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Abstract. – A tensile blob construction for branched structures is used to explain structural
sizes larger than the strand length, as observed in neutron scattering data from equilibrium
swollen networks. Under this model, equilibrium swollen networks display a base structural
size, the “gel tensile blob” size, ξ, that follows the scaling relationship ξ ∼ l/(1/2−χ)P , where l
is the monomer length, χ is the Flory interaction parameter and P is a power determined by the
connectivity of the network and the degree of interpenetration. The gel tensile blobs compose
a large-scale linear structure, whose length, L, follows the scaling relationship L ∼ Q1/2Navg,
where 1/N2

avg = ((1/fN2
c ) + (1/4N2

e )), Q is the equilibrium swelling ratio, Nc is the strand
length, Ne is the entanglement length and f is the functionality of the cross-links. The variation
of the swelling ratio with molecular weight can now be expressed as Q ∼ N

3/5
avg , which reduces

to the correct expressions under the limits Ne � Nc and Nc � Ne.

The microstructure of polymer gels and its relationship to swelling has been a source of
controversy in the polymer literature [1–4]. It is well known that the microstructure of a
polymer gel, in general, and the degree of topological constraint, in particular, depend on
the preparation conditions, especially the polymer concentration in the solution in which the
network is cross-linked [2, 4]. For networks prepared in solution with cross-links of identical
functionality, the degree of topological constraint arising from trapped entanglements is ex-
pected to increase with the polymer concentration in the state of preparation and presumably
reaches a maximum for networks prepared in the melt state. Trapped entanglements present
in a network affect the modulus [5, 6] and possibly even the swelling behavior.

The equilibrium swelling of polymer gels is often described in terms of the Flory-Rehner
theory [1], in which the free energy of the gel is written as the sum of an osmotic contribution,
calculated using the Flory-Huggins free energy of mixing of a polymer and a solvent; and an
elastic contribution, calculated assuming affine deformation of the network strands (i.e. the
chains between cross-links) which exhibit Gaussian statistics. The equilibrium swollen state
is calculated by minimizing the free energy with respect to the volume fraction of the gel [1]
predicting that the equilibrium swelling ratio, Q ∼ N

3/5
c , Nc being the strand length. The

prediction seems to be reasonably confirmed by experiments, especially for highly cross-linked
networks [7]. A polymer chain in a semi-dilute solution does not follow Gaussian statistics
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but is expected to obey the concentration blob model [2]. Using the concentration blob model
to describe the structure of the network strands in the Flory-Rehner theory does not alter the
prediction for the swelling ratio [8].

On the other hand, de Gennes proposed that the polymer concentration in the gel at
equilibrium swelling should be proportional to the overlap concentration of a linear polymer
in solution, which yields Q ∼ N

4/5
c . Although the c∗ theorem was originally proposed to

describe polymer networks prepared in dilute/semi-dilute solutions, most discussions of the
c∗ theorem in the polymer literature implicitly assume its validity even for melt cross-linked
networks [9]. The c∗ theorem implies sub-affine deformation for the network strands [2, 9].
Benoit et al. [10] and others [11,12] observed that the chain extension in equilibrium swollen
gels is always significantly lower than what would be expected from affine deformation of the
cross-links. Further, Beltzung et al. [13] showed that the radius of gyration of the elastically
effective chains, in networks prepared at several polymer concentrations in solution (including
in the melt state) for a series of molecular weights between cross-links, is close to that for a
linear chain in a dilute solution. The experimental observations in refs. [10–13] lend support
to the c∗ theorem.

Polymer chains in a melt are well described by random walk statistics [2]. The network
strands in a dry network still exhibit Gaussian statistics as has been demonstrated for end-
linked poly(dimethysiloxane) (PDMS) networks [14]. To reach the density of the dry network,
the network webs must interpenetrate [15]. This lead Bastide et al. [16] to distinguish between
the number of topological first neighbors for a given cross-link, which, if we consider a volume
R3, R being the strand length, is the cross-link functionality, f , and the number of spatial
first neighbors in the volume R3, n, determined by the number density of the cross-links in the
dry network. In typical networks, n/f was calculated to be of the order 10 [16, 17] which led
Bastide et al. [16,18] to suggest that, in lightly cross-linked gels, equilibrium swelling involves,
to a large extent, rearrangement of the network strands leading to reduction in the value
of n, rather than the affine deformation of the individual chains between cross-links. This
provided a plausible explanation for the experimentally observed excluded-volume expansion
of the network strand during swelling and is in agreement with the c∗ theorem. Bastide et
al. [16] termed this expansion “disinterspersion”.

Molecular-dynamics simulations [19] of perfect networks with cross-links of defined func-
tionality prepared in the melt with strand lengths both above and below entanglement length
(Ne) suggest several results, which both agree with and contradict parts of the Flory-Rehner
theory [1]. The authors claim that for Nc � Ne, Q ∼ N

3/5
e implying that the swelling ratio

saturates for high network strand lengths. Also, the end-to-end distance of the individual
strands, R ∼ N

7/10
c , i.e., the network strands are stretched more than an excluded-volume

chain in solution.
The structure of equilibrium swollen gels from small-angle neutron scattering measure-

ments displays a good-solvent–like power law decay at high q (q = (4π/λ) sin(θ/2) and θ is
the scattering angle) [2, 7, 9]. At low q the scattered intensity follows a linear power law and
terminates in a Guinier regime that reflects a structural size larger than the end-to-end dis-
tance of a strand. The large-scale structure is usually described as caused by static (quenched)
heterogeneities induced during the cross-linking process [20–25] and a multitude of functions,
mostly empirical, have been proposed to fit the scattering data [21–25]. This letter describes a
potential model for this large-scale structure observed in neutron scattering from equilibrium
swollen networks based on the concept of a tensile blob [26,27] for branched structures [27–29]
and consideration of the forces acting on the tensile structure at large scales.

Swelling occurs when a polymer network is in contact with a good solvent. Swelling, in
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Fig. 1 – A) Interpenetration in the dry network. B) Disinterpenetration during swelling. The random
knots, due to entanglements being trapped in the network during the cross-linking process, govern
the extent of disinterpenetration. C) The extended tensile structure. Swelling can be viewed as a
progression from A to C. D) Enlarged schematic of the tensile blob. The loop formed by the dark
lines cannot disentangle during swelling without introducing another entanglement or the destruction
of the network structure.

Fig. 2 – The dependence of the swelling ratio, Q, on the network strand length.

general, can be visualized as a combination of three distinct processes. Upon contact with
the solvent, the chains in the network begin a process of disinterspersion [16, 17] accompa-
nied by excluded-volume expansion of the individual chains in the network. Disinterspersion
cannot occur uniformly in the network due to the presence of regions with high topological
constraints (for, e.g., random entanglements quenched in the structure). In these regions of
high topological constraint, the network chains cannot fully disinterpenetrate, forcing these
regions to move as a whole (instead of local disinterpenetration) and away from other such
regions. The elastic stresses in the network due to the movement of the regions with high
topological constraints are propagated along the topological minimum paths connecting these
regions. The network chains that form these minimum paths are extended due to the stresses,
as compared to the network chains that could comfortably disinterpenetrate, which leads to
a contrast difference between these topologically connected minimum paths and neighboring
regions. In this letter, we consider the large-scale element of the swollen network structure to
be composed of a string of “gel tensile blobs” [26,27]. So the gel can be thought of as extended
chains, connecting regions with high topological constraints, surrounded by a matrix of chains
that are not extended. The chains that are not extended make no contribution to the total
scattering above the corresponding concentration blob size. The large-scale structure seen in
the scattering data arises completely due to the extended chains in the gel. The gel tensile
blobs can be described as fractal structures whose connectivity is determined by the global
topological constraints, like trapped entanglements, in addition to the constraints due to the
network junctions. A sketch of the extended tensile structure and the swelling mechanism is
shown in fig. 1.

Following Pincus [26] and Witten [27], one can consider a convoluted string drawn at
the ends as a simple model for a tensile blob structure. Large-size scales of the string will
straighten out first, while maintaining a convoluted or unperturbed structure at smaller scales.
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For a polymer coil with tension applied to the ends, subject to thermal randomization [26],
this behavior should manifest itself as a scaling transition at a size ξ. At scales larger than ξ
linear scaling is observed and at smaller scales thermally determined scaling is observed. One
prediction of the tensile blob model of use here is the tensile blob size, ξ, which is predicted
to scale with temperature, T , and the imposed force, fL [26],

ξ ∼ kT/fL, (1)

where k is the Boltzmann constant, i.e. the energy stored in a tensile blob due to the defor-
mation is of the order kT .

The following Flory-type free energy of a branched structure proposed by Vilgis [29] is
used for the tensile blob of size ξ,

F

kT
∼ nξ2

l2N2−D
+

v(nND)2

ξd
, (2)

where D is an internal dimension of the fractal structure, which has been identified with the
spectral dimension or the chemical dimension in the literature [28–30], d is the spatial dimen-
sion and v is the excluded-volume parameter, v = l3(1 − 2χ). N is the number of monomers
along a minimum path on the fractal structure and n is the number of such interpenetrating
fractal objects, both within the volume ξ3. As the number of interpenetrating fractal objects
in a volume ξ3 can be expected to scale with ξ, and since ξ scales with N , we assume that
n ∼ Nα. Our Flory analysis is similar to the one done in [19].

If we consider Mdry monomers in a volume ξ3, then the density of the dry network ρdry ∼
(Mdry/ξ3). The number of monomers within ξ3, Mdry = nND, implying Mdry ∼ ND+α. In
the dry network, ξ ∼ N1/2 and ρdry is a constant, which leads to Mdry ∼ N3/2 or D + α =
3/2. For a linear chain, D = 1 and α = 1/2. In a dilute solution of linear polymers, we
expect no disinterpenetration and α = 0. So, for D = 1, α is bounded by the inequality
0 ≤ α ≤ 1/2. α would decrease during swelling if disinterpenetration of the network strands
occurs. The difference in α before and after swelling can be taken as a measure of the degree
of disinterpenetration occurring in the network. The α used in eq. (2) is the value for the
network after any possible disinterpenetration is complete.

Equation (2) can be minimized in ξ to obtain

N ∼
(

ξ

l

)(2+d)/(2+D+α)

(1 − 2χ)−1/(2+D+α). (3)

By substituting (3) in (2),

F

kT
∼

((
ξ

l

)((D+α)(4+d)−2d)

[1 − 2χ](2−(D+α))

) 1
2+D+α

, (4)

where k is the Boltzmann constant. From eq. (1), we can see that the energy stored in a
tensile blob is of the order kT . Using this in eq. (4) yields an expression for ξ,

ξ ∼ l

(1 − 2χ)P
, where P =

2 − (D + α)
((D + α)(4 + d) − 2d)

. (5)

Equation (5) indicates that for a given solvent/temperature/α/D combination all equilibrium
swollen gels of a polymer will display the same substructural size. The dependence of ξ on the
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interaction parameter, eq. (5), is controlled by both the degree of interpenetration, α, and the
degree of branching in the tensile blob, D. Even for linear chains, with D = 1, small changes
in α will have large effects on the exponent, P , and consequently on the tensile blob size.
For no interpenetration in linear chains, α = 0, P is 1 while for maximal interpenetration,
α = 1/2, P is 1/9. Also, the higher the internal dimension, D, the weaker the dependence
of the gel tensile blob size, ξ, on χ. ξ decreases in size with lower χ, as is expected from the
tensile blob model of Pincus [26] and contrary to most current models for swelling such as the
c∗ theorem [2], where conditions of more favorable solvation (smaller χ) are expected to lead
to larger ξ.

Equation (3) indicates that, due to the interpenetration of the chains, the scaling exponent
is modified when compared to a dilute system. We can verify that for a dilute system given
by α = 0, the scaling exponent in eq. (3) reduces to the literature value, (d + 2)/(D + 2) [29].
When the network chains are forced to remain interpenetrated in the swollen state due to
the topological constraints, the number of monomers within a tensile blob, M , obeys M ∼
ξ(D+α)(2+d)/(2+D+α). The proposed scaling exponent, α, could potentially explain variations
in the mass fractal dimension at high-q values, seen in neutron scattering data from polymer
gels prepared under different conditions which are expected to lead to the same D [9].

The size of the large-scale structures, L, as seen in neutron scattering data [9], is signif-
icantly larger than the distance between the cross-links. It is expected that the length of
large-scale structures would maintain a functional relationship with the molecular weight be-
tween cross-links since the degree of topological constraint would increase with the cross-link
density. The tensile-blob network model can be used to describe these equilibrium-swollen,
large-scale structures. As mentioned before, the large-scale size in the system is thought to
arise due to the minimum paths between regions of topological constraints being subjected to
stretching due to a tensile force, fL, at its ends. Using scaling arguments detailed in [26, 27],
the length of such an extended tensile structure, L, can be shown to obey (L/ξ) ∼ Nblob,
Nblob being the number of gel tensile blobs that make up L. This implies that the large-scale
structure is linear/rod-like, of length, L, and the scattering function would be a power law
with a slope −1 between the sizes ξ and L. The tensile force, fL, is opposed by the elasticity
of the network which can be quantified using a spring constant, kL, associated with a number
of cross-linked chains and entangled chains trapped by the network for high Nc networks,

fL = kLL. (6)

The spring constant, kL, associated with these chains must be approximated to obtain a re-
lationship for L. We estimate the spring constant of the network strands, by considering the
chains between “cross-links” as Gaussian springs, as originally done by Flory [1] and consistent
with the level of approximation used here. The individual chains within the extended struc-
ture of length L oppose the chain extension due to the tensile force, fL. We calculate the total
spring constant by assuming that the individual springs act independently and that their an-
gular relation to L is random. Additionally, it is assumed that all the chains contribute to the
elasticity, i.e. there are no dangling ends, and that the density of entanglements remains un-
changed due to cross-linking (all the entanglements in the melt are topologically trapped), and
to a first approximation act as cross-links [19] with f = 4. Using these assumptions we write

kL =
〈
cos2 θ

〉1/2{(ρc/Nc + ρe/Ne)Lξ2
}3kT

l2
, (7)

where Nc and Ne are the average number of monomers between cross-links and between en-
tanglements, respectively. The 〈cos2 θ〉1/2 term reflects the probability that a given Gaussian
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spring, arranged randomly, contributes to the elasticity of the tensile structure. The number
density of the chemical cross-links/entanglements, ρx, can be calculated using,

ρx =
2φ

fxNxl3
, (8)

where x stands for c or e, fx, the functionality of the “cross-link” sites, equals f for the
chemical cross-links and 4 for the entanglements, and φ = (1/Q) is the volume fraction of the
polymer in the gel. kL can then be approximated by

kL =
6
〈
cos2 θ

〉1/2
kTLφξ2

l5

[
1

fN2
c

+
1

4N2
e

]
. (9)

By combining eqs. (1), (6) and (9),

fL ∼ kT

ξ
∼ kTL2φξ2

l5

[
1

fN2
c

+
1

4N2
e

]
. (10)

Using eq. (5) in eq. (10), we get

L ∼ l(1 − 2χ)
(

6−3(D+α)
14(D+α)−12

)
Q1/2Navg, (11)

where Q = 1/φ and 1
N2

avg
= ( 1

fN2
c
) + ( 1

4N2
e
).

A plot of L against Navg

√
Qeq should be linear and pass through the origin in extrapo-

lation. The other terms in (11) are constant for a given polymer/solvent/temperature/D/α
system at equilibrium and form a prefactor for L. As Navg ∼ Nc, for Ne � Nc, and Navg ∼ Ne,
for Nc � Ne, we are tempted to write

Q ∼ N3/5
avg . (12)

It is easily verified that eq. (12) yields both the predictions of the classical theories [1,9,20] and
the predictions of [19] as the limiting values. Figure 2 gives a plot of Q/Q∞, where Q∞ is the
value of Q as Nc → ∞, against Nc/Ne, and shows qualitative agreement with the simulation
results in [19].

We have presented a structural model to explain the extended linear structures seen in
neutron scattering data from polymer gels as arising due to the presence of regions of high
topological constraint in the network. Trapped entanglements govern the swelling behavior
for Nc � Ne. The main conclusions of our model include 1) the gel tensile blob is a fractal
object of mass fractal dimension (D + α)(2 + d)/(2 + D + α), whose size for a given polymer
is determined only by the solvent used for swelling, the temperature, the internal dimension,
D, the degree of interpenetration, α, and is independent of the molecular weight between
cross-links; 2) the extended tensile structure displays a power law scattering, I(q) ∼ q−1 and
obeys the scaling relationship L ∼ Q1/2Navg, and 3) writing the scaling relationship for the
swelling ratio, Q, as Q ∼ N

3/5
avg , where Navg is an “average” molecular weight that arises

naturally out of the theory, can reproduce the appropriate scaling behavior for Q under the
two limits Ne � Nc and Nc � Ne. The predictions of our model should be verifiable with
neutron scattering data.
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