

Biofuels production from renewable biomass

Maobing Tu Chemical and Environmental Engineering University of Cincinnati

Gasoline and ethanol

\$2.984, Price as of, 11/28/23

Background

- U.S. spending \$1 billion per day on foreign oil
- Facing critical disruptions in oil supply
- Generating economic uncertainties
- Influencing national security

Source: EDGAR v4.3.2 FT2015 (JRC/PBL 2016: IEA 2014 (suppl. with IEA 2016 for China, BP 2016, NBS 2016, USGS 2016, WSA 2016, NOAA 2016)

https://www1.eere.energy.gov/bioenergy/pdfs/replacing_barrel_overview_2012.pdf

Drivers-why biofuels and bioproducts

- <u>Increase</u> energy security and reduce the nation's dependence on foreign oil
- <u>Reduce</u> greenhouse gas (GHG) emission
- <u>Enhance</u> sustainability of liquid fuels
- <u>Create</u> new economic opportunities and jobs
- <u>Utilize</u> 1 billon tons of renewable biomass (U.S.)

http://www.nrel.gov/biomass/biorefinery.html

U.S. petroleum imports and exports (2019)

U.S. CO2 emission

Source: AMS/USDA

farmdocdally

U.S. fuel ethanol production

- Corn is the primary feedstock of ethanol in U.S.
- Ethanol is blended with gasoline (10%)

Cincinnati

Ethanol price

Energy content of ethanol

	Fuel	MJ/L	MJ/Kg		
	Ethanol	23.5	31.1		
	Gasoline	34.8	44.4		
	Diesel	38.6	45.4		
	Dry Wood	-	19.5		
	E85	25.2	33.2		
	Liq. Natural Gas	25.3	55		
	Methanol	17.9	19.9		
UNIVERSITY OF Cincinnati					

Why lignocellulosic biomass?

- Biomass is carbon-based organic material, including forest residues/waste, agricultural residues, energy crops (switchgrass) and algae
- Biomass clean renewable source of energy
- Biomass absorbs carbon during growth

Project	Location	Scale	Conversion Technology
Abengoa	Hugoton, KS	Commercial	Biochemical
Bluefire LLC	Fulton, MS	Commercial	Biochemical
Flambeau	Park Falls, WI	Commercial	Thermo - Gasification
Mascoma	Kinross, MI	Commercial	Biochemical
POET	Emmetsburg, IA	Commercial	Biochemical
Enerkem	Pontotoc, MS	Demo	Thermo - Gasification
INEOS New Planet Bioenergy LLC	Vero Beach, FL	Demo	Hybrid
Myriant	Lake Providence, LA	Demo	Biochemical
RSA	Old Town, ME	Demo	Biochemical
Sapphire Energy Inc.	Columbus, NM	Demo	Algae/CO ₂
Algenol Biofuels Inc	Fort Myers, FL	Pilot	Algae/CO ₂

UNIVERSITY O

Project Overview

- Total annual MSW generation in the U.S. has increased by 93% since 1980, to 292 million tons/year in 2018
- 50% of the generated MSW was disposed of in 1,278 landfills
- Landfills were the third largest source of U.S. anthropogenic CH₄ emissions in 2020
- MSW represents a valuable source of low-cost feedstock for the development of biofuels and bioproducts

Total US MSW generation by category in 2018

- Heterogeneity and variability of MSW components are major bottlenecks for MSW use as bioenergy feedstocks
- Sorting and removing plastics produces a high-purity organic stream for MSW use as conversion-ready feedstocks

https://www.epa.gov/

Project Overview

- Goal: Develop an advanced sorting and fractionation technology that can separate the organic fraction waste from municipal solid waste (MSW) to achieve 95% purity, and to blend and formulate the sorted organic waste (95% purity) with lignocellulosic biomass for biochemical conversion.
- **Objectives:**
 - 1. Design and test 1st stage pre-screening devices to separate 95% of ferrous metals and 80% of plastics from MSW (by magnetic separator and dynamic disc screen);
 - 2. Conduct mechanical milling (<50 mm) and evaluate 2nd stage screening devices (>4 mm) to obtain uniform feedstocks;
 - **3. Blend and formulate** screened organic fraction MSW (OFMSW) with lignocellulosic biomass for conversion testing;
 - **4. Conduct** techno-economic analysis (TEA) and life cycle assessment (LCA) of the proposed sorting and fractionation process.

Awarded through FY20 BETO FOA subtopic 2a: Advanced fractionation and decontamination of MSW for improved conversion efficiency

Initial verification of MSW sorting by vibratory screening

- Establish the baseline of traditional screen
- Organic fraction of sorted MSW (fines) with a purity of 50-70%
- Contamination reduction percentage (plastic removal) reached ~50%.

Pre-screening equipment procurement, installation and initial test

• This subtask is to complete the procurement, installation, commissioning, and start-up of dynamic dis screen and conveyor. Ecostar disc screen has been ordered and shipped from Italy

Progress and Outcomes-disc screen

Pre-screening equipment procurement, installation and initial test

• Ecostar disc screen has been installed at UC research facility

Approach and impacts

Approach

- Integration of dynamic disc screening, mechanical milling and ballistic screening
- Blending of the sorted OFMSW with cellulosic biomass to reduce MSW variability

Progress & Outcomes

- Performance of conventional vibratory & trommel screen to handle heterogenous MSW has been evaluated
- Procurement & Installation of the DDS and conveyor belt system at the project site

Potential Impacts

- High purity (>95%) organic fraction of MSW for biochemical conversions
- Address MSW heterogeneity & variability issues

Federal initiative on bioenergy

- DOE-2013
 - \$2-Billion Energy Security Trust
 - Natural gas fuel & Hydrogen fuel
 - Advanced batteries
 - Cleaner biofuels
- DOE -2023
 - \$590 M to increase bioenergy research
 - Four Bioenergy Research Centers
 - Net-zero emissions economy by 2050

American Process Inc.	Alpena, MI	Pilot	Biochemical
Amyris Biotechnologies Inc.	Emeryville, CA	Pilot	Biochemical
Archer Daniels Midland	Decatur, IL	Pilot	Biochemical
Haldor Topsoe Inc.	Des Plaines, IL	Pilot	Thermo - Gasification
ICM Inc.	St. Joseph, MO	Pilot	Biochemical
Logos/EdenIQ Technologies	Visalia, CA	Pilot	Biochemical
Renewable Energy Institute International	Toledo, OH	Pilot	Thermo - Gasification
Rentech ClearFuels	Commerce City, CO	Pilot	Thermo - Gasification
Solazyme Inc.	Peoria, IL	Pilot	Algae/Sugar
UOP LLC	Kapolei, HI	Pilot	Thermo - Pyrolysis
ZeaChem Inc.	Boardman, OR	Pilot	Hybrid
Gas Technology Institute	Des Plaines, IL	Design Only	Thermo - Pyrolysis

Bioenergy research centers

- DOE Joint BioEnergy Institute
- DOE Great Lakes Bioenergy Research Center
- DOE Center for Bioenergy Innovation (CBI)
- Center For Advanced Bioenergy and Bioproducts Innovation (CABBI)
 - Receive \$110 million per year (2023)
 - Innovative biofuel research for another fiver years
- DOE Bioenergy Research Centers (BRCs) 2017
 - \$40 million per year

Integrated biorefinery projects funded (DOE)

- INEOS first commercial biorefinery (8MG)
- POET-DSM & Abengoa produce ethanol (20/25MG)
- Myriant produces biobased succinic acid (30 MP)

Integrated biorefinery

Auburn

American Process Inc.	Alpena, MI	Pilot	Biochemical
Amyris Biotechnologies Inc.	Emeryville, CA	Pilot	Biochemical
Archer Daniels Midland	Decatur, IL	Pilot	Biochemical
Haldor Topsoe Inc.	Des Plaines, IL	Pilot	Thermo - Gasification
ICM Inc.	St. Joseph, MO	Pilot	Biochemical
Logos/EdenIQ Technologies	Visalia, CA	Pilot	Biochemical
Renewable Energy Institute International	Toledo, OH	Pilot	Thermo - Gasification
Rentech ClearFuels	Commerce City, CO	Pilot	Thermo - Gasification
Solazyme Inc.	Peoria, IL	Pilot	Algae/Sugar
UOP LLC	Kapolei, HI	Pilot	Thermo - Pyrolysis
ZeaChem Inc.	Boardman, OR	Pilot	Hybrid
Gas Technology Institute	Des Plaines, IL	Design Only	Thermo - Pyrolysis

UNIVERSITY OF Integrated Biorefinery Projects Funded by DOE Cincinnati

http://www1.eere.energy.gov/biomass/pdfs/ibr_portfolio_overview.pdf 20

Biorefinery pathways

- Thermochemical conversion (gasification/pyrolysis)
- Biochemical conversion (enzymes/microbes)

Industry Canada Nov 2005

https://www1.eere.energy.gov/bioenergy

Background

- Biomass pretreatment is needed in biorefinery
 - Break down the recalcitrant structure of cell walls
 - Subsequent enzymatic hydrolysis and fermentation
- Pretreatment undesirably generates inhibitors
 - Degradation of cellulose, hemicellulose, lignin and extractives
- Fermentation inhibition
 - Reduce microbial growth
 - Decrease fermentation rate and yield

Lignocellulosic biomass

- Renewable feedstock
- Most abundant
- Cellulose, hemicellulose and lignin

Ultrastructure of plant cell wall

Lignocellulosic biomass chemistry

- Cellulose (45% HW/SW)
 - Linear polymer of β -1,4 linked glucose
 - Degree polymerization (DP), 10,000
 - Crystalline and amorphous
- Hemicellulose (35% HW, 25% SW)
 - Branched polymer of glucose, mannose, galactose, xylose, and arabinose
 - DP 150-200
 - Easily degraded and dissolved

From Bruley

Lignocellulosic biomass chemistry

- 3-dimension
- Amorphous polymer
- Phenylpropane
- Guaiacyl-syringyl lignin (HW)
- Guaiacyl lignin (SW) α-O-4 link
- Complex structure

The structure of softwood lignin (Akler)

Bioconversion process

Methods & biocatalyst

- Steam explosion
- Organosolv
- Ammonia fiber expansion
- Dilute acid pretreatment
- Exoglucanases
- Endoglucanases
- β-glucosidase
- Saccharomyces cerevisiae
- Zymomonas mobilis
- E. coli

Pretreatment process

Steam explosion

- High yield of cellulose
- High lignin content

Organosolv pretreatment

- Hydrolyzing of hemicellulose
- Solubilization of lignin

• Ammonia fiber explosion (AFEX)

- degrading crystalline cellulose, preserving hemicellulose
- 10-20% solubilization of lignin
- Dilute acid pretreatment
 - Extensive hemicellulose hydrolysis
 - Furfural and other degradation products

Biomass deconstruction and pretreatment

- Chemical a mechanical deconstruction
 - Deacetylation and mechanical refining process
 - Low toxicity, high concentration sugar stream
 - Native lignin

Photo by Dennis Schroeder, NREL/PIX 17684

Biomass deconstruction

Feedstock

- Multiple horizontaltube reactors
- Steam heated to 150-210 °C
- Changing the auger speed to move biomass

Illustration created by Josh Bauer, NREL

Produce highly concentrated sugar streams

- Solid loadings >20% w/w
- Operated in batch mode (36h)
- Vigorous mixing at temperature
 40-50°C
- Biomass slurry is liquefied 24 h
- Complete enzymatic hydrolysis
 - in another reactor

https://www.nrel.gov/

Enzymatic hydrolysis of cellulose

Plant cell walls digested by fungal cellulases (10 h)

Table 2 Chemical composition of untreated and ethanol organosolv-pretreated lobiolly pine

	Untreated (%)	Organosolv tre	eated		
		OPLP-UW (%)	OPLP-W (%)		
Glucan	42.30 ± 0.38	72.74±0.20	82.14 ± 0.03		
Xylan	7.51 ± 0.05	2.17 ± 0.01	1.69 ± 0.08		
Galactan	2.96 ± 0.05	0.36 ± 0.03	0.40 ± 0.02		
Arabinan	1.78 ± 0.03	$0.63 \pm .02$	0.69 ± 0.05		
Mannan	11.17 ± 0.08	1.36 ± 0.00	0.99 ± 0.02		
Ethanol extractives	1.18 ± 0.05	9.64 ± 0.12	0.79 ± 0.04		
Acid insoluble lignin (AIL)	29.45 ± 0.27	12.11 ± 0.15	13.52 ± 0.10		
Acid-soluble lignin (ASL)	0.56 ± 0.05	0.28 ± 0.00	0.35 ± 0.01		
Ash	0.36 ± 0.02	0.03 ± 0.00	0.04 ± 0.00		
Total	97.27	99.31	100.61		

Science 23 Nov 2012: Vol. 338, Issue 6110

Microbial fermentation

- Fermentation systems with pH,
 - Temperature, oxygen control
- Monitoring glucose and acetic acid
 - Consumption and butanol production

Process design and economic analysis

Ethanol production engineering analysis

- NREL Technical report (2011)
- Dilute acid pretreatment with enzymatic hydrolysis and co-fermentation
- Minimum ethanol selling price: \$2.15/gal
- Enzymes cost: \$0.34/gal

Humbird, 2012, https://www.nrel.gov/

Biomass composition in process design

37

Enzymatic hydrolysis and assumed conversions

- Temperature 48 °C and Initial solids loading 20 wt % total solids
- Residence time 84 h

UNIVERSITY OF

Cincinnati

- Number and size of continuous vessels 8 @ 950 m³ (250,000 gal) each
- Number and size of batch vessels 12 @ 3,600 m³ (950,000 gal) each
- Cellulase loading 20 mg protein/g cellulose

Tu, Biotechnol. Prog., 2007, Vol. 23, No. 2

Co-fermentation of glucose and xylose

• ABE fermentation of mixed glucose and xylose

W. Guan et al. / Bioresource Technology 200 (2016) 713-721

Ethanol distillation and separation

- Distillation and molecular sieve adsorption to recover ethanol
- Distillation is accomplished in two columns:

UNIVERSITY OF

- Beer column, removes the dissolved CO2 and most of the water.
- Rectification column to concentrates ethanol to a near azeotropic composition.

Cost contribution from each process area

- 1. Feedstock + handling
- 2. Pretreatment and conditioning
- 3. Enzymatic hydrolysis & fermentation
- 4. Cellulase enzyme
- 5. Distillation and solids recovery
- 6. Wastewater treatment
- 7. Storage, boiler and utilizes

Humbird, 2011, https://www.nrel.gov/

Sugarcane ethanol in brazil

UNIVERSITY OF

Cincinnati

Figure 4. Overview of current and planned bioproduct facilities in the United States

• CO_2 and H_2O absorbed and converted to sugars, which are fermented by yeasts to ethanol.

https://doi.org/10.1016/j.bjm.2016.10.003

Energy input and output

- Energy output and input from different feedstocks
- Greenhouse gas emissions from different fuels

UNIVERSITY OF Cincinnati *Coelho*, 2006

Comparison of ethanol from corn & sugarcane

Cost item	US corn wet milling	US corn dry milling	US sugarcane	Brazil sugarcane
Feedstock cost	0.40	0.53	1.48	0.30
Processing cost	0.63	0.52	0.92	0.51
Total cost	1.03	1.05	2.04	0.81

- Estimated ethanol production costs (\$ per gallon)
 - Excludes capital costs
 - Feedstock costs for U.S. corn wet and dry milling are net feedstock costs
 - USDA report (2006)

Bioproducts from biorefinery

45 Source: Cameron Cargill

Replacing the whole barrel

- Cellulosic ethanol can
 - displace only 42% of a barrel
 - Of crude oil)gasoline)
- Hydrocarbon biofuels
 - "drop-in" fuels to replace
 - Diesel, jet fuel and others
- 7% of barrel used to make
 - glues, solvents and plastics

Source: Energy Information Administration; data

Catalyst and biocatalyst

Zeolite

Yeast

Enzyme

www.catalysisbook.org

Catalyst and process engineering

- Engineers turn molecules into money
 - develop and operate processes to convert raw materials into valuable products
 - Reactor design, process control, reaction kinetics, mass and heat transfer and separation
 - Catalyst plays essential role in many of these processes

Tu research: fuels and chemicals

Our research on acrylic acid

- Integrating biochemical conversion and chemical catalysis to produce new chemicals
 - Biomass to lactic acid by fermentation
 - Catalytic conversion of lactic acid to acrylic acid

Our research on butanol

- Biofuels and bioproducts manufacturing
 - Butanol production from renewable biomass by *Clostridium acetobutylicum*
 - Carbonyl inhibition of biofuels production

New approach

• Quantitative structure-activity relationship (QSAR) approach

Objectives and Hypothesis

- Objectives:
 - Establish QSAR between molecular descriptors and inhibitory effects
 - of carbonyl compounds on microbial fermentation
 - Design carbonyl-based selective chemical reactions
 - For detoxifying biomass hydrolysates
- Hypothesis:
 - Inhibition of carbonyl compounds is governed by their electrophilic reactivity to biological nucleophiles, the reactivity is further dominated by physicochemical properties

Formation of carbonyl inhibitors

Questions: What are the most potent inhibitors? UNIVERSITY OF Cincinnati 54 54

Jönsson J. Biotechnology for Biofuels, 2013

Fermentation inhibitors: carbonyl compounds

Critical issues and questions

- What are the *most potent inhibitors*?
- How can they be *selectively removed*?
- Which *functional groups* are responsible for their inhibition?

Methods

- Calculate the physiochemical properties of model compounds
 - The E_{LUMO} , E_{HOMO} , dipole moment (u), molar refractivity (MR) calculated by semi-empirical methods using Gaussian 09. The electrophilicity index (ω) calculated by the equation :

$$\omega = \frac{\mu^2}{2\eta} = \frac{E_{HOMO}^2 + 2E_{HOMO}E_{LUMO} + E_{LUMO}^2}{4(E_{LUMO} - E_{HOMO})}$$

- Determine the inhibitory effects of model carbonyl compounds on yeast fermentation
 - Glucose consumption rate
 - Final ethanol yield

UNIVERSITY OF Cincinna

Phenolic model compounds

Substitution Effects of Phenolic Aldehyde Inhibition on fermentation

compound	concentration (mM)	$Y_{\rm EtOH}^{a}$ (g/g)	EC_{50}^{b} (mM)				
glucose control		0.42 ± 0.00	N/A	2,3,4-trihydroxybenzaldehyde	10.0	0.08 ± 0.00	5.2
benzaldehyde	40.0	0.03 ± 0.00	27.5		5.0	0.17 ± 0.00	
	20.0	0.35 ± 0.02			2.5	0.44 ± 0.00	
	10.0	0.47 ± 0.01			1.0	-0.44 + 0.01	
	5.0	0.46 ± 0.01		3 5-dihydroxybenzaldehyde	40.0	0.44 ± 0.00	>40
2-hydroxybenzaldehyde	5.0	0.01 ± 0.00	0.9	5,5 anyaroxybenzadenyae	20.0	0.11 ± 0.00	210
	2.5	0.02 ± 0.00			20.0	0.44 ± 0.01	
	1.0	0.22 ± 0.03			10.0	0.44 ± 0.00	
	0.5	0.42 ± 0.00			5.0	0.44 ± 0.00	
3-hydroxybenzaldehyde	40.0	0.03 ± 0.00	14.9	3,4,5-trihydroxybenzaldehyde	40.0	0.43 ± 0.00	>40
	20.0	0.10 ± 0.00			20.0	0.43 ± 0.00	
	10.0	0.44 ± 0.00			10.0	0.43 ± 0.00	
	5.0	0.44 ± 0.01			5.0	0.43 + 0.01	
4-hydroxybenzaldehyde	40.0	0.05 ± 0.00	18.6	vanillin	40.0	0.13 ± 0.00	25.9
	20.0	0.18 ± 0.00		Variania	20.0	0.13 ± 0.00	20.7
	10.0	0.46 ± 0.00			20.0	0.22 ± 0.00	
	5.0	0.44 ± 0.00			10.0	0.43 ± 0.00	
2,3-dihydroxybenzaldehyde	5.0	0.05 ± 0.00	0.9		5.0	0.42 ± 0.00	
	2.5	0.06 ± 0.00		<i>o-</i> vanillin	5.0	0.05 ± 0.00	1.5
	1.0	0.11 ± 0.00			2.5	0.07 ± 0.01	
	0.5	0.45 ± 0.00			1.0	0.43 ± 0.00	
2,4-dihydroxybenzaldehyde	10.0	0.06 ± 0.00	2.1		0.5	0.43 ± 0.00	
	5.0	0.07 ± 0.00		GV (1) (1)	111 4 40 1		1 1
	2.5	0.18 ± 0.01		r_{EtOH} represents the ethanol	yield at 48 h	based on origin	al glucose
	1.0	0.44 ± 0.00		EC_{50} represents the concentr	ation of phen	one aldenydes r	resulting in
				a final ethanol yield of 50% of	the control a	at 48 h.	

Effect of 2-, 3- and 4-hydroxybenzaldehydes on fermentation

• 2-hydroxybenzaldehyde showed 30-fold higher inhibition activity than benzaldehyde

UNIVERSITY OF Cincinnati

Ortho-substituted 2-hydroxybenzaldehyde resulted in 15-20 fold higher inhibition than the meta- or para-substituted analogues of 3and 4-hydroxybenzaldehydes

Effects of di- and trihydroxybenzaldehydes on yeast fermentation

Compound	$C_{ m carb}$	Ocarb	C_1	Log P	E_{HOMO}	(au)	Dipole	ω	$Log EC_{50}^{'a}$
Benzaldehyde	0.435	0.529	0.177	1.69	-0.3255	-0.0394	3.380	0.116	4.439
2-Hydroxybenzaldehyde	0.427	0.510	0.224	2.03	-0.2990	-0.0322	4.331	0.103	2.954
3-Hydroxybenzaldehyde	0.436	0.525	0.154	1.38	-0.3011	-0.0407	4.372	0.112	4.173
4-Hydroxybenzaldehyde	0.433	0.539	0.209	1.38	-0.3015	-0.0305	4.481	0.102	4.270
2,3- Dihydroxybenzaldehyde	0.428	0.508	0.213	1.73	-0.2872	-0.0318	5.711	0.100	2.954
2,4- Dihydroxybenzaldehyde	0.425	0.519	0.252	1.73	-0.2950	-0.0220	4.959	0.092	3.322
3,5- Dihydroxybenzaldehyde	0.437	0.520	0.134	1.08	-0.2940	-0.0410	4.138	0.111	4.602
2,3,4- Trihydroxybenzaldehyde	0.426	0.515	0.235	1.43	-0.2888	-0.0218	6.474	0.090	3.716
3,4,5- Trihydroxybenzaldehyde	0.434	0.531	0.163	0.78	-0.2911	-0.0323	5.630	0.101	4.602
Vanillin	0.433	0.547	0.190	1.22	-0.2860	-0.0299	2.286	0.097	4.413
o-Vanillin	0.428	0.511	0.218	1.87	-0.2820	-0.0276	5.939	0.094	3.114

^aLog EC'_{50} represents Log (EC₅₀*1000), in which the concentration unit of EC₅₀ was changed from mM to μ M.

• 3,5-dihydroxybenzaldehyde was much less inhibitory (EC50, > 40 mM) than 2,3- and 2,4-dihydroxybenzaldehydes (EC50, 0.9-2.1 mM)

Ortho -OH group can influence the inhibition significantly.

UNIVERSITY OF

Cincinnati

Effect of vanillin and o-vanillin on fermentation

	Regression	п	r^2	S	F	Р
° → H	$\text{Log } EC'_{50} = -53.19 + 132.36 \ C_{\text{carb}}$	10	0.73	0.37	24.70	< 0.001
	$\text{Log } EC'_{50} = -17.97 - 41.75 \ O_{\text{carb}}$	10	0.60	0.45	13.69	0.005
CH3	$\text{Log } EC_{50}' = 6.57 + 13.79 \ C_1$	10	0.57	2.56	11.79	0.007
он	$\log EC'_{50} = 6.10 - 132.36 \log P$	10	0.69	0.40	19.58	0.002
4-Hydroxy-3-methoxyben	$E_{50}^{'} = 2.01 - 19.89 E_{HOMO}$	10	0.12	0.66	1.25	0.293
0 H	$\text{Log } EC'_{50} = 2.26 + 50.55 \ E_{\text{LUMO}}$	10	0.25	0.61	2.99	0.118
OH	$\text{Log } EC'_{50} = 5.11 - 0.265 \text{ Dipole}$	10	0.23	0.62	2.68	0.136
CI	$-\log EC'_{50} = -0.17 - 39.79 \omega$	10	0.25	0.61	3.01	0.117
2-Hydroxy-3-methoxybe	$L_{\text{Der}} E_{\text{fulle}} = -31.71 + 85.50 C_{\text{carb}} - 0.86 \log P$	10	0.87	0.27	25.88	< 0.001

Methoxyl group not important in benzaldehyde inhibition

the position of –OH group contributed to the higher inhibitory Tactivity of o-vanillin UNIVERSITY OF Cincinnati

Physicochemical descriptors and inhibitory activity

Compound	$C_{ m carb}$	$O_{ m carb}$	C_1	Log P	E _{HOMO}	E_{LUMO}	Dipole (Debye)	ω	$Log EC_{50}^{'a}$
Benzaldehyde	0.435	0.529	0.177	1.69	-0.3255	-0.0394	3.380	0.116	4.439
2-Hydroxybenzaldehyde	0.427	0.510	0.224	2.03	-0.2990	-0.0322	4.331	0.103	2.954
3-Hydroxybenzaldehyde	0.436	0.525	0.154	1.38	-0.3011	-0.0407	4.372	0.112	4.173
4-Hydroxybenzaldehyde	0.433	0.539	0.209	1.38	-0.3015	-0.0305	4.481	0.102	4.270
2,3- Dihydroxybenzaldehyde	0.428	0.508	0.213	1.73	-0.2872	-0.0318	5.711	0.100	2.954
2,4- Dihydroxybenzaldehyde	0.425	0.519	0.252	1.73	-0.2950	-0.0220	4.959	0.092	3.322
3,5- Dihydroxybenzaldehyde	0.437	0.520	0.134	1.08	-0.2940	-0.0410	4.138	0.111	4.602
2,3,4- Trihydroxybenzaldehyde	0.426	0.515	0.235	1.43	-0.2888	-0.0218	6.474	0.090	3.716
3,4,5- Trihydroxybenzaldehyde	0.434	0.531	0.163	0.78	-0.2911	-0.0323	5.630	0.101	4.602
Vanillin	0.433	0.547	0.190	1.22	-0.2860	-0.0299	2.286	0.097	4.413
o-Vanillin	0.428	0.511	0.218	1.87	-0.2820	-0.0276	5.939	0.094	3.114

^aLog EC'_{50} represents Log (EC₅₀*1000), in which the concentration unit of EC₅₀ was changed from mM to μ M.

Quantitative structure-inhibition relationship

Regression	п	r^2	S	F	Р
$Log EC'_{50} = -53.19 + 132.36 C_{carb}$	10	0.73	0.37	24.70	< 0.001
$\text{Log } EC'_{50} = -17.97 - 41.75 \ O_{\text{carb}}$	10	0.60	0.45	13.69	0.005
$\text{Log } EC_{50}' = 6.57 + 13.79 \ C_1$	10	0.57	2.56	11.79	0.007
$\log EC'_{50} = 6.10 - 132.36 \log P$	10	0.69	0.40	19.58	0.002
$\text{Log } EC'_{50} = 2.01 - 19.89 E_{\text{HOMO}}$	10	0.12	0.66	1.25	0.293
$\text{Log } EC'_{50} = 2.26 + 50.55 \ E_{\text{LUMO}}$	10	0.25	0.61	2.99	0.118
$\text{Log } EC'_{50} = 5.11 - 0.265 \text{ Dipole}$	10	0.23	0.62	2.68	0.136
$\log EC'_{50} = -0.17 - 39.79 \omega$	10	0.25	0.61	3.01	0.117
$\log EC'_{50} = -31.71 + 85.50 C_{carb} - 0.86 \log P$	10	0.87	0.27	25.88	< 0.001

- Strong association was observed between log P and EC50 value.
- Good correlation observed between the partial charge on carbonyl carbon (Ccarb) and the EC50 value of aldehydes

Summary

- *Ortho*-substituted 2-hydroxybenzaldehyde resulted in 15-20 fold higher inhibition than the *meta* or *para*-substituted analogues of 3- and 4-hydroxybenzaldehydes.
- Strong relationship between log *P* (octanol/water partition coefficient) of aldehydes and EC50.
- Ortho –OH group capable of forming an intramolecular hydrogen bond, which can potentially increase the cell membrane permeability and their toxicity.

