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Spontaneous crumpling of active spherical shells†

M. C. Gandikota, a Shibananda Das ab and A. Cacciuto*a

The existence of a crumpled phase for self-avoiding elastic surfaces was postulated more than three

decades ago using simple Flory-like scaling arguments. Despite much effort, its stability in a microscopic

environment has been the subject of much debate. In this paper we show how a crumpled phase

develops reliably and consistently upon subjecting a thin spherical shell to active fluctuations. We find a

master curve describing how the relative volume of a shell changes with the strength of the active

forces, that applies for every shell independent of size and elastic constants. Furthermore, we extract a

general expression for the onset active force beyond which a shell begins to crumple. Finally, we

calculate how the size exponent varies along the crumpling curve.

1 Introduction

It is well known that the energy cost required to deform an
elastic surface is well accounted for by a bending and a
stretching energy term.1–3 Despite its apparent simplicity, the
coupling between bending and stretching modes of deforma-
tion is highly nonlinear for thin elastic materials such as sheets
and shells giving rise to mechanical behavior that is hard to
predict. What makes these materials particularly exciting is that
the ratio between stretching, Es, and bending, Eb, energies
for an arbitrary deformation of amplitude h on a surface of
thickness t scales as Es/Eb C (h/t)2.1 Therefore, for sufficiently
thin surfaces, (t { h), only stretch-free deformations are allowed.
Skin wrinkling under applied stress,4,5 stress focusing via cone
formation of crumpled paper,6 and buckling of thin shells,7 are
just a few examples arising from this global constraint.

The theory of elasticity developed for continuum mechanics
has been successfully used to study a number of microscopic
systems, including viral capsids,8 graphite-oxide9,10 and gra-
phene sheets,11,12 cross polymerized membranes13 and gels,14

the spectrin-actin network forming the cytoskeleton of red
blood cells15,16 and close-packed nanoparticle arrays.17 Signifi-
cantly, at this length-scale, the nonlinear coupling between the
different elastic modes can also be induced by thermal fluctua-
tions with significant consequences for the structure of micro-
scopic surfaces. Thermal fluctuations renormalize the bending
rigidity of thin elastic sheets which become stiffer as their size

increases18–20 leading to the stabilization of a flat phase for two-
dimensional unsupported surfaces. In thin spherical shells,
thermal fluctuations act as an effective negative internal pres-
sure capable of buckling the shell.21

Simple Flory-like arguments22 that work so well in establishing
the scaling laws of self-avoiding polymers,23 predict that self-
avoiding elastic sheets should be found in a crumpled state for
negligible bending rigidities. This state is characterized by the
scaling of the radius of gyration of the sheet, Rg, with its side
length, L, of the form Rg B Ln with the Flory exponent n = 4/5.24,25

Yet, numerical simulations of fully crystalline, self-avoiding elastic
sheets indicate that these surfaces always acquire a rough, but
overall extended (flat), state with a size exponent along their
longitudinal directions n C 1, even in the absence of bending
rigidity.26–29 As of today, it is fair to say that the existence of a
crumpled phase for large tethered membranes in equilibrium
remains uncertain.

Inspired by early experiments of graphite-oxide sheets in
poor solvent30 which seemed to indicate the presence of a
crumpled phase upon improving the quality of the solvent,
simulations were performed to include the presence of attrac-
tive interactions, but the crumpled phase was not observed.29

Interestingly, thin elastic spherical shells in the presence of explicit
attractive forces were initially reported to have a Flory exponent
compatible with a crumpled phase in a temperature window that
falls between the flat and the compact regimes,31 but simulations
with larger shells did not find such intermediate regime.32 For a
comprehensive review on the subject, we refer the reader to ref. 3,
21, 22, 28 and 33. What is certain at this point is that the one way
to reliably obtain a crumpled phase out of elastic thin surfaces is
by quickly compressing them using a large external force,34–37 or
by rapidly dehydrating graphene-oxide nanopaper.38

In this paper, we reconsider this problem within the framework
of active matter, and study the effect of active, non-equilibrium
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fluctuations on the structure of a thin spherical shell. Crucially, we
show how a crumpled phase, develops systematically and reliably
for sufficiently large active forces. While a significant amount of
work has been done to understand the structural and dynamic
properties of active linear and ring polymers,39–44 and more recent
work considered the behavior of fluid vesicles in the presence of
active fluctuations or active agents,45–49 apart from a few recent
papers,50–52 very little is known about how elastic surfaces respond
to non-equilibrium fluctuations, and this is an important problem
given their relevance to biological and synthetic materials.53–55

2 Numerical model

We model the thin spherical shell using a triangulated network of
harmonic bonds56 organized as an icosadeltahedron.57 All vertices
in icosadeltahedra are six-coordinated apart from twelve five-
coordinated vertices (disclinations) as required by topological
constraints. This structures are characterized by two integers
(a,b) which define the relative position on the spherical lattice of
the disclinations, and set the total number of vertices to N = 10(a2 +
ab + b2) + 2. Although most of our data are obtained with this
crystalline structure, we also considered amorphous shells with a
disordered distribution of nodes on the sphere. We construct
amorphous shells by running Monte Carlo simulations of a fluid
membrane (bond flip moves allows for neighbor exchange58) for
sufficiently long time until the bonds are randomized. We then
freeze the bonds and use this as the initial configuration for our
simulations. The rest shape of the crystalline shell is an
icosahedron8 while that for an amorphous shell is a sphere.59

To enforce self-avoiding interactions, we place a spherical
particle of diameter s at each vertex. Each of these vertex particles
are connected to their nearest neighbors with a harmonic
potential. The interaction potential of the system can be written as

U ¼ K
X
hiji
ðrij � sÞ2 þ k

X
hlmi
ð1� gl � gmÞ

þ 4e
X
ij

s
rij

� �12

� s
rij

� �6

þ1
4

" #
; (1)

where rij is the distance between any two vertices i,j. The first term
accounts for the harmonic bonds between nearest neighbor
particles with a spring constant K. The second term is the bending
energy where, k is the bending rigidity of the shell and (gl,gm) are
the normal vectors of any two adjacent triangles, l and m, sharing
an edge. The third term implements the excluded volume inter-
actions between the vertex particles. The potential is cut off at
21/6s and set to zero beyond that distance. Unless otherwise speci-
fied, we set K = 160kBT0/s2, k = 10kBT0, and e = kBT0, where kB is the
Boltzmann constant and T0 is the reference temperature. Activity is
introduced in the system by adding a self-propelling velocity of
constant magnitude vp to each of the node particles. The system
dynamics is resolved using Brownian motion according to60–62

driðtÞ
dt

¼ 1

g
f i þ vpn̂iðtÞ þ

ffiffiffiffiffiffiffi
2D
p

nðtÞ;
dn̂iðtÞ
dt

¼
ffiffiffiffiffiffiffiffi
2Dr

p
nrðtÞ � n̂iðtÞ;

(2)

where i is the particle index and the unit vector n̂ is the axis of
propulsion. The conservative forces on each particle are denoted by
fi = �qU/qri. The translational diffusion coefficient D, temperature
T0 and the translational friction g are constrained to follow the
Stokes–Einstein relation D = kBT0g

�1. Likewise, the rotational
diffusion coefficient is constrained to be Dr = kBT0gr

�1, with Dr =
3Ds�2. The Gaussian white-noise terms induced by the solvent for
the translational n and rotational nr motions are characterized by
the relations hn(t)i = 0 and hxp(t)xq(t0)i = dpqd(t� t0) (here the indices
p and q stand for the Cartesian components x, y, z).

The simulations have been carried out using the numerical
package LAMMPS63 and the units of length, time and energy
respectively are set to be s, t = s2D�1 and kBT0. Consequently,
the spring constant K, bending constant k and self-propulsion
speed vp are measured in units of kBT0/s2, kBT0 and s/t
respectively. Physically, t is the time taken for a passive particle
to diffuse a length of s. All simulations were run with a time
step smaller than Dt = 2 � 10�6t. We record the state of the
system every 105 time steps. After the system reaches a steady
state as indicated by the saturating values of the shell volume,
we collect statistics for a time period B(103 � 104)t, which
amounts to a minimum of one billion time steps for the smaller
systems and up to 10 billion time steps for the largest. For both
crystalline and amorphous shells, most of the data we report
are for elastic constants of K = 160 and k = 10.

3 Crumpling of active shells

With our choice of elastic constants K and k, crystalline shells
acquire a well-defined icosahedral state when thermalized in
the absence of active fluctuations. This is expected8 given that

with our parameters, the Föppl–von Kármán number gF ¼
4

3
KR2=k� 102 for every shell radius R considered in this study

for N A [1922, 12 002]. We begin our analysis by monitoring the
volume of the shell as a function of increasing values of the
strength of the active forces. For small values of vp, the shells
develop smooth surface undulations on the scale of the shell
radius without altering its overall shape. Upon increasing the
activity, these undulations deepen resulting in a monotonically
decreasing shell volume and a disruption of its global symme-
try. For even larger self-propulsion velocities, the shell crum-
ples to a volume that saturates at roughly 20% of its original
value V0 = (4/3)pR3. See the ESI† for the cross-sections of locally
flat and crumpled spheres.

Interestingly, repeating the same calculations with different
crystalline8 and amorphous shell59 sizes N A [1922, 12 002]
result in normalized volume V/V0 curves with only a weak size
dependence at larger self-propulsion speeds (ESI†). Fig. 1
shows the results of this analysis. We find the flex of this curve,
calculated by evaluating the maximum of |dV/dvp|, to be a
reasonable estimator of the onset self-propulsion speed,
v�p � 30, beyond which the shells begin to crumple. Our results

clearly show that the activity-induced crumpling of the shell is
quite general and does not depend on the initial specific
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structure of the shell (crystalline or amorphous). We should
also stress that the maximum of |dV/dvp| does not show a
diverging peak with system size, suggesting that for this system,
crumpling is a smooth process devoid of singularities rather
than a real phase transition.

To understand how the onset value, v�p, depends on the
elastic parameters of the membrane, we performed the same
calculations with different sets of stretching and bending
rigidities, in the range of K A [160, 3000] and k A [10, 80].
Remarkably, as shown in Fig. 2, all data collapse into an
empirical master curve of V/V0 against vp/(K0.125k0.5). This
suggests a universal crumpling onset for any shell size and

any set of elastic constants beyond v�p ’ 5K1=8k1=2. To ensure

that the collapse of data is not an artifact of the choice of
bending energy chosen in eqn (1), we also considered a bending
energy based on calculating squares of local averages of mean
curvature.58,64 We find that the results stand independently of
the specific discretization of the bending energy (ESI†). If the
dependence on k could be, in principle, rationalized by rein-
terpreting activity as an effective temperature generating fluc-
tuations that carry an energy that scales as vp

2, and one would
expect vp

2 4 k, i.e. vp 4 k1/2, for the shell to begin to crumple,
this simple argument does not, however, explain the weaker
dependence on the stretching constant. Furthermore, despite
our best attempts, we were unable to use temperature to
crumple our shells in equilibrium. Although, partial buckling
of the shell can be achieved by increasing the temperature of
the bath at equilibrium,21,59 our simulations at high tempera-
tures show no crumpling of the shell.

As a possible estimate of the size of the active fluctuations to
be mapped into an effective temperature in our system, we
considered a recent work on ideal active membranes which
used the same model for an open elastic sheet. In that case an

effective temperature was obtained by matching temperature
and activity at the crumpling transition point, yielding an
effective temperature Teff = (1 + 1/42vp

2)T0.50 For a bending of
k = 10, the crumpling of active shells at v�p � 30 would then

correspond to Teff E 22 T0. Alternatively, one could try to
estimate the extent of the active fluctuations using the active
energy scale ksTs = gvp

2/(6Dr).
65 In this case one would obtain an

effective temperature Teff E 55T0. We however find that even at
temperatures of the thermal bath reaching values as large as
100–200T0, passive equilibrated shells do not show signs of
crumpling. For instance, at T = 100T0, even when we provide a
crumpled shell as the initial configuration, the volume of the
shell re-swells over time to 60% of its original volume (ESI†).
This suggests that the crumpled conformation of the shell is
distinctly non-equilibrium in nature, and a simple temperature
mapping of the activity is not sufficient to explain our data.

4 The Flory phase

So far, we have used the term crumpled quite loosely and with
the only intent of providing a visual description of the shape of
the shell at large active forces. To accurately characterize the
physical properties of this phase, we now calculate the size
exponent, n, for the shells deep into the crumpled phase. For a
shell with elastic constants K = 160 and k = 10 discussed in
Fig. 1, we set vp = 100. We evaluate the size exponent by
computing the shell structure factor S(q) for different values
of the shell radii R p N1/2. We then plot S(q) against qRn, and
find the value n for which all data points collapse onto the same
curve within the range 2p/Rg and 2p/s. The results of this
analysis are shown in Fig. 3. The best collapse is obtained
for n = 0.76(6), a result within error bars of the Flory exponent
n = 4/5 predicted for the crumpled phase of self-avoiding
membranes, and clearly different from n = 1 and n = 2/3
associated with the flat and the compact phase, respectively.

Fig. 1 The monotonically decreasing normalized volume (V/V0) as a
function of the self-propulsion speed vp, for shells of different size, N
and different structure (crystalline/amorphous). Simulation snapshots for
the crystalline shell with N = 7682 are shown at vp = 10 and 100. While the
shells are constructed as triangulated networks of particles and bonds, we
display them here as continuous surfaces for representation purposes. The
elastic constants are K = 160 and k = 10.

Fig. 2 The collapse of normalized volumes (V/V0) as a function of
vp/(K0.125k0.5) for various elastic spring constants K and bending constants
k. The size of the crystalline shell is N = 4322.
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We also evaluated how the size exponent of the shell
depends on the strength of the active forces along the full
spectrum of the shape transformation. What we find is that the
size exponent crosses over continuously from n = 1 in the
icosahedral/spherical state, to n = 0.76 in the collapsed state.
We do observe somewhat faster change beyond vp = 30 which
we had identified as the onset self-propulsion speed for crum-
pling. The results are shown in Fig. 4. Given the computational
cost of these calculations, the values of n in Fig. 4 for the largest
values of vp are obtained by collapsing the power-law regime of
the structure factor as discussed above using five curves (rather
than seven) associated with shells of size N = 1922, 3002, 4322,
5882, 7682. We calculate the exponents and error bars using a

measure that quantifies the quality of collapse.66 Given that for
vp r 30, the shell has a simpler icosahedral shape, the
structure factor has multiple peaks and does not exhibit a
power-law behaviour. In this low-activity regime, we instead
find the size exponent by fitting the size scaling of the radius of
gyration Rg(R) = aRn.

5 Conclusions

In this paper, we carried out extensive numerical simulations to
understand the role of active fluctuations on the structural
properties of thin elastic shells. Remarkably, we observe that
thin shells easily and fully crumple under the presence of active
fluctuations. Furthermore, we discovered that for different
elastic constants, the curves describing the relative volume
change of the shells as a function of the strength of the active
forces, collapse into a single universal curve when appropriately
normalized. Along this curve, the size exponent continuously
decreases from n = 1.00 to n = 0.76 � 0.06, and the latter is
compatible with the elusive crumpled Flory phase postulated
for thermalized self-avoiding elastic membranes. While ther-
malized membranes are found to depart their flat phase only
with explicit attractive interactions,27 active shells which are
distinctly out of equilibrium are seen to crumple even in the
absence of explicit attractive interactions.

The crumpled structures of quasi non-extensile surfaces such
as paper or aluminium-foil unattainable by simple equilibration
of their microscopic counterparts can also only be formed by
non-equilibrium means and are found to be in the Flory
phase.35–37 While these remain static in a quenched disordered
state, the crumpled phase of active shells continuously fluctuates
exploring the ensemble of crumpled configurations.

It is known that sufficiently large thin spherical shells
buckle due to an effective negative pressure generated by
thermal fluctuations.21,59 However, in the absence of an explicit
internal pressure,67 we found no evidence of crumpling in such
equilibrated shells even when the strength of the thermal
fluctuations become comparable to that of the harmonic bonds
that keep the shell together. This is not surprising as a
crumpled phase at such large temperatures would be entropi-
cally unfavorable, suggesting that activity cannot be mapped
into an effective temperature for thin spherical shells. For
equilibrated shells with large negative internal pressure, the
shells collapse into shapes with a size exponent of n = 1.00 �
0.03 (ESI†). Thus the crumpled phase of active shells cannot be
qualitatively mapped to shells that are collapsed using explicit
inward pressure. The crumpling of active shells is a particularly
intriguing result because we have recently shown that active
elastic sheets (rather than spherical shells) behave similarly to
high temperature passive sheets.50 Specifically, a crumpled
phase was not found in that instance as the sheet remained
extended for all self-propulsion velocities considered in that
study. Our results thus raise questions about the role of
intrinsic curvature and topology in these systems. More work
is currently underway to sort out their roles.

Fig. 3 log–log plot of the structure factor S(q) for different shell sizes N,
at vp = 100, as a function of the rescaled wave vector qRn. The best
collapse of the data for q 4 2p/Rg is shown in this figure and is obtained for
n = 0.76 � 0.06 which is within error bar of the Flory exponent n = 4/5. The
elastic constants are K = 160 and k = 10.

Fig. 4 Size exponent of an elastic shell n as a function of the self-
propulsion speed vp. The elastic constants are K = 160 and k = 10. The
dotted lines indicate the size exponents of a spherical (n = 1) and a
compact (n = 2/3) phase. The dash-dotted line at n = 4/5 marks the
crumpled Flory phase. While the shell is locally flat for vp 	 v�p ¼ 30, the size
exponent for larger values of vp show a clear departure from the flat phase
and saturates to n E 0.76 for vp 4 v�p.
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It is worth noting that studies of the one-dimensional
analogs of our system, active rings in two dimensions, present
a re-entrant behavior of the radius of gyration with activity.
In that case, a narrow region for intermediate activities where
the ring collapses has also been observed, but this is immedi-
ately followed by a re-swelling at larger activities.44 We verified
that re-swelling does not occur in our system by running a few
simulations at larger activities vp = 200, 400 (data not shown),
making the two-dimensional shell qualitatively different from
its lower dimensional counterpart.

More recently, the role of non-equilibrium fluctuations on
the shape of an elastic shell has also been tested by performing
Monte Carlo simulations with an explicit detail-balance break-
ing rule.52 In this case, buckling of the shell was observed as a
function of the degree of detailed balance breaking, but a
crumpled phase was not observed.

Potential realizations of active shells could be constructed
with water permeable elastic capsules using polymers. In
principle one could use porous cross-linked polymeric vesicles
with tethers connecting active particles to their surface, or
cross-polymerized colloidosomes built from active particles.
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