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A review of modeling approaches for oriented semi-crystalline polymers
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Abstract

Modeling changes in the physical properties of oriented semi-crystalline polymer films is beneficial for understanding the fundamen-
tals associated with structure property relationships and could be used for developing new polymer films with significantly enhanced
physical properties. Relating the molecular changes observed in oriented polymer films to inherent polymer characteristics provides valu-
able insight for the development of new polymers which exhibit enhanced physical properties upon orientation. Modeling efforts will be
reviewed that have attempted to use fiber composite theory to explain the transitions seen during the orientation process.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Semi-crystalline polymer films can be oriented to im-
prove physical properties, namely the moduli and tensile-
yield and -break strengths. Several approaches have been
proposed to explain the molecular transitions that enhance
these properties, but none are related to the inherent prop-
erties of the polymer. To fully understand the structure
property relationship of oriented films, any adequate
model must incorporate structural transitions that occur
during the drawing process, as shown in Fig. 1 [**1].

Included in Fig. 1 are atomic force and optical micro-
graphs (50· magnification) taken under cross-polar lenses
at various draw ratios captured throughout the orientation
process. The undrawn sample (0%) has randomly oriented
stacks of crystallites. Upon drawing, the stacks begin to ar-
range in the drawing direction and beyond the yield point,
the stacks begin to transform into fiber-like entities. These
fibrous structures are composed of piled lamellae with long
range order and/or tightly packed extended chains which
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are highly oriented in the drawing direction. The sample
quickly fails at an extremely high tensile stress (�10· of
the undrawn film�s break strength) after the crystalline
region has been completely transformed into fibers [**1].

As the fibrous structures are formed by the orientation
process, significant changes in the patterns of both wide
and small angle X-ray scattering (WAXS and SAXS)
experiments are evident, as shown in Fig. 2 [**1].

As the draw increases, the scattering patterns from
SAXS converge about the meridian of the image, indicating
the preferential alignment of the normal of the lamellar
basal plane in the machine direction. The scattering
patterns for the various poles from WAXS converge upon
a focal point at a fixed angle specific to the geometry of that
pole relative to the machine direction of the film. In the case
of the (110) pole figure, two symmetrical lobes converge
along the equator with an increase in drawing, indicating
a high level of c-axis orientation in the machine direction.
For the (200) pole figure, a bright lobe is located in the cen-
ter of the pole figure, indicating a high level of a-axis orien-
tation in the normal direction of the film. By combining the
(110) and (200) pole figures, as shown in Fig. 2, it is obvi-
ous that the unit cells have their c-axis highly oriented in the
machine direction, their a-axis highly oriented in the normal
direction, and their b-axis highly oriented in the transverse
direction of the film at high levels of orientation.
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Fig. 1. Stress–strain curve with micrographs that display the crystalline microstructure of drawn high molecular weight high density polyethylene films
(2.5 lm scale images are AFM, 165 lm scale images are optical micrographs).

Fig. 2. Small and wide angle X-ray scattering images and (200) and (110)
pole figures from the wide angle X-ray scattering patterns for a set of
oriented polyethylene films at various elongations.
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2. Models and discussion

Several approaches have been used since the early work
of Takayanagi [*2] to explain the enhancements in the
physical properties, namely the moduli, of semi-crystalline
polymers when they are uniaxially oriented. Each method
has involved the use of various characterization techniques,
such as SAXS, WAXS, birefringence, microscopy, and IR
dichroism. Previous research has provided the tools for cre-
ating structural models of semi-crystalline polymers during
draw. Of specific interest is the combination of multiple
techniques to better understand semi-crystalline systems
[**3,4,**6,7,8]. With these newly developed tools, the rela-
tionships between polymer properties and processing con-
ditions could be modeled to understand the enhancement
in physical properties. Some key works focused on relating
density and annealing conditions [**9], molecular weight
and molecular weight distribution [*10], and operating
temperature, strain rate, and frequency [11] to changes in
properties, such as modulus.

The first step in generating a model is to define the
various phases present in the polymer. From the micro-
graphs in Fig. 1, it is obvious that some type of fibrillar
structure forms. This has been noted in the literature
[**1,**9,**12,*13,*14,**15]. A model for oriented films
should include at a minimum, fibers in a matrix. A more
complicated composite model would incorporate a matrix
that is semi-crystalline with both amorphous and non-
fibrous crystalline components. A general structural model
should be based on experimental observations of the film.
The evidence of highly anisotropic crystalline regions of
large aspect ratios (length/width ratios) aligned in the
drawing direction from various microscopy techniques
[**1,**9,**12,*13,*14,**15], supports the use of a modified
version of the infinitely long fiber composite model as a
foundation for explaining the mechanical enhancements
of the films. In some cases, transitional models were devel-
oped to explain the changes in the crystalline structure



Table 1
A tabulation of the attributes of the various models for oriented semi-crystalline polymer films

Model Transitional model Explaining structure and property relationship

Infinitely long fiber [*19] No No
Short fiber [**20] No No
Peterlin [**17] Complex fiber structures of various length scales Elaborate hierarchical structure
Barham–Arridge [**18] Increasing A (aspect ratio) Nebulous structure
Gibson–Davies–Ward [**16] Increasing Vf (volume fraction of fibers) Incompressible structure
Breese–Beaucage [**1] Transforming morphology of matrix Observed morphological structure modulus and break strength/strain

MD refers to machine direction (orientation direction) and TD refers to transverse direction (perpendicular to orientation and thickness directions).
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upon orientation, i.e. fiber formation. The various transi-
tional models [**1,**16,**17,**18] differ on numerous
accounts, including the geometry and structure of the fiber,
the mechanism by which the fiber is formed, and details of
the matrix�s contribution to the overall composite�s physi-
cal properties. None of the past models include a transition
of the matrix phase. Literature models also fail to incorpo-
rate easily measured polymer characteristics, and none are
easily applicable to commercial processes. Table 1 lists the
attributes of the various models which will be discussed in
this review.

The models in Table 1 range from simple empirical mod-
els loosely related to the composite morphology, to extrav-
agant micro- and macrostructural designs that have little
practical use, but provide insight for determining the
boundary conditions for simpler empirical models. A prac-
tical model that explains the transitions caused by the
drawing process and that incorporates easily measured
characteristics of a given polymer is needed. While none
of the proposed theories satisfy this request, Breese and
Beaucage utilized key attributes from each model to design
a practical model that predicts oriented film properties
based on the molecular weight, molecular weight distribu-
tion, and zero shear viscosity [**1]. Fig. 3 shows the sche-
matic drawings of the molecular structure of each model. A
commonality in all of the methods is the presence of fiber-
like structures reinforcing a less rigid matrix.

Fig. 3(a) represents the infinitely long fiber composite
[*19], which consists of infinitely long, rigid fibers extend-
ing uniaxially through a softer matrix. The short fiber com-
posite [**20] shown in 3(b) is similar to the infinitely long
fiber composite, except that the reinforcing fibers have a fi-
nite aspect ratio (length/diameter ratio). The Peterlin [**17]
model depicted in 3(c) consists of spherulitic lamellae prior
to orientation, with the formation of parallel mosaic fibrils
(microfibrous) that intertwine to form macroscale packs.
Imperfections, such as vacancies from chain ends, chain
ends in the amorphous region, boundary layer between
mosaic crystalline blocks, and inter- and intra-microfibril
tie molecules are shown. The Barham and Arridge [**18]
model represented in 3(d) consists of cylindrical compo-
nents composed of crystalline material that deforms upon
orientation to produce fibers with relatively large aspect
ratios. The enhancement in the composite stiffness is the
result of the increasing aspect ratio of the fiber and not
an increase in volume fraction of fibers. The Gibson,
Davies, and Ward [**16] model presented in 3(e) consists
of fiber-like structures that are composed of parallel crys-
talline blocks connected by rigid tie molecules that pass
through the inter-crystalline amorphous regions. As the
polymer is oriented, more tie molecules are pulled taunt,
creating more fiber-like structures consisting of ordered
crystalline blocks at higher levels of orientation. The
enhancement in the composite�s stiffness is the result of
increasing the volume fraction of fibers, not increasing
the aspect ratio of the fiber. In all diagrams except for (c)
(Peterlin i.), the fiber direction corresponds to the machine
direction (MD) and is vertical in the figure. For the case of
(c) (Peterlin i.), the spherulitic growth direction is indicated
as vertical in the drawing.

2.1. Infinitely long fiber composite model

The infinitely long fiber composite (ILFC) [*19] is the
simplest model and assumes a uniform stress distribution
throughout the system. The ILFC model consists of per-
fectly oriented rigid fibers that extend infinitely through a
flexible matrix, as shown in Fig. 2(a). For the ILFC model,
the physical properties of the composite are not dependent
on the geometry of the fiber. The moduli and break
strength are merely the additive sum of the various compo-
nents of a uniform axially strained system, as indicated in
Eqs. (1)–(3). The composite�s elongation at break is equiv-
alent to that of the strongest, most rigid component, the
fiber, as indicated in Eq. (4). The following set of equations
is used to calculate the moduli, machine (fiber) direction
break strength, and machine (fiber) direction elongation
at break for the composite.

EC;MD ¼
Xn

i¼1

EiV i ð1Þ

EC;TD ¼ 1Pn
i¼1

V i
Ei

ð2Þ

rC;MD ¼
Xn

i¼1

riV i ð3Þ

eC;MD ¼ eF ð4Þ

EC,MD is the composite modulus in the machine (fiber)
direction, EC,TD is the composite modulus in the trans-
verse (normal to fiber) direction, Ei is the modulus of
the ith component, Vi is the volume fraction of the ith



Fig. 3. Schematic drawings of the molecular structure evident in each model.
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component, rC,MD is the machine (fiber) direction break
strength of the composite, ri is the machine (fiber) direc-
tion break strength of the ith component, eC,MD is the
machine (fiber) direction break elongation of the compos-
ite, and eF is the machine (fiber) direction break elonga-
tion of the fiber component.

Due to its simplicity, the infinitely long fiber theory is of-
ten used to approximate the properties of composites. Its
shortcoming is that is does not consider the actual structure
of the fiber or surrounding matrix and any transformation
of those phases that are occurring as a result of the defor-
mation. It also assumes perfect adhesion between the
matrix and the fiber. Characteristics of semi-crystalline
polymers, such as chain branching, entanglements, glass
transition temperature, polarity of side branches, and
lamellar thickening from annealing are also not incorpo-
rated in this simple model. For these reasons, this model
is not used in its basic form to explain strained polymer sys-
tems, but it does serve as a foundation for building more
inclusive approaches [**1,**16,**18,**20,**21,*22]. The
ILFC model is best suited for systems where the fiber has
a relatively large aspect ratio (length/diameter ratio >103)
[**21], such as epoxy reinforced with long glass fibers.

2.2. Short fiber composite model

The short fiber composite (SFC) model proposed by
Halpin and Tsai [**20] adds a level of complexity by incor-
porating the effects of the geometry of a fiber, namely the
aspect ratio (l/d: the ratio of the length of the fiber to the
diameter of the fiber) into the determination of the
composite�s physical properties, as shown in Fig. 3(b).
The following set of equations is used to calculate the mod-
uli of the composite from the individual properties of each
component of the composite.

EL

Em

¼
1þ 2 l

d

� �
gLV f

1� gLV f

ð5Þ

gL ¼

Ef

Em

� �
� 1

Ef

Em

� �
þ 2

l
d

� � ð6Þ
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ET
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¼ 1þ 2gTV f

1� gTV f

ð7Þ
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Em

� �
� 1

Ef

Em

� �
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ð8Þ

EL is the composite modulus in the machine (fiber) direc-
tion, ET is the composite modulus in the transverse (normal
to fiber) direction, Ef is the modulus of the fiber, Em is the
modulus of the matrix, Vf is the volume fraction of fibers,
and (l/d) is the aspect ratio of the fibers.

The Halpin–Tsai theory [**20] is well known in compo-
site engineering and relates both the microstructure (in
terms of aspect ratio) and the volume fraction of fibers to
the mechanical properties of the composite.

The short fiber composite theory makes similar assump-
tions as the infinitely long fiber theory, such as perfect
adhesion between components. The key issue with applying
the Halpin–Tsai equation to semi-crystalline polymer sys-
tems is that the various parameters of the theory, namely
the fiber aspect ratio and the moduli and volume fraction
of each component, are typically estimates which cause a
significant variation in predicted properties [**21,23]. This
theory could be more effectively used in lower molecular
weight, lower density polymers where the amorphous
phase is known to be continuous [**16]. The Halpin–Tsai
theory effectively predicts the composite properties for sys-
tems where the fiber and matrix properties are well known
and do not change upon deformation, such as epoxy rein-
forced with short glass fibers [*19] or rubber strips within a
lower modulus matrix [**21].

A critical shortcoming of applying both the infinitely
long and short fiber (Halpin–Tsai) theories to drawn poly-
mer systems is that they are not transitional models, mean-
ing they do not predict changes in the composite properties
that are the result of structural transformations caused by
drawing. Neither theory relates the properties of the com-
posite to those characteristics inherent to the polymer,
namely molecular weight, molecular weight distribu-
tion, and zero-shear viscosity. Some transitional models
[**16,**17,**18] have been reported that attempted to
bridge the gap between transformations in the crystalline
phase and enhanced physical properties resulting from ori-
entation. None of these models relate such enhancements
to the inherent characteristics of the polymer and are not
easily applicable to commercial processes.

2.3. Peterlin model

Peterlin [**17] proposed one of the foremost models
that explains the molecular structure of drawn fibers. From
the basic concept that a polymer consists of two phases;
lamellae and amorphous regions (consisting of folds, chain
ends, and tie molecules), he claimed that upon drawing,
microfibrils are formed that consist of crystalline material
arranged in series with amorphous material. Passing
through this intermediate amorphous region are tie mole-
cules, some of which may be relatively taunt. Electron
microscopy and IR dichroism were used to substantiate
the claims that the fiber-like components are the basic
structure of the oriented sample and the orientation of
the amorphous region changes with both strain and anneal-
ing. Fig. 2(c) shows a schematic on the molecular scale of
the crystalline and amorphous regions in a (i) spherulitic
and (ii) microfibrous material. As shown in Fig. 2(c) (iii),
Peterlin claims that these lamellar microfibrils are grouped
together into larger bodies, known as fibers, with the crys-
talline and amorphous regions of neighboring microfibrils
lining up with one another. The microfibril clusters appear
to intertwine at some fixed angle relative to the orientation
direction and to weave yet larger fiber structures.

Peterlin states that the interconnectivity of tie molecules
between the crystalline and amorphous phases within the
microfibril affects the properties of the amorphous phase
during orientation, thus significantly changing the overall
properties of the oriented structure. In other words, the
amorphous region is no longer a soft phase independent
of the crystalline region, but contributes to the total struc-
ture of the composite. Peterlin concludes that the presence
of strong microfibrils, which are the result of the numerous
taunt tie molecule that pass through the amorphous region
and connect the crystalline blocks, cause the significant in-
creases in tensile and modulus properties and any enhance-
ment in properties is not the result of the orientation or
transformation of the crystalline component. On a larger
scale, few tie molecules exist between neighboring fibrils,
making the enhancements in strength and stiffness the
result of the auto-adhesion from between the long, narrow
microfibrils within the macrofiber packs.

Peterlin�s model is the most complex of all of those men-
tioned, with multiple variables that make it difficult for
predicting properties. This is evident with the theory�s
omission of structure–property relationships, whether
empirical or derived from first principles. A key uncertainty
with the discussed model is its complete dependence on the
orientation of tie molecules within the amorphous region,
which cannot be measured by current analytical tech-
niques. Peterlin used IR dichroism, a commonly used tech-
nique for studying the amorphous phase, to characterize
the orientation of this phase and implied this was indicative
of the orientation of the tie molecules. By stating that the
enhancements in the properties of the oriented samples
are directly related to the amount of taunt tie molecules
insinuates that a lower density polymer would have better
properties than a more crystalline polymer when oriented.
This concept of a reinforced amorphous phase could be
applicable to a lower density semi-crystalline polymer or
a rubber, but would not likely apply to a higher density
semi-crystalline polymer. Past work has been documented
that shows significant improvements in the moduli and ten-
sile properties in higher density polymers when they are
oriented [**1,**9,24,25]. The tie molecules may play a role
in the overall properties of the composite for these higher
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density semi-crystalline polymers at low strains, but their
contribution is drastically suppressed by the transforma-
tion of the crystalline region into oriented lamellae stacks
and eventual extended chains at moderate and high strain
values [*14].

Micrographs of oriented films reveal narrow, crystalline
rod-like structures having significantly large aspect ratios
[**1,**9,**12,*13,*14]. The presence of such a crystalline
region indicates a continuity of covalently bonded mole-
cules in the orientation direction that are significantly stif-
fer and stronger than any reinforced amorphous region.
Further strengthening the oriented crystalline region of
higher density semi-crystalline polymers are the surface
energy forces and packing constraints that hinder the slip-
ping of the long, narrow fibrils past each other.

Peterlin also comments that the Herman�s orientation
functions (fc) measured by X-ray scattering techniques
are not a valid means for predicting the enhancements in
physical properties due to the tie/amorphous phase�s dom-
inance. Past research in higher density semi-crystalline
polymers [*10,11,26,*27,*28,*29] has shown significant
changes in orientation measurements from various tech-
niques that correlate to enhancements in physical proper-
ties. While he did not emphasize the importance of the
crystalline phase, Peterlin�s work was one of the forerun-
ners to show that the crystallographic techniques show
alignment, and eventual tilt to 34.4� of the lamellae normal
relative to the machine direction [**1,*29,30–33] (SAXS:
fc � 0.521), resulting from the near perfect alignment of
the unit cell�s c-axis parallel to the orientation direction
(WAXS: fc � 0.960) [**1]. This indicates the c-axis of the
unit cell aligns in the machine direction during the orienta-
tion process.

Peterlin attributes the enhancements in physical proper-
ties of the systems oriented at elevated drawing temper-
atures to the additional mobility of the softer amorphous
region, similar to that seen in a swollen polymer matrix.
Again, this phenomenon is most likely to be seen in lower
density semi-crystalline polymers and rubbers, but not
higher density semi-crystalline polymers. Early work by
Read and Stein [*34] showed significant changes in the ori-
entation of both the amorphous and crystalline phases in
low density polyethylene, ethylene–acrylonitrile and ethyl-
ene–methacrylic acid copolymers upon drawing. Koenig
et al. [**12] contradicted Peterlin�s generalized statement
by using IR dichroism to show that while the amount of
orientation in the crystalline phase is independent of the
orientation temperature, the degree of orientation in the
amorphous region slightly decreases with increasing orien-
tation temperature for linear high density polyethylene.
This decrease in orientation is likely the result of the great-
er mobility of the chains in the less viscous amorphous
phase at higher temperatures. Koenig et al. [**12] did com-
ment that the amount of orientation in the crystalline
region, regardless of temperature, was significantly higher
than that of the amorphous phase for linear higher density
polyethylenes.
Peterlin claims that annealing drives the oriented poly-
mer�s properties back to those of the unoriented sample
by relaxing the taunt, amorphous reinforcing tie molecules.
This conclusion is based on an analysis using IR dichroism,
which showed significant changes in the orientation of the
amorphous phase and little change in the crystalline region
upon annealing. This regression of properties to those of an
unoriented polymer may be typical for oriented lower den-
sity semi-crystalline polymers that were drawn to low draw
ratios and annealed out of tension for a relatively long time
and/or at temperatures near the melting point of the poly-
mer. This type of mechanism is also expected for a rubbery
polymer, but would not be applicable to higher density
semi-crystalline polymers where the drawing process causes
a transformation in the abundant crystalline phase. The re-
search by Koenig et al. [**12] with linear high density poly-
ethylene showed no change in the orientation of the
crystalline region and only a slight decrease in the orienta-
tion of the amorphous region upon annealing. In addition,
the amorphous orientation was significantly lower than
that of the crystalline phase.

In the context of the crystalline transformation into
fibers in higher density semi-crystalline polymers, one
should consider the difference in melting temperatures
(Tm) between the fibers (higher Tm) and less ordered crys-
talline lamella stacks (lower Tm). When fibers are formed,
the entropy of the crystalline region decreases, causing an
increase in the Gibbs free energy, and resulting in a higher
melting temperature for the fibers relative to the crystalline
lamellae [**9]. This change in melting temperature has a
great effect on the annealing of the polymer. At relatively
low annealing temperatures, only the amorphous region
is softened. As the annealing temperature is increased, crys-
talline lamellae of increasing size begin to melt, softening
the non-fibrous crystalline region of the matrix. Because
of this increased melting temperature of the well ordered
fiber, annealing would only affect the fibrillar crystalline
regions at temperatures closer to the melting point of an
infinitely large crystal (T1). Such temperatures are well
above the average melting temperature of the bulk crystal-
line region, in effect making the system a melt and not a
solid film. Since the fibrous component of the composite
is the main contributor to the physical properties and since
it is not greatly affected by typical annealing conditions,
which must be less than the average melting temperature
of the crystalline region, the properties would likely have
remained close to their oriented values [**9,*14]. This
means that typical annealing conditions are not conducive
to full molecular relaxation of the fibrillar crystalline region
to their pre-oriented state.

Bassett and Carder [**9] observed a brief decrease in
modulus at a specified annealing temperature between the
lamellae and extended chain melting temperatures for high
molecular weight high density polyethylene. This was due
to a temporary melting of the crystalline region resulting
from the conversion of folded chain into extended chains.
After this transformation is complete, the increase of the
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modulus resumes under continuous strain. It could be pos-
sible that Peterlin only examined annealing conditions that
were within a narrow time and temperature window and
did not characterize the entire annealing process. While
any changes are certainly a function of annealing condi-
tions, commercial oriented films of both linear and slightly
branched higher density polyethylenes have been produced
that retain their enhanced physical properties after anneal-
ing at 5 �C below the DSC peak melting temperature of the
polymer [**1,24,25].

While there are significant uncertainties in applying
Peterlin�s general theory to oriented linear polymers, there
are several concepts that can be of use for modeling drawn
higher density semi-crystalline polymers. Of greatest signi-
ficance is the fact that fiber-like structures are formed when
a polymer is oriented, likely the result of some type of
transformation in the crystalline phase of the matrix com-
ponent. In addition, these fiber structures are generated on
multiple length scales in a hierarchical morphology. Indi-
vidual lamella stacks, and if present, extended chains, align
to form microfibers which are bound together in larger
macroscale fibers. Peterlin was also one of the first to de-
scribe how the lamellar stacks align with their normal par-
allel to the machine direction at low draw ratios, and then
tilt to a specific angle upon further orientation, indicated
by a four point SAXS pattern seen in oriented linear high
molecular weight polyethylene samples by Breese and
Beaucage [**1] and described by others [*29,30–33]. This
pattern is associated with the tilt of lamella crystals as
discussed below (Fig. 4).

2.4. Barham and Arridge model

Barham and Arridge [**18] explain the enhancements in
physical properties of oriented samples with a simpler pro-
posal which suggests that a uniaxial draw of a semi-crystal-
line polymer leads to fiber structures with large aspect
ratios. Barham and Arridge propose that this increase in
fiber aspect ratio, which is the direct result of the homo-
geneous deformation of the structure, increases the rein-
forcing efficiency of the fibrils and is responsible for the
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Fig. 4. Schematic drawings of the tilted c-axis of the unit cell within the lamella
direction, while the lamellae normal is 34.4� relative to the machine direction.
explaining how L could be observed to be less than D002.
increase in tensile modulus, as indicated in Fig. 3(d). The
following set of equations is used to calculate the machine
(fiber) direction modulus of the composite.
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ef;XRD ¼ 1� 1

coshðUÞ

� �
ecomposite;tensile ð11Þ

EComposite is the composite modulus in the machine (fiber)
direction, U is the shear lag factor calculated from the
X-ray and tensile elongations, Efiber is the modulus of the
fiber, Ematrix is the modulus of the matrix, Vfiber is the
volume fraction of fibers, Vmatrix is the volume fraction
of the matrix, ef,XRD is the elongation of the crystalline
region determined from X-ray diffraction, ecomposite, tensile

is the macroscopic elongation of the specimen that is mea-
sured during elongation, (Lf/rf) is the ratio of the fiber
length to the fiber radius, and Gm is the shear modulus of
the matrix.

Based on this concept, the oriented polymer system was
approximated as an infinitely long fiber reinforced compo-
site that is corrected with Cox�s shear lag theory [35]. Cox�s
theory accounts for inefficiencies in the transfer of stress
from the matrix to the fiber, which is associated with slip-
page at the interface between components. To make the
stress transfer correction, the fiber portion of the infinitely
long fiber composite theory is multiplied by the shear lag
factor (U), which is a relative measure of the adhesion be-
tween the matrix and the fibers. Doing so lowers the contri-
bution of the fiber component to the composite modulus.
The shear lag factor (U) is related to the shear modulus
of the matrix material (Gmatrix), the aspect ratio of the fiber
(Lf/rf), the modulus of the fibers (Ef), and the volume frac-
tion of the fibers (Vf) (Eq. (10)). If there is perfect adhesion
Θ=3
4.4°

+A

A

D002

. At high draw ratios, the c-axis of the unit cell is aligned with the machine
The tilting of the c-axis results in the perception of a larger value of D002,
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between the matrix and the fiber, stress is efficiently trans-
ferred from the matrix to the fiber and U is equal to unity,
making Barham and Arridge�s model identical to the infi-
nitely long fiber composite theory. The shear lag theory is
an approximation and does not account for normal stres-
ses, tensile stress on the fiber ends, or anisotropy in the
fibers. For these reasons, the prediction of failure mecha-
nisms requires a more detailed approach, since the tips of
the fibers are locations where composite failure typically
is initiated.

X-ray diffraction was used by Barham and Arridge to
measure the crystalline fiber strain (ef,XRD), and when com-
pared with the strain of the composite measured during the
orientation process (ecomposite, tensile), the shear lag factor
(U) can be determined (Eq. (11)) [**18]. Assuming that
the modulus of the matrix (Em) is significantly less than the
modulus of the fiber (Ef),Emcanbeneglected and the volume
fraction of fibers (Vf) can be calculated from the shear lag
equation for the composite modulus (EComposite) (Eq. (9)).
For the specific polyethylene studied by Barham and
Arridge, this procedure resulted in a shear lag factor of
0.343, indicating a significant inefficiency of the fibrils as
reinforcing agents relative to the infinitely long fiber com-
posite theory, which has a shear lag factor of unity. This pro-
cedure also serves as a technique for determining the aspect
ratio of the fiber if the tensile modulus of the fiber and the
shear modulus of the matrix are well known (Eq. (10)).

Barham and Arridge [**18] showed that the relationship
between the increase in the composite modulus and the
extent of which the sample was drawn could be very well
explained with their model. They elaborated on their
assumptions, which may be reasonable, depending on the
system being studied. They assumed that the fibers have
near perfect crystalline properties and they do not change
when deformed. They also assume that the crystalline
fibrils retain their shape, size, and properties throughout
the annealing and self hardening process, which was
supported by Koenig et al. [**12] and Peterlin [**17]. At
the time of their publication, they had little experimental
evidence to support these claims.

Barham and Arridge proposed that the high modulus of
the fiber is obtained as a result of a transformation of the
crystalline phase from a cylindrical structure with a small
aspect ratio to a fiber with extremely large aspect ratio,
making it a more effective reinforcing component as the
draw ratio increased by increasing its aspect ratio. While
this assumption seems to be adequate for their approxi-
mate model, it does not effectively describe the transforma-
tion of a stack of orthorhombic lamellae into an extended
chain fiber, likely by the alignment of stacked lamellae and
the eventual extension of chains. Barham and Arridge did
limit their model to linear polyethylene, whose Poisson
ratio is 0.46 [36], indicating it is highly incompressible,
which adds some validity to their incompressible cylinder
approach. Next, Barham and Arridge claim that the shear
modulus of the amorphous and non-fibril crystalline mate-
rial between fibrils is relatively small (�103 times less) in
comparison to the fiber, and contributes little to the phys-
ical properties of the composite, and does not change sig-
nificantly with draw ratio. This concept contradicts that
of Peterlin [**17], who states that the tightening of the tie
molecules within the amorphous component is the reason
for the improvement in physical properties. Barham–
Arridge do agree with part of Peterlin�s model by suggesting
that upon heating, the medium between the fibrils relaxes
(and possibly melts), with its shear modulus dropping an
order of magnitude, but disagree with Peterlin�s model by
stating that upon cooling, the medium begins to recrystal-
lize and the shear modulus approaches its original value.

One of the key omissions in the Barham–Arridge model
is that it does not account for transformations that are
occurring in the matrix as a result of the deformation of
the non-fiber crystalline region. In other words, they do
not consider any enhancements that are possibly occurring
as a result of the transformation of the crystalline compo-
nent of the matrix into fibers, the stiffening of the amor-
phous region from taunt tie molecules, or effects of an
anisotropic bulk amorphous region. It is expected that
while the contribution of the matrix is small, relative to
that of the fiber, it is changing as the material is strained.
While accounting for the matrix�s contribution to the stiff-
ening of the composite may not be critical for linear poly-
mers of high molecular weight and crystallinity, it does
play a more substantial role in branched polymers of lower
crystallinity and molecular weight and can not be com-
pletely disregarded.

2.5. Gibson, Davies, and Ward model

Gibson, Davies, and Ward [**16] proposed the concept
of using X-ray data to statistically link the mechanical
properties of an oriented film made from linear polyethyl-
ene to the crystalline structure of the material. Their model
is analogous to the generalized infinitely long fiber compos-
ite theory, with the apparent fiber concentration being
determined at each stage of the deformation. They define
a fiber as a sequence of two or more crystalline lamellae
linked together by inter-crystalline bridges. The fiber con-
centration is quantified by characterizing the number of
inter-crystalline bridges that link the crystallites, as shown
in Fig. 3(e). The following set of equations is used to calcu-
late the machine (fiber) direction modulus of the composite.
p ¼ D002 � L

D002 þ L
ð12Þ

E ¼ V fEfU
0 þ V mEm ð13Þ

E
Ef

¼ V fU
0 ¼ vpð2� pÞU0 ð14Þ

D002 is the crystalline block thickness determined from the
(002) wide angle X-ray scattering intensity, L is the long
period (crystalline block thickness and inter-block amor-
phous region) determined from small angle X-ray scatter-
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ing, p is the probability that a certain number of crystal
blocks are linked together, E is the composite modulus in
the machine (fiber) direction, U 0 is the shear lag factor, Ef

is the modulus of the fiber, Em is the modulus of the matrix,
Vf is the volume fraction of fibers, Vm is the volume fraction
of the matrix, and v is the volume fraction of crystallinity.

While Gibson, Davies, and Ward [**16] acknowledge
the presence of taught tie molecules, or bridges, and even
use them to quantify the fiber concentration, they attribute
the significant increases in mechanical stiffness to the crys-
talline continuity in the drawing direction. This concept
supports Peterlin�s ideas that fiber-like structures are
formed by the crystalline region and tie molecules are
pulled taunt during drawing. Gibson, Davies, and Ward
argue Peterlin�s concept that the formation of these taunt
tie molecules and thus, an oriented amorphous region,
are the reason for the enhancements in stiffness seen
through orientation. Gibson, Davies, and Ward�s study
did not show evidence of extended chain crystals. They
proposed a model consisting of lamellae linked by fiber
bridges, with the amount of crystalline bridges increasing
with increasing draw ratio. Gibson, Davies, and Ward
claim that these sequences of linkages of two or more adja-
cent crystal blocks can be regarded as the fibers in a fiber
composite. Such a description is contrary to previous defi-
nitions of a fiber, which include interconnected mosaic
lamellae stacks or clusters of extended chains along a com-
mon axis in the draw direction, but do not include inter-
fibrillar tie molecules. According to Gibson, Davies, and
Ward�s depiction of their composite system (Fig. 3(e)),
the fibers are actually linked together through a synergistic
sharing of lamellae, more closely resembling a networked
system and not a collection of individual fibers.

Gibson, Davies, and Ward used this idea of joined
lamellae stacks to propose a statistical analysis of the prob-
ability that a certain number of crystal blocks are linked to-
gether, forming a large rigid structure. This probability is
determined from the (002) WAXS intensity (D002) and
the long period (L) from SAXS (Eq. (12)). For a polymer
of given crystallinity (v), the ratio of composite modulus
to fiber modulus (E/Ef) was plotted vs. the probability that
a certain number of crystal blocks are linked together (p).
The modulus of the fiber (Ef) is assumed to be equivalent
to that of a perfect polyethylene crystal (�250–300 GPa)
[37], which may not be applicable if extended chains are
not present. The slope of the resulting linear plot is deter-
mined through linear regression, and is used to determine
the shear lag factor (U 0), as indicated in Eq. (14). This tech-
nique provides a relationship between the efficiency of the
fiber as a reinforcing agent as a function of the crystallinity
of the polymer, which can be incorporated into an equation
similar to that of the shear lag modified infinitely long fiber
model. This model tends to the general fiber composite the-
ory when the fibers consist of a relatively large amount of
crystalline blocks linked by inter-crystalline bridges. While
both this model and the one proposed by Barham and Ar-
ridge [**18] use the shear lag theory, their transitions differ
in that Barham and Arridge predict enhancements as a
result of the fiber�s increasing aspect ratio, while Gibson,
Davies, and Ward state the improvements are the direct re-
sult of the increase in the volume fraction of fibers.

Gibson, Davies, andWard�s model supports the eventual
simplification to a uniform stress fiber composite model, but
omit several considerations that are critical to polymer sys-
tems. The key issue with their statistical derivation of the
bridge probability is that they based their model on the ob-
served anomaly that D002 is always greater than L. This is a
physical impossibility, since the lamellar thickness cannot
be greater than the long period, where the long period (L)
is the sum of the lamellae thickness (D002) and the thickness
of the amorphous region (A) between lamellae (L = D002 +
A) (Fig. 4). To address this issue, the authors created a phy-
sical structure that consisted of bridges extending between
crystals, with the presence of these bridges generating a lar-
ger value for D002 than expected. For this to be the case, a
substantial fraction of bridges would need to be present to
generate the scattering effect. A more reasonable assump-
tion would be to incorporate the tilting of the c-axis of
the unit cell relative to the lamellae normal (34.4�) of linear
polyethylene, as shown in Fig. 3 [**1,*29,30–33]. This
tilting could explain why the authors saw D002 values (from
WAXS) greater than L (from SAXS).

A thermal boundary condition imposed by Gibson, Da-
vies, and Ward for the empirical derivation of the average
shear lag factor (U 0) at �50 �C hinders the applicability of
the model. By fixing the model at this temperature, which is
the halfway point between the onsets of the c (glass transi-
tion) and a (melting) transitions, Gibson, Davies, and
Ward felt they could safely assume the material is elastic,
allowing them to disregard the viscoelastic nature of the
polymer. While this simplifies the modeling process by
making the shear lag factor dependent primarily on the
volume fraction of crystallinity (v), it renders the model
inapplicable to commercial orientation processes, which
typically operate near the a (melting) transition temper-
ature of the polymer [**1,24,25]. An average shear lag fac-
tor that is not only dependent on the volume fraction of
crystallinity (v) but also on the temperature of the process
could improve the Gibson, Davies, and Ward model. One
would expect the average shear lag factor to decrease with
respect to increasing temperature, caused by a less efficient
transfer of stress to the fibers as a result of the lower matrix
shear modulus.

Another key issue, which seems to be recurring in most
models, is the lack of the incorporation of the dynamics of
the matrix transformations caused by drawing. Gibson, Da-
vies, and Ward simply ignore the contribution of the matrix
(both amorphous and crystalline portions) to themodulus of
the composite by stating that Ematrix n Efiber. This simplifi-
cation may be acceptable when the properties of the matrix
and the fiber are known, however, the simplification may
not be reasonable in semi-crystalline polymers because the
matrix includes crystalline portions that have yet to be trans-
formed into fiber-like structures via the drawing process.
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This simplification can be further misleading, if like Gibson,
Davies, andWard, themodulus of the fiber is estimated to be
equivalent to that of a perfectly elongated chain (perfect
crystal �250–300 GPa). In reality, the modulus of the fiber
will be significantly less than that of a perfect crystal, primar-
ily due to defects and non-perfect alignment and extension of
chains, and thus narrowing the gap between the fiber and
matrix moduli. In addition, a lower fiber modulus results
in a higher shear lag factor (U 0) when the shear modulus of
the matrix is significantly less than the tensile modulus of
the fiber, indicating a more efficient transfer of stress to the
fiber from the matrix. This means that the simplification of
utilizing the uniform stress model (infinitely long fiber)
may provide acceptable methods for estimating the compo-
site�s properties.

One documentedwork that is associatedwith commercial
solid-state orientation of high density polyethylene film was
conducted by Hatfield et al. [24], who saw significant
enhancements in the moduli and tensile properties of med-
ium molecular weight high density polyethylene (MMW-
HDPE) films. Duckwall et al. [25] completed similar work,
but utilized a much higher molecular weight high density
polyethylene and saw an increase in machine direction mod-
ulus greater than twice that of the undrawn film at amachine
direction draw ratio of only 4.5:1. Neither set of authors
disclosed a mechanism, whether empirical or theoretical,
to explain the enhancements seen in the physical properties.

3. Conclusions

In conclusion, several approaches have been discussed
that attempt to relate the changes in the rigid crystalline
phase to enhanced physical properties during the orienta-
tion process of semi-crystalline polymer films. While no
one model presents a complete understanding of the pro-
cess, key characteristics of each can be combined to build
a more detailed description of the drawn system. In addi-
tion, a model that relates transformations and changes in
physical properties to inherent polymer characteristics is
needed for the development of new polymers.

Future work should combine the strengths of each of the
proposed models to address their shortcomings and gener-
ate a comprehensive model that predicts how the modulus
of a semi-crystalline polymer changes upon stretching. Such
a model should incorporate the dynamics of the changing
crystalline region as a function of strain. A link to morphol-
ogies of strained solids, such as oriented piled lamellae [*13]
and/or extended crystalline chains [*14], should be made.
Eventually, the enhanced property should be related to eas-
ily measured polymer characteristics, such as rheological
properties, molecular weight, and molecular weight distri-
bution [**1,*10,*38]. Doing so would enable the develop-
ment of polymer films that would have unique physical
properties when oriented. Analytical techniques, such as
microscopy, X-ray scattering, birefringence, IR dichroism,
and Fourier-transform optical microscopy [**1] can be uti-
lized to characterize the orientation of the polymer at vari-
ous draw ratios, and add significant insight to any
transformations that are occurring in the crystalline region.
With a better understanding of how polymer characteristics
affect the transformation of the crystalline region, a practi-
cal model can be developed that describes the enhancements
in physical properties of the oriented film.
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