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Abstract
Polymer‐based dielectrics are extensively applied in various electrical and electronic de-
vices such as capacitors, power transmission cables and microchips, in which a variety of
distinct performances such as the dielectric and thermal properties are desired. To fulfil
these properties, the emerging machine learning (ML) technique has been used to
establish a surrogate model for the structure–property linkage analysis, which provides an
effective tool for the rational design of the chemical and morphological structure of
polymers/nanocomposites. In this article, the authors reviewed the recent progress in the
ML algorithms and their applications in the rational design of polymer‐based dielectrics.
The main routes for collecting training data including online libraries, experiments and
high‐throughput computations are first summarized. The fingerprints charactering the
microstructures of polymers/nanocomposites are presented, followed by the illustration
of ML models to establish a mapping between the fingerprinted input and the target
properties. Further, inverse design methods such as evolution searching strategies and
generative models are described, which are exploited to accelerate the discovery of new
polymer‐based dielectrics. Moreover, structure–property linkage analysis techniques such
as Pearson correlation calculation, decision‐tree‐based methods and interpretable neural
networks are summarized to identify the key features affecting the target properties. The
future development prospects of the ML‐driven design method for polymer‐based di-
electrics are also presented in this review.
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1 | INTRODUCTION

Polymer‐based dielectrics are extensively used in various elec-
trical and electronic devices such as capacitors [1, 2], power
transmission cables [3, 4] and microchips [5, 6]. To adapt to
different work scenarios, a variety of distinct properties such as
dielectric and thermal parameters are desired for polymers,
which can be tuned through tailoring of the chemical and
morphological structure or adding nanofillers/additives to
form nanocomposites [7–10]. Extensive efforts have been
devoted to the design and development of polymer‐based di-
electrics to optimize their properties [11, 12]. However, due to
the vastness of the chemical and structural space of polymers
and nanofillers, the efficient development of polymers or
nanocomposites are hampered by the high‐cost and time‐

consuming experiments in the traditional scientific intuition
or trial‐and‐error approach. As a result, new paradigms are
expected to efficiently design polymer‐based dielectrics with
desired properties [13, 14].

The emerging machine learning (ML) technique trained on
massive amounts of data establishes linkages between input
fingerprints and output properties, which provides a powerful
surrogate model for the structure–property linkage analysis
[15–19]. Further, inverse design methods such as evolution
searching (ES) strategies and generative models can be
employed to explore the large space of potential materials,
greatly accelerating the discovery and development of new
polymers [20, 21]. For instance, Mannodi‐Kanakkithodi et al.
and Sharma et al. developed a ML‐based genome approach to
accelerate the discovery of on‐demand polymers such as those
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with desired dielectric constant, energy density and glass
transition temperature, and several potential polymers have
been identified [22, 23]. Based on the high‐throughput phase‐
field calculations, Shen et al. presented a ML strategy to eval-
uate the energy storage capability of polymer nanocomposites
[24]. We have also schemed ML models to accelerate the
rational design of polymers with high thermal conductivity and
polymer nanocomposites with desired dielectric properties
[25, 26].

Figure 1 illustrates the workflow of ML methods for the
rational design of polymer dielectrics. A dataset composed of a
sufficient number of samples with known properties is pre-
pared to train the ML models, in which the data can be derived
from experiments or high‐throughput computations [27–30].
The samples in a high‐performance dataset are representative,
which uniformly extracted from the whole data space. The
second key component of ML methods is the representation of
polymers or nanocomposites with a list of machine‐readable
characters, which are called ‘fingerprints’ or ‘descriptors’. The
selected features in fingerprints should be representative, that
is, they must have some effects on the output properties, which
can be chemical and structural features or characteristic pa-
rameters (e.g. band structure and density of states) depending
on the target property [31]. Linear notations such as the
simplified molecular‐input line‐entry system (SMILES) are
common fingerprints describing the chemical information of
polymers. Using the training dataset as input, the linkage be-
tween fingerprints and target properties can be learned by ML
models such as kernel‐based regression, decision tree and
neural network, resulting in a surrogate model for predicting

dielectric properties [32, 33]. Further, inverse design methods
such as ES strategies and generative models can be employed
to screen the large space of potential materials, which greatly
accelerates the discovery and development of new polymers
[32, 33]. Moreover, the key features affecting the target prop-
erties can be identified by structure–property linkage analysis
techniques such as Pearson correlation calculation, decision‐
tree‐based methods and interpretable neural network.

This paper attempts to provide an overview of the appli-
cation of ML‐driven methods for the rational design of poly-
mer or nanocomposite dielectrics. In Section 2, we discuss
methods of generating training dataset. Next, the fingerprints
of polymer‐based dielectrics and the ML algorithms used in the
property prediction are summarized in Section 3. We then
review rational design protocols such as inverse design and
structure–property linkage analysis methods in Section 4.
Finally, the conclusions and future perspectives are summa-
rized in Section 6.

2 | DATASET

The ML methods used in designing polymer‐based dielectrics
mostly involve supervised learning, in which the reliability of
these models is largely determined by the amount and quality
of samples in the training dataset. Online libraries, experiments
and high‐throughput computations are the main sources of
training data [33, 34]. For instance, several online polymer
databases such as PoLyInfo [35], CROW Polymer Property
Database [36], Polymer Property Predictor and Database

F I GURE 1 The schematic of machine learning methods for the rational design of polymer‐based dielectrics
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(NIST) [37] and Polymer Genome [38] have been built,
allowing for the easy access of training data. By using the
thermal parameters in PoLyInfo and QM9 as the training data,
a ML framework referred to as ‘transfer learning’ was pre-
sented to predict the thermal conductivity of polymers [39]. In
this method, given the limited supply of thermal conductivity
parameters, prediction models of physically related proxy
properties were pre‐trained on large datasets from PoLyInfo
and QM9, and then, the pre‐trained models were fine‐tuned
using the limited data on the target property [39]. For poly-
mer nanocomposites schema, only few online databases such
as NanoMine have been built [40].

As an alternative approach, experimental data can be
collected from scientific research studies including journal ar-
ticles and handbooks. Timely retrieval of dielectrics data from
research studies can be achieved using laborious manual
excerption or ML‐based natural language processing (NLP)
techniques [33]. The manual excerption method searches for
usable materials’ data by manually screening the studies one by
one. For example, 1210 experimentally measured permittivity
values at different frequencies were manually collected from
studies in the literature to train a ML model to instantly and
accurately predict the frequency‐dependent permittivity of
polymers [34]. To aid accelerated discovery of polymer nano-
composites with the desired breakdown strength, permittivity
and energy density, we have extracted hundreds of experi-
mentally measured data from the literature to develop a ML
model for predicting dielectric properties [26]. Owing to the
difficulty in interpreting technical languages, which requires
domain knowledge, the use of NLP in collecting material data
is still in its infancy. Some initial studies have used the NLP
method to capture materials’ data from the literature and to
predict new thermoelectric materials [41, 42].

Due to the synthetic difficulty of designed candidates and
time‐consuming experiments, the amount of dielectric property
data is substantially limited. As an effective alternative approach,
high‐throughput computations [47] using first‐principles theory
[43, 44, 48–53], molecular dynamics (MD) [45, 54, 55], phase‐
filed model [46, 56, 57] and finite‐element method [58, 59]
have been employed to acquire property data, as shown in
Figure 2a. Most dielectric properties of interest, for example,
permittivity, conduction loss, breakdown strength, glass trans-
mission temperature (Tg) and thermal conductivity, can be
directly calculated or indirectly represented with some correlated
parameters. For example, the breakdown strength and conduc-
tion loss of polymers are closely correlated with the carrier in-
jection process at the electrode–dielectric interface as well as the
carrier‐transfer characteristics (known to be affected by
the bandgap and trap states in polymers) [43, 49–53]. As a result,
the charge injection barrier, bandgap and trap depth, which can
be determined by the density functional theory (DFT), may
serve as ‘proxies’ for breakdown strength and conduction loss
[43, 49, 53]. And many research studies are devoted to investi-
gating the effect of polymer molecular structures on these pa-
rameters [51, 52]. As an example, Figure 2b and c depict theDFT
method to calculate the charge injection barrier from electrode
to polymer and trap depth in polymer, respectively [43, 44].

Moreover, the electronic, ionic and total dielectric constant can
be computed by the density functional perturbation theory as
well [12, 22]. The thermodynamic properties of polymers or
nanocomposites such as glass transmission temperature and
thermal conductivity can be readily computed by MD simula-
tions, for example, the non‐equilibrium MD have been exten-
sively adopted to calculate the thermal conductivity (Figure 2d)
[25, 45]. Given the expensive computational cost of first‐
principle methods, small, length‐scale models (<100 atoms)
are generally built to characterize the dielectric properties. The
classical MDwith empirical force fields can model polymers in a
nanoscale scale [33].

As for polymer nanocomposites, large‐scale simulations
(micrometre to millimetre) based on the phase‐filed model or
finite‐element model (FEM) are required. Phase‐field models
have been developed to investigate the breakdown behaviour
and effective permittivity of polymer nanocomposites (see
Figure 2e), in which the effect of the microstructure of
nanocomposites such as the shape and orientation of nano-
fillers can be considered [46, 56]. For example, based on high‐
throughput phase‐field calculations of dielectric response,
charge transport and the breakdown process, Shen et al.
schemed a ML strategy to evaluate the energy storage capa-
bility of polymer nanocomposites [60]. Numerical computation
techniques such as FEM are effective tools to understand the
large‐scale properties, for example, space charge transportation
[58, 59] and the thermal conduction process [61]. As an
example, a bipolar charge transport model is generally used to
characterize the space charge distribution in dielectrics [58, 59],
which is correlated with the breakdown strength [62].
Furthermore, a multi‐scale modelling approach that applies ab
initio, Monte Carlo, and continuum scales was proposed to
estimate the breakdown strength of polymer nanocomposites
based on the charge trapping effect of the nanofillers [63].

3 | ML STRATEGIES

ML‐driven strategies are composed of two distinct steps: nu-
merical representation of the materials in the dataset (finger-
printing) and establishment of a mapping between the
fingerprinted input and the target property (learning).

3.1 | Fingerprinting

Fingerprinting encodes the polymers or nanocomposites with a
list of machine‐readable characters. The choice of the numerical
descriptors should duly consider factors (e.g. microstructure and
property values) that the target property may be correlated with,
which require domain expertise or experience [31].

3.1.1 | Polymer fingerprints

Van Krevelen et al. found that polymer properties such as the
glass transition temperature and solubility parameter are
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correlated with the chemical structure (i.e. presence of chem-
ical groups, end groups etc.) and the molecular weight distri-
bution [64]. As a result, an ‘atomic group contribution method’
was schemed to estimate the polymer properties as a weighted
sum of contributions from the constituting fragments [65].

Based on this, to accelerate the discovery of polymer di-
electrics, Ramprasad et al. developed a more general and
seamless pathway to represent all polymers [22, 29]. The
polymers were fingerprinted by the occurrence of different
types of building fragments (constituted by blocks such as

F I GURE 2 (a) The schematic of high‐throughput computations and computation methods for various dielectric properties. (b) The schematic of density
functional theory (DFT) to calculate the charge injection barrier from electrode to polymer [43]. Reprinted with permission from Kamal et al. [43]. Copyright
2020, American Chemical Society. (c) The schematic of DFT to calculate trap depth in polymer [44]. Reprinted with permission from Wang et al. [44]. Copyright
2019, IEEE. (d) Non‐equilibrium molecular dynamics to calculate the thermal conductivity of polymer chain [45]. Reprinted with permission from Zhang et al.
[45]. Copyright 2014, American Chemical Society. (e) Phase‐filed model to simulate the breakdown process in polymer composites [46]. Reprinted with
permission from Shen et al. [46]. Copyright 2017, John Wiley and Sons
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F I GURE 3 Different kinds of fingerprints for polymers and nanocomposites. (a) Fingerprints based on single, double, and triple components [29].
Reprinted with permission from Mannodi‐Kanakkithodi et al. [29]. Copyright 2018, Elsevier. (b) Simplified Molecular‐Input Line‐Entry System (SMILES) and
Extended‐Connectivity Fingerprints (ECFPs) [25]. Reprinted with permission from Zhu et al. [25]. Copyright 2020, Elsevier. (c) and (d) Two kinds of
hierarchical fingerprints [66, 67]. (c) Reprinted with permission from Bhowmik et al. [66]. Copyright 2021, Elsevier. (d) Reprinted with permission from Kim
et al. [67]. Copyright 2018, American Chemical Society. (e) Fingerprints based on physical and geometrical parameters of nanocomposites [26]. Reprinted with
permission from Zhu et al. [26]. Copyright 2021, American Chemical Society. (f) Fourier space form of spatial correlation functions to represent microstructure
of composites [68]. Reprinted with permission from Chen and Torquato [68]. Copyright 2018, Elsevier
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CH2, CO, CS, O, NH, C6H4, and C4H2S) in terms of their
number fractions [29], as shown in Figure 3a. A particular
molecular fragment could be a singlet, doublet or triplet of
contiguous blocks such as CH2–NH pairs and –NH–CO–
CH2– triplets [22, 29]. After that, the linkage between finger-
prints and properties (bandgap and dielectric constant) have
been established using ML algorithms.

Line notations, encoding of the chemical structure into
fixed‐length strings or vectors, have been proved effective in
describing molecules. Due to the human‐readable and
machine‐friendly advantages, the SMILES has been extensively
adopted to represent molecules [69–72]. To encode the linear
notations into a machine‐processable format, various molec-
ular fingerprinting algorithms such as extended connectivity
[73] have been presented to transform the SMILES into nu-
merical vectors, which can be generated from the open‐source
RDKit software [74]. As depicted in Figure 3b, extended‐
connectivity fingerprints (ECFPs) use a list of binary identi-
fiers to naturally and accurately represent the presence or
absence of particular structures. We have used the SMILES
and ECFP to build a structure–property relationship model,
revealing key correlations between thermal conductivity and
polymer structures [25]. It should be noted that the effect of
polymer morphology on the target property is neglected in the
SMILES. For this reason, hierarchical fingerprinting that cap-
tures atomistic to morphological structural information has
been developed to improve the prediction accuracy. Figures 3c
and d show the elements of two kinds of hierarchical finger-
printing [66, 67]. The descriptors in Figure 3c were constructed
using the Materials Studio software of BIOVIA, which were
divided into six groups, namely, atom type, molecular type,
molecular attributes, atom name, bonding (bonds, angels and
dihedral) and molecular weight [66]. The fingerprint in
Figure 3d is composed of atom‐level, block‐level and chain‐
level descriptors [67].

3.1.2 | Nanocomposite fingerprints

Recently, by introducing inorganic nanofillers with specific
characteristics, polymer nanocomposites have been extensively
studied to obtain the desired target properties [9–11]. The
properties of nanocomposites depend on various factors such
as the physical parameters of nanofillers (permittivity, electrical
conductivity, bandgap, thermal conductivity etc.), nanofiller–
matrix interface characteristics (trap states, interfacial polari-
zation, shell parameters in the core‐shell structures etc.), and
the geometric microstructure of nanofillers (filler shape, vol-
ume fraction, distribution, orientation etc.) [9–11, 26]. As a
result, most of the existing fingerprints for nanocomposites are
selected from these factors depending on the target property of
interest [60, 75, 76], which is also called as physical‐descriptor‐
based methodology [76]. The main advantage of physical de-
scriptors is that they provide clear physical insights and offer
meaningful mappings to processing parameters. For example,
nanofiller features including the variables of morphology,
permittivity, electrical conductivity and volume fraction are

used to represent nanocomposites, then a ML strategy is
schemed to evaluate the capability of energy storage [60]. To
analyse the correlation between the filler doping scheme and
the dielectric properties, we developed a fingerprint with a
string of characters considering the physical parameters, shape,
distribution of fillers, and shell properties in core–shell struc-
tures [26], as depicted in Figure 3e.

With the rapid development of convolutional neural net-
works (CNNs), which can directly extract the geometric fea-
tures of composites, 2D cross‐section images of 3D
microstructures can be directly input into the CNN to predict
various properties such as thermal conductivity [61, 77, 78]. In
addition, some microstructure characterization and recon-
struction (MCR) methods [79] such as spatial correlation
functions (SCFs) [80, 81] and Fourier space representation of
SCF (SDF) [68, 82] have received significant attention in rep-
resenting the polymer composites, as shown in Figure 3f. The
advantage of MCR is that the microstructure can be readily
accomplished through a hierarchical reconstruction strategy
[68, 80–82]. Although some techniques have been applied to
characterize polymer nanocomposites, the underlying mecha-
nisms behind the effects of nanofillers are not fully understood
yet, for example, the effect of the nanofiller‐matrix interface on
the breakdown strength and dielectric constant. For this
reason, more sophisticated fingerprints are expected to accu-
rately predict specific properties in the future.

3.2 | ML algorithm

The ML algorithm aims to establish a mapping between the
fingerprinted input and the target property, which provides an
effective surrogate for estimating the target property. Currently,
linear and non‐linear regression algorithms have been applied
to build the model, among which kernel‐based regression and
artificial neural networks (ANNs) are the most popular algo-
rithms [83, 84]. A brief description of these algorithms is
provided below.

The linear regression algorithm models the target property
with a linear function of fingerprints, which is a simple method
mainly used in some early works [64]. The prediction accuracy
of these models is limited because they neglect the non‐linear
linkage between descriptors and properties. To solve that, the
so‐called kernel trick is often applied to realize complex re-
gressions [32, 85]. Specifically, instead of using the original
fingerprint x in linear regression, the data are first transformed
into a higher‐dimensional feature space by kernel functions
such as radial basis function and polynomial kernels [32, 85].
This procedure results in a non‐linear regression in the original
feature space. Several kernel‐based algorithms such as kernel
ridge regression (KRR), support vector machine (SVM) and
Gaussian process regression (GPR) have been employed [32,
85]. For instance, KRR has been applied to predict polymer
properties (e.g. bandgap and dielectric constant) based on high‐
throughput DFT computations [22]. Yin et al. proposed an
interval support vector regression with particle swarm opti-
mization (PSO) to predict the dielectric constant for polymer
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dielectrics at various frequencies and to accelerate the agile
search for polymers with desirable properties [86]. In this
work, the hyper‐parameters in SVM are optimized by the PSO
algorithm.

GPR is a well‐established technique for building ML
models for polymer dielectrics. It relies on the assumption that
the unknown predicted function is sampled from multivariate
Gaussian distribution and maintains a posterior distribution as
observations are made [32, 33, 87]. The mean and variance for
objective values can be well predicted based on the estimation
of the covariance matrix, whose elements represent the
covariance between two features [87], as shown in Figure 4a.
The key advantage of GPR is that the uncertainty of the
prediction can be provided, which is an essential ingredient of
active learning for materials' design process. By using GPR to
determine prediction value and uncertainty, an active‐learning
framework based on a balanced exploitation/exploration
strategy was demonstrated to aid the discovery of polymers
possessing high glass transition temperatures [88]. We have also
adopted GPR to establish a linkage between the microstructure
of nanocomposites and dielectric properties, and to discover
doping schemes with desired properties [26]. A multi‐fidelity
information fusion approach based on GPR was proposed to

solve the problems where several datasets have varying levels
of accuracy [89].

Decision‐tree‐based algorithms such as random forest (RF)
are important non‐linear ML methods. Random forest is an
ensemble method of the decision tree, which combines mul-
tiple decision trees with a slightly randomized training process
to improve performance [90–93]. The final regression or
classification result is made by a weighted average or weighted
vote of all forest predictions. More importantly, RF could
provide an intrinsic metric to evaluate the importance of each
descriptor, which is helpful for the rational design of polymers
(see section 4.2). By using the RF as the classification method,
Zhao et al. presented an automatic discovery method for
polymers with low dielectric constants [92].

The ANN and deep neural network (CNN etc.) are well‐
developed ML algorithms that mimic the human brain to learn
the linkages between certain descriptors and properties based on
experience [94–101]. Figure 4b depicts the general architecture
of the ANN, in which polymer fingerprints form the input layer
[25]. The hidden layers build the relationships between the input
and output layers, and the output layer represents the fitness of
the candidate polymers. As for CNN, conventional and pool
layers are added to extract key features from the input layer and

F I GURE 4 The schematic of (a) Gaussian process regression, (b) artificial neural networks and (c) convolutional neural networks [25]. Reprinted with
permission from Zhu et al. [25]. Copyright 2020, Elsevier. ECFP, Extended‐Connectivity Fingerprints
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further reduce the dimension of the features [25, 97, 98], as
shown in Figure 4c. Convolutional layers consist of a set of
trainable filters, which are applied as discrete convolutions across
thewhole input, allowing the extraction of local features. Pooling
layers further reduce the dimensionality of the features by
combining subregions into a single output, among which max
pooling is the most common method. Compared to the fully
connected layers, the number of hidden neurons is drastically
reduced by conventional and pool layers, thus allowing for far
deeper networks.NNs have been applied to buildMLmodels for
the suitable selection of polymer–solvent pairs [99], glass trans-
mission temperature [100] and thermal conductivity [25, 77, 95].
For the suitable selection of polymer–solvent pairs, a total of
11,958 polymer + good‐solvent pairs and 8469 polymer + non‐
solvent pairs were employed to train a binary classification NN
model to judge whether a solvent is good or insoluble for a
specific polymer [99]. We used CNN, trained on thermal con-
ductivities computed by classical MD simulations, to predict the
thermal conductivity of polymers [25]. Wei et al. adopted 2D
cross‐section images of polymer composites as input to establish
a CNN model, which have been demonstrated to predict effec-
tive thermal conductivity with high accuracy [77].

As described above, various ML algorithms are feasible for
building a surrogate model between the fingerprinted input and
the target property. These methods have their own advantages
and disadvantages in terms of computational efficiency, the size
of applicable dataset, and prediction capabilities. A brief com-
parison of these algorithms is provided in Table 1.

4 | INVERSE DESIGN OF POLYMER‐
BASED DIELECTRICS

Once the ML surrogate models are trained, they can be used to
accelerate the discovery of polymer‐based dielectrics by
exploring the large space of potential materials, which can be

called as inverse design process. Several methods such as
enumeration, active learning, optimization algorithm and
generative models have been utilized in the inverse design
process. Moreover, by quantitatively analysing the structure–
property relationships, variable importance measures could
be determined to highlight the key features that play significant
roles in target properties, which guide the rational design of
polymer dielectrics.

4.1 | Inverse design methods

In the enumeration method, the target properties of a large
pool of candidate materials are predicted with the previously
trained ML model, followed by the selection and statistics of
samples satisfying a certain screening criterion. Following this
procedure, Mannodi‐Kanakkithodi et al. screened a class of
organic polymers involving several building blocks and
discovered promising polymer dielectrics with desired bandgap
and dielectric constant [12]. Additionally, we used a GPR‐based
ML model to screen promising polymer nanocomposites with
desired permittivity, breakdown strength and energy density,
resulting in several kinds of nanocomposites with desired
properties [26], as shown in Figure 5a. These studies suggest
the success of the enumeration method in searching for
promising materials, which guarantees the diversity of the
candidate materials. However, it is time‐consuming to identify
optimal polymer dielectrics by the enumeration method.

Active learning algorithms that iteratively fill the selected
optimal point into training dataset were proven effective in
materials design. As depicted in Figure 5b, active learning al-
gorithms consist of three interwoven steps: (1) training the ML‐
based surrogate model for property prediction, (2) selecting the
optimal sample based on the prediction results including values
and uncertainties, and (3) supplementing the optimal sample into
training dataset [88, 105]. The challenge in active learning is to

TABLE 1 Comparison of different ML algorithms

ML algorithm Advantages Disadvantages

Linear regression Simplest method Neglect of non‐linear linkage between descriptors and properties

KRR, SVM Low computational cost Unfeasible for large datasets as the size of the kernel
matrix scales quadratically with the number of features

GPR The uncertainty for objective values can be
well predicted

Requires a manageable dataset size and does not have the
capability to train multiple properties in one single model

RF Feasible for large datasets and provides
an intrinsic metric to evaluate the
importance of each descriptor

Might create over‐complex trees and cause overfitting

ANN Exhibits strong ability to capture non‐linear
complex relations from large‐scale datasets

Requires much more training data, is time‐consuming, and lacks
interpretability; also called ‘black boxes’.

Deep neural network Feasible for graphical representations of materials
and learns representations with different
abstraction levels

Requires much more training data, is time‐consuming, and
lacks interpretability

Abbreviations: ANN, artificial neural network; GPR, Gaussian process regression; KRR, kernel ridge regression; ML, machine learning; RF, random forest; SVM, support vector
machine.
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balance the rapid convergence to optimal material (exploitation)
with the need to traverse thematerial space to improve themodel
(exploration). Choosing the optimal sample requires MLmodels
to provide both prediction and uncertainty values of the target
property. As a result, the GPR algorithm and a combination of
bootstrapping methods with standard ML algorithms (decision
tree, SVM etc.), which can estimate the uncertainty of pre-
dictions, are common ML methods in active learning. Pure

exploitation, pure exploration and balanced exploitation and
exploration principles have been utilized to select the optimal
sample, as shown in Figure 5b. Kim et al. used active learning to
discover polymers with Tg > 450 K, and they found that the
balanced exploitation and exploration method had the best
performance among the three principles [88].

Compared to the enumeration method, an optimization
approach is preferable because it tests a smaller number of

F I GURE 5 Inverse design methods for polymer‐based dielectrics. (a) Enumeration method [26]. Reprinted with permission from Zhu et al. [26]. Copyright
2021, American Chemical Society. (b) Active learning algorithm. (c) and (d) Genetic algorithm method used to design polymers with high glass transition
temperature and large bandgap [102]. Reprinted with permission from Kim et al. [102]. Copyright 2021, Elsevier. (e) Inverse design method based on particle
swarm optimization [103]. (f) Variational autoencoder (VAE) [21]. Reprinted with permission from Sanchez‐Lengeling and Aspuru‐Guzik [21]. Copyright 2018,
The American Association for the Advancement of Science. (g) VAE used to discover polymers with high Tg and bandgap [104]. Reprinted with permission
from Batra et al. [104]. Copyright 2020, American Chemical Society. (h) Generative adversarial networks [21]. Reprinted with permission from Sanchez‐
Lengeling and Aspuru‐Guzik [21]. Copyright 2018, The American Association for the Advancement of Science
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candidates when exploring the material space. ES algorithms
such as the genetic algorithm (GA) and PSO are common
choices for global optimization and have been used to search
polymer space [102, 103, 106, 107]. ES completes a structured
search through procedures inspired by natural evolution. At
each iteration, parameter vectors (‘genotypes’, fingerprints in
the ML) in a population are updated (selection, crossover and
mutation in GA; movement of particle in PSO) to generate an
offspring, followed by an evaluation of the objection function
value. Kim et al. employed the GA method in tandem with ML
models to design polymers with high glass transition temper-
ature and large bandgap [102], as shown in Figure 5c, d.
Additionally, Wei et al. demonstrated the application of GA to

discover unexpected thermal conductivity enhancement in
disordered nanoporous graphene [107]. In another work, an
inverse design by PSO and trained ML algorithm was
demonstrated, predicting 17 polymer structures from user‐
defined cloud points [103], as shown in Figure 5e.

The generative model, stemming from the field of ML, is
another approach for the inverse design of materials [21, 33].
Generative models learn to reproduce realistic samples from
the distribution of data they are trained on. Several methods
such as variational autoencoders (VAEs), generative adversarial
networks (GANs) and recurrent neural networks are capable of
building the generative models [104, 108–112]. In an autoen-
coder, the encoder learns to map the polymers to a lower‐

F I GURE 6 Methods for variable importance analysis. (a) Pearson correlation coefficients [118]. Reprinted with permission from Xu et al. [118]. Copyright
2021, American Chemical Society. (b) Gradients of convolutional neural networks (CNNs) model [119]. (c) Deep Learning Important FeaTures to investigate the
contribution of different molecular structures to thermal conductivity of polymer chains
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dimension space known as the latent space, while the decoder
attempts to regain the original representation from the latent
space [33], as shown in Figure 5f,g. The VAE achieves better
generalizability (extended to uncovered spaces) by learning an
approximation of the distribution of the input. For GAN in
Figure 5h, the generator attempts to generate samples from a
distribution, whereas the discriminator predicts whether the
probability of a data is synthetic or real [33]. Although
generative models have found successful application in mole-
cule or drug discovery, they are just beginning to be utilized to
find polymer dielectrics with desired properties. As an example,
Batra et al. utilized a syntax‐directed VAE in tandem with GPR
models to discover polymers with high Tg and bandgap [104].

4.2 | Variable importance measures

Through a variable importance measure, the relevance of
features with target properties can be evaluated, allowing a

selection of the most important features and understanding of
the ML model. Feature selection and dimensionality reduction
algorithms, such as least absolute shrinkage and selection
operator [113–115], sure independence screening and sparsi-
fying operator (SISSO) [116], principal component analysis
[117], are capable of selecting the best features. Additionally,
Pearson correlation coefficients (PCCs) between various fea-
tures and target properties can be calculated to represent the
variable importance, in which PCC with −1 represents strong
negative correlations and 1 represents strong positive corre-
lations [118], as depicted in Figure 6a. Random forest and
other decision‐tree‐based methods also possess the ability to
evaluate the relevance of features through a variable impor-
tance measure [120].

Post‐hoc interpretability of deep NN considers the possi-
bility to identify composition–structure–property relationships,
which aids human understanding of the data and provides
guidance for rational design of polymer dielectrics [121]. For
instance, the gradients of the CNN model quantify how the

TABLE 2 Some examples of the ML‐driven approach applied in designing polymers and nanocomposites

Target property Data source Fingerprint ML model
Inverse design
method Reference

Polymers: Bandgap of the polymer and electron
injection barrier (proxies for breakdown
strength)

DFT computation Hierarchical fingerprint in [53] GPR Enumeration [53]

SMILES in [43] [43]

Polymers: Bandgap and dielectric constant
(proxies for energy density)

DFT computation Fingerprints based on singles,
doubles and triples components

KRR Enumeration [22]

Polymers: Frequency‐dependent dielectric
constant

Experimental data
in studies

Hierarchical fingerprint GPR Enumeration [34]

Polymers: Dielectric constant Experimental data
in studies

Hierarchical fingerprint Interval support
vector
regression

‐ [86]

Polymers: Bandgap, glass transition temperature Experimental data
in studies

SMILES GPR GA in [102] [102]

VAE in [104] [104]

Polymers: Glass transition temperature Experimental data
in studies

SMILES GPR Active learning [88]

Polymers: Specific heat of polymers Experimental data Hierarchical fingerprint constructed
using the Materials Studio
software

Decision tree ‐ [66]

Polymers: Thermal conductivity MD simulations SMILES CNN ‐ [25]

Polymers: Thermal conductivity Online database SMILES Bayesian method Enumeration [39]

Nanocomposites: Breakdown strength,
permittivity and energy density

Experimental data
in studies

Descriptor‐based fingerprint GPR Enumeration [26]

Nanocomposites: Breakdown strength Monte Carlo
multi‐scale
simulation

MCR methods GPR GA [79]

Nanocomposites: Energy density Phase‐field
simulations

Descriptor‐based fingerprint NN Enumeration [60]

Nanocomposites: Thermal conductivity FEM simulation 2D cross‐sectional images CNN ‐ [61]

Abbreviations: CNN, convolutional neural network; DFT, density functional theory; FEM, finite‐element model; GA, genetic algorithm; GPR, Gaussian process regression; KRR, kernel
ridge regression; MCR, microstructure characterization and reconstruction MD, molecular dynamic; ML, machine learning; NN, neural network; SMILES, Simplified Molecular‐Input
Line‐Entry System; VAE, variational autoencoder.
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predicted property varies with respect to each feature, can
serve as a measure of the importance of input features and can
be further analysed to interpret the data model [119]. Umehara
et al. have used CNN gradient analysis to identify the
composition–structure–property relationships for a series of
BiVO4 alloys [119], as shown in Figure 6b. Other methods or
software packages such as Deep Learning Important FeaTures
(DeepLIFT) [122], SHapley Additive exPlanations [123] and
LIME [124] are available for NN interpretation. As an
example, we have applied DeepLIFT to investigate the
contribution of different molecular structures to thermal
conductivity of polymer chains, as shown in Figure 6c.

5 | APPLICATIONS OF ML‐DRIVEN
DESIGN APPROACH

Polymer‐based dielectrics have drawn a range of applications in
various electrical and electronic devices. The polymer di-
electrics should meet distinct properties such as the thermal
and dielectric parameters in various applications, which can be
improved by tailoring the chemical and morphological struc-
ture or adding nanofillers to form nanocomposites. The ML‐
driven approach has been proved an effective route to the
rational design of polymer‐based dielectrics. Table 2 summa-
rizes some examples of the ML‐driven approach applied in
designing polymers and nanocomposites, in which the target
properties, data sources, fingerprints, ML models and inverse
design techniques are provided.

6 | CONCLUSIONS AND FUTURE
PERSPECTIVES

The ML‐driven approach trained on massive amounts of data
has been proved to be a powerful technique for structure–
property linkage analysis and the accelerating design of
polymer‐based dielectrics. The training data were mainly
collected from online polymer libraries, experiments in the
literature and high‐throughput computations. Several kinds of
fingerprints such as molecular weight distribution, occurrence
of different types of building fragments, SMILES and hierar-
chical descriptors have been utilized to represent polymers,
while the nanocomposites are generally described by physical
descriptors and MCR methodology. Afterwards, different ML
algorithms including linear‐, kernel‐based regression, non‐
linear regression and ANN have been exploited to establish
a mapping between the fingerprinted input and the target
property. Further, inverse design methods such as ES strategies
and generative models can be employed to screen the large
space of potential materials, which may greatly accelerate the
discovery and development of new polymers dielectrics.

Although the material informatics techniques have ach-
ieved some success in discovering novel polymer dielectrics,
there are some areas that should be addressed in the near
future. At present, most ML‐driven approaches are employed
to design homopolymers. Further application to co‐polymers,

polymers with additives/nanocomposites has great practical
significance. The prediction accuracy and generalization of ML
models are strongly correlated with the quantity and quality of
samples in the dataset, whereas these data are still limited for
polymers and nanocomposites. This problem is expected to be
solved by extracting scientific data untapped in numerous
scientific journals with the ML‐based NLP technique or
developing advanced simulation methods such as the multi‐
scale modelling approach. With growing knowledge of the
relationship between microstructures of polymers/nano-
composites and desired properties, other important descriptors
such as the trap state (effects of chemical structures, additives,
polymer‐fillers interface etc.), morphologies (linear, cross‐link,
free volume etc.) and processing conditions should be incor-
porated into fingerprints to more accurately predict dielectric
properties. Moreover, more advanced neural network algo-
rithms (transfer learning, CNN etc.) and inverse design
methods (VAE, GAN, and interpretable NN) can be applied
for structure–property analysis, property prediction and poly-
mer dielectrics’ discovery.
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