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Five High-Impact Research Areas in Machine Learning for Materials

Science

ver the past several years, the field of materials informatics

has grown dramatically.' Applications of machine learning
(ML) and artificial intelligence (AI) to materials science are now
commonplace. As materials informatics has matured from a
niche area of research into an established discipline, distinct
frontiers of this discipline have come into focus, and best
practices for applying ML to materials are emerging.” The
purpose of this editorial is to outline five broad categories of
research that, in my view, represent particularly high-impact
opportunities in materials informatics today:

o Validation by experiment or physics-based simulation. One
of the most common applications of ML in materials
science involves training models to predict materials
properties, typically with the goal of discovering new
materials. With the availability of user-friendly, open-
source. ML packages such as scikit-learn,’
keras,' and pytorch,’ the process of training a
model on a materials data set—which requires only a few
lines of python code—has become completely commo-
ditized. Thus, standard practice in designing materials
with ML should include some form of validation, ideally
by experiment®™® or, in some cases, by physics-based
simulation.”'® Of particular interest are cases in which
researchers use ML to identify materials whose properties
are superior to those of any material in the initial training
set;'" such extraordinary results remain scarce.

o ML approaches tailored for materials data and applications.
This category encapsulates a diverse set of method
development activities that make ML more applicable to
and effective for a wider range of materials problems.
Materials science as a field is characterized by small,
sparse, noisy, multiscale, and heterogeneous multidimen-
sional (e.g., a blend of scalar property estimates, curves,
images, time series, etc.) data sets. At the same time, we
are often interested in exploring very large, high-
dimensional chemistry and processing design spaces.
Some method development examples to address these
challenges include new approaches for uncertainty
quantification (UQ),"” extrapolation detection,"® multi-
property optimization, * descriptor development (i.e., the
design of new materials representations for ML),">™"”
materials—s%)eciﬁc cross-validation,'®'? ML-oriented data
standards,”>*' and generative models for materials
design.””

o High-throughput data acquisition capabilities. ML is
notoriously data-hungry. Given the typically very high
cost of acquiring materials data, both in terms of time and
money, the materials informatics field is well-served by
research that accelerates and democratizes our ability to
synthesize, characterize, and simulate materials. Examples
include high-throughput density functional theory
calculations of materials properties,”>>° applications of
robotics, automation, and operations research to materials
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science,”* ™" and natural language processing (NLP) to
extract materials data from text corpora.””

o ML that makes us better scientists. A popular refrain in the
materials informatics community is that “ML will not
replace scientists, but scientists who use ML will replace
those who do not.” This bon mot suggests that ML has the
potential to make scientists more effective and enable
them to do more interesting and impactful work. We are
still in the nascent stages of creating true ML-based
copilots for scientists, but research areas such as ML
model explainability and interpretability’”** represent a

valuable early step. Another example is the application of

ML to accelerate or simplify materials characterization.

Researchers have used deep learning to efficiently post-

process and understand images generated via existing

characterization methods such as scanning transmission
electron microscopy (STEM)™ and position averaged
convergent beam electron diffraction (PACBED).*

o [Integration of physics within ML, and ML with physics-based
simulations. The paucity of data in many materials
applications is a strong motivator for formally integrating
known physics into ML models. One approach to
embedding physics within ML is to develop methods
that guarantee certain desirable properties by construc-
tion, such as respecting the invariances present in a
physical system.”” Another strategy is to use ML to model
the difference between simulation outputs and exper-
imental results. For example, Google and collaborators
created TossingBot, a robotic system that learned to
throw objects into bins with the aid of a ballistics
simulation.”® The researchers found that a physics-aware
ML approach, wherein ML learned and corrected for the
discrepancy between the simulations and real-world
observations, dramatically outperformed a pure trial-
and-error ML training strategy. In a similar vein, ML can
enable us to derive more value from existing physics-based
simulations. For example, ML-based interatomic poten-
tials”~*' represent a means of capturing some of the
physics of first-principles simulations in a much more
computationally efficient model that can simulate orders
of magnitude more atoms. ML can also serve as “glue” to
link physics-based models operating at various fidelities
and length scales.*”

As ML becomes more widely used in materials research, I
expect that efforts addressing one or more of these five themes
will have an outsized impact on both the materials informatics
discipline and materials science more broadly.
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