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In this paper, we present a new approach to finite element modeling of a nanoparticle filled polymer sys-
tem that utilizes the actual and statistically reconstructed microstructures of the material. Typically,
description of polymer nanocomposites for microstructure generation is difficult given the high degrees
of freedom inherent in the location of each nanoparticle. The lack of true microstructure utilization hin-
ders our ability to understand the interaction between the nanoparticle and polymer, which cannot easily
be deconvoluted from experiments alone. We consider here a material system of carbon black particle
fillers dispersed in synthetic natural rubber. Scanning Electron Microscope (SEM) images are first taken
of these carbon black-rubber composites samples and then transformed into binary images. The binary
images from either a microscope image of original specimens or microstructure reconstruction according
to the material statistical description are used as geometric inputs for the finite element model along
with experimentally determined viscoelastic properties of pure rubber. Simulations on the viscoelastic
properties of the rubber composites are performed through ABAQUS. The simulated results are then com-
pared with composite viscoelastic data in both frequency and temperature domains. The comparison
shows that for the specific rubber/CB composite discussed in this paper, the thickness being 25 nm
and relaxation time being 32 times that of matrix polymer provide the best approximations for the prop-
erties of interfacial polymer.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction viscoelastic responses [1–4]. The composite material composition
Polymer nanocomposites are materials composed of polymeric
matrix in which inclusions (spheres, nanotubes, platelets) of nano-
scale dimensions are incorporated. Polymer nanocomposites have
been investigated for the past decade because of their outstanding
material properties and great potential. The addition of nanosize
inclusions into polymer matrix combines the advantage of polymer
itself and the excellent properties of nanoparticles. Additionally,
interactions between the nanofillers and the surrounding polymer
chains alter the mobility of these polymer chains, resulting in a
regime of ‘‘interphase’’ polymer, in which the material properties
differ from the bulk matrix. Due to the high surface-to-volume
ratio of nanofillers, the effects of this special region play an impor-
tant role in the overall properties of nanocomposites, especially
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and properties are highly tunable, and performance improvements
are currently demonstrated for a wide range of properties includ-
ing stiffness, strength, heat resistance, optical properties, electric
conductivity and barrier properties [5–11], leading to a wide range
of applications in vehicle, aerospace, medical device industries
[12–15].

At the same time, the sensitivity of final nanocomposite proper-
ties to small changes in processing, functionalization, additives,
and volume fraction has made development of these materials dif-
ficult. Much of the property sensitivity can be linked to two factors:
(1) changes in dispersion/distribution of nanoparticles and (2)
chemical interaction differences between particle surfaces and
matrix polymer. Both of these factors affect the properties, extent,
and connectivity of interphase domains in the composite system.
Therefore, development of methods which can directly link
nanoparticle morphology to properties are valuable toward funda-
mental understanding of the underlying physics, as well as for
facilitating material design. This paper deals directly with this
needed research.

http://dx.doi.org/10.1016/j.compscitech.2012.03.020
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Many modeling frameworks have been developed to explain
the material properties of polymer composites with nanofillers.
These include methods at both nanoscale (molecular dynamics
[16–21]) and micros/macro scale (continuum theories [22–24]).
Although MD simulations are able to capture the configurations
of polymer chains and particles embedded at nanoscale, they could
only account for structures with small number of particles and
limited polymer chains due to the computational constraints. To
study the mechanical responses of polymer nanocomposites at
micro/macro scale level, many continuum models have been
developed, including rule-of-mixture, self-consistent scheme
[25–27], Mori–Tanaka method [28], etc. However, these methods
do not explicitly consider spatial distribution of nanoparticles.

The finite element method is another continuum model that has
been widely used to predict the viscoelastic properties of polymer
nanocomposite systems [29–31]. Recently Qiao and Brinson
[32,33] developed a 2D plain strain finite element model to study
the impact of interphase on the viscoelastic properties as well as
thermal response of polymeric nanocomposites. In this model, fi-
nite element analysis is performed on a representative volume ele-
ment (RVE) with periodic structure (inhomogeneous distribution
of particles inside a unit square). Their results show that the distri-
bution of particles has a significant impact on the interphase per-
colation and further influence on the viscoelastic properties of
the bulk composites.

Among the various kinds of polymer nanocomposites, carbon-
black/rubber composites is one of the most commonly used mate-
rials worldwide in communication, transportation, architecture
industries [34]. The creep and relaxation behaviors of carbon black
filled rubber systems have been received increasing attention re-
cently [35–38]. Constitutive models [39,40] attempting to charac-
terize their viscoelastic behaviors are also developed for large
deformations. Montes and White [41] presented a rheological
model to distinct composites with low interaction (viscoelastic)
and high interaction (‘thixotropic-plastic-viscoelastic’) between
rubber and carbon black particles. The morphology of carbon black
dispersed in rubber is a challenge in predicting the mechanical
behaviors of the composites.

In this work, we built up a microstructural image-based finite
element framework to simulate and predict linear viscoelastic
mechanical responses of carbon black-rubber composites. We fo-
cus on detailed characterization of the microstructure morphology
which has twofold benefits. First, it enables a quantitative under-
standing of the microstructure–property relationship and the sen-
sitivity of various descriptors of microstructure morphology, such
as clustering, percolation, dispersion, and orientation of inclusions,
with respect to their impacts on the prediction of bulk properties
[42,43]. The knowledge gained from this can be further utilized
for sophisticated material design through shaping the microstruc-
ture morphology via controlling ingredients and manufacturing
processes [42,43]. Second, based on the statistical descriptors, a
microstructure can be reconstructed from a sample space to reduce
the need for difficult and time consuming high resolution imaging
techniques like scanning or transmission electron microscopy
(SEM, TEM). In the situation where three dimensional (3D) imaging
like X-ray microtomography technique is not affordable or unavail-
able and information about the isotropy of the material is known,
the 3D structure of heterogeneous material can be reconstructed
using statistical information extracted from 2D planar cuts and
extrapolated to the third dimension [42–47]. To predict the mate-
rial property of a given microstructure, the binary digitized med-
ium from either the real microscopic image of specimens or
microstructure reconstruction are imported into ABAQUS input file
as the geometries of the finite element model. The predicted tan d
curves of the composites are compared with experimental tan d
curves from DMA (Dynamic Mechanical Analysis) tests. Due to
the complexity of retrieving interphase properties from experi-
ments, the unknown interphase properties can be extracted by
calibration to best fit the experimental results.
2. Modeling framework

2.1. Data-driven framework for microstructure construction

A data-driven framework was developed to generate binary dig-
itized medium from the grey SEM image [48]. It includes five steps
as shown in Fig. 1. The grayscale microstructure images are taken
by a high-resolution imaging technique (SEM shown in Fig. 1) in
Step 1 and act as the data driving the rest of the process.

For two-phase materials like the carbon black filled rubber
composite, Step 2 transforms a high-resolution grayscale image
to a binary image that discretely separates the two phases. Two
image enhancement algorithms, namely the contrast-adjustment
method and the median noise filtering algorithm, are first used
to increase the quality and contrast of the grayscale images before
transformation [49]. The known volume fraction of the experimen-
tal samples are used as the threshold criteria for determining white
and black pixel populations.

In step 3 we characterize the microstructure morphology with a
set of statistical descriptors based on the binary digitized medium.
A variety of descriptors have been proposed to quantify the inher-
ent statistical characteristic of material microstructure [50–54].
Two point correlation function S2(r) and two-point cluster correla-
tion function C2(r), defined as the probability of finding a pair of
points in the same phase and the probability of finding a pair of
point in the same cluster respectively, are chosen to characterize
the carbon black filled rubber composite in our study [55,56]. An
illustration of the two-point correlation and two-point cluster cor-
relation of a polymer composite with 20% carbon black fillers is
shown in Fig. 2.

Given the statistical descriptors from the real micro structural
image, i.e., two-point correlation and two-point cluster correlation,
the microstructure can be reconstructed in a statistical sense. In
Step 4, the microstructure reconstruction is naturally formulated
as an optimization problem where the discrepancies between the
target statistical descriptors and that of a reconstructed image
are minimized [46,47,55,50,57,58]. The simulated annealing algo-
rithm is developed to resolve the resulting optimization problem
[46,47,56], and to find the ‘‘optimal’’ material configuration based
on thousands of microstructures generated in a stochastic fashion.
The detailed procedures of the optimization can be found in [48].
Many such statistically equivalent microstructures can be gener-
ated through Step 4. Then in Step 5, the binary digitized medium
from either the real microscopic image of specimens or microstruc-
ture reconstruction will be imported into ABAQUS as the geome-
tries. An example of the comparison between the original image
and reconstructed images is shown in Fig. 3.
2.2. 2D Finite element simulation

We adopted a 2D plain stress finite element model to predict
the tan d curve of carbon black filled rubber composites and com-
pare with experimental data. The discretization of a 2D binary im-
age directly retrieved from either the SEM image of rubber-carbon
black composite sample or statistical microstructure reconstruc-
tion is used as one input geometry into our FE model (Fig. 4). In this
process, the image with its physical size 7.46 lm � 7.46lm is di-
vided into 300 � 300 pixels, where each pixel has the initial mate-
rial properties of either carbon black or the matrix, depending on
the color (black or white) of the pixel in the image. Therefore the
pixels belonging to particle phase correspond to carbon black
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Fig. 2. An illustration of correlation functions for a sample with 20% carbon black filler. (a) The two-point correlation function S2; (b) The two-point cluster correlation C2.
(r = distance in pixels).
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nanoparticles with the diameter 25 nm. Calculations are then per-
formed on the experimentally defined material geometry and on
statistically equivalent geometries. The results of the ABAQUS sim-
ulations can be compared to understand the effectiveness of the
statistical reconstruction. We chose the RVE size as 300 � 300 be-
cause we found this was the minimum size that could give us a
convergent material response.

To consider the influence of interphase polymer on the effective
properties, multiple layers of interphase pixels are added sur-
rounding the carbon black pixels into the image, in order to define
the interphase region. Each pixel corresponds to a 4 noded plane
stress quadrilateral element in the model (see Fig. 5).

2.3. Material parameters: DMA tests and mastercurve construction

From Dynamic Mechanical Analysis (DMA), we can obtain the
storage and loss modulii of neat rubber and carbon black filled
samples in both temperature and frequency domain. Fig. 6a shows
the change of tan d with temperature at the frequency 11 Hz. The
Time-Temperature-Superposition-Principle (TTSP) is used to trade
off temperature for time and to combine mechanical tests of prac-
tical duration at multiple temperatures to determine the frequency
dependent properties [59]. The combined curve is called the mas-
tercurve. Fig. 6b shows the mastercurves of neat rubber (SNR) and
composites (SNR-C5) samples. This frequency response of neat
rubber is then used as the input of the matrix properties in this
FE model, while the composite mastercurve is used for comparison
with the simulated results from the ABAQUS model. It is clearly
shown that the tan d curve has been broadened in both frequency
and temperature domain due to the nanofiller reinforcement. Also
the tan d peak of composites shifts towards higher temperature
(lower frequency) compared with that of the neat rubber. It is to
be noted that for the purpose of comparison, each curve is normal-
ized at it maximum value and thus has the peak at 1.

In the simulation, the volume fraction of carbon black in the
rubber composite is 20%. The carbon black particles are regarded
as elastic with the instantaneous Young’s modulus 100 GPa and
Poisson’s ratio 0.4. The properties of the interphase (polymer with
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Fig. 3. An example of an original image and its reconstructed images.
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Fig. 4. Method to obtain finite element simulations on microstructure: transform SEM image to binary image, compute statistical equivalent reconstructed binary image,
discretize images into meshes and solve for effective response in ABAQUS. Image shown is 20% carbon black. The meshed image shows only portion of the whole geometry.
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altered properties) are regarded as related to those of the bulk
polymer matrix by a simply shift in the frequency domain towards
lower frequency (Fig. 7), representing an attractive interaction be-
tween the polymer and the filler. The extent of interphase and the
amount of shift will be tuned in the last step of the analysis with
aim of determining the optimal properties and domain size which
enable the predicted curve from finite element simulation to best
fit with the experimental curve.

3. Results and discussion

3.1. Images and statistical replicas

To illustrate that the proposed statistical descriptors, i.e., two-
point correlation and two-point cluster correlation, adequately
represent the microstructure for reconstruction, the finite element
simulation results for both the original and several reconstructions
are plotted in Fig. 8. As observed from Fig. 8, the reconstructed dig-
itized microstructure has almost the same material behavior pre-
diction with that using the original digitized medium. As the
volume fraction of interphase increases with thicker interphase
layers, the tan d peak shifts from being dominated by matrix poly-
mer tan d to being dominated by interphase polymer. Geometric
percolation of interphase occurs when interphase thickness is
equal to twice of pixel size in both the original and reconstructed
images. Some discrepancies between the magnitude of the tan d
are observed in the less percolated cases due to differences in
the extent of the percolation with different geometries. However,
the location of the tan d peak is nearly identical for all cases except
for the one when percolation occurs (thickness = 2). Thus, the
reconstructed images provide a qualitatively reasonable prediction
of the composite material viscoelastic response.



Fig. 5. Incorporating interphase zones of different extent into a given microstructural RVE. One to three layers of interphase pixels surrounding the carbon black particles.

−60 −55 −50 −45 −40 −35 −30 −25
0

0.2

0.4

0.6

0.8

1

Temperature (° C)

N
or

m
al

iz
ed

 ta
n 

δ

 

 

SNR (DMA)
SNR−C5(DMA)

10−4 10−2 100 102 104
0

0.2

0.4

0.6

0.8

1

Frequency ω (Hz)

N
or

m
al

iz
ed

 ta
n 

δ

 

 

SNR(DMA)
SNR−C5(DMA)
Matrix (FIT)

(a) Temperature Domain (b) Frequency Domain

Fig. 6. Experimental DMA data of normalized tan d in both temperature domain and frequency domain, the latter obtained via TTSP. The frequency response of SNR matrix
was then fit by Prony Series which can be imported into ABAQUS.

10−5 100 105105

106

107

108

109

1010

Frequency ω (Hz)

E’
 a

nd
 E

" (
Pa

)

Shift of
Relaxation

time

Interphase

E"

E’

E"
MatrixE’

Fig. 7. Relation of material properties between interphase and bulk matrix by a
simple shift in frequency/time space representing increase of relaxation times in
the interphase domain relative to the matrix polymer.

H. Deng et al. / Composites Science and Technology 72 (2012) 1725–1732 1729
3.2. Finite element simulation results and comparison to experiment

To compare with the experimental data of the rubber-carbon
black composites, both frequency and temperature response simu-
lations were performed with the above 2D FE model. Direct Steady
State Dynamic analysis is performed to simulate the frequency re-
sponse of the rubber composites. To simulate the temperature do-
main response, models at various temperatures are generated by
altering Prony Series coefficients for matrix and interphase using
the shift factors obtained from the process of mastercurve con-
struction via TTSP. Simulations of these models at different tem-
peratures are then performed at a fixed frequency point, to
ultimately produce a temperature-sweep simulation curve at a
given frequency. Since experimental determination of local inter-
phase properties remains challenging [60], the simulations to-
gether with composite experimental data provide a way to solve
an inverse problem to determine possible interphase properties.
Although there are many parameters about the interphase proper-
ties (density, thickness, relaxation time, stiffness, glass transition
time), the thickness and relaxation times are found to have
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dominant impacts on the composite properties. It is known from
literature on polymer thin films that the relaxation times are
significantly altered near an attractive or repulsive substrate, dem-
onstrated by significant changes in glass transition temperature
[61–63]. Thus, here we change the thickness (number of pixels)
and the relaxation times (decades of shift as indicated in Fig. 7)
of the interphase, to study their effects on the tan d curve of the
composites.

From experimental observations, the range of influence of
nanoparticle reinforcement on the polymer chains can be as large
as tens of nanometers. Thus we model the interphase region with
the thickness from 1 to 3 pixel layers (25–75 nm) and set the
decades of shift (Ds) as 2.0 (see Fig. 9). It is to be noted that uni-
form properties are assigned through the interphase regime.
Again for the purpose of comparison, each tan d (E00/E) curve is
normalized at its maximum value. The results show that modeling
the interphase region by one layer of pixel (�25 nm) provides the
best match between the simulated curves and the experimental
curve. Therefore t = 1 is chosen as the default value of interphase
thickness, and we further vary the value of Ds. from 0.5 decade to
2.0 decades). The simulation results indicate that assuming inter-
phase properties shifted 1.5 decades toward lower frequencies
from the matrix master curve, fit the experimental curve best
(Fig. 10).
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From Figs. 9 and 10 we observe that the location of the tan d peak
and the increase in breadth is well captured by the model with opti-
mized interphase parameters. While this exercise does not provide
a unique definitive solution for interphase, it does provide a reason-
able set of properties that can extend our understanding of the
interphase regime. In this case, the results indicate that the inter-
phase zone is around 20 nm in extent with relaxation time approx-
imately 101.5(�32) times that of the matrix polymer. Application of
this method to similar material systems with changes in interaction
chemistry may enhance our understanding of the impact of those
chemical changes on interphase properties and extent.
4. Conclusion

We present an image based finite element approach to model
heterogeneous materials. The viscoelastic responses (tan d) of rub-
ber/carbon black composites are simulated and compared with
experimental data. SEM images of rubber/CB samples are first dig-
itized and used as the original microstructure of the finite element
geometry. Based on this original microstructure, statistical charac-
terization is performed on and reconstructed microstructures with
equivalent statistical information are generated. The proposed
microstructure characterization and reconstruction process are
validated through the comparison of the predicted material prop-
erties between simulations on original microscope images and
reconstructed microstructure from the statistical descriptors of
the original microscope images. This validation implies that it is
then valid to use statistically created microstructures in order to
probe the design space of new materials, which have not yet been
made and therefore for which no SEM images yet exist. Using
experimental data on the composite, by optimizing the extent
and properties of interphase domain, the proposed finite element
model provides a qualitative match between the predicted tan d
curve and the experimental data. This method allows for extraction
of viscoelastic properties of the interphase that are not possible
through microstructures that are not based on the actual samples.
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