The left figure below (from Strobl) is intended to demonstrate the existence of good solvent scaling. The right figure (from Doi) shows the behavior of R_g and R_H with temperature.

a) **Explain** the axes on this plot. (You will need a scaling law and a generalized scattering law).

b) **How can** the scaling law used in "a" be obtained from

\[(R/R_0)^5 - (R/R_0)^3 = (9\sqrt{6/16})V_0\sqrt{N/b^3}\]

?

C) **What is** V_0 in the equation in "b"?

- **Explain** the meaning.
- **Explain** how this term can be expanded to included enthalpic effects (give and equation).

d) **Can the expanded** definition of V_0 in "c" explain the Doi figure (right above)?
- **Explain** your answer.

e) The intrinsic viscosity $[\eta]$ is proportional to $1/\rho$, where ρ is the density of the polymer coil, N_{coil}/V_{coil}.

- **Show** that for a theta solvent $[\eta]$ scales with $N^{1/2}$.

- **What** is the scaling for and expanded coil?
- **Explain** the values of "a" in the Mark-Houwink equation, $[\eta] = K N^a$, where "a" ranges from 0.5 to close to 1.

- Should $[\eta]$ depend on R_g or R_H in the right figure above? Why?
Answers: Quiz 3 Polymer Properties 4/17/01

a) The plot reflects a curve such as described by a generalized OZ plot, \(I(q) = K/(1 + (qR_g)^d/d_0) \), then \(1/I \) is plotted versus \(q^{\text{df}} \) and a line should result.

b) If \(R/R_0 \) is big then the 5'th power term is much bigger than the 3'rd power term. Also \(R_0 \) scales with \(N^{1/2} \) so,

\[
(R)^5 = (9\sqrt{6}/16)V_0\sqrt{N/b^3} (C N^{6/2}) = C N^{6/2}
\]

and

\[
R = C N^{3/5}
\]

c) \(V_0 \) is the excluded volume. This reflects the volume of a single persistence unit in the original definition (hard core potential). It can be expanded in meaning by including a Boltzmann potential function under a lattice model to \(V_0 (1 - 2\chi) \), where \(c = z\Delta\varepsilon/kT \).

d) The expanded definition of \(V_0 \) doesn't explain the behavior shown in the right graph since the function still predicts only two states, expanded and Gaussian.

For a good solvent coil, \(R_f = C N^{3/5} \) so, \([\eta] = K N^{0.8} \)

The MH equation doesn't explain blob behavior so can not completely explain the scaling behavior of real polymer coils. Numbers larger than 0.8 for \(a \) are generally associated with rod like behavior.

\([\eta] \) should depend on \(R_H \) since the coil profile is the important feature and it is a dynamic measurement.