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Designing polymer nanocomposites with high energy density
using machine learning
Zhong-Hui Shen 1,2✉, Zhi-Wei Bao3, Xiao-Xing Cheng 4, Bao-Wen Li1, Han-Xing Liu1, Yang Shen 5, Long-Qing Chen4,
Xiao-Guang Li 3✉ and Ce-Wen Nan 5✉

Addressing microstructure-property relations of polymer nanocomposites is vital for designing advanced dielectrics for electrostatic
energy storage. Here, we develop an integrated phase-field model to simulate the dielectric response, charge transport, and
breakdown process of polymer nanocomposites. Subsequently, based on 6615 high-throughput calculation results, a machine
learning strategy is schemed to evaluate the capability of energy storage. We find that parallel perovskite nanosheets prefer to
block and then drive charges to migrate along with the interfaces in x-y plane, which could significantly improve the breakdown
strength of polymer nanocomposites. To verify our predictions, we fabricate a polymer nanocomposite P(VDF-HFP)/Ca2Nb3O10,
whose highest discharged energy density almost doubles to 35.9 J cm−3 compared with the pristine polymer, mainly benefit from
the improved breakdown strength of 853 MVm−1. This work opens a horizon to exploit the great potential of 2D perovskite
nanosheets for a wide range of applications of flexible dielectrics with the requirement of high voltage endurance.
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INTRODUCTION
Dielectric materials, which control and transfer energy electro-
statically, play a key role in modern electric and electronic power
systems ranging from portable electronic devices to medical
equipment, hybrid electric vehicles, and pulse power weapons,
etc1–3. When evaluating a dielectric material, one key figure of
merit is the energy density Ue calculated by

Ue ¼
Z

EdD (1)

where E is the electric field and D is the electric displacement.
Hence, both high D and high breakdown strength Eb are desirable
to high Ue, as illustrated in Supplementary Figure 1a. Moreover,
the charge–discharge efficiency η of a dielectric material, which
evaluates how efficiently the dielectric can store and release
charges, is another critical parameter. Especially, η could drop
dramatically at high electric fields or high temperatures mainly
owing to the exponential increase of conduction loss, leading to a
lot of energy loss and even thermal failure4. Therefore, both Ue

and η have been regarded as two pivotal parameters of measuring
a dielectric material5.
Compared with their ceramic counterparts, polymer dielectrics

are flexible, scalable, and lightweight with higher breakdown
strength Eb and higher reliability, and are therefore an ideal choice
to meet the increasing demand of compact, bionic, and integrated
systems6,7. However, relatively low electric displacement D of
polymers limits the capability of charge storage, resulting in an
unsatisfactory Ue. For example, despite with high η above 90%,
the commercial dielectric polymers of biaxially oriented poly-
propylene exhibit only D ≤ 0.012 cm−2 under the applied electric
field of 600 MVm−1 and corresponding highest discharged energy
density Ue ≤ 4 J cm−31.

In recent years, by introducing inorganic nanofillers with high
permittivity ε into the polymer matrix to construct composition
effect, polymer nanocomposites have been extensively studied
and become a popular and effective method to obtain both high
D and Eb and thus improved Ue

8,9. Up to now, the maximal
discharged energy density of state-of-the-art two-phase polymer
nanocomposites with ceramic nanofillers mainly varies from ~5 to
~25 J cm−3, whose values depend on different types of polymers
and nanofillers, as partly summarized in Supplementary Table 1
and Supplementary Figure 210–24. Generally, nanofillers with high
ε, such as BaTiO3 and SrTiO3, are preferred for the improvement of
D of polymer nanocomposites at the expense of possibly
decreasing Eb or η25,26. On the contrary, some low-ε nanofillers,
such as Al2O3 and BN, usually have greater potential for enhancing
insulative and Eb than their counterparts9,14,23. And more notably,
the morphology of nanofillers also has a strong influence on the
dielectric performance of polymer nanocomposites. For example,
among different morphologies of Al2O3, two-dimensional (2D)
nanosheets seem to be more favorable for the reduction of
conduction loss and thus improvements of Eb and thermal
stability27. However, the underlying mechanisms behind those
performance differences remain unclear. Therefore, building
sensible microstructure-property links to gain fundamental
insights on dielectric behaviors is instructive to the innovative
design of two-phase polymer nanocomposites.
The phase-field method, based on thermodynamics and kinetics

of inhomogeneous systems at mesoscale, has been widely
developed to fundamentally understand and predict the micro-
structure evolution and its correlation with material behaviors
under different physical stimuli28. Inspired by its applications
including domain switching, ion transport, crack growth, and
phase transformation29,30, the phase-field method has been
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extended to study the microstructure-property relations of
polymer nanocomposites, especially for the dielectric breakdown
process31,32. Furthermore, partly propelled by the Materials
Genome initiative, theoretical simulation, coupled with machine
learning or/and high-throughput calculations, has become a
burgeoning paradigm for more rapid developments of materi-
als33–35. Therefore, complementary to experimentations, the
phase-field model combined with machine learning, could be an
effective but time- and labor-saving way to discover underlying
microstructure–property relations and inversely design polymer
nanocomposites.
In this work, we develop a comprehensive phase-field model

with three modules to investigate the nanofiller effect on the
dielectric response, charge behavior, and breakdown process of
polymer nanocomposites. Using five representative nanocom-
posites with 0D nanoparticles (np), 1D vertical nanofibers (v-nf),
1D parallel nanofibers (p-nf), 2D vertical nanosheets (v-ns), and
2D parallel nanosheets (p-ns) as examples, the underlying
physical mechanisms are analyzed by simulating the redistribu-
tions of local electric field and polarization field, the transport
behaviors of charges and the evolution of breakdown path. Then,
by performing 6615 high-throughput phase-field calculations,
the data set bridging microstructures and properties of polymer
nanocomposites is constructed as the training dataset of
machine learning. Using a scoring function describing the
energy density, we evaluate the capability of energy storage of
2205 polymer nanocomposites and then screen some potential
nanofillers using the algorithm of Back Propagation Neural
Network (BPNN). Finally, we prepare P(VDF-HFP)/Ca2Nb3O10 (poly
vinylidenefluoride-hexafluoropropylene copolymer/Ca2Nb3O10

perovskite nanosheets) nanocomposite film to validate our
predictions and obtain excellent energy storage performance.

RESULTS
Phase-field simulations of the nanofiller effect in polymer
nanocomposites
Here, we take the polymer nanocomposite P(VDF-HFP)/BaTiO3 as
an example to study how the nanofillers affect the dielectric
response, charge behavior, and breakdown process by performing
phase-field simulations. First, we build five representative models
of polymer nanocomposites with one nanoparticle (np), one
vertical nanofiber (v-nf), one parallel nanofiber (p-nf), one vertical
nanosheet (v-ns), and one parallel nanosheet (p-ns), as shown in
Fig. 1a−e, respectively. The simulation size is 100 nm × 100 nm ×
100 nm and the applied voltage is 1 V, so the applied electric field
is 10 MVm−1. Here, the permittivities of P(VDF-HFP) matrix and
BaTiO3 nanofiller are fixed with the values of 10 and 300,
respectively. To highlight the morphology features of different
nanofillers, the length-diameter ratios of nanofillers are designed
as shown in Fig. 1 with the same volume fraction. By performing a
phase-field model, we could obtain the redistributions of local
electric field and electric displacement by solving Poisson’s
equation. To display the local characteristics clearly, especially at
the interface region, 2D cross-sectional distributions of local
electric field and electric displacement are plotted in Fig. 1f–j and
1k–o, respectively. It can be seen that the local electric field could
be distorted at interfacial regions owing to the large mismatch of
permittivity between P(VDF-HFP) matrix and BaTiO3 nanofiller.
Note that the distribution of local electric fields is also influenced
by the morphology and orientation of nanofillers, leading to
different degrees of electric field accumulation. For the nanopar-
ticle, the vertical nanofiber, and the parallel nanosheet in Fig. 1f, g,
i, the local electric field around the interfacial region severely
concentrates at two ends along the direction of the applied
electric field. Especially for the vertical nanofiber, the highest local

Fig. 1 The nanofiller effect on the dielectric response of polymer nanocomposites. Three-dimensional microstructural diagrams of polymer
nanocomposites (100 nm*100 nm*100 nm) with a one nanoparticle(np), b one vertical nanofiber(v-nf ), c one parallel nanofiber(p-nf ), d one
vertical nanosheet(v-ns), and e one parallel nanosheet(p-ns). The applied electric field is along the direction of z axis with 10MVm−1 and the
volume fraction of nanofillers in different nanocomposites is set to the same value by adjusting the radius r, length l, or height h of nanofillers.
The corresponding distributions of local electric fields (f–j) and local electric displacements (k–o) along the cross-section as the red dashed
line shown. The arrows represent the sum of vectors in the y and z directions. p Calculated effective permittivity as a function of the
permittivity of different nanofillers. q Schematic of depolarization effect using a simplified parallel laminated composite with an intermediate
ceramic interlayer in yellow and two bilateral polymer layers in blue.
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electric field could reach up to above 40 MVm−1, which is about
four times as much as the applied electric field. However, for the
parallel nanofiber and the parallel nanosheet in Fig. 1h and 1j, the
local electric field is more homogeneous than that of correspond-
ing vertical nanofillers. More interestingly, compared to the
parallel nanofiber, the parallel nanosheet with a smaller thickness
along z direction is more advantageous to alleviate the
accumulation of local electric field, where the highest electric
field in Fig. 1j is lower than 0.4 MVm−1. Then, the local electric
displacement D induced by the electric field could be approxi-
mately calculated by the linear equation, D= ε0εrE as shown in Fig.
1k−o. It is shown that the vertical nanofillers in Fig. 1l and 1n
exhibit higher electric displacement than their parallel counter-
parts in Fig. 1m and o. For example, the electric displacement
inside the vertical nanosheet is ~4 × 10−3 C m−2 in Fig. 1n, but the
electric displacement in the parallel nanosheet is lower than
~1.1 × 10−3 C m−2 owing to the ultralow local electric field, as
displayed in Fig. 1o. As a result, the effective permittivity of
polymer nanocomposite with one vertical nanofiber is the highest
among all five nanocomposites, as the black dotted line indicated
in Fig. 1p. To study the effect of dielectric mismatch, Fig. 1p gives
the predicted effective permittivity of these five polymer
nanocomposites as a function of the permittivity of nanofillers
from 100 to 104. It can be seen that the vertical nanofiber is more
conducive to improving the effective permittivity of polymer
nanocomposites than others, which is consistent with existing
experimental results16,17. With the increase of the permittivity of
nanofillers from 101 to 104, the enhancement of effective
permittivity gradually gets saturated. For the nanoparticle and
parallel nanofillers, the saturated points of effective permittivity
appear early than those of vertical nanofillers, which strongly
limits the contribution of high-ε nanofillers to the improvement of
effective permittivity.
To clarify the underlying physical mechanism behind those

differences, Fig. 1q illustrates the local polarization behavior in a
simplified laminated model with one nanofiller interlayer and two
bilateral polymer layers. When applying an external electric field,
both polymer matrix and nanofiller could be polarized. However, if
without enough compensating charges, the polarized charges
would build a depolarization field, whose direction is opposite to
the applied electric field. Thus, the local electric field is determined

by the contributions from both the applied electric field and the
reverse depolarization field. Therefore, for the parallel nanofillers
shown in Fig. 1m, o, the depolarization field is almost totally
applied to the whole nanofiller and thus immensely suppresses
the polarization of parallel nanofillers. Furthermore, under the
same polarization condition, the thinner the thickness is, the
greater the permittivity is, the stronger the depolarization effect is.
Thus, the parallel nanosheet exhibits lower permittivity and earlier
saturation point than the parallel nanofiber as displayed in Fig. 1p.
Although for vertical nanofillers in Fig. 1l and 1n, the depolariza-
tion effect could be greatly mitigated due to the large aspect ratio,
resulting in higher effective permittivity as shown in Fig. 1p.
Therefore, besides the intrinsic dielectric characteristics, the
morphology and orientation of nanofillers are also important
factors influencing the effective permittivity, which explains that
why different shapes or/and orientations of nanofillers could
effectively modulate dielectric performances in experiments8,26.
Then, we simulate the nanofiller effect on the charge transport

process in polymer nanocomposites under a high electric field. As
illustrated in Fig. 2a, here we consider four different states of
charges which may affect the charging and discharging process: ①
polarized bound charges, ②intrinsic bulk charges, ③injected
charges from electrodes, and ④trapped charges at interfaces36,37.
For example, some charges may be bound at a limited range
owing to the polarization dipoles. With the increasing of external
stimulus, some charges in dielectrics may be activated and then
migrate or draft, forming a continuous electric current on the
macro level. When at extremely high electric fields and/or
temperatures, some charges accumulating at the interfaces
between the electrode and the dielectric may overcome the
Schottky energy barrier and then be injected into the dielectrics.
Moreover, a large number of interface traps in polymer nanocom-
posites may influence the transport process by trapping charges.
Besides, we also consider some intrinsic nature of nanofillers such
as anisotropy, as more details provided in the section of Methods.
For example, due to the 2D quantum confinement and surface
effects, the dielectric and electrical properties of nanosheets are
anisotropic38,39. In order to better reveal the nanofiller effect on the
behaviors of the above four charges, we only display the electron
density in this section as shown in Fig. 2b–p. It is shown that the
maximum value of charge density could reach up to ~20 Cm−3 at

Fig. 2 The nanofiller effect on the charge behaviors of polymer nanocomposites. a Schematic of four possible mechanisms influencing
charge behaviors in polymer nanocomposites with polymer matrix in yellow, nanofillers in green, and electrodes in blue. The cross-sectional
electron density of polymer nanocomposites with (b–d) one nanoparticle, (e–g) one vertical nanofiber, (h–j) one parallel nanofiber, (k–m) one
vertical nanosheet, and (n–p) one parallel nanosheet, based on Schottky injection process with 0.02 s, 0.1 s, and 0.2 s. The applied electric field
is 500 MVm−1 and the Schottky barrier is fixed at 1.0 eV. The mobility in the polymer matrix and the nanofillers are set at 1.0 × 10−11 and
0.1 cm2 V−1 s−1, respectively. The out-of-plane mobility of nanosheets is set to an ultralow value to reflect the anisotropy of charge transport.
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the applied electric field of 500MVm−1, which depends on the
applied electric field, Schottky barrier, temperature, and so on. The
charge transport process depends on not only the morphology
and orientation but also the intrinsic features of nanofillers. On the
one hand, the vertical nanofillers are more beneficial to the charge
transport than the parallel nanofillers owing to the different
effective lengths in the direction of the applied electric field
resulting from different aspect ratios. For example, as shown in
Fig. 2e–g, charges preferentially move via the nanofiber with high
electron mobility along z direction and little interface traps in x–y
plane. On the other hand, for the same orientation, the charge
transport process in the polymer nanocomposite with the parallel
nanosheet (Fig. 2n−p) is significantly slower than that with the
parallel nanofiber (Fig. 2h−j), mainly caused by the intrinsic
ultralow out-of-plane electron mobility of nanosheets and
abundant interface traps in x–y plane40,41. Apparently, the parallel
nanosheet acts as a barrier to block charges from transferring
along z direction and then bend the transport path along the
interfaces/surfaces. Therefore, parallel nanosheets could be taken
as the charge-bearing barrier to block the charge transport to
reduce the conduction loss, while vertical nanofibers could play
the opposite effect to enhance the electrical conductivity.
Next, taking the above five kinds of polymer nanocomposites as

examples, we carry out the phase-field model to study the
nanofiller effect on the breakdown process, as displayed in Fig.
3a–e. The breakdown process is described by two representative
states with broken phase in black, as the 2D sectional views
plotted in Fig. 3f−o. It can be seen that all breakdown paths start
at the ends of nanofillers around the interfaces between the
polymer matrix and nanofillers. For nanoparticles in Fig. 3f, vertical
nanofibers in Fig. 3g, and vertical nanosheets in Fig. 3i, the
breakdown phases begin to grow at the applied electric fields of
271 MVm−1, 250 MVm−1, and 258MVm−1, respectively. Although

for parallel nanofibers in Fig. 3h and parallel nanosheets in Fig. 3j,
the breakdown phase does not appear until the applied electric
field reaches 345 MVm−1 and 500 MVm−1, respectively. In
addition to the difference in breakdown initiation, the morphol-
ogy of the breakdown path is also quite different in different
nanocomposites. Compared with nanoparticles and vertical
nanofillers in Fig. 3k, l, and n, the breakdown paths in polymer
nanocomposites with parallel nanofillers are much thicker in Fig.
3m, o. Especially for parallel nanosheets, the broken phase looks
like a stout tree trunk whose thickness is almost close to the width
of nanosheets. Thus, among these nanocomposites, the nano-
composite with parallel nanosheets could withstand the highest
electric field of above 580MV m−1, which is approximately twice
as many as the breakdown strength of nanocomposites with
vertical nanosheets (283 MVm−1) or nanofibers (269 MVm−1). All
of the above differences in the breakdown process could be
elucidated from the view of the local electric field, as shown in Fig.
3p–t. For nanoparticles and vertical nanofillers, more charges and
higher local electric fields concentrate at the interfaces and then
interconnect with each other, easily leading to a fast-forward
slender breakdown channel along the nanofillers. However, for
parallel nanosheets in Fig. 3t, benefit from the homogeneous
electric field and high out-of-plane voltage resistance of
nanosheets, the breakdown path propagates slowly along the
direction of z axis and then becomes thicker and thicker. Here, we
call this phenomenon the blocking effect to describe the role of
nanofillers on delaying and hindering the propagation of the
breakdown path. Although for parallel nanofibers in Fig. 3c,
though the shape in y-z plane is rectangular, the shape in x-z plane
is still circular. Thus, the concentration of the local electric field in
Fig. 3r is also serious and the breakdown path may cut corners in
x-z plane, which greatly weakens the blocking effect of parallel
nanofibers. Thus, the breakdown path in Fig. 3m is thinner than

Fig. 3 The nanofiller effect on the breakdown process of polymer nanocomposites. Microstructural diagrams of polymer nanocomposites
with (a) random nanoparticles, (b) vertical nanofibers, (c) parallel nanofibers, (d) vertical nanosheets, and (e) parallel nanosheets at the volume
fraction of 1%. (f–o) Corresponding breakdown paths under different electric fields along the cross-section. (p–t) The distributions of the local
electric field Elocalz =Eappz . (u–w) Illustrations of possible electron avalanche modes in different polymer nanocomposites.
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that in Fig. 3o. Therefore, the polymer nanocomposite with
parallel nanosheets exhibits the strongest blocking effect, leading
to the highest breakdown strength among those five types of
polymer nanocomposites.
The blocking effect could be further understood from the

electron avalanche theory, as three schematic diagrams shown in
Fig. 3u–w. The dielectric breakdown typically induces by the
avalanche multiplication of free charge carriers, when carriers
acquire sufficient kinetic energy to give a high probability of
collision and ionization42. For nanoparticles and vertical nanofil-
lers, impact ionization may be triggered preferentially at the
interfaces with the high local electric field and then more
electrons would be accelerated and collided to form a chain
reaction, leading to electron avalanche breakdown immediately.
However, for parallel nanosheets in Fig. 3w, the initial impact
ionization could be delayed and the chain reaction is restricted in
x-y plane due to insufficient kinetic energy and high insulativity
perpendicular to the direction of electrostatic force. Thus, the
electron avalanche would be blocked and navigated along the x-y
plane of nanosheets, resulting in a tortuous breakdown path. As
we discussed above, the blocking effect of parallel nanofibers is
less effective than that of parallel nanosheets. Because the circular
shape of nanofibers in x-z plane (Fig. 3c) would also cause severe
concentration of local electric field, leading to that the dominating
electron avalanche mode in x-z plane is similar to that of
nanoparticles in Fig. 3u. Therefore, introducing 2D nanosheets to
construct the blocking effect into nanocomposites, could effec-
tively manipulate the behaviors of charges and breakdown path
to remarkably improve the insulativity and voltage endurance
of nanocomposites. In summary, the blocking effect of 2D
nanosheets in polymer nanocomposites originates from two
parts: one is the 2D morphology and orientation resulting in
homogeneous electric field and abundant interface areas in x-y
plane, the other is the anisotropy nature with high out-of-plane
insulation. It is worth mentioning that the blocking effect is also
influenced by some other factors such as the distribution and size
of 2D nanosheets. that Next, we will use the machine learning
method to find suitable nanofillers to make better use of the

blocking effect to improve the dielectric properties of nanocom-
posite dielectrics.

Machine learning-assisted performance evaluation and
targeted experiments
In this section, we first perform high-throughput phase-field simulations to
build a data set as the training set of machine learning. As shown in Fig. 4,
the input data set I Si; εj; σk ; Vl

� �
of high-throughput calculations includes

four primary nanofiller features: morphology Si, permittivity εj, electrical
conductivity σk, and volume fraction Vl. By performing the phase-field
simulations with three modules, we could output the corresponding data
set of effective properties of nanocomposites P εeffijkl ; E

b
ijkl ; σ

eff
ijkl

� �
with the

effective permittivity εeffijkl , breakdown strength Ebijkl and effective electrical
conductivity σeffijkl . Here, we consider five morphologies, 21 permittivies
from 3 to 7000, 21 electrical conductivities from 1×10−16 Sm−1 to 1×
10−6 Sm−1, and a fixed volume fraction of 1%, resulting in 6615
combinations in total. As the maps are shown in Supplementary Figure
3–5, the nanocomposites with vertical nanofillers exhibit higher effective
permittivity and higher effective electrical conductivity while the
nanocomposites with parallel nanofillers possess higher breakdown
strength, which agrees well with the experimental results of some
polymer nanocomposites with 2D insulting nanofillers, such as BN, Al2O3,
and TiO2

9,20,27. Then, by considering the contribution of conduction loss to
the discharged energy density at the high electric field with linear
approximation43 as displayed in Supplementary Figure 1b, we propose a
scoring function to evaluate the capability of energy storage of different
nanocomposites as follows:

fs ¼ 1=2ðEbijklÞ2 ε0ε
eff
ijkl � σeff

ijklΔt
� �

(2)

where Δt is the period of the applied electric field. Using the Min–Max
normalization method, we could obtain the scoring data set with a value
between 0 and 1, as shown in Fig. 5a and Supplementary Figure 6. The
closer the scoring gets to 1, the stronger the capability of energy storage is.
As a whole, nanocomposites with parallel nanosheets score higher than
their counterparts, which benefits from high breakdown strength and low
conduction loss.

Fig. 4 Schematic workflow of high-throughput phase-field simulations and machine learning strategy. a High-throughput phase-field
simulations. b Input data set of nanofiller features with the variables of morphology, permittivity, electrical conductivity, and volume fraction.
c Output data set of effective properties of nanocomposites including the effective permittivity, breakdown strength, and effective electrical
conductivity. d The microstructure-property data set of scoring.
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To predict performance faster and screen more potential
nanofillers, we build a machine learning model with BPNN
algorithm by taking the scoring dataset as the training set. Figure
5b plots the comparisons of machine learning results fML

s and
phase-field scoring results f PFs of all data sets including 90%
training set and 10% testing set, marked as hollow symbols. It can
be seen that all hollow symbols are dispersed around the solid
black line which represents f PFs ¼fML

s , indicating the good reliability
of machine learning predictions. The Person correlation coefficient
(PCC) and mean square error (MSE) with 0.97 and 9.01 × 10−4,
respectively, also suggest that the accuracy of this machine
learning model is very high. Then, we are dedicated to discovering
more promising 2D nanofillers to guide the experimental design
of polymer nanocomposites. After screening many existing 2D
materials by the machine learning strategy, we have found that
some 2D nanosheets consisting of perovskite building blocks of
TiO6, NbO6, or TaO6 octahedra40, such as Sr2Ta3O10, Ca2Nb3O10,
LaNb2O7, Sr2Nb3O10, and Ca2Ta3O10, get very high scoring as solid
symbols shown in Fig. 5b. All material parameters of those
representative nanosheets are listed in Supplementary Table 2.
Compared with other nanofillers, perovskite nanosheets could
stay high out-of-plane insulating performance with low leakage
current density and superior high permittivity (>100) even at the
thickness of a few nanometers38,39, which could greatly gain the
blocking effect. Therefore, 2D perovskite nanosheets with
enhanced blocking effect from the superhigh capability of out-
of-plane insulation, high permittivity, and large blocking interface
areas along the direction of the applied electric field, show great
potential on high energy storage by improving the breakdown
strength and decreasing conduction loss.
Among these 2D perovskite nanosheets predicted above, we

choose a polymer nanocomposite P(VDF-HFP)/Ca2Nb3O10 as the
targeted materials to verify our ideas. More details about the

experimental process and characterization are discussed below in
Methods. As shown in Fig. 5c and Supplementary Figure 8a, after
introducing Ca2Nb3O10 nanosheets with the volume fraction of
0.1% into the P(VDF-HFP) matrix, the breakdown strength could be
improved from 649MVm−1 of pristine P(VDF-HFP) to 853MVm−1

with an increment of 31%. As a result, the maximal discharged
energy density of P(VDF-HFP)/Ca2Nb3O10 nanocomposite reaches
as high as 35.9 J cm−3, which is 1.95 times higher than pristine P
(VDF-HFP) with 18.4 J cm−3. The charge–discharge efficiency of
polymer nanocomposites with Ca2Nb3O10 nanosheets is also
promoted a little bit by decreasing the conduction loss as shown
in Supplementary Figure 8b. However, due to the high intrinsic
ferroelectric loss of P(VDF-HFP), the efficiency of P(VDF-HFP)/
Ca2Nb3O10 nanocomposite is still low. Therefore, an almost double
increase of energy density and slightly improved efficiency indicate
that the blocking effect constructed by Ca2Nb3O10 nanosheets
does work. Therefore, we believe this strategy could be extended
as a general method to substantially improve the capability of
energy density, with the fast development of advanced technology
of 2D materials preparation and exfoliation39,44. Furthermore, the
phase-field model and machine learning strategy in this work
could be also extended to study the energy density capability in
different dielectrics, such as blending polymer, segmented
copolymer, semi-crystalline polymer, and multiphase ceramics.

DISCUSSION
Here, we build an integrated phase-field model with three
modules to study the relations between microstructures (0D, 1D,
and 2D nanofillers) and dielectric properties (effective permittivity,
breakdown strength, and electrical conductivity) of polymer
nanocomposites. To understand the advantages of 2D nanosheets
on improving the insulative and voltage endurance, we propose

Fig. 5 The simulation-guided material development paradigm from theoretical predictions to targeted experiments. a The input data set
of scoring of different polymer nanocomposites. b Comparisons of scoring between the phase-field simulations and machine learning results,
and five 2D perovskite nanofillers are evaluated as marked by color solid symbols. c The discharged energy density of P(VDF-HFP))/
Ca2Nb3O10(CNO) nanocomposites with different volume fractions at different applied electric fields.
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the blocking effect to describe the blocking and buffering effect of
2D nanofillers on charge transport and the breakdown process.
Thus, resulting from the enhanced breakdown strength and
reduced conduction loss, the discharged energy density of
nanocomposites with 2D nanosheets could be substantially
improved. With the machine learning strategy, we evaluate the
capability of energy storage of 2205 different nanocomposites by
the scoring function and screen some promising perovskite
nanosheets with TiO6, NbO6, or TaO6 octahedra. Then, we fabricate
a nanocomposite film of P(VDF-HFP)/Ca2Nb3O10 as an example to
verify our predictions. Almost double increased energy density
and slightly improved efficiency indicate that 2D perovskite
nanosheets have great potential of tailoring the dielectric
performance, which is far outperforming state-of-the-art two-
phase polymer nanocomposites, as shown in Supplementary
Figure 2. Therefore, in this work, we develop a simulation-aided
research paradigm to address the underlying mechanism,
summarize the rules and predict the dielectric performances of
polymer nanocomposites and finally achieve experimental
verification.

METHODS
Phase-field model
In this work, the comprehensive phase-field framework mainly includes
three modules, to study the dielectric response, breakdown process, and
charge transport behavior of polymer nanocomposites, respectively.
Besides, two basic shared modules are also built to generate different
microstructures and process data.

Module of permittivity
The function of this module is to calculate the local distributions of
distorted electric field and displacement and then obtain the effective
permittivity in different systems. In an electrostatic equilibrium state, the
local electric field in a dielectric is determined by Poisson’s equation as
follows:

∇D rð Þ ¼ ∇ ε0ε rð ÞE rð Þð Þ ¼ ρ rð Þ (3)

where D(r) is the electric displacement, ε0 is the vacuum permittivity, ε(r) is
the permittivity, E(r) is the electric field, and ρ(r) is the free charge density.
In this module, after inputting the spatially dependent parameters at a
given microstructure, the spectral iterative perturbation method is
employed to solve Poisson’s equation45. Then the effective permittivity
tensor εij could be calculated according to

Di ¼ ε0εijEj (4)

where � represents the average value.

Module of breakdown
This module is used to spatiotemporally simulate the evolution of the
breakdown phase under the increasing applied electric field. Based on the
phase-field theory, a temporally and spatially dependent order parameter
η(r,t) is introduced to describe the evolution of the breakdown phase with
η(r,t)= 1 broken phase and η(r,t)= 0 unbroken phase. During the
electrostatic breakdown process, the total free-energy consists of the
separation energy, the gradient energy, and the electrostatic energy, i.e.,

F ¼
Z
V

fsep η rð Þð Þ þ fgrad η rð Þð Þ þ felec η rð Þð Þ� �
dV (5)

Here, a double-well function is used to describe the phase separation
energy as follow,

fsep η rð Þð Þ¼αη2 1�ηð Þ2 (6)

where α is the energy barrier of phase separation between the broken
phase and unbroken phase with a value of 108 J m−3. The second term of
gradient energy density could be written by

fgrad η rð Þð Þ ¼ 1
2
γ ∇η rð Þj j2 (7)

where γ is the gradient energy coefficient. A value of γ= 1.6 × 10−10 J m−1

is used to specify d0 1 nm in the modeling. The electrostatic energy density
is determined by

felec η rð Þð Þ ¼ � 1
2
ε0ε rð ÞE2 rð Þ (8)

Then, inspired by the crack propagation, the breakdown process starts
when the total energy at one point is larger than its critical energy
endurance. Thus, a modified Allen–Cahn equation is employed to control
the dynamic evolution of the breakdown process,

∂η r; tð Þ
∂t

¼ �L0H felecj j � fcriticalj jð Þ δF
δη r; tð Þ (9)

where L0 is the kinetic coefficient defining the interface mobility with a
value of 1.0 m2 S−1 N−1, H(|felec|−|fcritical|) is the Heaviside unit step
function, and fcritical is a position-dependent material constant representing
the critical energy density. In this work, the characteristic length scale
d0 ¼

ffiffiffiffiffiffiffiffi
γ=α

p
and the characteristic time scale t0= 1/(L0α) can be

determined by the material parameters γ, α, and L0. A grid size of
NxΔx × NyΔx × NzΔx with grid space of Δx= d0 is used. The simulation size
is Nx= Ny= 1200 and Nz= 1 and the time interval is Δt= 0.01t0.

Module of charge
To study the charge behavior in polymer nanocomposites under high
operating voltage, bipolar charge injection and transport model is built
based on Schottky injection mechanism37,46. Here, the current density at
the interface between the electrode and the dielectric is determined by

Ji ¼ AT2 exp
�wi

kBT

	 

exp

q
kBT

ffiffiffiffiffiffiffi
eE
4πε

r !
(10)

where A and kB is the Richardson constant and Boltzmann constant, T is
the temperature, wi is the Schottky barrier with a constant value of 1 eV in
this work (i= 1 for electron and i= 2 for hole), q is the elementary electron
charge, E is the electric field and ε is the permittivity. The charge behavior
in polymer nanocomposites is described by transport equation, continuity
equation, and Poisson’s equation as following,

J r; tð Þ ¼ μa r; tð Þn r; tð ÞE r; tð ÞþD r; tð Þ∇n r; tð Þ (11)

∇J r; tð Þ þ ∂n r; tð Þ
∂t

¼ s (12)

∇2φ r; tð Þ ¼ � n r; tð Þ
ε0εr r; tð Þ (13)

where μa is the apparent electron mobility, n is the charge density, D is the
charge diffusion coefficient which could be calculated by the Einstein
relation D/μ= kBT/q, φ is the electric potential and s is the source term.
Here, the apparent electron mobility μa is introduced in this model to
briefly consider the detrapping and trapping process at the interface
regions between the matrix and nanofillers, which is expressed by

μa ¼ μ0 exp �ξ=kBTð Þ (14)

where μ0 is intrinsic electron/hole mobility with values of 1 × 10−11 cm2

V−1 s−1 in polymer and 0.1 cm2 V−1ss−1 in nanofillers, and ξ is the trap
depth at the interfaces47. In this work, nanoparticles and nanofibers are
regarded as isotropic, but the dielectric properties of nanosheets are set to
strongly anisotropic with a 1000 times difference between the out-of-plane
electron mobility and in-plane electron mobility.

Machine learning
The training data set of machine learning is generated by performing high-
throughput phase-field calculations of three modules with the same grid
size of 1200 × 1200 × 1. All data in machine learning is normalized between
0 and 1 by Min–Max normalization as follows:

x ¼ xi � xminð Þ
xmax � xminð Þ (15)

where xmin and xmax are the minimum and maximum of the data. Then, we
propose a scoring function of Eq. (2) to quantify the capability of energy
storage based on the linear approximation as illustrated in Supplementary
Figure 1b. Here, we assume that the measured electric displacement at
zero field Dr mainly comes from the leakage current without considering
the ferroelectric loss. Then, the relationship between the effective
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conductivity σeff and Dr can be derived as follows43:

Dr � σeff
2f

Emax (16)

where f is the frequency of the applied electric field. Here, Δt ¼ 1=f ¼
1=10 ¼ 0:1s is used in this approximation. Then, the energy loss caused by
electrical conduction could be calculated as follows:

Uconduction ¼ 1
2
DrEmax (17)

Therefore, the maximal discharged energy density could be given under
the linear approximation:

Uapprox
discharge ¼ Ucharge � Uconduction¼ 1

2
εεE2b �

1
2
DrEb (18)

Thus, the scoring function is closely related to the energy density, whose
values could reflect the capability of energy storage of polymer
nanocomposites. Then, we normalize the scoring data by the Min–Max
method and then perform the machine learning model via the BPNN
algorithm with 90% of the scoring data as training set and 10% of the
scoring data as testing set.
To verify the reliability of the machine learning model, PCC and MSE are

used to evaluate the performance of the machine learning model.
Generally, PCC between two variables x and y is defined as follows:

PCC ¼ N
P

xiyi �
P

xi
P

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

x2i �
P

xið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
P

y2i �
P

yið Þ2
q (19)

where N is the number of pairs of scores and ∑ is the sum notation. PCC
returns a value between −1 and 1 to reflect that how strong the
relationship between the two variables is. A higher absolute value
indicates a stronger relationship between variables. MSE is usually used
to relaying the concepts of precision, bias, and accuracy during the
prediction process by machine learning. It could be calculated by taking
the average of the square of the difference between the original and
predicted values of the data as follows:

MSE ¼ 1
m

Xm
i¼1

yi � y0i
� �2

(20)

where m is the number of pairs, yi and yi are the original and predicted
data, respectively. The smaller the MSE, the closer the predicted data is to
the actual data.

Fabrication and characterization of P(VDF-HFP)/Ca2Nb3O10

First, the solid powders of layered perovskite KCa2Nb3O10 (KCNO) were
prepared by a solid-state reaction method using K2CO3, CaCO3, and Nb2O5

powders. Then, KCNO powders were stirred in a 6 mol L−1 HNO3 aqueous
solution at 60°C for 24 h. Next, the solid sediments were filtered, washed by
deionized water, and then dried in the air, and become
HCa2Nb3O10·1.5H2O. Then, mixing with TBAOH aqueous solution with a
molar ratio of 1:1, the mixture was ultrasonicated at 60°C for 40 h to obtain
a colloidal suspension. Next, PEI aqueous solution was introduced
dropwise to produced white precipitate with the sandwiched structure
of Ca2Nb3O10 and PEI. Finally, the precipitate was washed and centrifuged
with deionized water and anhydrous alcohol, and then dispersed into DMF.
For nanocomposite films, P(VDF-HFP) powders were dissolved into DMF

and stirred for 10 h, and then mixed with Ca2Nb3O10 nanosheets. Then, the
suspension was cast onto the quartz glass and dried at 110°C for 10 h in air.
Finally, the film was uniaxially stretched at 80°C. For energy storage
characterization, the ferroelectric loops were measured at 10 Hz by Radiant
Technologies Precision Premier II (Radiant Tech.) equipped with a high
voltage amplifier (TREK MODEL 609B). The breakdown strength is
described by a two-parameter Weibull distribution function.
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