beyond that time scale, the mean-
square displacement in the reptation model is slower due
to the presence of the tube. The long-time behavior from
both models is Fickian diffusion, with the diffusion
coefficient of the reptation model being smaller by a factor
of N/Nt.
3. Terminal Time of a Chain Surrounded by
Mobile Obstacles

The reptation predictions of the previous section are
for a chain embedded in a fixed tube. The problem of a

r<t<

TRou>,iVe) < t <  ^ , )
TRo^(rN) < t <  „ ( ,  ß)
t > Tnp(rNNt)

t
Figure 1. Time dependence of the mean-square displacement
of a monomer for the Rouse model (dashed line) and the rep-
tation model (solid line). Logarithmic scales.

Figure 2. Time dependence of the mean-square displacement
of the chain (solid line) and the tube (dashed lines) due to Rouse
motion. Two possibilities exist: If the tube moves faster than
the chain, the chain is unentangled. If the tube moves slower
than the chain, the chain is entangled. Logarithmic scales.

chain trapped in a tube of mobile obstacles (with a single
lifetime) has been solved,8·23 but we review those results
here (cast in our notation) as they are useful for under-
standing subsequent sections.

In the original “Rouse tube” reorganization mod-
els,6-8·23"25 the tube relaxes in precisely the same way as
a Rouse chain. The Rouse time for the tube (or longest
tube reorganization time) is

T^'-T^t^N/N') (6)

where r0bs is the obstacle lifetime. The mean-square
displacement of a tube segment by Rouse motion is

Jt-,robe,N/Ne,a) (7)

In order to determine whether the chain “feels” the
constraints imposed by the obstacles (and thus is termed
entangled), we need to compare the Rouse motion of the
tube with the Rouse motion of the chain. Such a
comparison is made in Figure 2 for lengths between the
tube diameter a and the coil size R. There are two
possibilities: If the motion of the tube is faster than that
of the chain (when r0be < TROUM(T,.ZVe)), the chain does not
feel the presence of the obstacles and is unentangled (and
free to relax by simple Rouse relaxation; eqs 1 and 2). If,
on the other hand, the motion of the tube is slower than
the motion of the chain, the chain is confined in the tube.
There are then two relaxation mechanisms available to
the chain: reptation of the chain in the tube and Rouse
relaxation of the tube. Because of the assumed indepen-
dence of the reptation and tube reorganization processes,
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Figure 3. Time dependence of the mean-square displacement
of the chain due to chain reptation (solid line) and due to Rouse
tube rearrangement (dashed lines). There are two possibilities:
If a < 1, the terminal relaxation is dominated by Rouse tube
rearrangement. If a > 1, the terminal relaxation is dominated
by chain reptation. Logarithmic scales.

the net mean-square displacement of the chain is

 ( ) a   ß ( ; ^ ^ ß ) + $nowe(t’Tobi’N/Ni,a) (8)

and the terminal relaxation time, T, of the chain is given
by

1 IT = l/Trep(rdVdVe) + l/T^ir^N/NJ (9)

The fastest process dominates the relaxation. We intro-
duce the dimensionless parameter

«   7,Rouee(Tob8^V/jV,)/7'rep(TdVdVe)
= (Ne/JV)(Tob8/TRoU8e(T,JVe)) (10)

The terminal relaxation is dominated7 by reptation for a
> 1 and by tube reorganization for a < 1. We can see this
schematically in Figure 3, where mean-square displace-
ments from reptation of the chain and Rouse motion of
the tube are compared. When a < 1 (labeled tube Rouse
in Figure 3), tube reorganization controls the terminal
relaxation time. When a > 1, reptation controls the
terminal time (labeled chain reptation in Figure 3).

There are, therefore, three possibilities for the case of
a chain surrounded by obstacles with a single lifetime. If
the obstacles are faster than the chain (when Tobs <
TRouseir^fe)), the chain is unentangled and relaxes com-

pletely by Rouse motions of the chain. If the obstacles
are slower than the chain, either a < 1 and relaxation of
the chain is dominated by Rouse motion of the tube or a
> 1 and relaxation is dominated by reptation of the chain
in its tube.

In the particular case of a mixture of dilute long chains
(of M, monomers) entangled with shorter chains (of N$
monomers) with the same chemical structure, robe s

Tnp(T,Ns,Ne) and a becomes

a = (Ne/NL)(NS/Nf = Ns3/(NhNe2) (11)
The criterion for the unentangled regime in this case
becomes Ns < Ne, which means that the long chains only
relax by Rouse chain motion if the short chains are below
the entanglement threshold. The above predictions are
in reasonable qualitative agreement with experiments
performed on long chains embedded in a “sea” of shorter
chains,26"30 although the experimental exponent for the
dependence of robe on Ns seems closer to 2.5 than to the
theoretical value of 3 corresponding to reptation. Some
explanations for this discrepancy have been proposed,27·31
but it may as well be a crossover effect, and the issue
remains unsettled. We ignore this point in what follows

(unconfined) (confined)

t
Figure 4. Time dependence of the mean-square displacement
of the chain (solid line) and the tube (dashed lines) due to Rouse
motion. Two possibilities exist: If the tube moves slower than
the chain, the chain is confined to the tube made up by the mobile
obstacles. If the tube moves faster than the chain, the chain
does not feel the mobile obstacles and is only confined to the
supertube of permanent obstacles. Logarithmic scales.

and assume that the obstacle lifetime is equal to the rep-
tation time of the surrounding chains.

4. Terminal Time of a Chain among Mobile and
Immobile Obstacles

As an introduction to bimodal melts, we treat the simpler
model of a single chain in a uniform mixture of mobile and
permanent obstacles. If these permanent obstacles are
dense enough, they may form around the test chain a
permanent tube of diameter ol, the average distance
between permanent obstacles. To avoid confusion with
the transient tube associated with the mobile obstacles,
we call this permanent tube the supertube. The average
number of permanent obstacles along the supertube is

d = (fi/oL)2 (12)
and the average number of monomers in the chain between
permanent obstacles is

NST =  /ß (13)

The parameter ß plays an essential role in the theory:
If d < 1 (ol > R), a typical long chain does not “see” more
than one permanent obstacle at a time, and the description
of section 3 remains valid. In the opposite case, we have
to reconsider the possible mechanisms of constraint release.

In order to determine the mechanism of constraint
release at work when ß > 1, we must first determine
whether the chain “feels” the constraints from the mobile
obstacles (with obstacle lifetime rob8). In this case, the
length range to look for confinement of the chain is between
the bare tube diameter, o, and the supertube diameter,
ol. We therefore compare Rouse motion of the tube with
Rouse motion of the chain in Figure 4 for length scales
between a and Ol. Even for the other modes of motion
of the tube discussed below, tube motion is Rouse-like for
length scales smaller than ol,. As in section 3, there are
only two possibilities: If the motion of the tube is faster
than that of the chain (when robe < TR0USe(T,A7e)),the chain
is not confined by the mobile obstacles at all. We refer
to this as the tube dilation regime (after ref 11). Thetube
is fully dilated, and the fastest mode of relaxation of the
chain is reptation of the chain in the large tube of diameter
ol. If, on the other hand, the motion of the tube is slower
than the motion of the chain, the chain is confined by the
mobile obstacles. The effective tube diameter for the chain
is then a. In this case we predict that there are two modes
of motion available to the chain, exactly analogous to
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Figure 5. Time dependence of the mean-square displacement
of the chain due to chain reptation (solid line) and due to repta-
tive tube rearrangement (dashed lines). There are two possi-
bilities: If  ß < 1, the terminal relaxation is dominated by
reptative tube rearrangement. If  ß > 1, the terminal relaxation
is dominated by chain reptation. Logarithmic scales.

section 3: reptation of the chain in the tube of diameter
a and tube reorganization.

Earlier treatments of tube reorganization in the presence
of obstacles with different lifetimes introduced a distri-
bution of jump times in the rescaled Rouse equation.24-26
For a nonvanishing fraction of permanent obstacles, this
idea would lead to an infinite terminal time for tube
reorganization. We believe that this prediction is
wrong—permanent obstacles along the tube slow down
the tube reorganization process, but they do not stop tube
reorganization. The original tube reorganization hypoth-
esis amounts to say that the tube does exactly what a
Gaussian chain would do, apart from a renormalized jump
time. In the presence of permanent obstacles with average
distance ol, we know that the dynamics of a chain with
N/Ne steps of length a and jump time Tot» would be well
described by reptation in a “supertube” of diameter ül-
We believe that this is the correct model for the tube, as
well. The tube of diameter a reptates in a larger
permanent tube of diameter ol, called the supertube. The
mean-square displacement of a monomer moving by rep-
tation of the tube in the supertube is

    KP(t-,rohe^/N^ST/Ne,a) (14)

The terminal time for reptation of the tube in the su-

pertube is

nt^Ttep(robe,N/Ne^ST/Ne)
= (XtL· =  ß „ ( ,   (15)

The presence of permanent obstacles slows down tube
reorganization, as expected, but it does not stop it be-
cause the tube can reptate. Note also, that (eq 6)
and (eq 15) smoothly crossover at R = at (ß = 1).

We assume that the processes of chain reptation and
tube reorganization are independent (as was done in section
3). The net mean-square displacement of the chain (with
ß > 1 and T0b8 > TR0We(r,Ne)) can be approximated by a

simple sum

 ( ) s   ß ( ; , , ß, ) + irep(t;Tobe,iV/NeJVST/IVe,a)
(16)

in analogy with eq 8. The terminal relaxation time, T, is
given by

l/T s l/Tlep(r,N,Ne) + l/Trep(Toba,N/Ne,NST/Ne) (17)

In Figure 5 we compare mean-square displacements of

a monomer due to reptation of the chain in its tube with
those due to reptation of the tube in the supertube. Rep-
tation of the tube in the supertube dominates the terminal
relaxation when  ß< 1 (we refer to this as tube reptation
in Figure 5), and reptation of the chain in its tube (of
diameter a) dominates for  ß > 1 (chain reptation).

In summary, three possibilities exist for the case of a

long chain surrounded by mobile and immobile obstacles.
If the mobile obstacles are faster than the chain, the chain
feels a tube that is fully dilated to diameter ol. If the
mobile obstacles are slower than the chain, either  ß <1
and relaxation of the chain is dominated by reptative
motion of the tube or  ß > 1 and relaxation occurs
predominantly by ordinary chain reptation in the bare
tube of diameter a.

Note also that the border between tube dilation and
tube reptation corresponds to t0ba = Tnome(r,Ne). For the
special case of a binary blend of nondilute long chains
(with ÍVl monomers) and short chains (with Ns monomers)
of the same chemical species, this occurs when Ns = Ne.
Thus in a homopolymer blend, one only encounters a fully
dilated tube when the short chains are unentangled and
act as solvent! Once the short chains consist of more than
Ne monomers, the long chain is confined in the tube of
short chains. Tube dilation ideas can be important for
miscible blend of two different polymers, however. Con-
sider a miscible blend of short chains of species A and long
chains of species B, where the elementary time for
monomer motion of the short chains ta is faster than that
of the long chains tb. In that instance the regime of tube
dilation is extended to include some short chain lengths
above the critical molecular weight for entanglement of
the A chains in the blend. Tube dilation has also been
shown to be important for dynamics of branched
polymers.13-16

5. Linear Viscoelasticity of a Bimodal
Homopolymer Melt

We now consider a blend of long chains (of Nt
monomers) and short chains (of Ns monomers) with the
same chemical structure. The volume fraction of long
chains is   (the volume fraction of short chains is 1 -  ).
We ignore the case Ns < Ne, which can be treated as a
solution of long chains in a   solvent (with screened
hydrodynamic interactions) and does not require a con-
straint release approach. Indeed, in this domain our model
crosses over to Rouse behavior for ß < 1 and to reptation
in a tube of size ol for ß > 1, each with a fundamental time
  for monomer motion that may depend on Ns through
the dependence of a local friction coefficient on N$ (which
also changes the glass transition temperature of the
sample). These predictions are identical with those of
the Rouse and reptation models in solution.

Terminal Relaxation Time. To transpose from a
model of point obstacles (with T0b8 > Tuouse(r,Ne)) to
bimodal melts, we need an expression for the obstacle
lifetime  0 *. According to the original ideas about tube
rearrangement,6"8 the relevant lifetime for short-lived
obstacles is the terminal time of the short chains, which
we identify with their reptation time

rob8 s Tiefí(r,Ns,Ne) e rNs3/Ne (18)

Equivalently, the lifetime of the long-lived obstacles is
the terminal time of the long chains, i.e., the longest
relaxation time in the system. In a qualitative approach,
the lifetime of these obstacles can be taken as infinite
because constraint release processes due to motion of the
long chains would just be starting when the system reaches
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Figure 6. Four regimes of terminal relaxation for bimodal ho-
mopolymer melts shown in the  ,ß parameter space. Solid lines
represent borders between different predictions for terminal time.
Dashed lines represent borders between different predictions
for terminal modulus. Logarithmic scales.

t

b) Reptation Box

Go.....
G :

^ Trep(X' N, Ne)
t

Figure 7. Schematic representations of the two types of
relaxation moduli: (a) Rouse relaxation modulus (a wedge) and
(b) reptation relaxation modulus (a box). Logarithmic scales.

its longest relaxation time. Therefore, the results of section
4 are applicable here, and three possibilities exist for the
terminal relaxation time of binary blends of linear chains.
These possibilities are shown in the  ,ß parameter space
in Figure 6. For a < 1 and ß<1 the relaxation is dominated
by Rouse tube rearrangement

TaT^rNj/NMNJ = tNs3Nl3/N3
ß <1 and a < 1 (19)

For ß > 1 and  ß < 1 the relaxation is dominated by tube
reptation

T^TnpirNs3/Ne^L/Ne,NL/me))
s fiTNB*NL*/N,3 ß > 1 and  ß < 1 (20)

For the remainder of the  ,ß parameter space, terminal
relaxation is controlled by chain reptation (in a tube of
size a)

T = Ttip(r,N,NJ s rN^/Ne (21)

(ß < 1 and a > 1) or (ß > 1 and  ß > 1)

Concentration Dependence of the Tube Diameter.
To remain general, we have deliberately postponed dis-
cussion of the dependence of ol (or equivalently, ß) upon
 . This is an important issue, however, since the new

process of tube reptation depends on the size of the su-

pertube (i.e., through ß in eq 20). The problem is that the
concentration dependence of the tube diameter in the
absence of excluded volume is still a controversial subject.
We shall not attempt to settle this point, which has been
discussed extensively in the literature (see refs 21,22,32,
33, and references therein). Following earlier work,3’32 in
semidilute   solution, ol should scale as  ~1/2, so that

ß   (fi/aL)2 =  /   =     , (22)

where  0 is the critical concentration for entanglement of
long chains in a   solvent (different from the overlap
concentration  *). This scaling is presently the most

widely used (it is, for instance, the scaling adopted in ref
11). Therefore, for the sake of simplicity and comparison,
we also use this scaling in the following derivations of
viscoelastic functions (alternate treatments using the
scaling laws proposed in ref 21 (ß s ( ^/ ß) 2) or ref 33
(ß s CZVl/M)<£4/3) would proceed in the same way).

Relaxation Modulus. In order to clarify the role of
various constraint release processes and to estimate the
viscosity of binary blends, we now derive the relaxation
modulus in the terminal region G(t), assuming only chain
reptation and tube rearrangement relaxation processes.
The relaxation modulus of a free Rouse chain1 is

N

G(t)/G0 = (1 /N)   exp[-ph/T^Um (23)
p-l

Since this Rouse relaxation spectrum has an equally
weighted mode distribution, an approximate graphical
representation of the spectrum is a wedge (on a logarithmic
scale) shown in Figure 7a (after refs 11 and 28).

The relaxation modulus of the reptation model1·2 (for
a Rouse chain in a tube) is identified with µ( ), the fraction
of the tube still occupied after time t

G(t)/G0 = µ( ) s   (VP2) expl-p2t/Tnp(rWt)]

The reptation relaxation spectrum has an unequally
weighted distribution of modes, with the majority of the
stress being relaxed in the vicinity of Tnp(r¿fflt). We
therefore represent it schematically in Figure 7b as a box.
Following earlier work,8·11·23™25 we assume independence
of reptation and constraint release, and the blending law:23

G(t)/G0 =  µl(í) RjJ,t) + (1 - 0)µ§(£) Rg(t) (25)

The functions ml(t) and ms(0 represent relaxation of the
long and short chains in their respective tubes (here only
due to reptation), given by eq 24. The functions Rh(t) and
Rs(t) represent the relaxation of stress by tube rearrange-
ment relaxation processes for the long and short chains,
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respectively. The function Rs(t) remains of order unity
during the reptation of the short chains.34 Thus, it only
remains to derive expressions for Rt(t), the relaxation of
the long chains by tube rearrangement, for which there
are two possibilities.

(i) For ß < 1, constraint release occurs by Rouse tube
rearrangement (see section 3). Ri,(t) is given by the Rouse
relaxation function (eq 23) applied to the tube (the rep-
tation time of the short chains play the role of r, and N
is replaced by M/M. the number of tube segments):

*LW =

NJN.
( ,/     exp[-p2i/TRouae(TNs3/Ne,NL/M)]

Pm 1

d< 1 (26)
This corresponds to a wedge-shaped spectrum, with a
terminal value (defined as the value of Rl(í) at the terminal
relaxation time)
^term =

RlÍT^tN^/N^JNJ) a NJNh ß < 1 (27)

(ii) For ß > 1, Rh(t) corresponds to Rouse motion of the
tube up to the Rouse time of an entanglement strand of
the supertube Troum(tM3/MM/ (dM)), followed by rep-
tation of the tube in the supertube. Rh(t) is given by the
product of two relaxation functions: (1) the Rouse
relaxation function of the supertube entanglement strand
(eq 23, with M/(dM) the number of monomers in that
strand) and (2) the reptation relaxation function (eq 24)
applied to the tube (again, the reptation time of the short
chains plays the role of r, N is replaced by M/M. the
number of tube segments, and the number of tube segments
between long entanglements, M/(dM), is the effective
M)· The result is, for ß > 1

RL(t) = ß  ,/Nj) x
nuwn.)

  exp[-p2t/ TRoum(tM3/M-M/M)] x
p»l

  (Vp2) exp[-p2i/rrep(rM3/MA/MA/(dM))]
p»odd

(28)
The terminal part of tube reptation has a box-shaped
spectrum with a terminal value

Rum s RL(Trep(TNs3/Ne,NJNe,NL/me))) S

d(M/M) =   (29)

We are now in a position to estimate the shape of the
relaxation modulus, G(t), for the different regimes shown
in Figure 6. There are five cases (a-e below), which we
need to consider for the relaxation modulus of binary
blends of homopolymers, and the results are in Figure
8a-e. Cases a and b are for ß <1 and thus correspond to
the treatment in section 3. Cases c-e are for ß > 1, treated
in section 4.

(a) The case of nonentangled long chains (d < 1) with
terminal relaxation due to chain reptation (a > 1) appears
in Figure 8a. The contribution of the short chains to the
relaxation is the filled box. Due to the boxlike approx-
imation of reptation, the relaxation of the long chains (full
line) follows the fastest of the chain reptation (dash-dotted
box) and Rouse tube rearrangement (dashed wedge)
processes. The value of the modulus at the terminal time

GUmsG0*(M/M)3/2 d < 1 and   > 1

(chain reptation I) (30)

G
Go

t

G
G0

G
G0

Figure 8. Schematic representations of the five possibilities for
the relaxation modulus of bimodal homopolymer melts: (a) ß <
1 and a > 1 (chain reptation I), (b) ß < 1 and a < 1 (Rouse tube
rearrangement), (c) ß > 1 and  ß < 1 (reptative tube rearrange-
ment), (d) ß > 1 and l/ß < a < ß1 (chain reptation II), and (e)
ß > 1 and a > d! (chain reptation I). Full lines are the relaxation
moduli, which are the faster of two relaxation mechanisms: tube
rearrangement (dashed lines) and chain reptation (dash-dotted
lines). Indicated times are T^p = T„v(tNsN.Y, T^p =

T„ p(rMM): 7jgL = TUrW/tt/iV,): TtL =

TR^trMVMM/CdM)); =o
(ß ,)). Logarithmic scales.
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Table I
Summary of Predictions for the Terminal Viscoelastic Response of Bimodal Homopolymer Blends

regime criteria terminal time terminal modulus viscosity
tube Rouse a < 1

ß<1
tNs3JVl2/W Gvt>(Nt/NL) G<¿>tNs3Nl/N.2

chain reptation I a > 1

 /ß2 > 1
   ?/ , G0<t>(Ns/NL)3/2     (   ß) 2/ ,

chain reptation II 1/ß <a < ß2    ?/ , Go  2 G<ó2tNi}/N,
tube reptation 1<ß<1/  »tJVsW/JV=4 Go  2    3  &3  3/ ,*

is given by the intercept between the chain reptation and
Rouse tube rearrangement curves. Physically, it repre-
sents the fraction of the stress not relaxed by Rouse modes
of the tube faster than    ( ^^ß).

(b) The case of nonentangled long chains (ß < 1) with
terminal relaxation due to Rouse tube rearrangement (a
< 1) is shown in Figure 8b. In this case, relaxation of the
long chains occurs entirely by Rouse tube rearrangement,
and the value of the modulus at the terminal time is

Gurm = G04>(NJNl) ß < 1 and   < 1

(tube Rouse) (31)

(c) The case of self-entangled long chains (¡8 > 1) with
terminal relaxation due to tube reptation ( ß < 1) is shown
in Figure 8c. Here relaxation of the long chains occurs

entirely by reptative tube rearrangement, and the value
of the modulus at the terminal time is

Gterm s G^(NJNh) s  2 ß > 1 and  ß < 1

(tube reptation) (32)

Note that eqs 31 and 32 smoothly crossover at ß =    ,/
Ne — 1.

Only the case of self-entangled long chains (8>1), which
relax by chain reptation ( ß >1), merits special attention.
The terminal time in this case is always   ß ( ^, ß), but
the value of the terminal modulus may take two different
values depending on the relative position of Tsooae^Ns3/
 ß,  ,/(0  ß)), the Rouse time of an entanglement strand
of the supertube, and   ß ( ,^^ß).

(d) If Tnp(r,NM > TRouse(TNs3/Ne,NL/(8iVe)), the
tube is in the terminal phase of its reptation process at
7’rep(T,NLhZVe), and the Gum is given by eq 32 (chain rep-
tation II in Figure 6). The time criteria is equivalent to
requiring a/ß2 < 1. This case is shown schematically in
Figure 8d.

(e) In the opposite case, where the tube rearrangement
is still occurring by Rouse motions of the tube when the
terminal time of the chain is reached (a/ß2 > 1), the Gtem
is given by eq 30 (chain reptation I in Figure 6). The
relaxation function for this case appears in Figure 8e.

In short, this leaves us with three different values for
the Gum, separated by the dashed lines in the a, ß
parameter space of Figure 6. We have a total of four
regimes in Figure 6; the criteria for, and results in, those
four regimes are summarized in Table I, along with the
predictions for the terminal viscosity

v = GtormT (33)

The four regimes and the predictions in them are compared
with those in earlier work in the next section.

6. Discussion
In this paper, we have explored the mechanisms of

constraint release at work in polymer dynamics and applied
those ideas to the relaxation of bimodal blends of linear
homopolymers. The scope of our results and the general

framework of the paper bear a close resemblance to that
of Doi, Graessley, Helfand, and Pearson.11 There is one
major conceptual difference between this work and ref 11;
that is, the question of how to determine confinement of
a chain in a tube. Doi et al.11 introduced the useful concept
of comparing motion of a free chain with motion of the
tube to determine confinement. They compared Rouse
motion of a tube segment with terminal diffusion of a free
chain (motion of the center of mass of the chain) on length
scales between a and R. This effectively ignores the Rouse-
like fluctuations of the chain (see Figure 2), which lead to
a mean-square monomer displacement scaling as t1/2 on

length scales less than R. Segments of a free chain only
exhibit terminal diffusion (with   ~ t) for length scales
larger than R. Instead of comparing parallel lines (as in
Figure 2), Doi et al.11 have the possibility that the lines
can cross, since they have        ~ t and  ^ » ~ t1/2·

Since they neglect these fluctuations, Doi et al.11 predict
that the effective tube diameter for the long chains can
adopt any value within a certain range (between a and R
for dilute long chains and between a and ol for nondilute
long chains), as the point where  0    and  ^ * cross
determines the effective tube diameter. In contrast, we
contend that the segmental motions of a free chain (i.e.,
Rouse fluctuations) are important for determining con-
finement and predict that the tube diameter is only allowed
to take on two discrete values. For the case of dilute long
chains, either the chains are entangled (in a tube of
diameter a) or they are unentangled (with an infinite
effective tube diameter). Similarly, long chains are either
confined to a tube of diameter o or a tube of diameter ol
for the case of nondilute long chains. The fact that the
tube diameter “jumps” is, at first glance, conceptually
alarming. However, in each case this jump occurs when
Ns = Ne, which is the critical molecular weight where
entanglements become important for the short chains.
Thus, it is not so surprising that the tube diameter is
discontinuous, as the jump in the tube diameter corre-

sponds to the onset of entanglement between the short
chains and is really the same phenomenon that occurs in
monodisperse melts when N = Ne. One should note that
this abrupt change in tube diameter does not lead to any
related discontinuities in measurable quantities such as
terminal relaxation time or viscosity. The terminal time
for reptation of the chain in the fully dilated tube of
diameter ol is

Ttep(r,NL^eaL2/a2) s (rjVL3/Ne)(o/oL)2 a  ß ^ (34)

and this smoothly crosses over with the reptation time of
the tube in the supertube (eq 20) when Ns = Ne.

The fact that for Ns > Ne a long chain is always confined
in a tube of diameter a leads us quite naturally to propose
a new mechanism of relaxation—tube reptation. This
relaxation mechanism can become important for nondi-
lute long chains (see section 4), as free Rouse motions of
the tube are forbidden beyond the length scale ol (just as

ordinary chain reptation results from free Rouse motions
of the chain being forbidden beyond the length scale a).
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Ne  
Nl 1

NLNe2

Figure 9. Comparison of regimes of predictions for this work
and ref 11 in the  ,ß parameter space. For this work: (a) Rouse
tube rearrangement, (b and c) reptative tube rearrangement, (d
and e) chain reptation II. For ref 11: (a) free dilation wedge, (b
and d) free dilation box, (c and e) restricted dilation box.
Logarithmic scales.

We can compare our predicted regimes with those of ref
11 via our Figure 6 and Figure 11 of ref 11. The predictions
for a > 1 are qualitatively identical,36 as both theories
crossover to chain reptation for a > 1. Similarly, for Ns
< N* (or a < Ne/Ni) the predictions are identical (this
case is not shown in either our Figure 6 or Figure 11 of ref
11 because it corresponds to behavior of a polymer
dissolved in a low molecular weight solvent, instead of
blends of two entangled polymers). We therefore focus
on comparison in the region Ne/NL <   < 1 of the  ,ß
parameter space in Figure 9. Indeed, this region can be
thought of as the crossover between the behavior of
solutions of polymers in low molecular weight   solvents
(neglecting hydrodynamic interactions) and blends with
Ns large enough that ordinary chain reptation dominates
the relaxation of the long chains. The two theories simply
provide different ideas about the nature of this crossover.
Doi et al.11 predict tube dilation to be the crucial concept
for understanding relaxation in this crossover region,
whereas we predict that tube dilation only occurs for N$
<Ne!

For ß < 1 in Figure 9, predictions of the two theories
disagree in concept but not in qualitative results. We view
relaxation as occurring by Rouse motion of the tube in
this regime, and while this is conceptually different from
the idea of free tube dilation in ref 11, the predictions for
terminal time and viscosity are identical.35 Doi et al.11
expect tube dilation to a size o' in this regime, where o'
is controlled by reptation of the short chains. However,
the renormalized reptation time associated with a tube of
diameter o', as predicted in ref 11, is the same as the Rouse
tube rearrangement time discussed here and in earlier
models of constraint release.8-22"25

For ß > 1 in Figure 9, predictions for the terminal
modulus are the same in the two theories, but the
predictions for the terminal time are different. Both
theories predict two regimes. We predict that tube rep-
tation dominates the terminal relaxation for  ß < 1 and
simple chain reptation dominates for  ß > 1. Doi et al.11
predict free dilation for a <   and restricted dilation for
a >  . The terminal times predicted by the two theories
for the ß > 1 region of Figure 9 are listed in Table II.

A good way to exemplify the differences between the
two ideas is to consider moving along a horizontal line in
Figure 9 (N6/Nl < a < 1) and see how the terminal time
changes as we increase the concentration of long chains.
For   < N*/Nl (or ß < 1) the terminal time predicted by
both models is tNs3Nl2/N63 (eq 19), which is independent
of  , so it remains constant along the horizontal line. At

Table II
Terminal Time Predictions for JV,/Nl < a < 1 and

_l <ß< NL/N,_
source criteria regime terminal time

ref 11 IV,/Nl < a <   restricted dilation </>tNl3/N,
ref 11   < a < 1 free dilation tNs3Nl2/N,3
this work ß > 1 and  ß < 1 tube reptation 0tNs3Nl3/N,4
this work ß > 1 and  ß > 1 chain reptation tNl3/N,

    '

Figure 10. Comparison of predicted dependencies of terminal
relaxation time on the concentration of long chains in a bimodal
homopolymer melt with N,/Nl < a < 1: this work (solid line)
and ref 11 (dashed line). Logarithmic scales.

the onset of entanglements between long chains (0 = 0C
s  ,/Nl or ß s 1), we predict that the terminal time will
start increasing with   (see Table II). Indeed, we expect
that the terminal time will depend on the three parameters
 , Ns, and Nl in this regime of tube reptation. As   is
increased further, we eventually enter the chain reptation
regime (when   = 0+ s (Ne/Ns)3 or  ß s 1) and the terminal
time again becomes independent of  .

In sharp contrast, ref 11 predicts that the terminal time
should not change on the onset of entanglements between
long chains (i.e., it remains equal to the Rouse time of the
tube that is independent of  ). The terminal time starts
to increase with concentration only when the restricted
dilation regime is reached (  s a; see Table II). In fact,
according to ref 11, the terminal time does not reach the
reptation time of the long chains in a tube of diameter a
until 0 = 1.

These different predictions, schematically represented
in Figure 10, should provide clear-cut criteria for exper-
iments. Probably, the most demonstrative one is the 0
dependence of the terminal time near 0 = 1. Although
significant amounts of stress will be relaxed by constraint
release, we predict the terminal time to be controlled by
chain reptation and be independent of 0, while ref 11
predicts a linear dependence on 0. The presence of a
regime in which the terminal time depends on Ns, Nl, and
0 is also a unique feature of our model (see Table II), but
this criterion may be rendered rather inconclusive by
crossover effects, which tend to “mix up” regimes.

Predictions for the   dependence of the terminal time
at the onset of entanglements between long chains (ß =

1) are also very different, but an experimental check here
is more delicate, because one has to know the actual
position of this onset. The scaling we use for the sake of
simplicity leads to a well-defined concentration 0C s Ne/
Nl, but this scaling is far from being quantitatively reliable
(see, e.g., ref 33). Until this issue is resolved, the onset of
entanglement between the long chains will need to be
independently determined from measurements of viscosity
as a function of concentration in a   solvent.
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A further complication may also arise from partial
swelling of the long chains by the short ones,7-18 which was
neglected here. Experiments must be planned to avoid
this complication by requiring Nl < Ns2. We can suggest
an experiment that meets all of these criteria, using binary
blends of monodisperse polystyrene. For this polymer,
the molecular weight of a Kuhn segment36 is Mr = 520
and the entanglement molecular weight37 is Afe = 18 000
(Ne = 35). Blends with Ns - 140 (Ms - 73 000) and Nl
= 8500 (Ml = 4 400 000) could be prepared with different
concentrations. We predict that the terminal time of such
blends should start to increase in the vicinity of <j>c

= Ne/
Nl = 0.004 and level off at the terminal time of the pure
long chains at  7 = (Ne/Ns)3 s 0.016. In contrast, Doi et
al.11 predict the terminal time to be constant for   < a =

0.25 and to increase beyond   = 0.25 (see Figure 10). The
longest relaxation time of the pure long chains will be
roughly 6000 s at the highest stable temperature for
polystyrene, 180 °C. This imposes two conditions on the
proper experiments. First, the blends must be held at 180
°C for many times this longest relaxation time to ensure
that an equilibrium structure is reached (roughly 1 week).
Second, the terminal time of the blends is probably outside
the convenient range for oscillatory measurements, but
creep and recovery experiments should be able to measure
these terminal times quite accurately (terminal time is
determined from the product of viscosity and recoverable
compliance in this experiment37).

Watanabe and Kotaka28 have studied blends of poly-
styrene with Ms = 70 000 and Ml = 2 600 000, and these
should certainly fall in the proper range for Figure 10 as
a s 0.4. However, this was done as part of a large (and
very impressive) survey of possible behaviors of binary
blends, so they only measured terminal time for four
concentrations for this pair. The terminal time indeed
seems to be roughly constant for   - 0.005 and   = 0.01,
slightly larger for   - 0.02, and significantly larger at  
= 0.05. We predict the terminal time should start to
increase near  0 s 0.007, whereas Doi et al.11 predict the
increase to start at much higher concentrations,   s 0.4.
In any case, the data are too few to be conclusive, and
further experiments (such as those outlined above, par-
ticularly for large  ) are needed.

The differences between our theory and that of ref 11
are not terribly important for industrial polydisperse melts
of linear polymers, as both theories are relevant to very
special (and difficult to achieve) polydispersities. In most
cases, theories such as those proposed in refs 23-25 are
sufficient. It is important to recall, however, that the
underlying conceptual problem is the proper criterion for
tube dilation. A better understanding of this criterion is
necessary for branched polymers in which the tube dilation
process is expected to be qualitatively important, even for
the simplest branched polymers, monodisperse stars.13

Interestingly, the two theories predict identical terminal
moduli over the entire  ,ß parameter space, even though
the terminal relaxation time predictions are different in
some cases. In both theories, the terminal modulus is
only sensitive to terminal relaxation time for the chain
reptation I regime (Figure 8a,e), where Rouse tube
rearrangement is terminated by chain reptation. The other
cases (Figure 8b-d) all have terminal moduli that are
insensitive to the terminal relaxation time and hence the
type of terminal relaxation process. Since the differences
in the two theories arise from processes where the terminal
modulus is insensitive to terminal time (Figure 8c,d), it is
not so surprising that the predictions for the terminal
modulus are identical in the two theories.

7. Conclusions
There is a range of molecular weights of the components

of a binary blend of linear homopolymers in which
relaxation is dominated by constraint release. As sug-
gested by Doi et al.,11 this range falls between the limits
where ordinary chain reptation dominates on one hand
(Ns large) and the short chains become unentangled on
the other (Ns < Ne). We picture constraint release as
being a means for a chain to find new configurations via
motion of its surrounding tube. There are two processes
by which constraint release can occur. The first is by Rouse
motion of the tube6"8 in which the tube moves like a free
Rouse chain with a fundamental jump time given by the
relaxation time of the surrounding chains. The second is
the new concept of reptation of the tube, which occurs
when there are effectively permanent obstacles that
prevent full relaxation of the tube by Rouse motion.

In contrast, ref 11 proposed a different mechanism of
constraint release—tube dilation. This concept, original-
ly due to Marrucci,9 envisions the tube widening due to
relaxation of the surrounding chains. This widening then
accelerates the reptation relaxation of the chain in the
tube. Reptation of the tube and tube dilation actually
play similar roles in the two theories, when the long chains
are entangled with each other, but lead to different
predictions (full comparison of the two theories is in section
6). Both processes relax the part of the stress carried by
the entanglements between long chains. However, for
binary blends of homopolymers, we show that tube dilation
only occurs when Ns < Ne.

In order to focus on constraint release, we used the
simplest single-chain relaxation function for a chain in a

tube—reptation. Thus our predictions are only qualita-
tive, as we have ignored all other single-chain relaxation
mechanisms, such as tube length fluctuations, that are
known to be necessary for quantitative prediction of both
terminal modulus and terminal time.

The final predictions of our constraint release model
for binary blends of linear homopolymers are qualitatively
different from those of ref 11 only in a limited range of
component molecular weights. We recommend possible
experiments to elucidate these qualitative differences in
section 6. The detailed mode spectra of constraint release
predicted by tube reorganization and tube dilation are
also quite different, but these differences will be difficult
to detect experimentally due to complications such as tube
length fluctuations.

However, constraint release is a far more important
process for branched polymers. Tube dilation ideas have
already had some success in explaining relaxation dynamics
of these complex polymers.13"16 It is our hope that the
constraint release concepts discussed in this paper will be
of use for understanding dynamics of polymers with
complex (nonlinear) architectures. However, we have only
just begun to consider tube reorganization for dynamics
of nonlinear polymers, and detailed discussion of this
problem will have to await a future publication.
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