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ABSTRACT: Disordered fiber mats made of glass microfibers (GMF) were studied using
small-angle light scattering (SALS), ultrasmall-angle X-ray scattering (USAXS), SEM,
and optical microscopy. The morphological scaling of these materials in the micron scale
was very similar to that of polymers in the nanometer scale. In some fiber mats, such
as GMF, the structure is randomized at the time of formation, leading to a statistical
analogy with the thermal randomization that occurs in nanometer-scale, high poly-
mers. Analogues for the coil radius-of-gyration, persistence unit, and scaling regimes
exist in such fiber mats and may be a useful feature both for modeling thermally
equilibrated polymeric systems, as well as furthering the understanding of the physical
properties of fiber mats through analogy with the theoretical understanding of ther-
mally equilibrated polymeric systems. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym
Phys 36: 3147–3154, 1998
Keywords: glass microfiber; scattering; polymer; nonwoven fabrics; polymer ana-
logue

INTRODUCTION

Some disordered fiber mats represent an interest-
ing analog to nanometer-scale linear polymeric
systems. These fibrous materials are, of course,
not subject to thermal equilibrium in the deter-
mination of structure. However, they are statis-
tics-based materials with fixed stochastic-scaling
regimes associated with their formation process.
This article focuses on silica glass microfibers
that are produced as disordered fiber mats in an
extrusion process where a web of micron-diame-
ter fibers are spun from a melt and extruded in a
rapid process into a sheet of disordered fibers.
Fiber diameters are on the micron scale, while
fiber lengths are on the millimeter scale, offering
a wide scaling regime covering many decades in
size. Whereas linear polymeric systems display
nano-scale structure with a scaling regime gener-
ally on the 10 to 300 Å scale, glass microfibers
(GMF) display a characteristic scaling regime on

the 1 to 1000 micron scale. Scaling regimes for
linear organic polymers are observed using small-
angle neutron or X-ray scattering with wave-
lengths on the Angstrom scale.1–3 Fiber scaling
can be observed using light scattering if careful
attention is paid to reduction of the scattering
contrast through the use of an index matching
fluid that does not alter the micron-scale mor-
phology.

In linear, nanometer-scale polymers several
scaling regimes are known both from theory and
experiment.1–6 The Gaussian state represents a
random distribution that ignores chain–chain re-
pulsion due to volumetric exclusion through a
balance between entropic randomization and en-
thalpic attraction.4–7 For the Gaussian state, the
mass-fractal dimension, df, is 2, i.e., coil mass a z
a R2, where z is the number of Kuhn steps in a
chain of average size R. In the absence of such
thermodynamic attraction between chain seg-
ments, i.e., in good solvents, the coil scaling fol-
lows a mass-fractal dimension of 5/3 rather than
2, Mass a R5/3. Because GMF fibers display es-
sentially no attractive or repulsive interaction, it
is expected that these systems could follow an
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analogy for good-solvent scaling for repulsive/
nonoverlapping coils in a most random state.
(This expected good-solvent scaling might be
overcome by some type of bonding between fibers,
e.g., so-called spun-bonded materials.)

In addition to a scaling regime, three other
morphological features define a typical nanome-
ter-scale, linear polymer. At the largest size is the
radius of gyration for a single polymer coil, which
is directly related to the end-to-end distance by
familiar relationships. At the smallest scale, a
linear organic polymer is expected to display a
persistence regime where scaling goes to 1D for a
rod-like persistence unit. The persistence unit is
generally described by a Kuhn-step length, K,
and a diameter, D. GMF might also be expected to
display both of these features in the light-scatter-
ing regime. In these macroscopic analogues, the
absence of local structure based on chemical
bonds is expected to lead to low degrees of local
persistence, and a small persistence length rela-
tive to the fiber diameter.

The formation process of disordered fiber mats,
such as GMF, has a degree of global asymmetry
because these materials are generally produced in
a continuous process in the form of a sheet. For
these sheets, a high degree of orientation is ex-
pected in the cross-section. This orientation can
be quantified using SALS through adoption of the
Hermans Orientation function,8 as discussed be-
low, and through sector averaging of 2D SALS
data.

A combination of microscopy and small-angle
scattering can be used to describe these statistical
features of disordered fiber mats if a wide range of
scattering vector, q, is available and if global scat-
tering functions are used. Such a global function,
the unified equation,9–11 can be used to fit the
scattering data from such mass-fractal systems
displaying scaling transitions. The unified func-
tion can describe scattering with multiple scaling
transitions and arbitrary mass-fractal dimen-
sions.9–12 It has recently been adapted to dealing
with polymer chain structure.12 Typically, nano-
meter-scale polymers display a scaling regime
characteristic of the thermal state of the coil at
low q followed by a persistence regime of 21 slope
(in a log intensity vs. log q plot) reflecting local,
linear persistence units. The GMF data, dis-
cussed below, does not show a clear persistence
regime reflecting extremely short persistence
units of the order of the diameter of a fiber. Such
a situation can occur when the aspect ratio be-
tween the persistence length, K/ 2, and the fiber
diameter is less than about 2.3 For such systems

the Kuhn unit and fiber diameter, D, are grouped
into a single fitting parameter reflecting local
chain structure, the local radius of gyration, Rg1

2

5 K2/12 1 D2/8. This size-scale is reflected in
a Guinier regime at high q followed by a Porod
regime, which accounts for the surface scattering
from the fibers. The complete scattering curve
from such fibers can be fit using the unified ap-
proach and four parameters, the fiber contrast/
concentration based Guinier term, G1, the fiber
diameter, D, fiber Kuhn-step length, K, and the
number of Kuhn units in an average fiber, z. GMF
fiber mats display two power-law regimes, and
two Guinier regimes accounted for in the unified
approach by two levels of structure, level 1 for the
local structure and level 2 for the coil structure,

I~q! 5 $G2e 2 q2Rg2
2 /3 1 B2e 2 q2Rg1

2 /3~q*2! 2 df%

1 $G1e 2 q2Rg1
2 /3 1 B1~q*1! 2 4% (1)

where the six parameters of eq. (1) can all be
calculated from G1, D, K, and z.9–12 For the
parameters of eq. (1)

G2 5 z G1, Rg2
2 5

K2z2/df

~1 1 2/df!~2 1 2/df!

where df 5 5/3 for a self-avoiding walk,

B2 5
dfG2

Rg2
df G~df/2!, q*i 5

q

@erf~qRgi/Î6!#3 ,

Rg1
2 5 K2/12 1 D2/8,

and B1 5 32 G1/(KD3) from Porod’s Law for a
cylinder with surface area only on the sides.13 The
number of Kuhn steps in an average fiber, z, is a
first-order moment of the distribution if it is cal-
culated from, G2 5 z G1, because the Guinier
prefactor G2 is directly proportional to the num-
ber of mer units.9–12

EXPERIMENTAL

Typically, contrast differences for light scattering
are much higher than for X-ray or neutron scat-
tering, necessitating more complicated scattering
functions based on Mie Theory. Under conditions
of low contrast, the Rayleigh–Gans approxima-
tion greatly simplifies scattering laws and is the
basis of such common SAXS and SANS laws as
Guinier’s law and Porod and power-law scaling
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laws, as well as the unified equation discussed
above. To use the Rayleigh–Gans approximation
to analyze SALS data for GMF, the contrast for
the system must be significantly reduced. This
can easily be accomplished through the use of an
index-matching liquid in which the sample is im-
mersed. For silica glass, benzyl alcohol is close in
index of refraction (1.538 for benzyl alcohol and
1.5 for silica glass). The basic assumption in the
use of a contrast-matching solvent is that the
structure is not perturbed by the solvent. This can
be verified by consideration of the bulk size and
shape of the sample, through the use of several
different solvents, and by microscopic observa-
tion.

SALS experiments were performed using a
10-mW HeNe laser at 0.6328 mm wavelength with
a 1-mm beam collimated using two 0.5-mm pin-
hole slits and a guard slit immediately adjacent to
the sample. The scattering profile was projected
on a screen and imaged on to a 512 3 512 CCD
camera using a macrolens. For this setup a sen-
sitivity run was made using an isotropic scatterer
(a hemispherical, silica-filled elastomer). Dark
current and transmission runs and standard X-
ray data correction procedures were used.2 Typi-
cally, several sample-to-detector distances are
used to expand the available range in scattering
angle. Ultrasmall-angle X-ray scattering (US-
AXS) data was also collected for the same mate-
rial to extend the range of scattering vector, q, to
the nanometer range. USAXS data was collected
at the National Institute of Standards and Tech-
nology (NIST) beam line at Brookhaven National
Laboratories, X23A3 with the assistance of G.
Long and D. Fischer. This instrument was used
because it provides up to a decade of overlap with
SALS data from our pinhole instrument.

SALS samples were run in 1-mm path-length,
quartz-box spectroscopy cells filled with benzyl
alcohol. Typical sample thickness were about 0.5
mm. Samples were carefully checked for multiple
scattering by observation of the projected main
beam. USAXS samples were run in air and were
of similar thickness.

RESULTS/DISCUSSION

SEM, Figure 1(a), and optical micrographs, Fig-
ure 1(b), of GMF samples typically display a
structure analogous to models for linear polymers
with extremely long, cylindrical fibers forming a
continuous walk in 3D space. Figure 1(a) is an
SEM micrograph from a dry fiber mat coated with

gold. Figure 1(b) is an optical micrograph of the
same fiber mat immersed in benzyl alcohol, which
is close to index matching. The conditions of Fig-
ure 1(b) match those used for the SALS measure-
ments. Micrographs taken at several magnifica-
tions in the regime between the overall fiber size
and the fiber diameter have similar features to
that of Figure 1(b), supporting a mass-fractal
scaling regime, i.e., there is qualitative micro-
scopic support for self-similarity. Further support
for this scaling regime comes from SALS data,
shown in Figure 2.

Figure 2 shows a typical SALS/USAXS pattern
from a sample of GMF immersed in benzyl alco-
hol. The incident beam is perpendicular to a thin
sheet of GMF. SALS intensity has been scaled to
match the overlapping region between SALS and
USAXS. USAXS data is measured in absolute
intensity units. The combined SALS and USAXS
data, shown in Figure 2 in a log(intensity) vs.
log(scattering vector) plot, displays two promi-
nent scaling regimes. Between q 5 101 and 103

mm21 the data is well described by Porod’s law for
smooth sharp interfaces,13 I(q) 5 N 2p Dr2 S/V
q 2 4 5 32 G1/(KD3) q 2 4. Through use of the
Porod invariant,1–3,13,14 Q 5 * I(q) q2 dq, the
data can be normalized internally to generate the
surface to volume ratio, S/V, for the fibers. S/V
can then be divided by the fiber density, for silica
fibers about 2.2 g/cm3, to yield the specific surface
area for the fibers, 2.3 m2/g in this case. At lower
q, a weaker power-law scaling regime is observed
with a slope close to 25/3. Although a number of
structures could account for this low-dimensional
scaling regime, combination of the observation of
this power-law regime with the micrographs and
a knowledge of the polymer scaling theory lend
support to this regime reflecting a fiber self-avoid-
ing walk, as would be seen for a polymer coil in a
good solvent. Such a scaling regime describes the
most random arrangement of fibers that maintain
self-avoidance.

The power-law regimes of Figure 2 display two
knee-like power-law limiting features that yield
two radii of gyration from eq. (1). At lowest q the
knee in the scattering curve reflects the average
overall coil size, as measured by the number of
Kuhn segments in the coil, z 5 880 6 2, and at
intermediate q, the knee like feature is associated
with the fiber diameter, D 5 0.79 6 0.01 mm,
and Kuhn step length, K 5 3.43 6 0.001 mm as
discussed above. The extended length (primitive
path, P) for the fiber is, P 5 zK 5 3.0 6 0.01
mm. These values agree with the expected values
obtained by optical and electron microscopy. Er-
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rors are propagated through the least-squares fit
from the statistical error in the data. The fit val-
ues represent a statistical average over the irra-

diated part of the sample. The statistical errors
are probably narrower than the distribution in
the sample, so have limited value other than to

Figure 1. Micrographs of GMF sample showing micron-scale silica glass fibers in a
polymer-like mat. (a) SEM micrograph after gold coating. This size scale corresponds to
the persistence regime and the high-q end of the scaling regime. (b) Optical micrograph
at 203. This size scale would correspond to the scaling regime of Figure 2 below.
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indicate that the unified fit matches the scatter-
ing data closely.

Disordered fibrous materials are generally pro-
duced in the form of sheets. Within the plane of
the sample the fibers are sometimes oriented ran-
domly or close to randomly as in GMF. In most
cases, fibers are not expected to be randomly ar-
ranged in the sheet normal direction. This is
clearly the case for GMF, as can be observed
microscopically or in SALS. Figure 3 shows 2D
SALS patterns for GMF in cross-section and in-
plane for the GMF sheet. The cross-sectional pat-

tern shows a marked degree of anisotropy. If this
anisotropic data is azimuthally averaged (aver-
aged circularly about the beam center as a func-
tion of angle from the center) the scattering pat-
tern of Figure 4 results. Figure 4 shows both
USAXS as well as SALS data for this cross-sec-
tional sample. In the cross-section, the scaling
regime displays a slope of 21, indicating largely
linear fibers. Sector averages of the data in Figure
3(a) shows a similar scaling regime (also shown in
Fig. 4), although somewhat limited in extent at
low q for one of the two orientations.

The data of Figure 4, cross-sectional data, show
a striking difference in terms of scaling when
compared with that of Figure 2, in-plane data, as
indicated by the disagreement between the line of
slope 25/3 in Figure 4 and the data. The fiber
coils, which appeared to be random with self-
avoidance in the plane of the sheet, are better

Figure 2. Log I vs. log q plot for GMF with an inci-
dent beam normal to the sample plane. Scaling regime
at low-q follows good solvent scaling. High-q scaling
follows Porod’s law. Fit uses the unified equation with
four free parameters and a model based on a polymer-
like structure.

Figure 3. 2D orientation of GMF in cross-section and in normal to the plane of a
sheet.

Figure 4. Azimuthally averaged data for GMF in
cross-section.
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described as extended rods in the sheet cross-
section. This means that the presumption of
three-dimensional, self-avoiding-walk scaling
must be modified to an apparent two-dimensional
morphology, which mimics a 3D self-avoiding
walk in the plane of the sheet. Variation in the
apparent good-solvent scaling regime for GMF in
the plane of the sheet can also be attained by
deformation of the GMF fibers using a pair of
tweezers (not shown).

The orientation of the cross-section sample of
Figures 3 and 4 can be considered in terms of the
Hermans orientation function, f. This is a uniaxial,
dipole orientation function for the second moment of
a Legendre expansion of orientation,8 and repre-
sents a simplified view of the 3D orientation present
in the sample. However, the Hermans orientation
function can be a powerful approximation that can
give simple information concerning the relationship
between orientation and morphology. It is possible
to calculate f(q) for an arbitrary range of q, Dq, using
the standard function,8

f~q! 5
3^cos2 f& 2 1

2 (2)

where,

^cos2 f& 5

E
0

p/2

I~q, f!cos2 f sin f df

E
0

p/2

I~q, f!sin f df

(3)

and f is the azimuthal angle, such as in Figure 3
(the angle around the beam center), with f 5 0
being associated with the maximum in scattering
intensity. This approach differs from the tradi-
tional use of the orientation function, typically in
XRD for a given crystalline reflection.8,15 Here,
the purpose of the orientation function is to asso-
ciate arbitrary structural features seen in SALS
with size scales, roughly d < 2p/q, of enhanced
orientation. Figure 5 shows the result of such a
calculation based on the data of Figure 3 com-
pared with the SALS data of Figure 4.

The maximum in orientation for the GMF cross-
section data occurs at close to the low q scaling limit
for the parallel data (triangles in Fig. 5), i.e., the
limit of the 21 slope power-law in Figures 4 and 5
for the pattern parallel to the sheet surface. The
parallel pattern reflects structure normal to the
sheet surface. The association of a maximum in

orientation with the limitation of fiber linearity nor-
mal to the surface of the sheet supports the idea
that cross-sectional orientation is a result of fiber
confinement in the sheet normal direction. A simi-
lar orientation calculation with the beam normal to
the sheet surface, Fig. 3, shows little orientation
and no q dependence to uniaxial orientation.

A scaling approach to fiber morphology can be
used to predict some physical properties for these
materials. Materials such as GMF are sometimes
used as absorbents, and the traditional measure
of their absorption capability is made using cap-
illary porosimetry.16 The capillary absorption ex-
periment involves measurement of the rate of ab-
sorption of an imbibing fluid such as water in a
dipping experiment where transport is parallel to
the sheet surface. The Laplace equation is used
with measures of the fiber surface tension to cal-
culate the cumulative pore volume vs. pore size.
In samples with morphological asymmetry, it is
the in-plane morphology that will largely govern
the rate of absorption if the sample is dipped
at the edge of the sheet, as is normally done in
the capillary absorption experiment. To calculate
the cumulative pore volume vs. pore size curve,
a relationship between morphological features
based on a mass-fractal model and the pore-size
distribution must be determined. Recently, cumu-
lative pore volume vs. pore-size data has been
used to estimate the mass-fractal dimension of
chromatographic gels.17 Equation (4) gives the
cumulative pore volume as a function of pore size
for a mass-fractal structure,

Vp~l!

5 VmaxF1 2
1 2 ~Vmin/Vmax!

1 1 exp~@3 2 df#@ln~l! 2 ln~l#pore!#
G ~4!

Figure 5. Orientation function and SALS data for
GMF in cross-section as a function of q. Perpendicular
and parallel are with respect to the plane of the mat.
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This approach can be directly adapted to the
inverse problem of calculating the cumulative
pore volume curve from SALS data for the in-
plane direction. The approach relies on four pa-
rameters, a mean pore size, maximum pore size,
minimum pore size, and a mass-fractal scaling
dimension. The mean pore size can be associated
with the mean pore chord length from the Porod
regime of the scattering curve,13 lmean pore 5 4Q/
(pfsolidBPorod), where Q is the Porod invariant
discussed above, B is the Porod Power-law pref-
actor, and fsolid is the volume fraction of fiber in
the sample. For the GMF sample of Figure 2 the
mean pore size is about 8.12 microns. Vmax and
Vmin are calculated for spheres of size relating to
the coil Rg and the fiber diameter.

The results of such a calculation are shown in
Figure 6. For the capillary absorption experi-
ment, the first desorption is usually used as a
measure of the true cumulative pore volume for
the sample. The first desorption shows good
agreement with the cumulative pore volume cal-
culated from the in-plane scattering pattern of
GMF.

CONCLUSIONS

Some disordered fiber mats provide an interest-
ing analogy with thermally equilibrated, nanom-
eter-scale polymers in that they display a well-
defined scaling regime, and analogues to a coil
radius of gyration and persistence unit. In this
article it was shown that polymer models for
these disordered micron-scale structures can be
used to predict some properties of these systems.
The adoption of fractal scaling laws and their
theoretical basis in terms of excluded volume pro-

vides a fascinating framework within which these
disordered materials can be physically described.

Disordered fiber mats, when produced as
sheets, are generally anisotropic, which leads
to asymmetry in the scattering patterns for
cross-sectional samples. This asymmetry can be
quantified through adoption of the Hermans ori-
entation function to these systems, leading to a
correlation between structural features and ori-
entation. Scaling of GMF fibers is found to be
close to that of a self-avoiding walk when viewed
normal to the sheet and close to that of extended
chains when viewed in cross-section. This result
from SALS agrees with evidence from optical mi-
croscopy. For properties that depend on the in-
plane structure, such as capillary absorption, the
fractal features of scattering can be used to gen-
erate a morphological basis for physical proper-
ties of interest. Scattering features, for instance
were used to calculate the cumulative pore vol-
ume distribution in GMF fiber mats with good
agreement.

The use of these micron-scale disordered struc-
tures as models for nanometer-scale polymer
structure is more limited. Disordered fiber mats
are not at thermal equilibrium; hence, they can-
not display a number of features common to nano-
scale polymers such as screening effects and ther-
mal changes in solvation. However, as simple
models for certain targeted features disordered
fiber mats may prove quite useful. For instance,
the micrographs of Figure 1 are different than the
common cartoons of “disordered,” good-solvent
polymer structure. This might serve as a re-
minder that a truely disorder structure displays
some, random, correlations. The orientation of
disordered fiber mats, when processed under cer-
tain conditions, may be analogous to the orienta-
tion of polymers, in thin films for instance, where
the film thickness is less than the coil size. Fi-
nally, mechanical deformation of these fiber mats,
which can be performed with tweezers under an
optical microscope, could provide insight into
some of the most basic features of linear polymer
deformation under shear or elongational flow.
Careful consideration of these simple systems,
keeping the limitations in mind, could prove use-
ful in the development of realistic models for
nano-scale deformation of polymer coils.

This work was partially supported by the American
Chemical Society through the Petroleum Research
Fund Grant 30781-G7.

Figure 6. Cumulative pore volume vs. pore size from
SALS and from capillary porosimetry.
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