Q1.3) In class we discussed the Gaussian distribution function.
 a) Write the normalized 1-d Gaussian probability function, \(P_{1d}(R,n,l) \) and show how <\(R \)>, <\(R^2 \)>, and <\(R^3 \)> are calculated using this function.
 b) Sketch the distribution curves corresponding to \(P_{1d}(R,n,l) \) and the three moments given above and give the value for these three moments and the integral of \(P_{1d}(R,n,l) \).
 c) Show how the value for <\(R^2 \)> as a function of \(n \) and \(l \) can be obtained from summations. Show how a similar scaling relationship can be obtained from the plot of the second moment distribution curve.

Q2.3) a) Describe the difference between short range interactions (SRI) and long range interactions (LRI). For a balled sheet of paper and a balled sheet of aluminum foil, consider that balls of paper spring open when pressure is released while balls of aluminum foil do not. Is this springiness associated with short range or long-range interactions in paper?
 b) Describe the differences between i) statistical segment length, ii) chemical unit length, iii) Kuhn length, and iv) persistence length.
 c) Explain how you would apply the idea of a Kuhn unit in linear chains to the crumpled sheets. (see for example Kantor et al. Phys. Rev. A 35 3056-3071 (1987)).

The characteristic ratio, \(C_n \), is the ratio of observed end-to-end distance, and the end-to-end distance of a freely jointed chain composed of \(n \) bonds of step length \(l_{chem} \),

\[
C_n = \frac{\langle r^2 \rangle_0}{n_{chem} l_{chem}^2} = \frac{l_{stat.\,seg.\,length}^2}{l_{chem}^2}
\]

The extrapolation of this value to infinite molecular weight is called \(C_\infty \).

The coil expansion factor, \(\alpha \), is defined as the square root of the ratio of the coil end-to-end distance to that of the coil in a Gaussian state (in the melt),

\[
\alpha = \sqrt{\frac{\langle r^2 \rangle_{Experimental}}{\langle r^2 \rangle_{Gaussian\,State}}}
\]

\(\alpha \) varies with the temperature for a polymer in solution.

Q3.1) a) In class we considered the simplest case for short range interactions (SRI) where the chain is prevented from back-tracking. Explain how this SRI might effect \(C_n \) as well as \(\alpha \).
 b) The derivation for back-tracking relied on conversion of an infinite power series,

\[
\sum_{\alpha=0}^{\infty} x^\alpha = \frac{1}{1-x} \quad \text{for} \quad -1<x<1.
\]

Show that this equality is true by using a recursive relationship (that is by defining the function in terms of itself, \(\sum_{\alpha=0}^{\infty} x^\alpha = 1 + x \sum_{\alpha=0}^{\infty} x^\alpha \)).
 c) The derivation in class resulted in a simple function for the dependence of Kuhn length on coordination number, \(z \). Give this relationship, sketch the dependence on \(z \) by drawing a graph of Kuhn length versus \(z \) and explain why this dependence makes sense.
Q3.2) One technique to measure the hydrodynamic size of a polymer or colloid involves determination of the intrinsic viscosity, [\eta].
 a) Describe how the shear viscosity can be obtained from the force applied to and the velocity of a fluid. (A sketch is OK to describe this.)
 b) Explain why the intrinsic viscosity represents a first order approximation (associated with dilute conditions).
 c) Explain the dependence of intrinsic viscosity on molecular weight and hydrodynamic radius for a sphere, rod and Gaussian coil.

Q4.1&2) The radius of gyration for an object made of discrete steps, such as a freely jointed chain, can be obtained with summation. For continuous objects, such as disks and rods, an integration over all points must be made to determine \(R_g \).
 a) Obtain the radius of gyration for a rod, \(R_g^2 \), by performing a normalized double integral over length and radius using a coordinate system with an origin at the center of mass for the rod. You need to use cylindrical coordinates so the integral for a function \(f(r,y) \) is
 \[
 \int_{r=0}^{R} \int_{y=-H}^{H} 2\pi r f(r,y) dr dy.
 \]
 (Remember to normalize by an integral with \(f(r,y) = 1 \)).
 b) What equation is used to determine the radius of gyration and sketch the appearance of this function on a log-log plot.
 c) In what way is this equation a Gaussian function and why might this be true?

Q5.3) The second virial coefficient depends on the excluded volume.
 a) Explain why this is the case for a gas composed of spheres.
 b) Write an expression for the conformational free energy, \(E \), of an isolated chain in terms of the excluded volume, \(V_c \), chain end-to-end distance, \(R \), and temperature, \(T \), by comparing an exponential expression for the probability of a chain of end-to-end distance \(R \) with the Boltzman probability for a chain of end-to-end distance \(R \), \(P_{\text{Boltzman}}(R) = \exp(-E/kT) \)
 c) Sketch a plot of the isolated chain energy, \(E \), versus excluded volume, \(V_c \), and explain the behavior and limits to this plot. Is there a minimum excluded volume? Why can’t a maximum excluded volume be reached?
Q6.2) a) Write an expression for the energy of an isolated chain as a function of temperature using the chi-parameter.
b) Use this expression for a SAW chain and the expression for a Gaussian chain to calculate the spring constant, \(k_{\text{spr}} \), for these two chains, \(F = k_{\text{spr}} R \).
c) Does the non-linearity of the spring constant for the SAW become larger or smaller with higher deformation, \(R \)? Does it become larger or smaller as \(T \) drops? Explain these.

PNIPAM (poly-N-isopropyl acrylamide) is used as a drug release polymer because it displays an LSCT in water with a critical temperature at around 35°C close to the temperature of the human body. Through adjustment of the PNIPAM structure in aqueous gels a drug can be selectively released from the gel when it approaches diseased tissue that is hotter than the surrounding tissue.

Q8.1) A researcher began studies of PNIPAM polymer in solution by making a series of solutions and measuring the cloud point to construct a phase diagram.
a) Describe what a cloud point is and sketch an LSCT phase diagram.
b) If the molecular weight of the PNIPAM is known how could the interaction parameter be determined using the cloud point? (You will need to take a derivative to obtain an equation for the cloud point using \(d \ln \phi / d \phi = 1/\phi \) and \(d \ln (1 - \phi) / d \phi = -1/\phi \).
c) What functionality would you expect the chi parameter to have in temperature? Explain.

Q8.3) a) Explain the terms critical slowing-down and critical point using the words fluctuation and free-energy space in the context of the Flory-Huggins equation.
b) Give a generic expression for the critical interaction parameter and critical composition then show the values for a blend of gases, a polymer/solvent mixture and a symmetric polymer blend.
c) It is often said that polymers do not mix. Use the Flory-Huggins equation to explain why this is the case. (Show what part of the Flory-Huggins equation drives miscibility and which part drives phase separation; explain why they favor or disfavor miscibility; and show the dependence of these terms on molecular weight.)
Answers: Final Polymer Properties

Q1.3) a) \[P_{ld}(R,n,l) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{R^2}{2nl^2}\right); \quad \langle R \rangle = \int_{-\infty}^{\infty} RP_{ld}(R,n,l)dR = 0; \]

\[\langle R^2 \rangle = \int R^2 P_{ld}(R,n,l)dR = nl^2; \quad \langle R^3 \rangle = \int R^3 P_{ld}(R,n,l)dR = 0 \]

b) \[<R^3> \text{ is similar to } <R> \]

Values are given in a)

c) \[\langle R^2 \rangle = \langle r_i \cdot r_j \rangle = \sum_{i=1}^{n} r_i^2 + \sum_{j=0 \atop j \neq 0}^{n} r_i \cdot r_j = nl^2 \]

where the second summation is 0 because there is no correlation between \(i \) and \(j \) vectors.

A similar result can be obtained by setting the derivative at the maximum of the \(R^2 \) curve above to 0 resulting in \(R^*_{R^2} = 2nl^2 \).
This is a picture of a handwritten note. The text reads:

"R" and "L" are symbols used to indicate right and left, respectively. The note appears to discuss a 2-dimensional plane and an object falling on a line. There is a diagram of a figure with arrows labeled "R" and "L." The note mentions a 3-dimensional plane and a 2-dimensional plane, with an equation "\(x = \sqrt{t^2} \)."

The handwriting is legible, but the context of the note is not clear from the image alone.
36) i) Stabilized segment length R is recession from chain size R_0 to number of chain units n_{ch}, hence:

$$R_{2D} = R_0 + n_{ch} \frac{L_0}{2}$$

ii) Chain unit per L is just bend length b or bend length plus bend overlap to compose a chain unit, hence:

$$L = n_{ch} b$$

iii) Kuhn length refers to a freely jointed chain, hence:

$$\frac{L}{n_{ch}} = b$$

$$R^2 = n_{ch} b^2$$

iv) Possible by L refers to a worm-like chain L describes the decay in orientational correlation $C(\cos \theta)$:

$$2\Delta = L$$
1. \(C_n \) is included to reflect SAE while \(\alpha \) is included to reflect \(\text{CSE} \). Both were developed by Boeing in the late 1970s and 1980s. Then we expect that SAE will change \(C_n \) & \(\alpha \) but will have no effect on \(\alpha \). This is because changes in \(\text{CSE} \) (John\(\beta \)) already affect \(\langle \rho \rangle \) collision. There is little temperature dependence to \(\text{CSE} \). On the other hand, \(C_n \) is a direct measure of the consequence of SAE and changes in \(\beta \) due to RISE & similar restrictions and like.

2. \(\frac{d}{d\theta} A = A \)

 \[A = (1 + x) \text{ so } 1 = \frac{1}{A} + x \text{ or } \frac{1}{1-x} = 1 - x \]

 \[A = \frac{1}{1-x} \]

3. \[\frac{1}{2} \ln \frac{2}{2-1} \]

As \(z \) becomes larger, the fractal dimension \(D \) is included because smaller scale effects become smaller. With \(z \) close to 1, the walk is a ballistic walk (like a bullet) and the fractalness is infinite (straight line).
b) \[\eta = \eta_0 \left(1 + \frac{1}{2} \frac{C_e^2}{\mu} + \frac{1}{3} \frac{C_e^4}{\mu^2} + \cdots \right) \]

For finite cavities, higher order terms can be neglected. For large cavities, it reduces to zero. It is illustrated because c is the power of \(\eta \).

\[\eta \approx \frac{R^2}{2} \left(\frac{1}{\mu} \right) \]

\[\text{Outer layer} \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{d}{2})</td>
<td>2</td>
<td>(\frac{d}{2})</td>
</tr>
<tr>
<td>(\frac{d}{2})</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(\frac{d}{2})</td>
<td>2</td>
<td>(\frac{d}{2})</td>
</tr>
</tbody>
</table>

\[\int_{0}^{\infty} \int_{0}^{\pi} \frac{1}{2} r (r + \frac{\pi}{2}) \, dr \, dy = \frac{\pi}{2} \left(\frac{r^3}{3} + \frac{\pi^2}{4} \right) \]

\[\int_{0}^{\infty} \frac{1}{2} r (r + \frac{\pi}{2}) \, dr = \frac{\pi}{2} \left(\frac{r^3}{3} + \frac{\pi^2}{4} \right) \]

\[\int_{0}^{\infty} \frac{1}{2} r (r + \frac{\pi}{2}) \, dr = \frac{\pi}{2} \left(\frac{r^3}{3} + \frac{\pi^2}{4} \right) \]

\[\int_{0}^{\infty} \frac{1}{2} r (r + \frac{\pi}{2}) \, dr = \frac{\pi}{2} \left(\frac{r^3}{3} + \frac{\pi^2}{4} \right) \]
b) Gauß's Law
\[\rho(x) = \rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]

\[N \]

\[\rho \]

\[\rho_0 e^{-\frac{x^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[x \]

\[N \]

\[\rho_0 e^{-\frac{N^2}{\sigma^2}} \]

\[\rho_0 \]

\[\sigma \]

\[N \]
2a) \(\frac{P}{\kappa T} = \varepsilon + \rho_2 \varepsilon^2 + \cdots \)
Vina expansion

\(\rho_2 \) is the excluded volume per gas atom.

Since this accounts for hard core interaction,

\(\rho_2 = 4 \rho_0 \) for argon.

\(\begin{align*}
E &= k_{\text{B}} \left(\frac{3}{2} \frac{V_c^2}{R_0^2} + \frac{V_c N^2}{R_0^2} \right) \\
E_{\text{entropy}} &= k_{\text{B}} T \log \left(\frac{R^2}{3 R_0^2} \right)
\end{align*}\)

\(\begin{align*}
E &= k_{\text{B}} \left(\frac{3}{2} \frac{V_c^2}{R_0^2} + \frac{N^2}{2} \right) \\
\text{For \(\rho_2 \) small enough and \(V_c \) small, it is assumed \(V_c \) is small in the derivation.}
\end{align*}\)

\(V_c \) is a measure of energy (enthalpy).

When \(V_c = 0 \), the system is tetropic; \(E_{\text{enthalpy}} = 0 \)

2b) \(E = k_{\text{B}} T \left(\frac{3}{2} \frac{R^2}{n_0 R_0} + \frac{N^2 V_c}{2 R^2} \left(1 - 2x \right) \right) \)

\(x = \frac{2 \Delta E}{k_{\text{B}} T} \)

\(F = \frac{dE}{dR} = (\frac{2 \kappa T}{n_0}) R \)
For Gaussion

\(K_{\text{eff}} = (\frac{2 \kappa T}{n_0 R^2}) \)

\(S \Rightarrow \)

\(F = \frac{dE}{dh} = k_{\text{B}} T \left(\frac{3}{2} \frac{N^2 V_0 (1 - 2x)}{R^5} \right) \)

10
c) Smaller with larger R \& smaller as T days, as R increases self-overlap becomes less likely

\[\Rightarrow \ \theta \]

so the excluded volume term becomes less important.

Similarly, as T days \((1-2x) \Rightarrow 0 \)

\& T chain appears to lose self-overlap & excluded volume.
1) a) For a mixture, the cloud point is the same as when the system first phase separates with varying (COS) concentration. If above the eutectic point,

\[T \]

\[0 \]

\[1 \]

b) The cloud point occurs when \(\frac{dT}{dt} = 0 \)

We use the following equation:

\[f = \frac{\phi}{N} + k + \frac{1}{4} - \ln(1-x) + x - 2x = 0 \]

if you know \(\phi \) & \(N \) you can solve for \(x \)

c) \(x = \frac{A - B}{1} \) because this is a CSTR system.

As \(T \to \infty \), \(x \) is positive & large then

\(\frac{k \ln(1-x) + (1-x)(1-x)}{N} \)

As \(T \to \infty \), \(x \) is less than this limit due to \(A \)

(3) a) A plot of the flow crossing operating is frequency space

\[f > \omega_c \]

\[\omega_c = \omega_c \]

\[\omega < \omega_c \]

The flow in composition with the limit above \(\omega = -A \)

so \(\omega \) remains the same. Thus, \(\omega \) is not different in \(f \) for different \(\epsilon \) to have no preference for
which during high risk of freezing leads to
sites of rupture, and are possible. Here is no
stretch here to from the hardness to the
knees (kabs) if phase space less to 0.

This is called critical slowing-down,

\[\frac{\phi_{AC}}{\phi_{BA}} \]

\[\frac{1}{N_b + N_a} \]

\[\frac{1}{2} \]

\[\frac{1}{2} \]

\[\left(\frac{1}{N_b} + \frac{1}{N_a} \right)^2 \]

\[2 \]

\[\frac{1}{N} \]

\[\phi = \frac{1}{N_a} \ln \frac{1 + (1 - f) \ln (1 - f)}{N_b} + \frac{1}{N_b} \ln \frac{1 + (1 - f)}{N_a} \]

Positive

Entropy

Favors Miscibility

Negative Term

High Molecular Weight Molecules

The term small

Positive Term

\[N_b \text{ Molecular Weight Dependence} \]