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Particles of micrometer to nanometer size often aggregate to form branched structures. Such materials
include metals and metal oxides as well as biological and polymeric materials(considering the persistence
length as a primary unit). Characterization of such structures is difficult since they typically display disordered,
irregular features in three dimensions. Branched aggregates display two limiting size scales: that of the primary
particle, R1 and that of the aggregate,R2. The mass-fractal model is often used to describe such structures
where the aggregate mass,z=M2/M1, is related to the aggregate size,r =R2/R1, through a scaling relationship
z=ardf, where the lacunaritya is close to 1 and may depend on the growth mechanism. Scattering of x rays,
light and neutrons yields a direct measure of the mass-fractal dimension sinceIsqd,q−df for 1/R2,q,1/R1

using scaling arguments. For linear, monodisperse aggregates with convoluted chain paths, analytic functions
describing both the scaling and larger-size aggregate scattering regimes have been reported. For example, the
Debye function for linear, Gaussian coils describes scattering whendf =2. Real, mass-fractal aggregates,
however, can display variability from the linear chain, monodisperse model. Often the branch content is of vital
importance to understanding both the growth of aggregates and their physical properties, especially dynamic
properties. An approach is presented for the analysis of aggregate branching from static small-angle scattering.
Comparison is made with analytic, simulation, and experimental results from the literature.
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I. INTRODUCTION

High-surface-area, particulate materials often aggregate
into loosely branched structures due to a competition be-
tween the kinetic laws governing transport and bonding and
the reduction in free energy associated with a reduction in
surface area. In polymeric materials, directional bonding
leads to molecular chain aggregates that can be topologically
linear and in some ways structurally analogous to particulate
aggregates. For ceramic aggregates formed by partial sinter-
ing [1] or partial Ostwald ripening[2,3] of nanoscale pri-
mary particles, such directional bonding is rare(governed by
crystallographic features[4] when it occurs) and branched
structures are more common. Similarly, pharmaceutical ma-
terials can display ramified aggregate structures[5]. Re-
cently, branched aggregate structures have also proven im-
portant to models for glass formation[6]. The branch content
of aggregate or polymeric structures is of vital importance to
physical properties, especially when considering dynamics.
The viscosity of polymer melts, for instance, is greatly af-
fected by branch content[7]. Similarly, the reinforcement of
elastomers by ceramic aggregates is governed by branch con-
tent [8,9]. For pharmaceutical systems it has recently
been shown that bioactivity is strongly influenced by
aggregation[5].

A. Aggregate scattering

Quantification of branch content is challenging since ag-
gregates follow three-dimensional mass scaling[10] hinder-

ing two-dimensional(2D) imaging techniques[11–14] espe-
cially when df .2 [12]. Even when microscopy has been
used to quantify branching,[6,11–19] the approach has
proven tedious and the results generally qualitative. A
simple, direct measure of the branch content for aggregates is
highly desirable both for modeling of growth as well as for
understanding the properties of mass-fractal aggregates, es-
pecially dynamic properties.

Static-scattering techniques have been used to great suc-
cess in characterizing disordered aggregate structures
[10,11,13,14,20–22]. Generally, Guinier’s law[23]

Isqd = G expS− sqRgd2

3
D s1d

and the fractal scaling law[11]

Isqd = Bfq
−df s2d

have been found useful to locally describe the signature of
mass-fractal aggregates in scattering, whereq
=s4p /ld sinsu /2d and u is the scattering angle,Rg is the
radius of gyration for the aggregate,G is defined asNne

2

where N is the number density of particles andne is the
number of electrons(for x-ray scattering) in a particle,df is
the mass-fractal dimension, andBf is the scaling prefactor in
the fractal, power-law regime[22]. The primary particle con-
tribution to scattering occurs at smaller sizes and is indicated
by a second, high-q Guinier functionG1, Rg,1, as well as,
often, a scaling regime reflecting Porod’s law[24]:

Isqd = BPq−4, s3d

whereBP=2pG1S1/V1
2, and S1 and V1 are the surface area

and volume of the primary particles. The index 1 refers to the
smallest-size scale for the aggregate, the primary particle.
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These local, scattering laws describe the overall structural
size, Eq.(1), and mass/surface scaling(2) and(3) of a struc-
ture. The local laws cannot independently describe topologi-
cal features such as branch content. For example, a Gaussian
linear chain displaysdf =2 and follows Eq.(2) in the same
way that a randomly oriented disk displays the scaling sig-
nature of a two-dimensional structure. The two structures
cannot be distinguished by the power-law scaling regime
alone. Similarly, the Guinier regime cannot independently
distinguish between disk and linear Gaussian scattering. This
is a manifestation of the loss of phase information inherent to
static scattering. However, the power-law and Guinier re-
gimes of scattering reflect different average attributes of a
fractal structure and in combination can yield new informa-
tion. By describing the scattering curve across multiple re-
gimes, information pertaining to topology can be ascertained
from a static measurement as is supported by the difference
between scattering functions for two-dimensional objects of
different topology—e.g., disks and Gaussian coils, described
later.

A global scattering function[22,25–27] for mass-fractal
aggregates has been previously reported and demonstrated.
For aggregates with primary particles that display sharp
smooth interfaces, scattering can be represented by seven
parameters, with index “1” representing the primary particles
and index “2” the aggregatesG1, Rg,1, BP and G2, Rg,2, Bf,
df. From the three parameters associated with the primary
particles we can calculate the primary-particle sizedp as the
ratio of the third to the second moment of size, the polydis-
persity of primary particles, and the number density of pri-
mary particles[28,29].

By combination of the primary and aggregate parameters,
the degree of aggregation,z, can be calculated in several
ways[22,28]. z reflects the number of primary particles in an
aggregate and is proportional to the aggregate mass. Using
the Guinier prefactors of Eq.(1), the ratio of the second and
first moments of the number distribution ofz is obtained
[22,28]:

z2:1 =
G2

G1
=

kz2l
kzl

, s4d

since G2=N2ne,2
2 =N2z

2ne,1
2 and G1=N1ne,1

2 =N2zne,1
2 , where

N2 is the number density of aggregates,ne,2 is the average
number of electrons in an aggregate,N1 is the number den-
sity of primary particles, andne,1 is the number of electrons
in a primary particle. The superscript onz in Eq. (4) is asso-
ciated with the source moments. This calculation involves no
assumptions concerning the aggregate structure except that
the particles described byG1 aggregate to form the structure
described byG2. z can also be calculated using structural
sizes and scaling from scattering[30].

Chainlike aggregates, which do not display branching, are
termed “linear” aggregates. For instance, a linear polymer
chain in au solvent, a random walk, displays a dimension
df =2 [31], while a linear chain in a good solvent, self-
avoiding walk, displays a dimensiondf =5/3 [31–33]. For
monodisperse, linear aggregates the parameterBf of Eq. (2)
is uniquely related to the other aggregate scattering param-
eters[22,25,27]:

Bf,c=1 =
G2df

Rg,2
df

GSdf

2
D , s5d

whereGsd is the gamma function. For branched aggregates,
Eq. (5) is no longer appropriate since it is based on an
asymptotic value from an integral for linear structures
[22,34]. Equation (5) will be modified to account for
branched structures in this article. First, scaling laws for
branched aggregates will be summarized.

B. Scaling laws for branched aggregates

In Fig. 1, a linear chain aggregate and a branched aggre-
gate are schematically represented in two dimensions. The
branched aggregate, Fig. 1(b), can be described in terms of a
minimum path across the aggregate, open circles in Fig. 1(b),
which is, in this case, identical to the linear chain path of Fig.
1(a). It is convenient to describe a scaling relationship be-
tween the number of primary particles in this minimum path,
p [open circles Fig. 1(b)], with the aggregate sizeR2 and
with the degree of aggregation,z [8,35]:

pc , z, SR2

R1
Ddf

, s6d

wherec is the connectivity dimension andR1 is the size of
the primary particles or the smallest size displayed by the
aggregate.(c is also termed the intrinsic dimension[36].)
The minimum path is a fundamental feature of a branched
aggregate and describes the scaling behavior of branching
with mass in terms ofc andz. Since Eq.(6) relies onz, it is
inherently necessary to know the structure of the primary
particle, R1, to determine features related to aggregate
branching, the second scaling relationship of Eq.(6). c is 1
for a linear chain and increases todf with increased aggre-
gate branching. A “regular object”—for example, a rod, disk,
or sphere—is defined byc=df.

Furthermore, it is convenient to describe a direct scaling
relationship forp with the aggregate size,R2/R1 [8,35]:

FIG. 1. 2D schematic sketches of aggregates with similarRg. (a)
Linear aggregate and(b) a branched fractal aggregate of identicalp
but differentz anddf, as described in the text.
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p = SR2

R1
Ddmin

, s7d

wheredmin is called the minimum dimension.dmin is 1 when
a linear path from one side to the other of an aggregate can
be made through the structure—i.e., for “regular objects.”
For linear chains,c=1 and dmin=df. dmin drops with in-
creased branching. From Eqs.(6) and (7) a relationship be-
tweenc, dmin, anddf is available,

c =
df

dmin
, s8d

so that only two principle scaling dimensions are needed to
describe a branched aggregate.df in Fig. 1(a) is identical to
dmin in Fig. 1(b) so that the branched aggregate might be
described asz/p superimposed chains of dimensiondmin.

Table I gives values for well-described regularsdf =cd and
mass-fractal structures to clarify the use of Eqs.(6)–(8). A
regular structure is considered, in this context, as a fully
branched object of mass-fractal dimensiondf. In addition to
these scaling relationships, a regular object displays the high-
est degree of asymmetry possible for a given value ofdf.

The number fraction of branches,fbr, in an aggregate can
be calculated from

fbr =
z− p

z
= 1 −z1/c−1 = 1 −SRg,2

Rg,1
Ddmin−df

. s9d

However, the number of branches in an aggregate,nbr, can
only be calculated if the mass of an average branch,zbr, is
known,

nbr = fbr
z

zbr
, s10d

wherezbr is the number of primary particles in an average
branch. The situation can become fairly complicated if mul-
tiple generations of branching occur in a hierarchical struc-
ture such as an arborial or dendric polymer[37]. Nonethe-
less, the branch fraction, Eq.(9), remains a viable measure of
branch content on a relative and absolute scale. Figure 2
shows the behavior offbr for branched aggregates of vari-
able z as a function ofc. The branch fraction is of limited
sensitivity for largec or largez, Eq. (9). The connectivity
dimensionc varies from 1 for a linear chain todf for a
regular object. For a series of aggregates with variable con-
nectivity dimensionc but with a fixed number of primary
particles,z, the branch content increases in a nonlinear fash-

ion with c as shown in Fig. 2. Figure 2 is intended to indicate
the optimal range of sensitivity for the branch fraction—i.e.,
small c and relatively smallz.

At times it is useful to describe the average coordination
numbercN for primary particles in a branched aggregate[1]:

cN = 2 +
nbr

z
= 2 +Sfbr

zbr
D . s11d

The coordination number also depends on the mass of an
average branch,zbr.

C. Disk versus Gaussian, linear-chain scattering

For a monodisperse population of aggregates, Eq.(5) is
not correct if the aggregates are nonlinear. For instance, for
objects withdf =2, the extremes of a Gaussian, linear poly-
mer and a disk can be considered, Table I. The scattering
function for a disk of radiusR [23] s2Rg

2=R2d,

Isqd =
2G2

R2 q−2F1 −
J1s2qRd

qR
G

=
G2

sqRgd2F1 −
J1„2s21/ 2dqRg…

21/ 2qRg
G disk, s12d

indicatesBf =G2/Rg
2, from the scaling prefactor in Eq.(12),

whereas Eq.(5) yields the value for a Gaussian, linear-chain
aggregate,Bf =2G2/Rg

2 as can also be obtained from the De-

TABLE I. Values ofdf, c, dmin, andBf for several well-described structures.

Disk [23] Rod [23] Gaussian[31,38] (random walk) Good solvent[31–33] (self-avoiding walk)

df 2 1 2 5/3

c 2 1 1 1

dmin 1 1 2 5/3

Object Type regular regular and fractal fractal fractal

Bf Analytic G2/Rg
2 pG2/ sÎ3Rgd=1.81G2/Rg 2G2/Rg

2 unknown

Bf Eq. (58) G2/Rg
2 1.77G2/Rg 2G2/Rg

2 5Gs5/6dG2/ s3Rg
5/3d

FIG. 2. Dependence of branch fraction, Eq.(7), on connectivity
dimensionc and number of primary particles in an aggregate,z.
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bye scattering function for a monodisperse, linear chain in
extrapolation[22,34,38]:

Isqd
G

=
2hsqRgd2 − 1 + expf− sqRgd2gj

sqRgd4 linear, Gaussian.

s13d

Then, from the extremes of linearity and branching in
2D-objects, the power-law prefactorBf decreases with
branch content relative toG2 and Rg,2. This means that the
scattering curve for branched structures will display a weak
knee in the mass-fractal regime for a log-log plot, as shown
in Fig. 3, q=0.003 for the disk, scaling function. Such a
weak knee was also noted by Thouy and Jullien for branched
aggregates[39]. It should be noted that a monodisperse disk
displays oscillations in the scattering pattern, as indicated by
Eq. (12), which are not shown in the scaling function of Fig.
3. The knee feature could be overlooked in the absence of a
comparable linear scattering function. Even the most ex-
treme case fordf =2, Fig. 3, shows only a weak deviation
from the linear curve. The knee is expected to be more
prominent for higherdf sincedf and branching are related as
discussed below.

From such comparisons it is expected that information
concerning the branch content of aggregates might be avail-
able from static-scattering measurements if a direct compari-
son between the Guinier and power-law scaling regimes of
aggregate scattering is made and if a sufficient range ofq is
observed.

D. Mass-fractal correlation function

A scaling form for mass-fractal scattering in the power-
law regime, Eq.(2), is calculated using the pairwise correla-
tion function [10,11,14,21],

gsrd , rdf−3 for R1 ø r ø R2, s14d

wherer is a correlation distance associated with the scatter-
ing measurement,r ,1/q. For r ,R1, gsrd=1, and for

r .R2, gsrd=0. The scattered intensity atq is given by the
Fourier transform ofgsrd for spherically symmetric objects
(on average) [11]:

Isqd ,
z2

R2
3E

0

`

rgsrd
sin sqrd

q
dr ,

z2

sqR2ddf
E

0

qR2

ydf−2 sinsyddy,

s15d

where the last scaling relationship in Eq.(15) substitutesy
=qr and wheregsrd reaches 0 at the finite size of the aggre-
gate,R2, making the last integral always finite, even when
df ù2 [11]. Additionally, it is assumed that the last integral is
independent ofq in the fractal scaling regime.

Variousad hoc“cutoff” functions hsr /jd have been pro-
posed for Eq.(14) to account for the decay in correlation at
the aggregate size,R2 [10,11,21]:

gsrd , hS r

j
Drdf−3, s148d

with the most common being an exponential decay as origi-
nally proposed by Jullien[11]. An alternative to consider-
ation of scaling functions, Eqs.(14) and (148), is to modify
the exact calculation of Debye for a linear, Gaussian chain
[38] that results in Eq.(13), as first proposed by Benoit[34].
The Debye-Benoit approach is used to obtain Eq.(5) in ex-
trapolation, for instance[22].

II. SCATTERING FUNCTION FOR BRANCHED
AGGREGATES

A. Modification of the Benoit function for branched
aggregates

Benoit [34] introduced an integral function for scattering
from linear chain aggregates of arbitrary mass-fractal dimen-
sion df,

Isqd
G

=
df

sqRgddf
E

0

sqRgd2 F1 −
ydf/2

sqRgddf
Ge−yyssdf / 2d−1ddy,

s16d

which is obtained from Debye and Peterlin’s integral form
[38,40]

Isqd
G

=
2

z2E
0

z

sz− nde−q2Rg,n
2

dn, s168d

with the substitution of

y = q2Rg,n
2 , s17d

n = S6Rg,n
2

R1
2 Ddf / 2

= S 6y

q2R1
2Ddf/2

, s18d

and

z= S6Rg
2

R1
2 Ddf / 2

, s19d

whereRg is the aggregate radius of gyration andRg,n is the
radius of gyration of a linear aggregate of lengthn. The term

FIG. 3. Log scattered intensity versus logq for monodisperse,
linear-Gaussian chains, and a scaling function for disk scattering in
the aggregate regime using the unified function[22,23,25,26,38].
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“6” in the description ofn and z assumes Gaussian scaling
and can more correctly be writtensdf /2+1dsdf /2+2d when
df deviates from 2[22]. However, this term cancels in Eq.
(16), so the exact value is of limited consequence. In Eq.
(168), n is the local chain index which progresses from 0 toz,
andz is the overall linear-chain length. The lead term in Eq.
(16) includesdf which arises from the substitution ofdy for
dn in Eq. (168) using

dn=
dfs6ddf/2

2R1
dfqdf

ysdf/2d−1dy. s20d

Extrapolation to highq of the integral in Eq.(16) leads to
Eq. (5) as shown by Benoit. Use ofdf =2 in Eq. (16) leads
directly to Eq.(13). If df deviates from 2, Eq.(16) can not be
analytically solved as noted by Benoit[34].

The Benoit integral, Eq.(16), is interesting in that it con-
tains a kind of “cutoff” function since the bracketed term and
exponential term go to 0 near the aggregate size[10,11,21].
This cutoff function is natural to the linear-chain integral and
is not anad hoc function such as the exponential functions
previously used in the literature[21].

Equations (16) and (168) are useful for linear chains
where the chain index linearly followsn and it is within this
context that both the Debye function for polymer coils, Eq.
(13), [38] and Benoit’s function, Eq.(16), were obtained. For
branched chains, the integral iny, Eq. (16), cannot progress
linearly for the z primary particles of the aggregate since
such a linear indexing scheme is not unique for a branched
aggregate.

Debye’s derivation of the polymer chain function, Eq.
(168), ignores correlations between chain segments that are
not topologically connected[38]. Following a similar as-
sumption, a branched aggregate can be considered, Fig. 1(b),
as being composed of a collection ofsz/pd minimum paths.
Then Eq.(168) is written, for a branched aggregate,

Isqd
G

= S 2

p2Dp1−cE
0

p

nc−1sp − nde−q2Rg,n
2

dn, s21d

wherep1−c normalizes for the number of minimum paths in
the aggregate,z/p=pc−1. nc−1 accounts, within the integral,
for the average number of minimum paths with a path length
n. Equation(21) ignores correlations between branches just
as Eq.(16) ignores correlations between chain segments that
are not linearly bonded. The integral is over the minimum
path and follows a unique, average minimum path index,n
goes from 0 top. Substitution is made, following Debye and
Benoit, except that all terms are defined for the minimum
path using the minimum dimension,

n = S6Rg,n
2

R1
2 Ddmin/ 2

=
1

qdmin
S6y

R1
2Ddmin/ 2

s22d

and

z= S6Rg
2

R1
2 Ddmin/ 2

, s23d

parallel to Eqs.(18) and (19). With these substitutions a
modified form of Eq.(16) is obtained:

Isqd
G

=
dmin

sqRgddf
E

0

sqRgd2 F1 −
ydmin/2

sqRgddmin
Ge−yyssdf / 2d−1ddy.

s24d

Bf for branched or linear aggregates arises from an extrapo-
lation of Eq. (24) at high q as described by Benoit for Eq.
(16) [34]:

Bf =
G2dmin

Rg2
df

GSdf

2
D . s58d

Equation(58) allows for a direct determination of the branch
fraction from the static scattering pattern of a monodisperse
aggregate.[Equation(24) also contains a slightly modified
“cutoff” function that includes the effect of branching
throughdmin.]

Equation (58) can be rearranged to calculatedmin from
parameters measured directly in the static scattering pattern:

dmin =
df

c
=

BfRg
df

Gsdf /2dG
. s25d

Equation (25) bears resemblance to the polydispersity pa-
rameter previously reported for solid particles[28]. Equation
(58) agrees with analytic functions for regular and linear ob-
jects, correctly predicting the scaling prefactor for linear
Gaussian coils, randomly oriented disks, and approximating
the scaling prefactor for randomly oriented rods, Table I.

B. Polydisperse aggregates

Equations(58) and (25) give some indication of the con-
sequences of polydispersity in aggregate size on the scatter-
ing curve. For linear aggregates,c=1, dmin should be equal to
df, Eq. (25). However, the calculateddmin from Eq. (25) re-
lies on the ratio of moments ofz following Eqs.(4) and(49)
in [30]. The numerator in Eq.(25) reflects a higher-order
moment, from the termRg

df and Eq.(49) [30], compared to
the denominator, from the termG and Eq.(4). Then it is
expected that for polydisperse, linear chains,dmin calculated
using Eq. (25) will be larger thandf,slope observed as the
negative of the slope of the power-law decay in the scattering
pattern. An aggregate polydispersity indexA can be consid-
ered to quantify this effect:

A =
BfRg

df

dfGsdf /2dG
=

1

c
, s26d

where −df is the observed power-law slope from the scatter-
ing pattern. Table II shows some possible values forA.

The last entry in Table II indicates that if no assumptions
concerning aggregate size distribution or linearity are made,
then analysis of static scattering data is limited. Generally, an
assumption of either low aggregate polydispersity or low
branch content will be necessary in analysis of static scatter-
ing from aggregates since, for the case of branched, polydis-
perse aggregates it is not possible to isolate the effects of
dispersion and branching.(A description might be possible if
sufficient TEM data on aggregate branching were available
or if a model for aggregate growth predicted the branch con-
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tent for instance. For branched polymers, separate measure-
ment of the chain size distribution could be used or an as-
sumption concerning the minimum dimension could be
made.) In terms of Bf, branching and polydispersity have
opposite consequences for the scattering curve, polydisper-
sity serving to increase the power-law prefactorBf relative to
G andRg and branching serving to decreaseBf, Fig. 3. In this
article a narrow distribution in aggregate size is assumed and
select systems of rather narrow aggregate size distribution
are selected for comparison.

III. EVALUATION OF Eqs. (5 9) AND (25) FOR BRANCHED
AGGREGATES

A number of examples of branched aggregate and poly-
mer scattering measurements and simulations exist in the
literature for example,[10,11,21,37,39,41–44]. However,
since Eqs.(58) and (25) were derived for monodisperse ag-
gregate size and because both the Guinier and mass-fractal
scaling regimes must be observed, the number of viable sys-
tems for comparison is somewhat limited. Three examples
will be shown: a randomly branched polymer in a good sol-
vent [41], a recent study of diffusion-limited aggregation
where changes in branch content and mass-fractal dimension
with aggregate size can be considered[42], and a simulation
by Hamsey and Jullien where diffusion-limited, ballistic and
reaction-limited branched aggregates were considered[43].
In all three cases, scattering functions over a wide range ofq
have been reported. The literature scattering curves have
been digitized and refit using the unified function[22,25–29]
following the approach described in this article.

A. Antonitti DVB microgels

Antonietti and Rosenauer performed a careful neutron-
scattering study of branched polystyrene in a good solvent
(deuterated toluene) [41]. Figure 4 shows scanned data from
Antonietti and the unified fits to the scanned data. The
branched polystyrene was composed of 10% divinyl benzene
(DVB) which acts as a random tetrafunctional branching
agent with similar molecular weight to the monomer. The
neutron scattering measurements were performed on 1%
d-toluene solutions. Although radical polymerization was
used, fairly narrow aggregate(chain) mass distribution were
obtained by fractionation. The polydispersity indexMw/Mn
is reported between 1.8 and 3 which is a narrow aggregate
size distribution for branched polymers(Mw is the weight
average molecular weight andMn is the number average).
The molecular weight, by light scattering, and thez values as

well as the fit and calculated values are reported in Table III
for two fractions differing in molecular weight and branch
content.

Using Eq.(25), the minimum dimension can be calculated
from the global fits shown in Fig. 4[22,25–29]. As noted in
Table I, a linear polymer chain in a good solvent displays a
self-avoiding walk withdf =5/3 [31–33]. For good-solvent
conditions it is expected that a lightly branched chain will
display good-solvent scaling for the minimum path since the
minimum path for the branched chain has some thermody-
namic equivalence to the linear chain under these conditions;
see schematic in Fig. 1. The value obtained for minimum
dimension from the Antonietti data, Table III, matches the
expected value of 5/3sdmin,1.67d for good-solvent scaling
of a linear chain. The analysis indicates that the higher mo-
lecular weight fractions display a higher mass-fractal dimen-
sion due to higher branch content as indicated by the reduc-
tion in linearity, higherc, in Table I. The agreement between

TABLE II. Aggregate polydispersity indexA from Eq. (26) for
several conditions.

c A

Linear, monodisperse 1 1

Linear, polydisperse 1 .1

Branched, monodisperse .1 ,1 sdmin/dfd
Branched, polydisperse .1 —

FIG. 4. Small-angle neutron scattering data from dilute solutions
of branched polystyrene samples in deuterated toluene(scanned
data from[41]). Two fractions are shown: F5 withdf =2.05, Mw

=23106 g/mol and F2 withdf =2.15,Mw=183106 g/mol.

TABLE III. Analysis of Antonietti and Rosenauer’s branched
polystyrene[41]. Two fractions were analyzed fordmin and branch
fraction from small-angle neutron-scattering data. The values with
reported error were free parameters in the unified fits of Fig. 4.

F5 F2

Mw sg/mold 23106 183106

G sarb. unitsd 1376±8 38±1

Rg sÅd 197±1 268±10

Bf 0.0448±0.0004 0.00035

df 2.05 2.15

dmin 1.67 1.64

c 1.23 1.36

z 19 200 173 000

fbr 0.84 0.94
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the observed and expecteddmin supports the validity of Eq.
(25). The branch fraction is also reported in Table III using
Eq. (9). Since the mean branch length is not known, the
number of branches can not be calculated, Eq.(10).

B. Comparison with simulation results for monodisperse
diffusion-limited aggregates (DLA)

Lattuada, Wu, and Morbidelli[42] report on simulation
and experimental results for diffusion limited cluster-cluster
aggregation. The simulation results are for monodisperse
branched aggregates. Branch content was indirectly con-
trolled through a sticking probability. The simulations were
used to calculate the pairwise correlation function which was
transformed into scattering functions for comparison with
light-scattering data from colloidal aggregates. Scattering
curves from simulations were reported as a function ofz for
small-z, monodisperse aggregates. Lattuadaet al. also simu-
lated scattering curves for large-z, polydisperse aggregates as
a function of time of growth for comparison with experimen-
tal results.

Figure 5 shows simulated scattering data for thez com-

parison as well as fits using the unified function[22,25–29].
The fit results and calculations based on Eqs.(25) and(9) are
shown in Table IV(first three data columns). The branch
content, bottom row, is shown to increase monotonically
with aggregate sizez, following Eq. (9). The minimum path
dimension remains constant within the resolution of the fit
and an increase in the fractal dimension is related to a higher
connectivity dimension—that is, more branches—for the
larger aggregates. This is similar to the experimental study of
Antonietti mentioned above except that the minimum dimen-
sion is not determined by thermodynamics in this case and
has a lower value, 1.16 rather than 5/3. The minimum di-
mension in this case is apparently governed by the trajectory
and sticking probability of the primary particles. These con-
ditions remain constant for variablez leading to a constant
dmin.

Lattuadaet al. [42] also simulated growth by considering
a time sequence growth for diffusion limited aggregation,
Fig. 6(a), for polydisperse aggregates of largez. In analyzing
the time-sequence data, low-polydispersity aggregates are as-
sumed here, out of necessity. The fits to the simulations of
Lattuadaet al. show a decay in the minimum dimension
towards 1 as growth proceeds, Fig. 6(b) and Table IV the last
four columns, indicating a rapid increase in the connectivity
of the aggregates asc approachesdf. By 965 s the aggregates
are close to “regular” objects.df is fairly constant but de-
creases slightly across the time series. This indicates that as
the aggregates grow they become more branched but also
display minimum paths with a lower degree of convolution;
i.e., dmin drops. The reduction in convolution has a larger
effect ondf than the increased branching leading to a drop in
df sincedf =c dmin. For these high-z aggregates the branch
fraction rapidly approaches 1. The approach ofdmin to 1 and
c to df for diffusion-limited aggregates agrees with the simu-
lations of Meakinet al. [36].

C. Comparison with simulation results for DLA, RLA, and
ballistic growth

Table V shows results from fits to scanned, simulated
scattered intensity from diffusion-limited, reaction-limited,
and ballistic aggregates by Hasmy and Jullien[43]. An ex-
pected increase indf is seen across these three growth
mechanisms. From unified fits using the approach outlined in

FIG. 5. Simulation results from Lattuadaet al. [42] and global
fits [22,25–29]. Simulations are for monodisperse aggregates
formed by diffusion-limited aggregation. Table IV lists fit results
and calculations. Line of slope −2 indicates Gaussian scaling for
comparison.

TABLE IV. Fit results and calculations from simulations by Lattuadaet al. [42] of variablez and time for diffusion-limited aggregates.
L8, L30, and L100 refer to Fig. 5 while the time series refer to Fig. 6.

L8 L30 L100 125 s 275 s 515 s 965 s

G 1.03 1.01 1.08 1.24 15.4 150 1670

Rg 2.37 4.96 9.91 16800 23400 32900 45100

Bf 0.251 0.0617 0.0166 2.73310−8 2.06310−7 1.08310−6 7.73310−6

df 1.86 1.86 1.898 1.85 1.82 1.83 1.8

dmin 1.16 1.15 1.16 1.38 1.13 1.28 1.03

c 1.6 1.62 1.64 1.34 1.61 1.43 1.74

z 8 30 100 2069 3342 6518 9958

fbr 0.54 0.73 0.83 0.95 0.99 0.98 1.00
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this article,dmin increases in the order diffusion-limited ag-
gregation (DLA ), ballistic, reaction-limited aggregation
(RLA), indicating that the minimum path is more convoluted
for ballastic and reaction-limited growth compared to
diffusion-limited growth. The connectivity dimension in-

creases in the same order, indicating slightly higher branch-
ing, as reflected in the branch fractionfbr from Eq. (9).
Surprisingly, the largest effect, and the dominant one in
terms of the fractal dimension,df =c dmin, comes from in-
creased convolution of the minimum path rather than in-
creased branching.

IV. CONCLUSION

An approach to the determination of branch content in
aggregates using static, small-angle scattering was described.
The approach requires measurement of the power-law scal-
ing and Guinier regimes for the aggregates across a wide
range of scattering vector. The branch fraction can be ob-
tained if the degree of aggregation,z, is known. The topo-
logical dimensionsdmin andc can be obtained by an exten-
sion of the structure factor for linear-chain aggregates
following assumptions similar to those used by Debye in
derivation of the linear, Gaussian structure factor for polymer
coils. c and dmin can be used to describe branching in ran-
domly aggregated structures. Structure factors for regular ob-
jects such as randomly oriented disks and rods can be repro-
duced as can the structure factor for a Gaussian coil and
self-avoiding walks.

The approach was compared with one experimental study
and with three simulation studies from the literature. Values
for dmin measured in this way agree with the expected value
of 5/3 for branched polymers in a good solvent from the
experimental results of Antonietti and Rosenauer[41]. The
aggregate-size simulations of Lattuadaet al. [42] for mono-
disperse aggregates mimicked the experimental results of
Antonietti and Rosenauer in that the minimum dimension
remained fairly constant as the branch content increased with
z. Diffusion-limited aggregate growth simulations of Lat-
tuadaet al. on polydisperse aggregates[42] showed growth
dominated by branching and a terminaldmin that agrees with
literature values[36]. For a series of three simulations by
Hasmy and Jullien[43] on diffusion-limited, ballistic, and
reaction-limited aggregation, the dominant difference in
these growth mechanisms appears to be changes in the con-
volution of the minimum path rather than branching, al-
though branching also increases for comparable simulations.

The proposed analysis of small-angle scattering data clari-
fies ambiguities associated with differences in scattering
curves for linear,c=1, branched and regular,c=df, objects.
Although a reconstruction of branched structures cannot be
achieved from static-scattering data alone, consistent with
the loss of phase information inherent to scattering tech-
niques, significant average features of scaling and branch
content are, in fact, available from a single static measure-
ment if a sufficient range of scattering vector is probed. The
information concerning branch content is contained in a scal-
ing dimension for topology,dmin or c, which can be used to
calculate the fraction of a structure that is not contained in
the minimum path,p. This fraction is termed the branch
fractionfbr. If independent information is available concern-
ing the length of an average branch, then the average coor-
dination number and the number of branches in an aggregate
can be determined fromfbr.

FIG. 6. (a) Lattuada time series simulation results(scattering
data agree with experimental results in Ref.[42]). The simulations
are for diffusion-limited aggregation with polydisperse aggregates.
(b) Branch fraction,c, df, and dmin versus time from unified fits
shown in(a).

TABLE V. Fit results from simulated scattering patterns of
Hasmy and Jullien [43]. DL=diffusion-limited growth and
RL=reaction limited growth.(The fit to the simulated scattering
from diffusion-limited growth was for the low-q data only.)

z G Rg Bf df dmin c fbr

DL (low-q) 4096 4000 76.5 6.45 1.60 1.43 1.11 0.56

Ballistic 4096 4150 44.6 4.19 1.95 1.62 1.20 0.75

RL 4096 4070 35.0 3.58 2.12 1.71 1.24 0.80
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The approach presented in this article is intended for ag-
gregates of low size dispersion since it is not possible to
universally isolate the effects of dispersion in size from ag-
gregate branch content. An index parameter,A, is suggested
that can be used to qualitatively determine if the aggregate-
size dispersion is important in extreme cases—that is, when
A.1. Determination of the branch fraction should be made
with some caution when a wide dispersion in aggregate size
is anticipated. It is shown that the effect of size dispersion
and branch content are opposite in terms of the value of the
scaling prefactorBf; branching results in a lower value forBf
relative toG andRg while polydispersity leads to a largerBf.
This indicates an underestimation of branching for polydis-
perse branched aggregates. It was demonstrated that the ap-
proach might be qualitatively useful even in cases of weak

polydispersity, Fig. 6, if attention is paid to the possible con-
sequences of polydispersity.
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