Quiz 4 4/24/01 Polymer Properties

a) For a polymer chain with \(N_p = 300 \) and \(l_p = 6\text{Å} \) calculate:
 - \(R_F \) for a very good solvent
 - \(R_F \) for a theta solvent
 - \(R_F \) for a good solvent with \(\xi_t = 30\text{Å} \)
 - \(R_F \) for a very good solvent in the semi-dilute regime with \(\xi_{sp} = 30\text{Å} \)

b) Sketch the log I versus log q scattering curves for the above 4 cases. Make sure to indicate any changes in the radius of gyration.

c) How does the overlap concentration, \(c^* \), depend on molecular weight, \(N \)?

d) Calculate the dependence of the concentration blob size \(\xi_p \) on concentration, \(c \), given that:
 \[\xi_p = R_{f0} \left(c/c^* \right)^P \]
 where \(P \) is a power you need to determine, and \(R_{f0} \) is the coil size in the dilute regime for a very good solvent. (Hint: You need to know the \(N \) dependence of \(\xi_p \) to do this calculation.)

e) Write an expression for the themal (thermic) blob size, \(\xi_t \), as a function of the persistence length, \(l_p \), and the interaction parameter \(\chi_{12} \).
 - Give and explain the three regimes defined by this expression.
Answers: Quiz 4 4/24/01 Polymer Properties

a) Very Good Solvent \[R_F = N^{3/5} l_p = 300^{3/5} \times 6 = 184 \text{ Å} \]
Theta Solvent \[R_F = N^{1/2} l_p = 300^{1/2} \times 6 = 104 \text{ Å} \]
Good Solvent \[\xi_t = 30 \text{ Å} = n_i^{1/2} l_p, n_i = 25 \text{ so } N_i = (300/25) = 12 \]
 \[R_F = N_i^{3/5} \xi_t = 133 \text{ Å} \]
Semi-Dilute \[\xi_p = 30 \text{ Å} = n_i^{3/5} l_p, n_i = 14.6 \text{ so } N_i = (300/14.6) = 20.5 \]
 \[R_F = N_p^{1/2} \xi_p = 136 \text{ Å} \]

b)

\[\log I = \frac{\log q}{VGS: -5/3 \text{ to } -2} \]
\[TS: -2 \]
\[GS: -5/3 \]

\[\log q \]

\[Semi-Dilute: -5/3 \]

c) \[c^* = N/R_F^3 = N^{1-3/df} = N^{-4/5} \]

d) \[\xi_p \] doesn't depend on molecular weight, while \(c^* \) has the dependence in c) and \(R_{F0} \) goes as \(N^{3/5} \). \(N^0 = N^{3/5} (N^{4/5})^P \), so \(P \) must equal \(-3/4\).

e) \[\xi_t = l_p/(1-2\chi_{12}) \]
 This equation defines three regimes:
 \(\chi_{12} < 0 \) where \(\xi_t \) doesn't exist
 \(\chi_{12} = 0 \) where \(\xi_t \) just equals \(l_p \)
 and the thermic blob regime, \(\chi_{12} > 0 \) where \(\xi_t > l_p \). The thermic blob exists as a compromise between entropically driven miscibility at large scales and enthalpically driven phase separation at small scales.