1) The time auto-correlation function, \(g^1(q, \tau) \) is used to obtain the diffusion coefficient from a noise pattern created by the change in scattered intensity with time from a colloidal suspension.

a) Sketch a plot the intensity as a function of time for large particles, medium sized particles and small colloidal particles. Are these curves different? Why?

b) What is the time correlation function \(g^2(q, \tau) \), show how it is determined from an intensity versus time plot.

c) What is the value of \(g^2(q, \tau) \) when \(\tau = 0 \) and when \(\tau = \infty \)?

d) Write an expression for \(g^1(q, \tau) \) as a function of \(g^2(q, \tau) \) using your answer to “c” to define the parameters.

e) How can the hydrodynamic radius be obtained from \(g^1(q, \tau) \)?

2) The following scattering function has been proposed by Benoit [H. Benoit, J. Polym. Sci., 1953, XI, 507] for scattering from Gaussian star polymers (\(f \) is the number of arms, \(b \) is the segment length, \(n \) is the number of segments per arm). (Star polymers are polymers with arms emanating from a center point.)

\[
S_{Star}(q, b, n, f) = \frac{P_{11}}{f} + \frac{f - 1}{f} P_{12}
\]

\[
P_{11}(q, b, n, f) = \frac{2}{(xn)^2} \left(e^{-xn} - 1 + xn \right)
\]

\[
P_{12}(q, b, n, f) = \frac{(1 - e^{-xn})^2}{(xn)^2}
\]

\[
x = \frac{(qb)^2}{6}
\]

a) Show that the first term \((P_{11}) \) displays Gaussian scaling at high-q.

b) Obtain the radius of gyration for the first term by extrapolating the first term to low-q and comparing with Guinier’s law.

c) Explain what part of the star structure you think the first term describes.

d) Show that the second term is non-fractal in nature (fractal structures display a power-law decay between -1 and -3).

e) Do you think that this function could describe a star polymer with Gaussian arms? Explain your answer.
1) a)

\[\frac{g^2(q, \tau)}{\langle I(t) \rangle^2} = \frac{\langle I(t) I(t+\tau) \rangle}{\langle I(t) \rangle^2} \]

Compare two intensities separated by \(\tau \) multiply these two intensities and take an average over all stochastic times, \(t \). This average at \(\tau \) is normalized by the value at \(\tau = 0 \).

b)

\[g^2(q, \tau) = 1 \quad \text{at} \quad \tau = 0 \quad \frac{\langle I(t) \rangle^2}{\langle I(t) \rangle} \]

So \(g^2(q, \tau) = \frac{\langle I(t) \rangle^2}{\langle I(t) \rangle^2} \)
\[d) \quad q^2(g, \tau) = 1 + \beta (q'(g, \tau))^2 \]
\[\beta = \left(\frac{\langle I^2(t) \rangle}{\langle I(t) \rangle^2} - 1 \right) \]

\[c) \quad q'(g, \tau) = \exp(-q^2 0 \tau) \]

\[D = \frac{kT}{6\pi\eta R_h} \]

2) a) at high\(q \quad e^{-x_n} \gg 0 \quad \& \quad x_n - 1 \equiv x_n \]
\[p_{ii}(g \to 0) \sim \frac{2}{x_n} = \frac{2\langle G \rangle}{q^2 n b^2} \quad d_f = 2 = \text{Gaussian} \]

b) at low\(q \quad e^{-x_n} \gg 1 \sim x_n x_n + (x_n)^2 + (x_n)^3 + \ldots \]
\[p_{ii}(g \to 0) \sim 2 \left(1 - \frac{x_n}{8} + \ldots \right) \sim \exp\left(-\frac{x_n}{3} \right) \]

\text{Gumbel's Law} \quad \exp\left(\frac{-x_n}{3} \right) \quad \therefore \quad \frac{q^2}{2} = \frac{n b^2}{6} \]
c) The first term describes scattering from the arms as independent contributions to the overall scattering pattern.

\[d) \quad \text{at high } q, \quad e^{-x_n} \rightarrow 0 \]

\[\rho_{12} \Rightarrow \frac{1}{(x_n)^2} = \frac{36}{q^4 5n^2} \]

\[\rho_{12} \sim q^{-4} \text{ so this is a non-trivial scattering law} \]

\[e) \quad \text{there should be no part of the star scattering that would display a } q^{-4} \text{ scaling so this function is erroneous.} \]