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E
very rock on Earth is a time capsule, holding traces of our 
planet from when the minerals first formed. Consider 
a smidge of 164-million-year-old clay, says M. Joseph 
Pasterski, an organic geochemist at the University of 

Illinois Chicago. A sample just about 2 cm long contains complex 
layers of mixed materials composed of myriad molecules from 
Earth’s distant past. Researchers like Pasterski want to use today’s 
state-of-the-art analytical tools to sort through the mélange of 
minerals to reveal chemical signs of ancient life.

For example, using time-of-flight 
secondary ion mass spectrometry (TOF-
SIMS), Pasterski can map elements in 
500 by 500 µm patches within the an-
cient clay sample, generating around 
62,000 spectra per patch. Pasterski then 
uses those data to look for organic mole-
cules, such as steranes, that could be signs 
of life. The spectra capture not only these 
biosignatures but also all the other grit and 
debris that one might expect to find in an 

old clod of mud. “There’s so much data that 
isn’t noise but isn’t necessarily [relevant to] 
the question that you’re asking,” Pasterski 
says. Manually processing the spectra from 
one patch to identify the signals of interest 
is tedious enough, he says. Now imagine 
processing spectra for the entire clay frag-
ment or an entire library of specimens.

That’s an intimidating chunk of data for 
a scientist to parse, but what about for a 
computer? Pasterski wondered. He’s not 
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the only researcher in the chemical scienc-
es pondering if computers could be data 
analysis assistants.

Scientists are awash in seas of data. In 
2022, the International System of Units 
gained the prefixes ronna for 1027 and 
quetta for 1030 to help measure massive 
data sets as the digitized collection of hu-
man knowledge pushes the limits of our 
comprehension. Advances in analytical in-
strumentation and methods, and the grow-
ing number of open-science repositories 
for chemical information, have afforded 
researchers a glut of data to explore ques-
tions across the biological and physical 
sciences.

Some scientists want to enlist comput-
ers to help them make sense of all that 
information. When it comes to visual data 
such as spectra and microscopy images, 
machines are well positioned to assist. Ma-
chine learning algorithms are already good 
at identifying patterns and creating images. 
For example, the Dall-E 2 program from 
tech company OpenAI can generate an 
image from a text prompt. And AlphaFold, 
a program created by the tech company 
DeepMind, has demonstrated that C
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machines can learn chemical concepts: it 
has already predicted the 3D structures of 
over 200 million proteins from more than 
10 million species.

Now computational scientists are de-
signing algorithms to automate the pro-
cessing of molecular data sets such as mul-
tidimensional nuclear magnetic resonance 
spectra, complex mass spectrometry data, 
and micrographs. To do that, researchers 
are teaching computers to approach visual 
data as a human chemist would. In this ap-
proach, scientists need to ask, What does 
an expert look at in these spectra? And how 
do we train a machine to look at the same 
things? says Connor Coley, a computation-
al chemist at the Massachusetts Institute 
of Technology. The resulting programs 
could speed up experiments, process large 
volumes of data, and allow researchers to 
study short-lived molecular systems that 
were previously too difficult to observe.

Wading through spectra
Biomedical researchers trying to under-

stand a disease’s molecular basis within 
clinical tissue samples must sift through a 
chemical soup. One method clinicians use 
to assess tissue samples’ chemical composi-
tion is mass spectrometry. Mass spectrom-
eters ionize the material to measure the 
mass-to-charge ratio of each compound, 
allowing scientists to distinguish chemicals 
by their molecular weight. Additional meth-
ods can break these molecules into smaller 
fragments whose mass spectra offer further 
clues to how atoms are arranged within the 
compound. Combining these techniques 
helps scientists describe molecules by their 
structure as well as molecular weight. “You 
kind of see a jigsaw of your molecule, and 
you have to piece it back together,” says 
Sam Goldman, a computational biology 
PhD student working with Coley at MIT. 
Mass spectrometry is a powerful tool for 
chemically analyzing biological samples, 
but current methods—both with and with-
out machine assistance—struggle to con-
nect fragmentation patterns to the mole-
cules that make them, Coley says. Goldman 
and Coley realized that machine learning 
could help biologists more easily identify 
unknowns in their samples by addressing 
this bottleneck.

Computational chemists have already 
trained computers to analyze spectra by 
considering the collection of peaks as a 
fingerprint of the molecule that produced 
the data. These programs are proficient at 
finding patterns in the molecular weights 
of whole molecules and the fragments they 
produce, but a lack of chemistry-specific 
knowledge limits their utility, Coley says. 

A human scientist looking at these spectra 
would start by identifying the signals for 
whole molecules and then look for the 
pattern created by the fragments’ peaks. 
Researchers with chemistry expertise 
can quickly ascribe differences in mass 
between sets of fragments to the loss of 
functional groups. They can then intuit 

how those functional groups fit together 
within the whole molecule. Goldman and 
his colleagues wanted to improve on ex-
isting computational methods by coaxing 
a machine learning algorithm to think like 
a researcher. Their algorithm interprets 
peaks within a mass spectrum as chemical 
formulas and understands that fragments’ 
peaks in the same spectrum relate to one 
another according to molecular bonding 
principles. “There’s a ton of patterns you 
can learn from, and we want to give the 
model the best chance at picking the right 
patterns,” Goldman says.

Goldman and his colleagues trained 
their program, called Metabolite Inference 
with Spectrum Transformers (MIST), with 
spectra from more than 27,000 molecules 
from public-access databases such as those 
from the National Institute of Standards 
and Technology and the Global Natural 

Products Social Molecular Networking. 
MIST also learned from spectra simulated 
by other machine learning algorithms. In 
benchmark experiments, MIST successful-
ly identified the structures of more than 
66% of the test molecules from their mass 
spectra, a clear improvement over alter-
native programs. Next, Goldman and his 

colleagues tested MIST on spectra taken 
from tissue samples from people with in-
flammatory bowel disease. MIST pointed 
the team toward novel dipeptides and alka-
loid molecules associated with more severe 
symptoms. The results were published 
on a preprint server while the manuscript 
awaits peer review (bioRxiv 2022, DOI: 
10.1101/2022.12.30.522318). 

Goldman says MIST is designed to work 
alongside other computational tools that 
researchers use to process and interpret 
high-throughput mass spectrometry data. 
He hopes that using machine learning to 
perform computationally cumbersome 
structure identification will free biologists 
to spend more time thinking about how 
metabolites function within complex bio-
logical systems.

Machine learning is also helping re-
searchers analyze data to elucidate protein 
structures. For example, Artificial Intelli-
gence for NMR Applications (ARTINA) can 
solve a protein structure directly from mul-
tidimensional NMR spectra (Nat. Commun. 
2022, DOI: 10.1038/s41467-022-33879-5). 

NMR is a useful tool for scientists in-
terested in studying protein dynamics in 
solution or even within whole cells. Protein 
NMR spectra help scientists probe the mo-
lecular composition of a protein and how 
it interacts with other molecules. But the 
resulting spectra can be unwieldy. While 
some spectra are represented as a series 

“You kind of see 
a jigsaw of your 
molecule, and you 
have to piece it 
back together.”

—Sam Goldman, PhD student, MITC
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The machine learning algorithim Artificial Intelligence for NMR Applications can 
decode complex, multidimensional nuclear magnetic resonance spectra (left) to 
propose 3D structures for a given protein (right).
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of peaks along a single axis, others look 
more like topographical maps: clusters of 
irregular, multidimensional peaks sprawling 
across a grid. Even a specialist might spend 
weeks or months picking out all the rele-
vant signals, assigning them to amino acids 
in the protein, and assembling those amino 
acids into a suitable 3D protein structure. 
Peter Güntert, a structural biologist at 
Goethe University Frankfurt and the Swiss 
Federal Institute of Technology (ETH), Zu-
rich, and his colleagues wanted to make this 
process more manageable with ARTINA.

To begin, Güntert and his colleagues 
compiled a training set of experimental 
and simulated protein NMR spectra in 
which each peak was labeled and assigned 
to a feature within the protein of interest. 
Using this data set, the researchers taught 
ARTINA to visually inspect spectral data 
so that it could automatically annotate the 
peaks and propose a 3D structure to explain 
the patterns it detected. The researchers 
tested ARTINA on NMR spectra from 
100 proteins 35 to 175 amino acids long. The 
program accurately solved the structures 
for these proteins and correctly assigned 
91% of spectral peaks to features within 
those structures. Much like human special-
ists, the program was better at predicting 

how the protein backbones folded than 
how the amino acid side chains arranged 
themselves. The most prominent errors 
arose in proteins containing disordered re-
gions or certain secondary structures, such 
as floppy helices. The results are sufficient 
to show that ARTINA is no worse than the 
average spectroscopist, Güntert says. And 
while researchers should be cautious when 
using the program, errors are usually easy 
to spot. Sometimes the program clearly 
messes up and doesn’t output results, or 
the structure is obviously meaningless. 
“It’s actually usually quite difficult to get 
nice-looking but significantly wrong re-
sults,” Güntert says.

Now researchers can upload data to 
a web server called NMRtist, which can 
perform all the steps in protein NMR 
analysis—such as annotating the spectra 
and producing a full protein structure—
with zero intervention. The uploaded 
spectra are automatically added to new 
training sets, which will be used to improve 
ARTINA in future iterations. Because AR-
TINA doesn’t require specialized training, 
Güntert hopes his team’s efforts will help 
clinicians and biomedical scientists who 
are unfamiliar with protein NMR incorpo-
rate the methods in their research. 

AI assistant

With both MIST and ARTINA, a scien-
tist inputs spectra into the program and 
waits for it to return a result. Maxim Ziat-
dinov, a research scientist at Oak Ridge Na-
tional Laboratory, is developing a program 
that will work alongside a materials scien-
tist as they run microscopy experiments in 
real time. Scientists interested in design-
ing new materials often use electron and 
scanning probe microscopes to investigate 
atomic and molecular features within a 
sample. These instruments can also manip-
ulate structures within a sample. The way 
the material responds can help researchers 
elucidate structure-function relationships, 
a key to understanding why the material 
behaves as it does.

Electron and scanning probe microsco-
py experiments can be time consuming. 
First, these microscopes record images 
frame by frame across the sample within 
fields of view that usually contain several 
thousand atoms and hundreds of features. 
Upon closer inspection, these features 
could reveal interesting properties, such as 
electrical conductivity and energy storage 
capabilities, Ziatdinov says. So researchers 
then use advanced microscopy techniques, 
such as laser pulses, to manipulate individ-
ual atoms within these features to gather 
that key structure-function information. 
“There’s no way to analyze all of [the data] 
manually,” Ziatdinov says.

Because exposure to the microscopes’ 
harsh conditions can degrade samples, the C
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This scanning transmission electron microscopy image of graphene contains thousands of atoms within one field of view alone, 
mostly arranged in hexagons. AtomAI can quickly sniff out spots where the carbon atoms are arranged in pentagons and heptagons.

“I like to say that artificial intelligence 
is actually augmented intelligence.”

—Maxim Ziatdinov, research scientist, Oak Ridge National Laboratory
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experiments have a time limit. Some ma-
terials break down under the instruments’ 
strong vacuum and high-energy beams be-
fore the whole sample can be processed. So 
scientists have to be judicious in the num-
ber of experiments they run on a sample or 
avoid unstable materials altogether.

Ziatdinov and his colleagues saw an 
opportunity to apply machine learning to 
optimize the imaging and material manipu-
lation process. The researchers designed a 
program called AtomAI, which can identify 
every atom and its position within a scan 
of each frame. The algorithm then predicts 
which regions are most likely to yield a 
given functional behavior (Nat. Mach. Intell. 
2022, DOI: 10.1038/s42256-022-00555-8). 

“The general idea is that you get this 
easy-to-acquire structural image, make 
several spectral measurements within that 
image, then use that information to predict 
how the spectra would likely look in the re-
maining portion of that image,” Ziatdinov 
says. With this information, the researcher 
can decide what to do next, such as ma-
nipulate the structures with laser pulses 
or take more extensive measurements, 
without ever leaving the microscope. “It’s 
an assistant [that] allows you to make de-
cisions faster because it gives you an idea 
of what’s going on in your system while the 

experiment is still running,” he says. That 
improvement cuts experiment times down 
from weeks to days, he says.

So AtomAI could allow researchers to 
study samples that would be too unstable 
under the traditional, slower experimental 
workflows, Ziatdinov says. And he believes 
self-driving microscopes could make it eas-
ier for scientists to not only discover new 
materials but also facilitate the fabrication 
of atomically precise devices, such as the 
qubit components needed for quantum 
information technologies.

Back in Illinois, Pasterski has been 
using a TOF-SIMS and a machine learn-
ing algorithm to study those ancient clay 
samples. This combination can determine 
with greater than 80% accuracy if a sec-
tion of clay contains primarily organic or 
inorganic material. It also successfully 
recognized sterane-based biosignatures 
with greater than 95% accuracy, according 
to research he presented at the 2022 Fall 
Meeting of the American Geophysical 
Union in Chicago. Pasterski believes these 
preliminary results show that further de-
velopment could make machine learning 
approaches a powerful tool for seeking out 
signs of life in geological samples.

In particular, he thinks machine learning 
methods would be helpful in an extreme 

experimental setting: another planet. When 
probes like those on NASA’s Perseverance 
rover study samples on Mars, the extreme 
distance from Earth slows data transmis-
sion, making it difficult for scientists on 
Earth to guide the machine on how to 
analyze materials. Also, while these probes 
carry powerful instruments, engineers can 
fit only so much on these remote labs be-
cause of weight limitations during launch. A 
machine learning program directing a mass 
spectrometer on a rover could help make 
sample analysis more efficient with the on-
board equipment and less reliant on human 
guidance, Pasterski thinks.

But computational scientists caution 
that machine learning won’t solve all of 
chemists’ experimental challenges. Scien-
tists shouldn’t reach for machine learning 
just to use machine learning, MIT’s Co-
ley says. “We’re really trying to identify 
the places where it excels and where it 
provides benefits over the existing tech-
niques,” he says. And humans are still bet-
ter at many tasks.

“I like to say that artificial intelligence is 
actually augmented intelligence,” Ziatdin-
ov says. For as good as computers may be 
at crunching numbers at dizzying speeds, 
human scientists will always be the ones 
asking the questions. ◾
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