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Control and quanti®cation of particle size distribution is of importance in the

application of nanoscale particles. For this reason, polydispersity in particle size

has been the focus of many simulations of particle growth, especially for

nanoparticles synthesized from aerosols such as fumed silica, titania and

alumina. Single-source aerosols typically result in close to a log-normal

distribution in size and micrograph evidence generally supports close to

spherical particles, making such particles ideal candidates for considerations of

polydispersity. Small-angle X-ray scattering (SAXS) is often used to measure

particle size in terms of the radius of gyration, Rg, using Guinier's law, as well as

particle surface area, S/V, from the Porod constant B and the scattering invariant

Q. In this paper, the uni®ed function is used to obtain these parameters and

various moments of the particle size distribution are calculated. The particle size

obtained from BET analysis of gas adsorption data directly agrees with the

moment calculated from S/V. Scattering results are also compared with TEM

particle-counting results. The potential of scattering to distinguish between

polydisperse single particles and polydisperse particles in aggregates is

presented. A generalized index of polydispersity for symmetric particles,

PDI = BRg
4/(1.62G), where G is the Guinier prefactor, is introduced and

compared with other approaches to describe particle size distributions in SAXS,

speci®cally the maximum-entropy method.

1. Introduction

The polydispersity of nanoparticles is of importance in

controlling properties related to their small size and high

speci®c surface area. Additionally, the development of particle

size distributions in the growth of nanoparticles has been a key

feature of modelling and simulation for a number of years

(Friedlander, 2000; Hinds, 1999). Current techniques for the

determination of particle size distribution on the nanoscale

can be categorized into transport-based measurements, such

as differential mobility analysis and dynamic light scattering,

physical property-based techniques, such as gas adsorption,

and techniques for direct observation, such as transmission

electron microscopy (TEM) of nanoparticles. TEM is prob-

ably the most widely applicable of the current techniques,

though it is particularly tedious and subjective. Determination

of primary particle size distributions for nanoparticles that are

aggregated into mass-fractal structures is challenging due to

the overlap of structural features.

Small-angle X-ray scattering offers the potential to resolve

particle size distributions through a consideration of the

scattered intensity over a wide range of size (scattering

vector). We have recently concentrated on ceramic nano-

particles produced in pyrolytic reactors. Such nanopowders

are commonly encountered as fumed silica or titania. These

materials are widely used as pigments and additives to a range

of products, from plastics to food. In many cases, the primary

particles from pyrolytic synthesis can be considered to be

spherical. This is due to sintering of the particles and the

dominance of coalescence at high temperature during pyro-

lytic growth.

Several groups have considered particle size distributions

using SAXS. The simplest approach is to consider a distribu-

tion function, such as a Gaussian or log-normal particle size

distribution, and to sum weighted scattering functions from

simple structures, such as the sphere function. A ®xed distri-

bution function of this type can be locally minimized against

scattering data to yield a particle size distribution. Such a

solution, however, is not unique and any number of possible

particle size distributions could describe a given scattering

curve (unless the distribution is extremely narrow) (Bolze et

al., 2002; Dingenouts & Ballauff, 1999; Haubold et al., 2003;

Kranold et al., 2003; Mulato & Chambouleyron, 1996; Mulato

et al., 1998; Nakamura et al., 2003; Rieker, Hanprasopwattana

et al., 1999; Rieker, Misono & Ehrburger-Dolle, 1999; Martelli

& Di Nunzio, 2002).³ On sabbatical leave to ETH ZuÈ rich.



Recently, a number of authors have considered a different

approach to the description of particle size distribution from

scattering based on algorithms native to image reconstruction:

the maximum-entropy approach described by Skilling &

Bryan (1984). This approach is usually based on spherical or

ellipsoidal particles that display an arbitrary distribution of

sizes. Rather than constraining the possible solutions by

imposition of a distribution function, the solution with the

largest value of `entropy', as de®ned mathematically by Skil-

ling & Bryan (1984), is chosen through an iterative procedure

that maximizes the randomness of the solution while main-

taining the square difference between the model and the data

below a critical value associated with the statistics of the data.

The maximum-entropy method is widely accepted as a

reasonable approach to obtaining the most likely distribution

function and it has been demonstrated to be effective at

recreating a wide range of particle size distributions from

model systems (Jemian et al., 1991; Boukari et al., 2000;

Hansen, 1994; Morrison et al., 1992; Potton et al., 1988;

Tagliani, 2000). Despite the success of the maximum-entropy

approach, transformation of the scattering data leads to a

disconnection between features observed in the scattering

pattern and those seen in the size distribution. For instance, it

is dif®cult to resolve features related to experimental or

mathematical artifacts.

A more direct index of particle polydispersity would be a

dimensionless parameter associated with the basic features

directly observed in the scattering curve. The signature of

polydispersity in scattering is the relationship between the

Porod surface scattering regime at high magnitude, q, of the

momentum transfer vector, q, and the Guinier regime at low q,

especially in the transition regime near q ' Rÿ1
g (Guinier &

Fournet, 1955). For low-polydispersity spherical particles, in a

log±log plot, this transition regime displays a distinct knee-like

shape with the Porod scaling regime undershooting the

Guinier regime in extrapolation (Fig. 1, dot±dash line). For

high-polydispersity particles, this transition regime is a smooth

curve with the Porod regime often overshooting the Guinier

regime in extrapolation (Fig. 1, solid line). In addition to the

qualitative advantage of a polydispersity index directly based

on the shape of the scattering curve, such a polydispersity

index, PDI, could be more robust and ¯exible in application

than the use of an assumed distribution function or use of the

maximum-entropy approach. For example, a generic PDI

could be applied to mass-fractal aggregate scattering, while it

is dif®cult to apply summed sphere functions or the maximum-

entropy method to aggregate scattering since they must

involve a choice of the q range to be used. An index of

polydispersity could also easily be used to describe a series of

samples with a single parameter directly related to the scat-

tering data that could be plotted as a function of experimental

conditions, for instance, regardless of changes in particle shape

and distribution functions.

In the context of the previous paragraph, we should note

that particles of moderate asymmetry (aspect ratio below 2)

will show an identical signature in scattering as polydisperse

spheres. For high-aspect-ratio particles, a separate scaling

regime for the particle's structural dimension, i.e. 1 for rods, 2

for disks, will be observed and the PDI might be used to

calculate the dispersion in the smallest structural size,

although these issues are beyond the scope of this article.

In this paper, the result of an analysis based on global

scattering functions and a proposed polydispersity index will

be compared with detailed TEM observations and gas

adsorption measurements. Comparison will also be made

between the maximum-entropy solution using a program

developed by Jemian at NIST (Jemian et al., 1991; Ilavsky,

2000) and distributions obtained using a polydispersity index

based on the shape of the scattering curve as described by the

three free parameters of global scattering functions for simple

structures under the constraint of a log-normal distribution of

spherical particles, discussed later.

2. Theory

2.1. Log-normal distribution

For pyrolytically synthesized particles, Fig. 1, particle

growth is considered to begin with small, �1 nm, highly

polydisperse spherical particles (Sugimoto, 2000; Tsantilis et

al., 2001, 2002) in a reactive ¯ame due to rapidly varying

nucleation conditions. Through a combination of coalescence

and sintering, these nuclei develop a narrower distribution at

the early stages of ¯ame growth, on the millisecond timescale

(Kammler et al., 2001; Friedlander, 2000). On the tens of

milliseconds timescale, the dispersion in size will reach a self-

preserving limit, usually considered to follow close to a log-

normal distribution (Landgrebe & Pratsinis, 1990). In this
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Figure 1
USAXS data (circles) from a non-fractal titania nanopowder. A uni®ed ®t
(grey solid line) (Beaucage, 1995, 1996) and component curves of the
uni®ed function are shown. dV/S = 34.9 nm (corrected to 41.3 nm), PDI =
14.4 (�g = 1.60), Rg = 44.2 nm, 2mSAXS = 24.3 nm, BET dp = 41.7 nm,
2hRiTEM = 35 nm, 2hRiSAXS = 27.2 nm, �g,TEM = 1.59. The dot±dash line
indicates Porod's law for a sphere of identical Rg and G.



context, `self-preserving' means that for timescales beyond the

so-called self-preserving limit the median particle size

continues to grow but the distribution maintains a relationship

with the initial self-preserving distribution where a ®xed

geometric standard deviation is observed. That is, using time-

dependent kinetic factors, such as the collision kernel, the

distribution at later stages can be predicted from the self-

preserving distribution. This greatly simpli®es simulations and

modelling of pyrolytic reactors, for instance. It is expected that

nanoparticles collected from pyrolytic synthesis will generally

follow a log-normal distribution (Hinds, 1999) although

exceptions to this behavior are known, particularly when

insuf®cient residence time above a critical sintering tempera-

ture exists (Kammler et al., 2003). Additionally, the particle

size distribution can broaden when particles are collected

from different stream-lines in a ¯ame, with different

temperature and residence-time histories.

One advantage of the log-normal distribution, f(R), is that

all moments of this distribution can be calculated using a

simple non-integral relationship that requires only two free

parameters, m and �:

f �R� � 1

R� 2�� �1=2
exp ÿ log R=m� �� �2

2�2

� �
; �1�

where R is the particle size, in this case, f(R) is the number

distribution, and m is related to the mean by hRi =

mexp(�2/2). The rth moment of the log-normal distribution is

given by

Rrh i � mr exp r2�2=2
ÿ � � exp r�� r2�2=2

ÿ �
; �2�

where � = lnm (Evans et al., 1993, p. 102). The geometric mean

radius, xg is given by expm, and the geometric standard

deviation is given by �g = exp� (Crow & Shimizu, 1988, p.

333). The geometric mean is the value with the greatest

frequency for a log-normal distribution, i.e. the median

particle radius. For a monodisperse distribution, � = 0. Using

equation (2), the log-normal distribution can be estimated

from two moments of the distribution. It should be noted that

equation (1) yields a number distribution as a function of

radius and must be multiplied by KR3 to obtain the volume

distribution, where K is a normalization constant. In the plots

below, the volume distribution is plotted versus the particle

diameter, 2R.

2.2. Global scattering function, the unified equation

Fig. 1 gives a scattering pattern obtained at the UNICAT

facility of the Advanced Photon Source in Chicago, Il, using a

Bonse±Hart ultra-small-angle X-ray-scattering camera. The

sample is non-aggregated titania with a particle size measured

by BET analysis of gas adsorption of 41.7 nm. The mean size

from TEM is 35 nm (2hRiSAXS = 27.2 nm) and the geometric

standard deviation, �g, from TEM is 1.59. The scattered

intensity is plotted as a function of the scattering vector,

q, which is related to the scattering angle, �, by q =

(4�/�)sin(�/2), where � is the wavelength. The data are

presented on a log±log scale to emphasize power-law regimes

such as are observed at high q in the Porod regime for the

particle surface scattering,

I q� � � Bqÿ4; B � 2�r2
eN�2

eS; �3�
where S is the average surface area for a primary particle and

N is the number density of primary particles. �e is the average

electron density difference between a primary particle and air,

and re is the classical electron radius. (The data are in arbitrary

units since the sample thickness, of about 0.2 mm, has not been

used to normalize the data.) At lower q (q ' 0.004 AÊ ÿ1), a

transition region is observed that re¯ects the limit of surface

scattering at the average primary particle size, Rg, as described

by Guinier's law,

I q� � � G exp ÿq2R2
g=3

ÿ �
; G � Nr2

e�
2
eV2; �4�

where V is an average particle volume. At lowest q, in Fig. 1, a

second Porod regime, equation (3), is observed with a smaller

surface area compared with the high-q Porod regime, since the

Porod constant, B, has a lower value.1 These larger particles

(lower q) are clusters of primary particles, termed soft

agglomerates to distinguish them from nanoscale aggregates

or hard agglomerates as discussed later. Previously it was

observed that soft agglomerates can be broken apart when

nanoscale particles are dispersed in polymers, for instance,

while aggregates (or hard agglomerates) remain only slightly

affected by such processing (Kohls & Beaucage, 2001).

Different behavior is observed for carbon black, which does

not have ionically bonded primary particles (Rieker et al.,

2000).

These local scattering laws, equations (3) and (4), are

directly used in the global uni®ed scattering function

(Beaucage, 1995, 1996),

I q� � � G exp
ÿq2R2

g

3

� �
� B q�� �ÿ4; q� � q

erf qRg=61=2
ÿ �� �3

;

�5�
where erf() is the error function and equation (5) is written

for a single polydisperse level of structure, such as for poly-

disperse spherical primary particles. Equation (5) can be

extended for any number of related or unrelated levels of

structure, as described by Beaucage (1996) for mass-fractal

aggregates.

In Fig. 1, it is clear that the global ®t to the scattering data,

the uni®ed ®t, can distinguish Guinier regimes where signi®-

cant overlap with the Porod regime(s) occurs. For mono-

disperse spherical particles, the Porod power law intercepts

the Guinier curve at a higher q than a tangent to the Guinier

curve ofÿ4 power law. A population of monodisperse spheres

corresponds with the smallest possible surface area, B, for a

given particle size, Rg, and volume. Polydispersity, as well as

asymmetry, of the particles serves to increase the dimension-
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1 For three-dimensional agglomerates of particles, the Porod prefactor B2 =
(2�G2/V2)(S/V)2, following equations (3) and (4). For the nanoparticles, B1 =
(2�G1/V1)(S/V)1. Then a lower value of B2 relative to B1 indicates that
the agglomerates have a lower surface area than the primary particles, since
G2/G1 = z, where z is the number of particles in an agglomerate, and since V2 =
zV1 for three-dimensional agglomerates, so B2/B1 = (S/V)2/(S/V)1.



less ratio of BR4
g/G. This ratio, normalized by the value for

monodisperse spheres of 1.62 (the lowest possible value),

serves as an index for polydispersity, PDI. The sample shown

in Fig. 1 displays a polydispersity greater than the log-normal

self-preserving limit of aerosol growth (Friedlander, 2000),

where PDI = 5.56 as discussed below, indicating that

maturation of nanoparticles during growth was truncated due

to insuf®cient residence time at high temperatures in the

¯ame. For such a sample, it is only possible to determine the

mean particle size using a global scattering function because of

the signi®cant overlap between the Guinier and Porod regimes

(Beaucage, 1995, 1996).

The data in Fig. 1 are on an arbitrary scale and it is an

advantage of the PDI approach that the value can be obtained

from intensity of arbitrary units since the scaling of intensity

affects both B and G through a scaling constant that cancels in

the ratio of B/G.

2.3. B, G, Rg for monodisperse spheres

For monodisperse spheres,

G � Nr2
e�

2
eV2 � 16�2

9
Nr2

e�
2
eR6 � Nr2

e�
2
e

2000�2

243
R6

g; �6�

while

B � 2�Nr2
e�

2
eS � 8�2Nr2

e�
2
eR2 � 40�2Nr2

e�
2
eR2

g

3
; �7�

yielding

B � 81G

50R4
g

� 1:62G

R4
g

: �8�

The same function can be obtained directly from the global

scattering formula for monodisperse spheres (Guinier &

Fournet, 1955),

I�R; q� � G
3 sin qR� � ÿ qR cos qR� �� �

qR� �3
� �2

� 9G sin2 qR� � ÿ 2qR sin qR� � cos qR� � � qR� �2cos2 qR� �� �
qR� �6 :

�9�
At high q, the oscillating terms can be approximated by their

average, cos2 qR

 �

= sin2 qR

 �

= 1
2. and sin qR cos qR


 �
= 0,

yielding

I�R; q� ) 9G 1=2ÿ 0� qR� �2=2
� �

qR� �6

) 9G

2 qR� �4 �
81G

50 qRg

ÿ �4
� 1:62G

R4
g

qÿ4; �9a�

with (5/3)1/2Rg,sphere = R. Then, a factor of 1.62 is again

obtained for the ratio BR4
g/G.

2.4. B, G, Rg and moments of the particle size distribution for
polydisperse spheres

Under the assumption of spherical particles, the three

scattering ®t parameters, B, G and Rg, can be related to

moments of the particle size distribution (Sjoberg, 1974;

Moller et al., 1995; Damaschun et al., 1969). From equation (6)

we have

G �Nr2
e�

2
e V2

 � � Nr2

e�
2
e

4�

3

� �2X1
0

ni R� �R6
i

�Nr2
e�

2
e

4�

3

� �2

R6

 �

; �6a�

where

Rph i �
X1

0

ni R� �Rp: �10�

N represents the total number density of particles in the

number density distribution, n(R). For a system with a total

particulate volume fraction ' and irradiated volume Vs, the

total number of particles, NVs, is given by

NVs � Vs'
. X

ni R� �Vi

h i
� Vs'

� �4=3�� R3

 �� �

: �11�

Then G, equation (6a), is proportional to the ratio of

hR6i/hR3i. This function is used, for instance, in the determi-

nation of the weight-average molecular weight for polymers

using solution light scattering, where R6 'M2 and R3 'M, so

Mw = hM2i/hM1i (Roe, 2001).

As a direct consequence of the Guinier power series for

intensity (Guinier & Fournet, 1955), I(q) = Nr2
e�

2V2(1 ÿ
q2R2

g/3 + . . . ) ' Gexp(ÿq2R2
g/3), for a polydisperse system

(Roe, 2001, p. 170) we consider that R2
g is weighted by V2

where V is the particle volume. As shown by Roe (2001) and

Moller et al. (1995), for spherical particles,

R2
g �

X1
0

ni R� �v2
i R2

gi

. X1
0

ni R� �v2
i

" #

� 3

5

X1
0

ni R� �R8
i

. X1
0

ni R� �R6
i

" #
� 3 R8


 �
5 R6h i : �12�

Also, for spheres,

B � 2�r2
eN�2

e Sh i � 8�2r2
eN�2

e

X1
0

niR
2
i � 8�2r2

eN�2
e R2

 �

; �13�

and B is proportional to hR2i/hR3i through the normalization

constant, following the same reasoning as equations (6a) and

(11). Then B/G is given by

B=G � 9 R2

 �

= 2 R6

 �ÿ �

: �14�
Assuming polydisperse spheres, three moments can be directly

obtained from the parameters needed to reconstruct a single

level of scattering, hR2i from B, hR6i from G, and hR8i from R2
g

and G. Integrals of the scattering curve can yield a number of

higher order moments, as described by Moller et al. (1995) (see

also Dekany & Turi, 1998; Fenistein & Barre, 2001; Sheu, 1992;

Sjoberg, 1974). For example, the Porod invariant, Q, yields an

additional moment of importance to the comparison with gas

adsorption measurements, as described below.
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If the scattered intensity is integrated over all scattering

angles for a particular structure, such as the primary particles

in an aggregate, the invariant that pertains to the scattering

power of the structure can be obtained:

Q �
Z1
0

q2I q� � dq � 2�2r2
eNV�2

e � 2�2r2
eN�2

eKshape R3

 �

� 8

3
�3r2

eN�2
e R3

 �

sphere
; �15�

where Kshape depends on the particle shape. Comparison of

equations (3), (13) and (15) shows that the ratio of the Porod

invariant, Q, and the Porod power-law prefactor, B, can yield a

particularly important moment of the particle size distribu-

tion: the surface to volume ratio. This ratio does not depend

on particle symmetry, i.e. a spherical assumption is not

necessary. The agreement between this ratio and ratios

predicted assuming spherical particles and a ®xed distribution

function are an internal check for the appropriateness of the

assumed symmetry, usually the spherical assumption, and the

distribution function. That is, KS/V in equation (16) can be

calculated for spheres, for instance, to yield a low-moment

spherical-equivalent diameter:

�B

Q
� Sh i

Vh i � KS=V

R2

 �
R3h i ÿ!

Sphere 6

dV=S

; �16�

where `6' is a constant associated with the surface to volume

ratio for a sphere, and a factor of 2 to convert radius to

diameter. Additionally, the ratio can be directly compared

with the particle size determined by BET analysis of gas

adsorption data, dp (Kammler et al., 2004), as well as with

TEM image analysis. Using a global scattering function such as

the uni®ed function, the Porod invariant can be calculated

directly from the ®t parameters using only the parts of the

scattering curve that pertain to the primary particles, so that

particle correlations associated with the mass-fractal structure

are not included in the integral for primary-particle size

(Beaucage & Schaefer, 1994).

The invariant can also be used to determine the mean

volume associated with the ratio for the sixth and third

moments (Moller et al., 1995), 2�2G/Q = hVi = 4�hR6i/(3hR3i).

Integrals of I(q)qn have been related to a number of other

moments by Moller et al. (1995).

It should be noted that since the lowest order moment

directly obtained from scattering is hR3i/hR2i, calculation of

lower order moments such as the mean and median, although

possible, must involve an extrapolation from the observed

data. Then it is preferable to compare scattering results with

higher order moments.

2.5. Log-normal distribution for polydisperse spheres

For polydisperse spheres, the two parameters needed to

describe the log-normal distribution, m and �, can be obtained

directly from the three uni®ed ®t parameters, through the

unitless ratio BR4
g/G and Rg. The spherically normalized PDI,

BR4
g/(1.62G), is directly related to �,

ln �g � � �
ln B R2

g

ÿ �2
=�1:62G�

h i
12

8<:
9=;

1=2

� ln PDI

12

� �1=2

�17�

and

m � 5R2
g=�3 exp�14�2��� 	1=2

; �18�
using equations (2), (6a), (12), (13) and alternatively (14),

where �g is the geometric standard deviation.2 m is the median

radius so the median diameter is 2m. Similarly, the mean

diameter is 2hRi, equation (2).

The self-preserving limit for pyrolytic aerosol growth is

reached when �g = 1.44, for the continuum regime of particle

transport, and 1.46, for the free-molecular regime of particle

transport (Friedlander, 2000, p. 217). Since �g = exp�, these

two limits correspond with � = 0.365 and 0.378, respectively.

For spherical particles in the continuum regime at the self-

preserving limit, BR4
g/G = 7.99, and for the free-molecular

regime BR4
g/G = 9.00 in the self-preserving limit, as noted in

Table 1. Distinguishing between free-molecular and conti-

nuum self-preserving limits from SAXS data is generally close

to the limit of resolution; however, the approach to these

limits from highly polydisperse particles is easily resolved, as

discussed later in this article.

Values for the dimensionless index of polydispersity, BR4
g/G,

are given in Table 1 for a variety of possible situations. The

intercept value corresponds with the condition where the

Porod power-law decay just intercepts the Guinier scattering

curve. This value is smaller than the log-normal self-preserving

limits, but larger than the value for monodisperse spheres,

serving as an indicator for polydispersity since this relative

value for B can be easily extrapolated graphically in a log

intensity versus log q plot. The monodisperse sphere value is

the absolute minimum of this ratio, 1.62. The Debye±Bueche

function corresponds to the value for the Debye±Bueche
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Table 1
Values of R4

gB/(1.62G), the spherically normalized PDI, for various
functions.

Functions: 1 from Roe (2001) or Guinier & Fournet (1955); 2, 6 and 7 from
Evans et al. (1993); 6 also from Crow & Shimizu (1988); 4 and 5 from
Friedlander (2000); 8 from Higgins & Benoit (1994).

Distribution R4
gB/(1.62G)

Monodisperse spheres1 1.00
Block distribution2 1.41
Intercept Porod/Guinier3 3
Log-normal self-preserving continuum regime4 4.93
Log-normal self-preserving free-molecular regime5 5.56
Log-normal (spheres)6 exp�12�2�
Most probable7 8.70
Debye±Bueche function8 9.88

2 Equation (17) can be obtained by using equation (2) for the moments in
equation (14), thereby obtaining a relationship between G/B, m and �.
Equation (12) can be used in the same way with equation (2) to obtain an
expression relating Rg, m and �. In the ratio of (R2

g)2B/G, from these
expressions, m4 cancels and an expression relating PDI to � is obtained
[equation (17)]. Equation (18) is obtained directly from the expanded
equation (12).



scattering function for structures displaying an exponential

correlation function (Debye & Bueche, 1949a,b). It is inter-

esting that this value is higher than that for any typical

distribution. The most probable value corresponds to the most

probable distribution (Evans et al., 1993). This is an expo-

nential distribution function and the value for the poly-

dispersity index is close to that for the Debye±Bueche

function.

The polydispersity index of Table 1 is useful as a direct

estimate of polydispersity from the scattering curve and is

independent of assumed distribution functions and particle

shape. It can be used directly to calculate a log-normal stan-

dard deviation for spherical particles assuming a log-normal

distribution, equation (17). It is also possible to calculate

asymmetry factors using the PDI, although this is not

discussed here. The PDI can be directly compared with model

values (Table 1) in order to gauge the approach to a theore-

tical particle size distribution, such as the self-preserving limit

in nanoparticle growth. Additionally, the intercept value

(Table 1) can be easily interpreted qualitatively in a scattering

graph to judge between high- and low-polydispersity samples.

2.6. Mass-fractal aggregates

An advantage of global scattering functions, such as the

uni®ed function, is that overlapping scaling regimes can be

distinguished using least-squares ®tting routines. Fig. 2 shows a

typical USAXS scattering pattern from aggregated nano-

particulate titania. The high-q structural level (Guinier and

Porod regime) is somewhat obscured by the intermediate-q

mass-fractal scaling regime that follows a power-law scaling of

I q� � � Bfq
ÿdf ; �19�

where df is the mass fractal dimension for an average aggre-

gate de®ning the relationship between mass, Magg and size,

Ragg,

Magg � �R df
agg; �20�

and � is the lacunarity, which is generally of the order of 1 for

aerosol particles (Friedlander, 2000). For determination of the

surface to volume ratio, and dV/S, from the Porod invariant,

only the highest-q structural level is considered from such a

system, as was previously demonstrated (Beaucage &

Schaefer, 1994). Similarly, the uni®ed function can be used to

discriminate the contribution to scattering from the primary

particles and to use this calculated contribution to determine

the polydispersity index, PDI, of Table 1.

For mass-fractal scattering, Figs. 2(a) and 2(b), a power-law

regime of weak slope, between 1 and 3, is observed for q

smaller than the primary-particle Guinier regime, equation

(4). In most cases there is a continuous transition between the

mass-fractal power-law scattering and the primary-particle

Guinier regime. For aggregates with unusually high primary-

particle polydispersity, Fig. 2(b), q ' 0.015 AÊ ÿ1, a distinct

`hump' in the scattering curve occurs at the primary particle

Guinier regime, where the primary Guinier scattering is larger

than the extrapolated mass-fractal power-law scattering. This

hump is due to the dependence of scattered intensity on R6

through the squared volume term of equation (6a), so that the

largest particles of a wide distribution dominate the scattering.

In Fig. 2(a), PDI = 3.01 (�g = 1.35), which is lower than the

self-preserving limit of PDISPL = 5.56 (�g,SPL = 1.46), while in

Fig. 2(b), PDI = 10.8 (�g = 1.56), much higher than the self-

preserving limit.
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Figure 2
USAXS data from aggregated nanoparticles (circles) showing uni®ed ®ts (bold grey lines), primary particle Guinier and Porod functions at high q, the
intermediate mass fractal scaling regime and the aggregate Guinier regime (dashed lines). (a) Fumed titania sample with multi-grain particles and low-q
excess scattering due to soft agglomerates. dV/S = 16.7 nm (corrected to 18.0 nm), PDI = 3.01 (�g = 1.35), Rg = 11.2 nm, df = 1.99, z2:1 = 175, zRg

= 226, Rg2 =
171 nm. From gas adsorption, dp = 16.2 nm. (b) Fumed zirconia sample (Mueller et al., 2004) with single-grain particles, as shown in the inset. The primary
particles for this sample have high polydispersity leading to the observed hump near the primary particle scattering regime. dV/S = 20.3 nm, PDI = 10.8
(�g = 1.56), Rg = 26.5 nm, df = 2.90. From gas adsorption, dp = 19.7 nm.



Mass-fractal aggregates are described by the dimension df,

in equations (19) and (20), the degree of aggregation, z, and

the branch content. From a general perspective, the branch

content cannot be determined in static measurements,

although consideration of the overall shape of aggregate

scattering patterns may contain information concerning

branching. The degree of aggregation, z, re¯ects the number

of primary particles in an average aggregate. This can be

obtained in several ways from the parameters ®tted to scat-

tering data, as follows.

(a) z can be obtained directly from the ratio of the Guinier

prefactors for the aggregate and primary levels of structure,

G2/G1 (Beaucage, 1996), which re¯ects a low-order moment of

z since G1 ' hzi and G2 ' hz2i.
z2:1 � G2=G1 � z2


 �
= zh i; �21�

where the power of z is associated with the source moments.

This calculation involves no assumptions concerning the

aggregate structure, except that the particles described by G1

aggregate to form the structure described by G2.

(b) z can be estimated from the radii of gyration from the

two levels of structure,

zRg
� R2

g;2=R2
g;1

ÿ �df=2� hz2�2=df i=hz2iÿ �df=2
; �22�

under the assumption that Rg is a direct measure of size both

for the primary particles and for the aggregates. This

assumption is paramount to an assumption of a narrow

distribution in both aggregate and primary size. Equation (22)

re¯ects a higher order moment than equation (21), i.e. a larger

value. The moment ratio in equation (22) is obtained from the

Guinier power series, I(q) = Nr2
e�

2V2(1ÿ q2R2
g/3 + . . . ), where

�2V2 = n2
e ' z2 for an aggregate, and R2

g;2 ' z2=df . Then hR2
g;2i is

proportional to hz2�2=df i/hz2i in analogy to equation (12). For

df = 2, zRg
= (R2

g;2/R2
g;1) = hz3i/hz2i, for instance, while for a rod,

df = 1 and zRg
= (R2

g;2/R2
g;1)1/2 = (hz4i/hz2i)1/2.

3. Results and discussion

3.1. dV/S and dBET

In the work of Kammler et al. (2004), excellent agreement

between dV/S, equation (16), and dp, obtained using BET

analysis of gas adsorption data, was observed for amorphous

silica nanoparticles across a wide range of size. In contrast, the

samples measured in Fig. 3 are crystalline nanoparticles of

titania (Figs. 3a and 3b) and zirconia (Fig. 3c). The samples

shown in Figs. 3(a) and 3(b) are produced by pyrolysis of

titanium tetraisopropoxide, TTIP, in a methane/oxygen

premixed ¯ame, as reported by Kammler et al. (2002, 2003)

with the exception of the Wegner samples (crosses, Fig. 3b),

which were produced in a quench-nozzle spray ¯ame as

described by Wegner & Pratsinis (2003). The intent of the

quench nozzle is to lock-in early states of structural growth in

the ¯ame, and the Wegner particles are much smaller than

those from the premixed ¯ame of Kammler. In general, the

smaller primary particles tend to bond into mass-fractal

aggregates, while the larger primary particles are typically
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Figure 3
(a) S/V from SAXS for titania particles produced by vapor-phase
pyrolysis of titania tetraisopropoxide by Kammler et al. (2002, 2003). The
SAXS S/V can be made to agree with the BET value by subtraction of
27 m2 cmÿ3. (b) dV/S from USAXS [and corrected from (a)] versus dp

from BET analysis of gas adsorption data for a series of titania samples
produced by Kammler (triangles and ®lled circles), and samples made in a
quenched-spray ¯ame from Wegner & Pratsinis (2003) (crosses, single-
grain particles). The calculated d3,2 from TEM micrographs for the
Kammler samples is also shown (®lled squares). (c) dV/S from USAXS
versus dp from BET for fumed zirconia samples of Mueller et al. (2004).



non-aggregated. The crystalline titania powders of Fig. 3(b),

hollow triangles, do not show good agreement with dp from

gas adsorption measurements, with dV/S < dp.

This deviation for these non-faceted spherical particles (see

inset to Fig. 1) may be associated with the grainy nature of the

titania particles, which may lead to an erroneously high

speci®c surface area in SAXS and a correspondingly lower V/S

ratio. Some support for this internal structure is seen in the

inset to Fig. 1. The internal structure could also be associated

with internal pores, which would result in an indistinguishable

reduction in dV/S compared with dp. Fig. 3(a) shows a possible

correction to such data where a constant value of 27 m2 cmÿ3

has been subtracted from the SAXS S/V values, leading to

agreement between BET and SAXS (solid circles). A constant

value of this correction factor indicates an internal closed pore

or grain structure which does not vary with particle size. By

converting these corrected S/V values, the corrected dV/S

values in Fig. 3(b) are obtained. The Wegner particles (crosses

in Fig. 3b) do not contain grain boundaries (Wegner & Prat-

sinis, 2003) and yield much better agreement between SAXS

and BET.

It should be noted that Kammler (Kammler et al., 2003)

reports good agreement between X-ray diffraction (XRD)

peak width analysis based on the Scherrer equation and dp

from gas adsorption. However, such agreement is not

expected for single-grain polydisperse powders, since the

XRD peak width should re¯ect a higher order moment ratio

than dp and a correspondingly larger value. For instance, a

Debye±Waller Gaussian peak function (Debye, 1913; Waller,

1923) would result in d 2
XRD ' hR8i/hR6i following the logic

used to obtain equation (12). For polydisperse multi-grain

particles, dXRD will bear a complicated relationship to other

moments of the particle size distribution.

Fig. 3(c) shows results from zirconia powder produced by

Mueller et al. (2004) in a spray ¯ame. Fig. 2(b) shows a typical

®t to SAXS from these mass-fractal powders. Mueller's

powders are single grained with no internal structure (inset to

Fig. 2b) and agreement between dp and dV/S is seen, similar to

that found for amorphous silica by Kammler et al. (2004). The

three largest particles in Fig. 3(c) show a lower dV/S than that

expected from gas adsorption (higher S/V), which might be

associated with internal closed pores for the larger particles.

3.2. Comparison with TEM analysis

Fig. 4 compares low-order moments, (a) the median and (b)

the mean from USAXS and TEM for the samples of Fig. 3

(Kammler et al., 2002, 2003). The median is calculated from

TEM micrographs assuming a log-normal size distribution so

that the geometric mean diameter is equal to the count median

diameter (Hinds, 1999). The median for USAXS is obtained

from expm using equation (18). The TEM median seems to be

generally higher than the USAXS value. The mean hRi from

equations (1), (2), (17) and (18) is shown in Fig. 4(b) as a

function of the mean calculated from TEM micrographs for

the same samples. Again, the mean size is generally lower for

the USAXS analysis. As noted above, values of lower order

moments from USAXS, such as the median and mean (Fig. 4),

are probably less accurate than those from TEM analysis since

the SAXS pattern is primarily related to higher order

moments, equations (9), (13) and (15). Similar agreement is

seen between dV/S from SAXS and from TEM particle size

distribution curves (Fig. 3b, solid squares).

3.3. Particle size distributions by TEM, PDI/Rg and maximum-
entropy method

Fig. 5(a) shows two USAXS measurements on the same

titania powder (two samples) which were measured from

different sample preparations in order to estimate the repro-

ducibility of the entire USAXS analysis of particle size

distributions. The uni®ed ®t to one of the samples is shown

along with the two component curves from which the poly-
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Figure 4
(a) Comparison of the median particle size from exp m, with m de®ned by equation (18), and the median particle size calculated from an analysis of TEM
data on TiO2. (b) Mean particle size, hRi from USAXS, equation (2) with r = 1, and from TEM (Kammler et al., 2003) for the same samples as Figs. 3(a)
and 3(b).



dispersity index, PDI (Table 1), is determined. The sample is

from a TTIP ¯ame producing 3.1 g hÿ1 of titania (identical to

Fig. 1) with non-aggregated particles. Fig. 5(b) shows the

resulting particle size distributions obtained by (a) particle

counting from TEM micrographs (circles), and two methods of

analysis of the USAXS data, (b) assuming a log-normal

distribution and using equations (1), (2), (17) and (18), as well

as (c) using the maximum-entropy routine of Jemian (Jemian

et al., 1991; Skilling & Bryan, 1984). There is good agreement

between the results for the two measurements and analyses.

The TEM evaluation (circles) may indicate at least three

modes to the distribution which are ignored in the log-normal

approach (grey lines). The maximum-entropy routine shows

three major modes and in some cases can reproduce the major

details of the TEM analysis (Figs. 5, 6 and 7). The reprodu-
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Figure 6
Comparison of particle volume distributions for titania made without an
electric ®eld using TEM (circles; Kammler et al., 2003), PDI (grey line)
and maximum entropy (black line). (a) 0.5 g hÿ1 [fractal dV/S = 12.1 nm,
PDI = 3.52 (�g = 1.38), Rg = 8.9 nm, df = 1.59, z2:1 = 1160, zRg

= 1343].
(b) 5.5 g hÿ1 [dV/S = 37.2 nm, PDI = 20.0 (�g = 1.65), Rg = 50.8 nm].
(c) 11 g hÿ1 [dV/S = 46.8 nm, PDI = 15.5 (�g = 1.61), Rg = 60.8 nm]. (3 g hÿ1

is shown in Fig. 5.)

Figure 5
3.1 g hÿ1 titania. (a) Repeat USAXS runs on a non-aggregated titania
powder (Fig. 1). (b) Particle size distributions from TEM (circles;
Kammler et al., 2003), equations (1), (2), (17) and (18) using PDI and Rg,
and using the maximum-entropy program of Jemian (Jemian et al., 1991).
Distribution curves are shifted vertically for clarity. dV/S = 34.9 nm, PDI =
14.4 (�g = 1.60), Rg = 44.2 nm.



cibility of the particle size distribution is fairly good in

Fig. 5(b). Again, differences may be associated with powder

inhomogeneity, although the raw SAXS data sets seem to be

extremely close for the two samples except for soft-agglom-

erate scattering at lowest q and background scattering at the

highest q. Soft agglomerates are weakly bonded, so it is not

surprising to observe variability in the low-q region of the

scattering curve.

Figs. 6 and 7 show particle size distributions from a series of

titania samples produced at variable production rates and with

and without an electric ®eld of 1.5 kV cmÿ1 applied near the

burner in the particle stream, as previously reported

(Kammler et al., 2003). The smallest particles (0.5 g hÿ1 with

and without an electric ®eld) are aggregated, while the

majority of the particles are non-aggregated. For fractal

aggregates, the high-q portion of the data related to the

primary particles was transformed using the maximum-

entropy method. This resulted in a reasonable match between

TEM, PDI/Rg and maximum-entropy results. It should be

noted that obtaining the particle size distribution using TEM

from mass-fractal aggregates is more dif®cult than for non-

aggregated particles and we expect an enhanced count at large

sizes due to the potential of over counting agglomerates of

smaller particles in the TEM analysis (Figs. 6a and 7a).

Generally, the maximum-entropy solution agrees with TEM

analysis while the log-normal results agree in terms of general

shape with both the TEM and maximum-entropy size-distri-

bution curves. Fig. 8(a) shows a plot of the corrected dV/S

(triangles) and PDI (black squares with line) versus produc-

tion rate, summarizing Figs. 5, 6 and 7. The ®rst two points,
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Figure 7
Comparison of particle volume distributions for titania made with an electric ®eld of 1.5 kV cmÿ1 using TEM (circles; Kammler et al., 2003),
PDI (grey line) and maximum entropy (black line). (a) 0.5 g hÿ1 [fractal dV/S = 10.9 nm, PDI = 3.7 (�g = 1.39), Rg = 8.5 nm, df = 1.71, z2:1 = 18.1, zRg

= 28.7].
(b) 3.1 g hÿ1 [dV/S = 30.3 nm, PDI = 15.1 (�g = 1.61), Rg = 39.0 nm]. (c) 5.5 g hÿ1 [dV/S = 31.7 nm, PDI = 17.7 (�g = 1.63), Rg = 42.5 nm]. (d) 11 g hÿ1

[dV/S = 38.7 nm, PDI = 16.4 (�g = 1.62), Rg = 51.0 nm].



dV/S < 20 nm, correspond to primary particles in fractal

aggregates, while the remaining particles are non-aggregated.

�g, from equation (17), is shown as grey squares with values on

a linear scale shown in parentheses on the right-hand axis. The

�g values are based on assumptions of a log-normal distribu-

tion and spherical particles that are fairly good for these

powders, while the PDI values are independent of assump-

tions concerning shape and particle size distribution. PDI is

directly related to the scattering curve as discussed above,

while �g is more detached from the observed data.

The behavior seen in Fig. 8(a) is associated with a shorter

residence time and higher ¯ame temperature at higher

production rates. For the low ¯ow rates, particles have suf®-

cient time to reach the self-preserving distribution, PDI ' 5.5

(�g = 1.46). Additional residence in the ¯ame at temperatures

near the minimum temperature for sintering, high in the ¯ame,

leads to mass-fractal aggregates, since complete coalescence

cannot occur. At higher ¯ow rates, the reduction in residence

time and high temperature ensure large particles that do not

reach the self-preserving limit in size distribution. At the

highest ¯ow rates, the ¯ame temperature is high enough to

lead to a reduction in the width of the particle size distribution

despite the shortened residence time. The presence of an

electric ®eld reduces the particle size, especially at high

production rates, as previously reported (Kammler et al.,

2003), but has little effect on the particle size distribution. The

reduction in particle size due to the applied ®eld is surprisingly

manifested by a proportional increase in the speci®c surface

area, as seen in Fig. 8(b), with S/V1:5 kV cmÿ1 = 7.4 m2 cmÿ3 +

1.2S/Vno ®eld as a best ®t. This may be related to surface charge

effects in the presence of the ®eld, which leads to about a 20%

increase in speci®c surface area. Fig. 8(c) shows no similar

trend in PDI or �g.

4. Conclusion

Nanoparticles produced in pyrolytic synthesis are widely used

in industry and research. Such particles rarely display mono-

disperse size and often aggregate into mass-fractal structures.

Small-angle X-ray scattering is a useful technique to char-

acterize these nanoparticles. Since scattering involves

measurement on small size scales of large collections of these

particles, it is natural to consider particle size distributions.

Generally, small-angle X-ray scattering yields high-order

moments of the particle size distribution, with the most

commonly used measure of size, the radius of gyration,

re¯ecting the ratio of the eighth to the sixth moment of size, so

the radius of gyration is extremely sensitive to the population

of largest particles. A more useful measure of size can be

obtained from the surface to volume ratio. This size, dV/S, was

shown to agree with gas adsorption measurements and with

calculations from transmission electron micrographs.

An index of polydispersity is proposed for SAXS data based

on the ratio of the Porod constant, B, times R4
g and divided by

the Guinier prefactor, G. This ratio has a minimum value of

1.62 for monodisperse spheres, by which it can be normalized,

and increases with increasing polydispersity (and particle
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Figure 8
(a) Particle size, dV/S (triangles), and spherically normalized polydisper-
sity index, PDI (squares with line), versus production rate for titania
¯ames with and without an electric ®eld. �g, assuming spherical particles
and a log-normal distribution, is also shown on a linear scale with
bracketed values on the right-hand axis (squares with no line). (b) dV/S

and S/V with 1.5 kV cmÿ1 versus no ®eld, showing linear behavior.
(c) Effect of ®eld on particle size distribution: PDI and �g with ®eld versus
without ®eld.



shape asymmetry). The PDI is directly related to �g for a log-

normal distribution of spheres. The advantages of this poly-

dispersity index over distribution-based direct ®ts to scattering

data are as follow.

(i) The PDI allows for an interpretation of scattering data

by inspection.

(ii) The PDI is independent of distribution functions. The

PDI can be adapted to various distribution functions after the

scattering data have been analyzed.

(iii) Through comparison of PDI-generated log-normal

distributions with data transforms, such as the maximum-

entropy method, erroneous features in the particle size

distribution generated by mathematical routines, such as

additional modes, can be identi®ed.

(iv) The PDI provides an analytic dimensionless number to

which an error value can be directly assigned from the

statistical error in the scattering data. Such a number is of use

in directly comparing and identifying trends for a series of

data, regardless of changes in the actual distribution function

or particle shape.

The PDI was demonstrated both for mass-fractal aggregates

and non-aggregated nanoparticles. USAXS and TEM data for

spherical nanoparticles were compared. The particle size

distributions were calculated by assuming spherical primary

particles and a log-normal distribution, and these were

compared with a direct transform of the scattering data using

the method of maximum entropy proposed by Skilling &

Bryan (1984), as well as with the particle size distributions

obtained from TEM. Generally, agreement was seen between

the three methods. Finally, we suggested a generic plot of dV/S

and PDI for a series of samples for which experimental

conditions vary, e.g. production rate and electric ®eld. Such a

plot allows a direct comparison of a series of nanopowders in

terms of two simple parameters that are independent of

assumptions, such as the form of the size distribution and

particle shape, and which are directly related to the observed

scattering curve.
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