1) Flory defined the persistence length, using the equation $a = l/(1-\alpha)$.
 Explain each of the terms in this equation.
 Define the persistence length using a sketch of a polymer coil.
 Explain how the persistence length could be measured.
 What is a typical value for a bond length and the persistence length in a polymer.

2) How does the overlap concentration, c^*, depend on molecular weight, N?

3) Calculate the dependence of the concentration blob size ξ_p on concentration, c, given that:
 $$\xi_p = R_{F0} \left(\frac{c}{c^*}\right)^P$$
 where P is a power you need to determine, and R_{F0} is the coil size in the dilute regime for a very good solvent. (Hint: You need to know the N dependence of ξ_p to do this calculation.)
Answers: 020417 Quiz 4 Properties

1) \(l' \) is an arbitrary step size that could be a chemical bond length. \(\alpha = \cos(\theta') \), where \(\theta' \) is the average angle between two steps. The average dot product between unit vectors associated with \(l' \) steps is a decaying function of the distance between the steps. The function has a value of 1 at zero step length and a value of 0 for infinite step length. The persistence length is similar to the standard deviation of this orientation distribution function and it occurs when the average cosine is equal to 1/e. The chain direction is, on average, random beyond this size. The persistence length is measured in a neutron scattering experiment as the transition point between the coil scaling and persistence scaling. For PE the bond length is about 1.5 Å and the persistence length is about 5.8 Å.

2) \(c^* = \frac{N}{R_F^3} = N^{1-3/df} = N^{-4/5} \)

3) \(\xi_p \) doesn't depend on molecular weight, while \(c^* \) has the dependence in 2) and \(R_{F0} \) goes as \(N^{3/5} \). \(N^0 = N^{3/5}(N^{4/5})^P \), so P must equal -3/4.