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ABSTRACT: Quantifying the response of entangled polymers to large and rapid
deformations presents a great challenge in polymer physics. With simulation
results, we identify the effective entanglement that governs the chain conformation
and rheological response of deformed entangled polymers. The distribution of
effective entanglements gives a natural estimation of the mean survival tube. The
constraint release caused by the motion of effective entanglements well describes
the relaxation process after step elongation within the framework of the tube
model. The relation between the dynamics of effective entanglements and other
motions, including the orientation, stretch, and retraction of chain segments, is
examined. Additionally, with small-angle neutron scattering, we experimentally explored the effective entanglements during the
relaxation of an elongated polystyrene melt. We observe a “Rouse ramp” in the decay of effective entanglements, which is considered
a key feature of the tube relaxation induced by the constraint release.

I. INTRODUCTION
Our current understanding of polymer dynamics is primarily
built on the tube concept,1 which models the constraints on
the chain motion imposed by interchain entanglements as a
mean-field, smooth tube along its own primitive path (PP).
With several key relaxation mechanisms including reptation,2

contour length fluctuation (CLF),3 and constraint release
(CR),4−6 the tube model has been remarkably successful in
describing the linear rheology of entangled polymers.7

However, the modeling for the responses to large and rapid
deformations is still challenging.8,9 For example, the general-
ized tube model,10 which incorporates convective constraint
release11,12 and chain stretch and retraction,13 fails in
predicting the nonlinear rheology in the extensional
flow.14−16 Particularly, the roles of chain conformations,17,18

entanglement behaviors,19−22 and dissipative properties14,23 in
determining the nonlinear rheology remain in debate.

To tackle these problems, clarifying the microscopic
foundation of entanglement in strongly deformed polymers is
of great importance. Experimental probes, such as small-angle
neutron scattering (SANS)24−26 and neutron spin echo
(NSE),27 have not provided direct observations of entangle-
ments and their evolution. Molecular dynamics (MD)
simulations, on the other hand, have shed significant light on
this problem. Based on the pioneering contribution from
Kremer and Grest,28 PPs are identified either by fixing chain
ends and imposing chain shrinkage29−34 or by finding the
average position of monomers.35−39 Then, entanglements are
located as contacts between PPs. The dynamics of entangle-
ment in flow has also been subject to simulation investigation,
revealing the influence of strain rate on the system.40−42

Nevertheless, most of these studies do not show a systematic

comparison among the tube model prediction, the mechanical
response, and the CR effect deduced from their microscopic
definitions of entanglements in the nonlinear regime. Further
clarifying the microscopic picture of entanglements, the
associated CR process, and their coupling to other motions
such as the orientation, stretch, and retraction of chain
segments is important for improving the constitutive modeling
of the nonlinear rheology of polymers.

In the tube model, the entanglements confining transverse
motions of a test chain are abstracted as a continuous tube to
deal with single-chain dynamics, e.g., reptation, chain
retraction, and CLF. For the CR motion, occurring when the
end of a neighboring chain passes the test chain, a detailed,
discrete viewpoint on entanglements is needed to understand
its dynamics and rheological consequences, which makes its
experimental validation at the molecular level more difficult.
Most previous experimental studies investigate the CR effect at
the macroscopic level through rheological means.8 At the
molecular level, NSE result has shown the necessity of
introducing the CR mechanism into the tube model in
explaining the short-time dynamics of binary systems.27

However, due to the dynamic limit of NSE, the effect of CR
in the whole dynamic regime of the relaxation of the test chain
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cannot be accessed. To further explore the CR motion
experimentally, new insight into entanglements is in demand.

Herein, we investigate the entanglement and CR in
deformed linear polymers by employing MD simulation and
SANS. With MD results, we propose the effective entangle-
ment that governs the chain conformation of deformed
polymers. The statistical distribution of effective entanglements
naturally gives the mean survival tube. The CR process arising
from the dynamics of effective entanglements describes well
the relaxation after a step elongation within the framework of
the tube model. Moreover, we propose a model to extract
effective entanglements from the SANS spectra of deformed
polymers. With this model, we observe the “Rouse ramp”8,43 in
the relaxation of effective entanglements, which is considered
as the major feature of CR but has not been observed
microscopically before.

The rest of the article is organized as follows. In Section II,
we identify the effective entanglement in deformed polymers
from the MD data. The role it plays in the chain conformation
and the nonlinear rheological response is discussed. Section III
introduces a SANS model for experimentally extracting the
effective entanglement. The result of the SANS experiment on
a set of entangled polystyrene melts is given. Concluding
remarks are listed in Section IV.

II. EFFECTIVE ENTANGLEMENT FROM MD
We simulate 3 melts of Mc = 250 bead−spring chains28 of N
beads with N = 700, 1000, and 1500 using LAMMPS.44 All
beads interact via the repulsive Lennard-Jones (LJ) potential,
and the beads within the same chain are connected by the
finite-extensible nonlinear elastic potential.28 The units of
energy, length, and time are, respectively, set by ϵ, σ, and τ =
σ(m/ϵ)1/2, where ϵ and σ are LJ parameters and m is the
monomer mass. The melts are equilibrated at density ρ =
0.85σ−3 and temperature T = 1ϵ/kB, where kB is the Boltzmann
factor. For this condition, the equilibrium number of
monomers per entanglement Ne and the Rouse time of an
entangled strand τe are set to Ne = 60 and τe = 3290τ as
suggested by Cao and Likhtman.45 Melts are strained by
isochoric elongation along the z axis to the desired stretch ratio
λ ranging from 1.8 to 5 at an initial Rouse Weissenberg
number WiR,i = τRεi̇ = 40, where τR = (N/Ne)2τe is the Rouse
time of the chain and εi̇ is the initial strain rate. During the
elongation, the engineering strain rate keeps constant.
II.I. Effective Entanglement in Deformed Polymers.

We use Z1+ code46 to identify PPs and kinks as the contacts
between PPs. Z1+ code monotonically reduces the contour
length of chain while maintaining the noncrossing constraint
between chains, under the condition of fixed chain ends. The
resulting PP is composed of many straight strands, and PP
length L is obtained by summing the lengths of these strands.

Figure 1. PPs of a chain with N = 1000 before (a) and immediately after (b) elongation to λ = 3 (thick lines). The effective and ineffective kinks
are denoted by red and green symbols, respectively. The original chains are presented by thin lines. (c) Probability distributions of K of the melt
with N = 1000 before and immediately after elongation to λ = 3. (d) Comparison between the significant kink defined by Hsu and Kremer (nos. 1
and 2) and the effective entanglement defined in this work (nos. 2 and 3).

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.4c00204
Macromolecules 2024, 57, 3202−3211

3203

https://pubs.acs.org/doi/10.1021/acs.macromol.4c00204?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c00204?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c00204?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.4c00204?fig=fig1&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.4c00204?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 1a,b gives the PPs of a chain with N = 1000 before and
immediately after elongation to λ = 3, respectively. The kinks,
separating a PP into successively connected straight strands,
can be considered as candidates for entanglements. In an
elongated chain, the entropic tensile stress σt depends on the
alignment of strands arising from orientation or stretch by σt =
σzz − σxx ∼ ∑l(Rl,z

2 − Rl,x
2 )/Ns,l, where Rl,z/x is the z/x

component of the end-to-end vector Rl of the lth strand and
Ns,l is the number of monomers contained in the lth strand.
Thus, we can evaluate the alignment of tube segments around
the lth kink by the following quantity:

K
R R

N

R R

N
l z l x

l

l z l x

l

,
2

,
2

s,

1,
2

1,
2

s, 1
= + + +

+ (1)

where the subscripts “l” and “l + 1” denote the two strands that
are connected at the lth kink. Figure 1c shows the distributions
of K of the melt with N = 1000 before and after elongation. We
use the standard deviation sK,eq of the equilibrium distribution
of K as a threshold and pick out the kinks with K > sK,eq in the
strained melt as the effective entanglements, in the sense that
the local tube segments around these kinks are significantly
aligned to the flow direction and contribute to stress. The
effective kinks are denoted in Figure 1a,b. One may be
interested in the difference between the effective kink defined
here and the significant kink proposed by Hsu and Kremer.21,22

Using the primitive path analysis,29 Hsu and Kremer
investigate the kinks in strongly deformed melts and pick out
those with sharp bond angle θ, typically θ ≥ 60°, as the ones
important for mechanical responses. Figure 1d-1,d-2 gives two
examples of the significant kink. According to our definition of
effective entanglement, the kinks shown in Figure 1d-2,d-3 are
effective because their adjacent strands are highly aligned to
the flow direction. In strongly elongated melts, effective kinks
can be more prevalent due to the orientation and stretch of
chains along the flow direction.

Note that the unstrained melt also contains a few effective
kinks. Thus, as to the mean number of effective entanglements
per chain Zee, we subtract such background to reduce the
random thermal effect:

Z n n M( )/ee ee,def ee,eq c= (2)

where nee,eq and nee,def are the average numbers of effective
entanglements in the melt before and after deformation,
respectively.

We will put emphasis on the relaxation dynamics after a
strong step strain, which plays a crucial role in understanding
the nonlinear rheology.1 Figure 2a shows the relaxation of the
tensile stress σt of the melt with N = 1000 after elongation to λ
= 3 calculated by σαβ = −⟨∑ij f ij,αrij,β⟩/2V, where the sum is
over all pairs of beads, and f, r, and V denote force, separation,
and volume, respectively. In the tube model, the relaxation at t
> τe is composed of fast chain retraction, reptation, and CR
motion:1,6
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where ψ(t) is the fraction of PP that has not escaped from the
original tube after a time t deduced from single-chain effects,
L(t) denotes the PP length at time t, and R(t) represents the
CR effect. ψ(t) is given by ψ(t) = ∑p:odd(8/p2π2)exp(−p2t/τd),
where τd is the chain disengagement time.1 As to L(t), recent

studies show that its retraction cannot be described by a simple
exponential form.47,48 We find that it can be fitted by the form
of stretched exponential decay:
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(4)

where Leq is the equilibrium PP length, τppr is the characteristic
time of PP retraction, and β is the stretching exponent (β <
1).49 Figure 3 shows the evolution of L(t) of the melt with N =

1000 after elongation to λ = 1.8, 3, and 5, and curves fitted
with eq 4. The emergence of the less-than-one stretching
exponent β could be due to the heterogeneous dynamics of
chain relaxation.48,49 It is seen that the value of τppr decreases
as the chain stretch enhances. This observation is consistent
with a recent simulation study,18 which suggests that stronger
chain stretch stimulates faster modes with shorter wavelengths,
consequently resulting in faster chain retraction.

For a deformed chain, the release of an effective
entanglement leads to relaxation of the local orientation and
stress. Therefore, R(t) can be tentatively represented by the
decay of Zee(t). Figure 2b shows the case of Zee(t). At t < τppr,
the fast decrease of Zee should be mainly due to the PP
retraction,10 which implies Zee(t) ∼ L2(t). This is indeed the
case for the results shown in Figure 2a,b, while it does not
work for λ = 1.8 due to the weak chain stretch/retraction50 and
the major mechanism here could be the CLF.27 As seen from
Figure 3, the value of [L(0)/Leq]2 at λ = 1.8 is only 1.20. For
comparison, those at λ = 3 and 5 are 1.81 and 3.16,

Figure 2. (a) Stress relaxation of the melt with N = 1000 and λ = 3.
Black solid lines denote the MD result found by σαβ = −⟨∑ij f ij,αrij,β⟩/
2V. Magenta circles and cyan triangles denote the results found with
eqs 3 and 9, respectively. (b) Decay of Zee of the melt with N = 1000
and λ = 3 (open circles).

Figure 3. Retraction of the PP length L(t) of the N = 1000 melt at λ =
1.8, 3, and 5 (symbols). Solid lines denote the fits with the stretched
exponential decay form eq 4. The fitting parameters are presented in
the figure.
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respectively. Starting from t ≈ τppr, Zee(t) behaves as t−1/2. This
time dependence is the signature of the CR-induced Rouse-like
tube relaxation, also known as the CR-Rouse motion.8,43 At t >
10τR, Zee(t) decays exponentially with a characteristic time τCR
due to the reptation of neighboring chains.51,52 Representing
R(t) by the decay of effective entanglements, and setting τd in
ψ(t) to τCR as suggested by the double reptation picture,51 we
calculate σt(t) using eq 3 and show the result in Figure 2a. It is
seen that the tube model nicely describes stress relaxation.

Note that σt(t) relaxes as t−1/2 in the intermediate time range.
This phenomenon, known as the “Rouse ramp”, is a key
prediction of the CR-Rouse model.8,43 Similar phenomena
were seen in previous simulation18 and experimental53,54 data
of stress relaxation (some previous data are summarized in the
Appendix), while the microscopic origin has not been
investigated in detail in these studies. Our analysis clearly
shows that the CR-Rouse motion is governed by the dynamics
of effective entanglements in deformed melts.

Figure 4. Stress relaxation (a) and decay of Zee (b) for N = 700, 1000, and 1500 at λ = 3. The inset in (a) shows the N dependence of τd. Stress
relaxation (c) and decay of Zee (d) of the melt with N = 1000 at λ = 1.8, 3, and 5. The inset in (c) shows the superposition of the stress relaxation
curves, G(t,λ) = σt(t)/hRP(λ). In all panels, we denote the t−1/2 law by orange solid lines.

Figure 5. Entanglement dynamics of the melt with N = 1000 and λ = 3. (a) Monomers participating in a kink that is effective at t = 0 as a function
of time. Solid and open symbols denote the effective and ineffective states, respectively. (b) Evolutions of the distribution of effective entanglements
along PP Pee(l,t) (symbols) and segment survival probability Φ(l,t) (lines) at t ≥ τppr. The data of Pee(l,t) are multiplied by a numerical factor to
compare with those of Φ(l,t). In calculating Φ(l,t), we correct for the dangling-end effect. (c) Distribution of the lifetime τee of the entanglements
that are effective at t = 0 (symbols). The distribution calculated by only considering single-chain mechanisms is denoted by the solid line for
comparison.
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Above analysis suggests σt(t) ∼ ψ(t)Zee(t) at t > τppr. For
this decoupling form, we discuss the following two points. (i)
For entanglements adjacent to the ends of the test chain, they
can be released through single-chain motions or CR. Thus,
such decoupling form should be considered as an approx-
imation for the well-entangled system in which the
entanglements are plentiful. (ii) Considering that the Zee
effective entanglements separate the test chain into Zee + 1
oriented strands, one may expect that R(t) ∝ Zee(t) + 1.
Additionally, the release of the last effective entanglement will
give rise to the relaxation of the last two oriented strands. With
these thoughts, the form of R(t) can be written as R(t) ∝
Zee(t) + exp(−t/τd), in which R(t) crosses over from Zee(t) + 1
to Zee(t) at the terminal regime. Despite the above 2 points, we
emphasize that the key role of effective entanglements in
determining the chain conformation and the rheological
response still holds.

We apply the same analysis to melts with different N and λ.
Figure 4a,b compares the relaxations of melts with N = 700,
1000, and 1500 at λ = 3. The inset of Figure 4a gives τd as a
function of N. τd grows with N as N3.4. The exponent here
agrees with the experimental value and is higher than the
prediction of the reptation theory (3). This deviation was
ascribed to the CLF.3,7 Thus, we suggest that the τd found here
reflects the single-chain mechanism, including both reptation
and CLF. Figure 4c,d shows the relaxations of the N = 1000
melt at λ = 1.8, 3, and 5. According to the tube model, the
stress relaxations in these 3 cases are expected to exhibit the
time-strain separability.1 To test this property, we employ
several common damping functions to superpose the stress
relaxation data: the classical network stress−strain relation
h(λ) = λ2 − λ−1, the Doi−Edwards damping function,1 and the
Rubinstein−Panyukov damping function hRP(λ) = (λ2 − λ−1)/
(λ − λ0.5 + 1).55 It turns out that the Rubinstein−Panyukov
function gives the best superposition, as shown in the inset of
Figure 4c. For the sake of consistency, we use the average
stretch ratio of chains λ̅c, rather than the stretch ratio of melt λ,
to calculate the damping function. Here, the values of λ̅c are
1.76, 2.82, and 4.52, slightly smaller than those of λ. In fact,
both λ and λ̅c well superimpose the stress data with hRP(λ).
This damping function is derived based on the strain-
dependent nonaffinity of the monomer distribution. We will
get back to this point in our SANS model in Section III. In all
relaxations shown in Figure 4a−d, the Rouse ramp is present.
II.II. Dynamics of Effective Entanglement. We trace the

time evolution of all effective entanglements that exist at the
beginning of the relaxation (t = 0) of the melt with N = 1000
stretched to λ = 3. We perform the PP analysis every 0.3τe and
mark the monomers participating in each kink. Figure 5a
shows the monomers participating in a kink that is effective at t
= 0 as a function of time. It is seen that this kink is not always
effective or even disappears sometimes due to the rapid
fluctuation of chains.36 Previous studies employ time and iso-
configurational ensemble averaging38 to reduce such thermal
fluctuation. This procedure, though useful in obtaining a
smooth PP, makes the simulation and data analysis
computation-consuming. In fact, the pivotal dynamical
quantity for justifying the tube model is the segment survival
probability of the mean tube rather than the tube of a specific
chain. We can estimate the survival part of the mean tube with
the statistical distribution of effective entanglements along PP
without time or iso-configurational averaging. Figure 5b shows
the evolution of the distribution of effective entanglements

along PP Pee(l,t) as a function of monomer number l at t ≥ τppr,
during which the PP almost retracts to its equilibrium length.
According to the tube picture, for t ≥ τppr, the segment survival
probability Φ(l,t), i.e., the probability that the segment
containing monomer l is still in the original tube at time t, is
proportional to ψ(l,t)Zee(t), where ψ(l,t) = ∑p:odd(4/pπ)sin-
(pπl/N)exp(−p2t/τd) is the equilibrium segment survival
probability deduced from single-chain effects.1 Figure 5b
compares Pee(l,t) and Φ(l,t) ∼ ψ(l,t)Zee(t), and a nice
agreement is seen. This result suggests that the distribution
of effective entanglements can be considered as an indicator of
the survival tube for deformed polymers.

We identify the destruction of a kink by one chain’s end
passing the other chain, as denoted by the green arrow in
Figure 5a. Figure 5c shows the distribution of the lifetime τee
values of the entanglements that are effective at the beginning
of relaxation. Nearly half of these entanglements release within
t < τppr due to the PP retraction. For t > τppr, we also calculate
the lifetime distribution considering only the single-chain
effects. For an entanglement located at monomer l of the test
chain, the expectation of its single-chain lifetime τee,sc can be
evaluated by ψ(l,τee,sc) = e−1. As seen from Figure 5c, the
lifetime exhibits a significant propensity toward higher values if
only the single-chain effect is considered. This result highlights
the influence of CR on the dynamics of entanglements.

III. EFFECTIVE ENTANGLEMENT FROM SANS
We explore effective entanglements experimentally in this
section. SANS can measure the single-chain form factor S(Q)
(Q is the scattering vector of neutron) of polymer melts with
the aid of deuterium labeling.24 For equilibrium melts,
however, S(Q) is not affected by entanglements and is well
described by the Debye function,26 making the probing of
entanglements impossible. For deformed melts, on the other
hand, entanglements induce deformation-dependent non-
affinity at length scales comparable to the PP step,55−57

suggesting that one can quantify the distribution of
entanglements by characterizing such nonaffinity. By modeling
tube confinement with virtual chains acting on the test chain,
Rubinstein and Panyukov propose an affine monomer
separation Naff = λNe,

55 in the sense that for monomers i
and j in a deformed chain, their displacement undergoes affine
deformation if |i − j| > Naff, while nonaffinity emerges at |i − j|
< Naff. Notice that Naff is also the separation between two
adjacent virtual “cross-links” that connect to virtual chains.
Figure 6a illustrates the idea of this nonaffine tube model
(NTM).
III.I. SANS Model. Inspired by NTM, we propose a model

for the analysis of SANS spectra of deformed entangled melts.
It is seen that the effective entanglements play a critical role in
confining the deformed chain. Thus, we assume that the length
of the PP step of a deformed chain is determined by the
separation between two adjacent effective entanglements Nee
(Nee = N/(Zee + 1)), while the ineffective kinks and relaxed
neighboring chains give no orientational constraint. This is
somewhat similar to the “tube dilation” picture,58,59 which
assumes that the PP step (or tube diameter) is determined by
unrelaxed strands and, consequently, increases with time due
to the release of the initial entanglements. Then, borrowing the
idea of NTM, we obtain the affine monomer separation as Naff
= λNee. To avoid the unphysical situation of Naff > N at large λ,
we practically correct Naff as
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For |i − j| > Naff, the probability ϕ(i,j,r) of finding monomer

j at distance r from monomer i is given by an affine Gaussian

form:
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where b is the bond length and the subscript “M” denotes
model parameters. For |i − j| < Naff, monomers i and j are
within a strand between two adjacent virtual cross-links. Their
distribution depends on the end-to-end vector of this strand Rs.
This conditional probability ϕ(i,j,r|Rs) is simply approximated
by a bivariate Gaussian form.60,61 Then, ϕ(i,j,r) is found as57,60

Figure 6. Nonaffine tube model (NTM) analysis. (a) Illustration of the NTM. (b) S2
0(Q) in the relaxation of the melt with N = 1000 and λ = 3

(symbols) and model-fitting curves (lines). (c) Scatter plot of the number of effective entanglements per chain found from NTM analysis Zee,M and
that from eq 2 with Z1 + code Zee. (d) Separation-dependent stretch ratio λij as a function of monomer separation |i − j| in the relaxation of the
melt with N = 1000 and λ = 3 at t = 0, 2τR, and 10τR (symbols). Results calculated with NTM parameters λM and Zee,M are also shown (lines). (e)
S2
0(Q) in the relaxation of the polystyrene melt after a step elongation to λ = 1.8 (symbols) and the model-fitting curves (lines). (f) Decay of Zee,M

of the polystyrene melt. (g) Stress relaxation of the polystyrene melt (black squares). The results calculated by the NTM parameters are also given
(red circles).
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where β2 = 3/2Naffb2 and wij = |i − j|/Naff. Knowing ϕ(i,j,r),
S(Q) can be calculated through the method given in our
previous paper.57 The details of the model, the calculation of
S(Q), and the following analyses are given in the Supporting
Information. In this model, the chain conformation is
characterized by two model parameters: the stretch ratio λM
and the number of effective entanglements per chain Zee,M. The
relaxation of a deformed chain is reflected by decreasing λM
and Zee,M. This picture, assuming uniform relaxation of
orientation and effective entanglement density along the PP,
is oversimplified. Its usability must be tested by MD results.

As we demonstrate in ref62, the anisotropy of extensional
chains can be quantified by expanding S(Q) in spherical
harmonics as S(Q) = ∑l:evenSl0(Q)Yl0(Q̂), and the coefficient
S2
0(Q) reflects the main anisotropic feature. Figure 6b shows

the S2
0(Q) in the relaxation of the melt with N = 1000 and λ =

3 and the model-fitting curves. By fitting S2
0(Q), λM and Zee,M

are obtained. Figure 6c displays good agreement between the
fitted Zee,M and the Zee found with the Z1+ code. In Figure 6d,
we show the evolution of separation-dependent stretch ratio λij
as a function of monomer separation |i − j|. λij is calculated by

R i j R i j( ) / ( )ij z z
2 2

eq= | | | | (8)

where Rz(|i − j|) is the flow direction component of the end-to-
end vector of the strand from monomer i to monomer j, the
overline denotes the average over monomers on a test chain,
⟨···⟩ denotes the average over all chains, and the subscript “eq”
denotes that the calculation is performed at the equilibrium
state. As seen from Figure 6d, as |i − j| increases, λij grows to a
plateau at |i − j| ≈ Naff, and it slightly decreases as |i − j|
approaches N due to faster relaxation at the two chain ends
and the dangling-end effect. The λij values calculated from the
NTM with fitted λM and Zee,M are also shown. λM is seen to
nicely evaluate the plateau of λij. Moreover, the increase in
nonaffinity during the relaxation is captured by the decay of
Zee,M. The tensile stress in the NTM is given by55

M
V

kT Z( 1)( )t,M
c

ee,M M M
1

M
1/2

M
1/2= + +

(9)

The decay of σt,M, shown in Figure 2a, matches the stress
relaxation. Assuming that the chain is formed by strands
connected by virtual cross-links, one may use the stress
expression for network, expressed as σt,M = MckT(Zee,M +
1)(λM − λM

−2)/V,63 to replace eq 9. These two equations give
very similar results for the decay of normalized stress in our
cases.

III.II. SANS Result. After verifying the effectiveness of the
NTM in extracting Zee and chain conformation, we reanalyze
the SANS data from a set of highly monodisperse polystyrene
melts that we have published in ref57. The samples are
mixtures of protonated and deuterated polystyrene homopol-
ymers with a d/h ratio of 10/90 (h-PS: mw = 197 kg/mol, mw/
mn = 1.01; d-PS: mw = 213 kg/mol, mw/mn = 1.06, and mw and
mn are weight-average and number-average molecular weights,
respectively). According to ref64, the equilibrium number of
entanglements per chain Zeq of the sample is 13.8. The
isotropic samples were uniaxially stretched to λ = 1.8 at 124 °C
with a constant crosshead velocity v = 8l0/τR, where l0 is the
initial length of the sample. The stretched samples were
allowed to relax for different amounts of time at 124 °C at
constant strain and then immediately quenched to the glassy
state for the ex situ SANS measurement. More details about
samples and the SANS experiment are given in the Supporting
Information.

Figure 6e shows the S2
0(Q) of the sample immediately after

the stretch to λ = 1.8 and those during the subsequent
relaxation. The fitted curves are also shown. Figure 6f shows
the decay of Zee,M. Right after the stretch, Zee,M is 11.8, close to
Zeq. At t > τR, a Rouse ramp is seen, which provides direct
microscopic evidence for the Rouse-like tube relaxation
induced by the CR of effective entanglements. Considering
that the polystyrene sample and the simulated melt with N =
1000 and λ = 1.8 have comparable flow condition and
entanglement number, we compare their relaxation processes
in Figure S6 in the Supporting Information. Both the evolution
of effective entanglements and the decay of S2

0(Q) exhibit
similar behaviors for these two systems, suggesting that our
simulation and data analysis capture the major physical
characteristics of entangled melts.

Figure 6g shows the tensile stress relaxation of the
polystyrene measured by a rheometer and that calculated
with the NTM fitting and eq 9. Again, the calculated stress well
captures the stress relaxation. The stress relaxation in this case
does not exhibit a sharp t−1/2 decay. The reason could be that
the chain deformation is not large enough, which results in a
strong coupling between the effects caused by CR and by
single-chain motions. As λ or flow rate increases, the chain
retraction becomes faster and stronger,18 leading to a clearer
separation between its effect and the subsequent CR process,
and a sharp t−1/2 decay can be found.18,53 Interested readers
are referred to the Appendix for more data and discussion
about this point.

IV. CONCLUSIONS
In summary, we identify the effective entanglement in
deformed polymers based on the PP analysis. The distribution
of effective entanglements reflects the survival probability of
the tube segments. The CR effect caused by the motion of
effective entanglements results in a Rouse ramp in the
intermediate range of relaxation, which fits well with the
tube model complemented by the CR-Rouse effect. These
results suggest the importance of effective entanglements in
determining the conformation and rheological response of
deformed polymers. By noticing the strain-dependent local
nonaffinity, we propose a model to extract effective
entanglements from SANS spectra. Applying it to the
relaxation of an entangled polystyrene melt, a Rouse ramp is
clearly revealed, providing experimental evidence of the CR-
Rouse motion at the molecular level.
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■ APPENDIX
In this study, we show that the stress relaxation exhibits a t−1/2

power-law decay after the chain retraction and before entering
the terminal regime. In fact, similar phenomena can be found
in many previous simulation and experimental data. In Figure
7, we replot some data of stress relaxation after step elongation.

Figure 7a shows the simulation results of Kremer-Grest bead−
spring polymer melts with N = 500 and Hencky strain εH ≈
6.18 Figure 7b shows the experimental data of stress relaxation
following steady extensional flow of a 285 kg/mol polystyrene
melt at 130 °C.53 The t−1/2 decay is clearly seen in both panels.
Moreover, it is seen that such feature emerges earlier and
becomes more pronounced as the flow rate enhances.

The t−1/2 law can also be found in the relaxation process
after step shear. Figure 8 reproduces the relaxation data after

step shear from ref 54. The sample is polystyrene solution of
chlorinated biphenyl with a concentration of 0.06 g/cm3 at 30
°C. The molecular weight of the polymer is 8.42 × 106. As seen
from Figure 8, the t−1/2 law emerges at the strain γ = 3.04 and
becomes more prominent as γ increases. Note that, for cases
shown in Figure 7, the strain is fixed while the flow rate
changes. A faster flow rate effectively suppresses the relaxation
during the elongation process and, consequently, results in a
stronger chain stretch. Summarizing the results shown in
Figures 7 and 8, we conclude that the t−1/2 decay becomes
more prominent as the chain stretch enhances. A reason for
this observation could be that the stronger chain stretch will
stimulate faster modes with shorter wavelengths, which leads
to faster chain retraction.18 Then, the separation between the
first (chain retraction) and the second (CR-Rouse) stages of
stress relaxation is sharper, enhancing the manifestation of the
t−1/2 law.
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