
Question 1  
Thermodynamics 

A first-order transition is characterized by a discontinuity in state functions such as the enthalpy 
which results in a heat of transition, for example the heat of vaporization or fusion. Neophytou A, 
Chakrabarti D, Sciortino F Topological nature of the liquid–liquid phase transition in tetrahedral 
liquids Nat. Phys. https://doi.org/10.1038/s41567-022-01698-6 (2022) propose a first order 
transition between two liquid states for tetrahedrally-associated molecules (like water) due to 
topological differences between the two “phases”. An example of topological difference of this 
type is the difference between a pile of string and a pile of string with knots, below, where LDL is 
a low-density liquid with no knots and HDL is a high-density liquid with knots.  

  
Neophytou quantifies the transition with several topological intrinsic parameters shown below.  

  
The last figure shows the distribution of various topological features.  

a) Define a state parameter. Is a topological feature such as a knot in a shoelace a state 
parameter? Would Hess’ Law (and the First Law of Thermodynamics) apply to a 
topological feature such as a knot in a shoelace?  

b) Make an argument that the transition being observed is a second-order transition. Define 
what parameter is considered that has a discontinuous second derivative.   

c) If I throw computer cables on the floor, then try to pick them up I generally find that they 
are entangled. It requires significant energy to disentangle the cables though the pile will 
appear almost identical before and after disentanglement. Is this a first-order transition? 



How is this different from Neophytou’s proposition for water molecules (tetrahedrally-
associated molecules)?  

d) Is Neophytou’s system ergotic? Has it reached equilibrium? How would you define 
equilibrium in this case?  

e) Consider the LDL and HDL “states”. Do these two states have different entropies if 
calculated using the Boltzman equation?  



Question 2 
Thermodynamics 

One form of the Gibbs-Thompson Equation (GTE) describes the shift in melting point for 
nano-crystals as a function of their size and can be adapted to describe the shift in melting point 
for confined fluids such as at an AFM tip as a function of a fluid filled gap’s height, h, Fig. 2 
below. Scalfi L, Coasne B, Rotenberg B, On the Gibbs-Thomson equation for the crystallization 
of confined fluids. J. Chem. Phys. 154 114711 (2021) present a new derivation of the GTE for 
confined fluids and use the derivation to simulate crystallization in confined pores and gaps using 
a Monte Carlo method.   

 

      
 

a) The normal derivation of the GTE involves simply writing an expression for the Gibbs free 
energy that includes volumetric and surface terms, considering equilibrium for small 
particles (spheres) and solving for the particle size.  Derive the GTE in this way for a planar 
crystal with infinite width and height H (please note that Scalfi uses “h” for the enthalpy 
per particle). Scalfi’s GTE includes two surface energies, that of the liquid and that of the 
solid.  How do you accommodate this in your derivation? 

 
b) Scalfi gives the following thermodynamic potential (2) and internal energy (3) for the 

fluid/solid between the gap, 
 
 

Use the thermodynamic square or other means to explain the origin of these two expressions.  
What kind of free energy is W ? (Helmholz or Gibbs and explain why.) 

c) The son of Herman von Helmholtz (Robert von Helmholz) derived the Gibbs-Thompson 
equation from the Oswald-Freundlich Equation (OFE) using the integrated Clausius-
Clapeyron Equation (CCE) for his PhD dissertation in 1885 (things were simpler then).   



      OFE 

                 CCE 
For this reason, the OFE or Kelvin Equation is sometimes referred to as the GTE.  Obtain 
the GTE from the OFE using the integrated CCE. Also, give (don’t derive) the 
Ostwald-Freundlich Equation which describes the relationship between the 
supersaturated mole fraction, x, and nanoparticle size, r, for crystallization from solution.  

d) Scalfi used Monte Carlo Simulations with the Metropolis method to determine the melting 
point, Figure 9, shown above, where N is the density and T* is a reduced temperature.  He 
used a 6-12 potential with a cutoff of 2.5 s where s is the atomic size. Monte Carlo steps 
involved translation, deletion or insertion. The starting state could be liquid or crystal 
structures and resulted in the densities shown in Figure 9. Give an algorithm (give the 
steps that are involved in the program in a flow chart) for a typical Metropolis 
simulation of this type. How would you determine if the simulation had reached 
equilibrium? 

e) In Figure 9, shown above, Scalfi shows that the crystalline structure exists at the interface 
with the AFM tip and the stage (which is the same material in the simulation) even in the 
(bulk) amorphous state (lower structure). Derive expressions comparing the free energy 
barrier, DG*, and phase size, r*, for surface (heterogeneous) and bulk (homogeneous 
nucleation).  Can this explain the observed behavior? 

 


