SPECIFIC HEATS
 AT LOW TEMPERATURES

THE INTERNATIONAL CRYOGENICS MONOGRAPH SERIES

General Editors

Dr. K. Mendelssohn, F. R. S.
The Clarendon Laboratory Oxford, England
Dr. K. D. Timmerhaus
University of Colorado
Boulder, Colorado

H. J. Goldsmid
G. T. Meaden
E. S. R. Gopal
Thermoelectric Refrigeration, 1964
Electrical Resistance of Metals, 1965
Specific Heats at Low Temperatures, 1

Volumes in preparation
D. H. Parkinson and B. Mulhall
J. L. Olsen and S. Gygax
A. J. Croft and P. V. E. McClintock
G. K. Gaulé
M. G. Zabetakis
F. B. Canfield W. E. Keller
S. Ramaseshan
P. Glaser and A. Wechsler

Very High Magnetic Fields Superconductivity for Engineers Cryogenic Laboratory Equipment Superconductivity in Elements, Alloys, and Compounds Cryogenic Safety Low-Temperature Phase Equilibria Helium-3 and Helium-4 Low-Temperature Crystallography Cryogenic Insulation Systems

SPECIFIC HEATS AT LOW TEMPERATURES

E. S. R. Gopal
Department of Physics, Indian Institute of Science
Bangalore, India

ALBERT EMANUEL LIBRARY UNIVERSITY OF DAYTON

PLENUM PRESS
NEW YORK
1966

ISBN 978-1-4684-9083-1 \quad ISBN 978-1-4684-9081-7 (eBook)
DOI $10.1007 / 978-1-4684-9081-7$
Library of Congress Catalog Card Number 65-11339
© 1966 Plenum Press
Softcover reprint of the hardcover 1st edition 1966
A Division of Consultants Bureau Enterprises, Inc.
227 W. 17th St., New York, N. Y. 10011
All rights reserved

Preface

This work was begun quite some time ago at the University of Oxford during the tenure of an Overseas Scholarship of the Royal Commission for the Exhibition of 1851 and was completed at Bangalore when the author was being supported by a maintenance allowance from the CSIR Pool for unemployed scientists. It is hoped that significant developments taking place as late as the beginning of 1965 have been incorporated.

The initial impetus and inspiration for the work came from Dr. K. Mendelssohn. To him and to Drs. R. W. Hill and N. E. Phillips, who went through the whole of the text, the author is obliged in more ways than one. For permission to use figures and other materials, grateful thanks are tendered to the concerned workers and institutions.

The author is not so sanguine as to imagine that all technical and literary flaws have been weeded out. If others come across them, they may be charitably brought to the author's notice as proof that physics has become too vast to be comprehended by a single onlooker.

E. S. Raja Gopal

Department of Physics
Indian Institute of Science
Bangalore 12, India
November 1965

Contents

Introduction 1
Chapter 1 Elementary Concepts of Specific Heats
1.1. Definitions 5
1.2. Thermodynamics of Simple Systems 6
1.3. Difference Between C_{p} and C_{v} 7
1.4. Variation of Specific Heats with Temperature and Pressure. 10
1.5. Statistical Calculation of Specific Heats 11
1.6. Different Modes of Thermal Energy 12
1.7. Calorimetry 16
Chapter 2 Lattice Heat Capacity
2.1. Dulong and Petit's Law 20
2.2. Equipartition Law 21
2.3. Quantum Theory of Specific Heats 22
2.4. Einstein's Model 25
2.5. Debye's Model 28
2.6. Comparison of Debye's Theory with Experiments 31
2.7. Shortcomings of the Debye Model 35
2.8. The Born-Von Kármán Model 36
2.9. Calculation of $g(v)$ 40
2.10. Comparison of Lattice Theory with Experiments 43
2.11. Debye θ in Other Properties of Solids 47
2.11.1. θ-Values from Elastic Properties 49
2.11.2. θ-Values from Compressibility and Melting Point 50
2.11.3. θ-Values from Thermal Expansion 50
2.11.4. θ-Values from Infrared Data 51
2.11.5. θ-Values from Electrical Resistivity 52
2.11.6. Scattering of X-Rays, γ-Rays, and Neutrons 52
Chapter 3 Electronic Specific Heat
3.1. Specific Heat of Metals 55
3.2. Quantum Statistics of an Electron Gas 56
3.3. Specific Heat of Electrons in Metals. 58
3.4. Electronic Specific Heat at Low Temperatures. 61
3.5. Specific Heat and Band Structure of Metals 64
3.6. Specific Heat of Alloys 68
3.7. Specific Heat of Semiconductors 72
3.8. Phenomenon of Superconductivity 74
3.9. Specific Heat of Superconductors 76
3.10. Recent Studies 80
Chapter 4 Magnetic Contribution to Specific Heats
4.1. Thermodynamics of Magnetic Materials 84
4.2. Types of Magnetic Behavior 86
4.3. Spin Waves-Magnons 87
4.4. Spin Wave Specific Heats 89
4.5. The Weiss Model for Magnetic Ordering. 93
4.6. The Heisenberg and Ising Models 95
4.7. Specific Heats Near the Transition Temperature 98
4.8. Paramagnetic Relaxation. 100
4.9. Schottky Effect 102
4.10. Specific Heat of Paramagnetic Salts 105
4.11. Nuclear Schottky Effects. 109
Chapter 5 Heat Capacity of Liquids
5.1. Nature of the Liquid State 112
5.2. Specific Heat of Ordinary Liquids and Liquid Mixtures 113
5.3. Liquid ${ }^{4} \mathrm{He}$ at Low Temperatures 114
5.4. Phonon and Roton Specific Heats 116
5.5. Transition in Liquid ${ }^{4} \mathrm{He}$ 120
5.6. Specific Heat of Liquid ${ }^{3} \mathrm{He}$ 123
5.7. Liquid ${ }^{3} \mathrm{He}$ as a Fermi Liquid 127
5.8. Mixtures of ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ 129
5.9. Supercooled Liquids-Glasses 129
Chapter 6 Specific Heats of Gases
6.1. C_{p} and C_{v} of a Gas 135
6.2. Classical Theory of C_{v} of Gases 136
6.3. Quantum Theory of C_{v} of Gases 138
6.4. Rotational Partition Function 140
6.5. Homonuclear Molecules-Isotopes of Hydrogen 142
6.6. Vibrational and Electronic Specific Heats 147
6.7. Calorimetric and Statistical Entropies -Disorder in Solid State 148
6.8. Hindered Rotation 152
6.9. Entropy of Hydrogen 154
Chapter 7 Specific-Heat Anomalies
7.1. Spurious and Genuine Anomalies 158
7.2. Cooperative and Noncooperative Anomalies 161
7.3. Order-Disorder Transitions 163
7.4. Onset of Molecular Rotation 166
7.5. Ferroelectricity 167
7.6. Transitions in Rare-Earth Metals 170
7.7. Liquid-Gas Critical Points 175
7.8. Models of Cooperative Transitions 177
Chapter 8 Miscellaneous Problems in Specific Heats
8.1. Specific Heat Near Phase Transitions 181
8.2. Specific Heat at Saturated Vapor Pressure 185
8.3. Relaxation of Rotational and Vibrational Specific Heats 186
8.4. Defects in Solids 187
8.5. Surface Effects 190
8.6. Compilations of Specific-Heat Data 192
8.7. Tabulations of Specific-Heat Functions 194
Appendix (Six-Figure Tables of Einstein and Debye Internal-Energy and Specific-Heat Functions) 197
Author Index 227
Subject Index 234

Introduction

Investigations at temperatures below room temperature have advanced our knowledge in many ways. Toward the beginning of the present century, physical chemists evolved their reference state for chemical equilibria and thermodynamic properties on the basis of such studies. Later, physicists realized that a clear manifestation of quantum effects was possible at low temperatures. In recent times, superconductors, rocket fuels, cryopumping and a multitude of other developments have lifted low-temperature studies out of academic cloisters and into the realm of technology.

In any practical attempt to study low-temperature phenomena, the question of specific heats crops up immediately, in connection with the refrigeration needed to take care of the thermal capacity of the apparatus. Apart from its significance in this perennial problem of cooling equipments to desired low temperatures, knowledge of specific heats forms a powerful tool in many other areas, such as lattice vibrations, electronic distributions, energy levels in magnetic materials, and order-disorder phenomena in molecules. No better evidence for the usefulness of specific-heat studies is needed than the presence of the Debye characteristic temperature θ in so many branches of solid state studies. This monograph is basically a descriptive introduction to the different aspects of specific-heat studies.

Historically, the need for measuring specific heats at low temperatures arose in conjunction with the formulation of the third law of thermodynamics. Nernst realized that the specific heat of all substances should vanish as the absolute zero of temperature is approached. Einstein demonstrated the quantum effects that come into play in specific heats at low temperatures. This opened up the prospect of checking the energy states of all substances with the help of calorimetric measurements. Whatever theory of solid, liquid, and gaseous states is developed, it leads in the first place to a set of energy levels which the particles can occupy. By using suitable statistical methods, it is possible to compute the mean energy of the system and from it the specific heat. Any such calculation requires a minimum of extra theoretical assumptions. This is both a strength
and a weakness of specific-heat studies. The heat capacity provides a direct and immediate test of the theoretical model of the system, but because it is a measure of a mean quantity it cannot shed light on the finer details of the model. It is wise not to lose sight of this limitation-which, incidentally, holds true to some extent for the study of any phenomenological property of substances.

The reduction of specific heats at low temperatures is of tremendous significance in the practice of cryogenic techniques. For the ordinary materials used in the construction of apparatus, the specific heat is about $6 \mathrm{cal} / \mathrm{gram}-\mathrm{atom} \cdot \operatorname{degK}$ at room temperature $\left(300^{\circ} \mathrm{K}\right)$, approximately 4 units at liquid-air temperature $\left(80^{\circ} \mathrm{K}\right)$, and only 10^{-2} units at liquid-helium temperature $\left(4^{\circ} \mathrm{K}\right)$. The rapid fall in specific heats in the liquid hydrogen-helium temperature range makes itself felt in several ways. Once a large apparatus has been cooled to liquid-air temperature, relatively small amounts of refrigeration (measured in terms of, say, the latent heat of the liquid helium that is boiled away) are sufficient to cool it to about $4^{\circ} \mathrm{K}$. It is, in fact, a standard practice to conserve liquid helium by precooling the cryostats with liquid air, and if possible liquid hydrogen, so that little helium is boiled away in reducing the temperature to the vicinity of $4^{\circ} \mathrm{K}$. Secondly, if a part of the cold apparatus is thermally insulated from the main heat sink, its temperature may rise considerably because of small amounts of heat influx. Such situations commonly arise in the measurement of specific heats. For the same reason, when very low temperatures $\left(<1^{\circ} \mathrm{K}\right)$ are achieved by adiabatic demagnetization, it is of utmost importance to cut out as much stray heat input as possible. Thirdly, because of the small heat capacity at low temperatures, thermal equilibrium among the various parts of an apparatus is established very quickly. Typically, a system which takes about an hour to come to internal equilibrium at room temperature will do so in about a minute at $4^{\circ} \mathrm{K}$.

It was mentioned above that the energy levels of the particles specify the mean energy of the system, which in turn determines the specific heat of the system. These energy levels may be in the form of translational, rotational, or vibrational motions of molecules in gases, vibrations of atoms about their lattice sites in solids, the wandering of electrons free to move in metals, and so on. The enumeration of the possible modes of energy can be continued further, and it is obvious that a discussion of the specific heats of substances must inevitably cover a very wide field, since any temperature-dependent phenomenon can contribute to specific heats. In a monograph such as this, it is both unnecessary and impossible to be comprehensive in the description of all phenomena which bear some slight relationship to specific heats. The solution attempted here is to provide a reasonably
comprehensive description of the various aspects of specific-heat studies at low temperatures, leaving the discussion of allied phenomena to various other texts. ${ }^{1}$ It has been a difficult task to steer between the Scylla of encyclopedic completeness and the Charybdis of shallow banality.

This compromise has been chosen to serve two purposes. For the interested neophyte, the monograph should be a simple survey and a stepping-stone to an understanding of the problems of specific heats. Thus, in discussing the basic principles, no attempt at rigor is made. In citing references, preference is given, if possible, to elementary texts rather than to advanced treatises. If in this process several authors feel themselves overlooked, it is because the choice is not meant to be a judgment of the scientific value of such works, but is only a didactic device for elucidating the basic questions. Further, the normal behavior of solids, liquids, and gases is treated first before taking up, in Chapter 7, abnormalities in the specific heat of some substances. No doubt, the reader will find that some instances of specific-heat anomalies are introduced surreptitiously in Chapters 3 to 6 , but the present arrangement has the added advantage that by Chapter 7 enough anomalies have been mentioned to focus attention on classification of such behavior. For those actively engaged with cryogenic problems, a description of the many facets of specific-heat studies, with adequate references to the sources of more detailed analyses of any single aspect, should make the book useful.

The task of listing all the references, especially to the early literature on the subject, has been rendered superfluous by the monumental work of Partington. ${ }^{2}$ Therefore, references to early papers are seldom given, and anyone interested can trace such papers from either the above treatise ${ }^{2}$ or the recent reviews and books cited at the end of each chapter. Moreover, the description of cryogenic techniques has been limited to a minimum because of the availability of excellent books on the subject. ${ }^{3}$

REFERENCES

[^0]3. G. K. White, Experimental Techniques in Low Temperature Physics, Clarendon, Oxford, 1959. R. B. Scott, Cryogenic Engineering, Van Nostrand, New York, 1959. F. Din and A. H. Cockett, Low Temperature Techniques, Newnes, London, 1960. F. E. Hoare, L. C. Jackson, and N. Kurti, Experimental Cryophysics, Butterworth, London, 1961. A. C. Rose-Innes, Low Temperature Techniques, English University Press, London, 1964.

Elementary Concepts of Specific Heats

1.1. DEFINITIONS

The specific heat of a substance is defined as the quantity of heat required to raise the temperature of a unit mass of the substance by a unit degree of temperature. To some extent, the specific heat depends upon the temperature at which it is measured and upon the changes that are allowed to take place during the rise of temperature. If the properties x, y, \ldots, are held constant when a heat input $d Q$ raises the temperature of unit mass of the substance by $d T$, then

$$
\begin{equation*}
c_{x, y, \ldots}=\lim _{d T \rightarrow 0}\left(\frac{d Q}{d T}\right)_{x, y, \ldots} \tag{1.1}
\end{equation*}
$$

The specific heat, sometimes called the heat capacity, is in general a positive quantity. In the absence of any rigid convention, it seems best to use the term specific heat when referring to 1 g of the material and the term heat capacity when a more general amount of the material, i.e., a gram-atom or a gram-molecule, is involved.

In expressing the numerical values of specific heats, the MKS system, based on kilogram units of the substance, is not yet widely used in current literature, and so cgs units will be used throughout the book. By convention, $c_{x, y, \ldots}$ refers to the specific heat per gram and $C_{x, y \ldots . .}$ to the heat capacity per gram-molecule of the substance. The $c_{x \ldots}$. value is usually expressed in $\mathrm{cal} / \mathrm{g} \cdot \operatorname{degK}$ or in $\mathrm{J} / \mathrm{g} \cdot \mathrm{deg}$, the present conversion factor being 1 thermochemical calorie $=4.1840 \mathrm{~J}$. In engineering literature, it is still not uncommon to find specific heats in $\mathrm{BTU} / \mathrm{lb} \cdot \mathrm{degF}$, which luckily has almost the same value in $\mathrm{cal} / \mathrm{g} \cdot \mathrm{degK}$.

1.2. THERMODYNAMICS OF SIMPLE SYSTEMS

All processes in which quantities of heat and work come into play are governed by the fundamental laws of thermodynamics. Some properties of specific heats follow immediately from these laws, and it is therefore appropriate to consider them first. A discussion of the principles of thermodynamics is given in several wellknown texts. ${ }^{1}$ If a quantity of heat $d Q$ is supplied to a substance, a part of it goes to increase the internal energy E of the system and a part is utilized in performing external work W. In accordance with the first law,

$$
\begin{equation*}
d Q=d E+d W \tag{1.2}
\end{equation*}
$$

If the heat exchange is reversible, the second law of thermodynamics permits calculation of the entropy S of the system from the relation

$$
\begin{equation*}
d Q=T d S \tag{1.3}
\end{equation*}
$$

Apart from the special conditions to be discussed in Section 8.5, E and S are proportional to the mass of the substance; that is, they are extensive variables.

It is instructive to start with a simple substance, namely, the ideal fluid. In gases and liquids, the pressure P at a point is the same in all directions, and any work done by the system $d W$ is an expansion against the pressure. Then $d W$ must be of the form

$$
\begin{equation*}
d W=P d V \tag{1.4}
\end{equation*}
$$

Moreover, fluids obey an equation of state

$$
\begin{equation*}
f(P, V, T)=0 \tag{1.5}
\end{equation*}
$$

This means that any one of P, V, T can be expressed in terms of the other two and that only two of the three quantities can be arbitrarily varied at the same time. Hence, during the change of temperature, either P or V can be kept constant, and correspondingly there are two principal heat capacities :

$$
\begin{align*}
& C_{p}=\left(\frac{d Q}{d T}\right)_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p} \\
& C_{v}=\left(\frac{d Q}{d T}\right)_{v}=T\left(\frac{\partial S}{\partial T}\right)_{v} \tag{1.6}
\end{align*}
$$

The case for solids is somewhat more complicated. Unlike ordinary fluids, which require forces only for changing their volume, solids require forces both to change their linear dimensions and to alter their shape. It is shown in the texts on elasticity ${ }^{2}$ that $d W$ is of
the form

$$
d W=\sum_{i} t_{i} d e_{i} \quad(i=1,2, \ldots, 6)
$$

where t_{i} are the stresses and e_{i} are the strains. Obviously, it is possible in principle to define a large number of specific heats, allowing only one stress or strain component to change during the heating. In practice, however, such experiments are hardly feasible, and only C_{p}, C_{v} are of importance. It can be shown ${ }^{3}$ that they obey the same thermodynamic relations as the C_{p}, C_{v} of liquids and gases, so there is no significant loss of generality in restricting the discussion to the simple case of fluids.

Combining (1.2) and (1.3), one can write the change in internal energy as

$$
\begin{equation*}
d E=T d S-P d V \tag{1.7}
\end{equation*}
$$

Often it is convenient to handle the other principal thermodynamic functions of the system, namely, enthalpy H, Helmholtz function A and Gibbs' function G, whose variations are

$$
\begin{align*}
d H & =d(E+P V)=T d S+V d P \tag{1.8}\\
d A & =d(E-T S)=-S d T-P d V \tag{1.9}\\
d G & =d(E-T S+P V)=-S d T+V d P \tag{1.10}
\end{align*}
$$

These four functions are nothing but measures of the energy content of the substance under various conditions, and the changes in these must depend only upon the initial and final states. Mathematically equivalent is the statement that the differentials (1.7) to (1.10) are perfect differentials; this condition leads to the four Maxwell's relations

$$
\begin{array}{ll}
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{v} & \left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{p} \\
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{v} & \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p} \tag{1.11}
\end{array}
$$

The four relations are useful in expressing thermodynamic formulas in terms of quantities which are experimentally measured.

1.3. DIFFERENCE BETWEEN C_{p} and C_{v}

As an illustration of the use of equation (1.11), the important expressions for $C_{p}-C_{v}$ may be calculated. Take T and V as the independent variables in describing the entropy of a mole of substance
and write

$$
d S=\left(\frac{\partial S}{\partial T}\right)_{v} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V
$$

or

$$
\left(\frac{\partial S}{\partial T}\right)_{p}=\left(\frac{\partial S}{\partial T}\right)_{v}+\left(\frac{\partial S}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}
$$

Replacing $(\partial S / \partial V)_{T}$ by $(\partial P / \partial T)_{v}$ and using equations (1.6) yields

$$
\begin{equation*}
C_{p}-C_{v}=T\left(\frac{\partial S}{\partial T}\right)_{p}-T\left(\frac{\partial S}{\partial T}\right)_{v}=T\left(\frac{\partial P}{\partial T}\right)_{v}\left(\frac{\partial V}{\partial T}\right)_{p} \tag{1.12}
\end{equation*}
$$

This relation is convenient if the equation of state is known explicitly. For example, a mole of a gas obeys the relation $P V=R T$ under ideal conditions, and so equation (1.12) gives the difference between the molar heat capacities:

$$
\begin{equation*}
C_{p}-C_{v}=R \tag{1.13}
\end{equation*}
$$

The gas constant R has a value $8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{deg}$, or $1.987 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$. For liquids and solids, $(\partial P / \partial T)_{v}$ is not easy to measure and is best eliminated from the equations. To do this, consider P as a function of T and V :

$$
d P=\left(\frac{\partial P}{\partial V}\right)_{T} d V+\left(\frac{\partial P}{\partial T}\right)_{v} d T
$$

At constant pressure, $d P=0$, and

$$
\left(\frac{\partial P}{\partial T}\right)_{v}=-\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}
$$

Now the coefficient of cubical expansion $\beta=V^{-1}(\partial V / \partial T)_{p}$ and the isothermal compressibility $k_{T}=-V^{-1}(\partial V / \partial P)_{T}$ are amenable to experimental measurements. In terms of β, k_{T}, and the molar volume V,

$$
\begin{equation*}
C_{p}-C_{v}=\frac{T V \beta^{2}}{k_{T}} \tag{1.14}
\end{equation*}
$$

The mechanical stability of a substance requires $k_{T}>0$. Therefore, C_{p} is always greater than C_{v}. They are equal when $\beta=0$, as in the case of water near $4^{\circ} \mathrm{C}$, liquid ${ }^{4} \mathrm{He}$ near $1.1^{\circ} \mathrm{K}$, and liquid ${ }^{3} \mathrm{He}$ near $0.6^{\circ} \mathrm{K}$. The reason for $C_{p} \geqslant C_{v}$ is easy to see. Heating the substance at constant pressure causes an increase in the internal energy
and also forces the substance to do external work in expanding against the pressure of the system. On the other hand, in heating at constant volume there is no work done against the pressure and all the heat goes to raise the internal energy. Hence, in the latter case the temperature rise is larger for a given $d Q$. In other words, C_{v} is less than C_{p}.

The difference between C_{p} and C_{v} is about 5% in most solids at room temperature. It decreases rapidly as the temperature is lowered. Table 1.I gives the values for copper, and the behavior of other solids is very similar. However, to calculate $C_{p}-C_{v}$ exactly, a tremendous amount of data is needed. The complete temperature dependence of molar volume, volume expansion, and isothermal compressibility, besides C_{p}, should be known, and this knowledge is not always available. Under such conditions, approximate relations are used. The most successful one is the Nernst-Lindemann relation based on Grüneisen's equation of state:

$$
\begin{equation*}
C_{p}-C_{v}=\frac{V \beta^{2}}{k_{T} C_{p}^{2}} C_{p}^{2} T=A C_{p}^{2} T \tag{1.15}
\end{equation*}
$$

The parameter A is nearly constant over a wide range of temperature. For example, in copper $A=1.54 \times 10^{-5} \mathrm{~mole} / \mathrm{cal}$ at $1000^{\circ} \mathrm{K}$ and 1.53×10^{-5} at $100^{\circ} \mathrm{K}$, if the mechanical equivalent of heat is taken as $4.184 \times 10^{7} \mathrm{ergs} / \mathrm{cal}$. If \boldsymbol{A} is calculated at any one temperature from the values of V, β, and k_{T}, it may be used to calculate $C_{p}-C_{v}$ over a wide range of T without serious error.

In gases at low pressures, $C_{p}-C_{v}$ is equal to R [equation (1.13)], but at high pressures small corrections for nonideality are needed. ${ }^{1}$ The values of C_{p} or C_{v} are not dramatically changed at low temperatures. The behavior of nitrogen is typical: C_{p} is about $6.95 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$ at $300^{\circ} \mathrm{K}$ and about 6.96 at $100^{\circ} \mathrm{K}$.

The ratio of specific heats C_{p} / C_{v} is nearly unity for solids and liquids, but not for gases. The value $C_{p} \sim \frac{7}{2} R$ for nitrogen shows that $C_{v} \sim \frac{5}{2} R$, and so $C_{p} / C_{v} \sim 1.4$. It is 1.67 for monatomic gases such as helium or argon, and becomes approximately 1.3 for polyatomic

Table 1.I. C_{p} and C_{v} for Copper

T	C_{p}	V	β	k_{T}	$C_{p}-C_{v}$	C_{v}	C_{p} / C_{v}
1000	7.04	7.35	65.2	0.976	0.778	6.27	1.12
300	5.87	7.06	49.2	0.776	0.157	5.71	1.03
100	3.88	7.01	31.5	0.721	0.023	3.86	1.00
4	0.0015	7.00	0.0	0.710	0.0	0.0015	1.00

T in degK ; C_{p}, C_{v} in cal/mole $\cdot \mathrm{deg} ; V$ in $\mathrm{cm}^{3} /$ mole $; \beta$ in $10^{-6} / \mathrm{deg} ; k_{T}$ in $10^{-12} \mathrm{~cm}^{2} /$ dyne.
gases. In general, the ratio C_{p} / C_{v} depends upon the state of the substance and is useful in converting adiabatic elastic data to isothermal data. For example, it is a simple exercise to show that

$$
\begin{equation*}
\frac{k_{T}}{k_{S}}=\frac{C_{p}}{C_{v}} \tag{1.16}
\end{equation*}
$$

where k_{T} is the isothermal compressibility and k_{S} is the adiabatic value. The ratio has greater significance for gases, where, besides being involved in the adiabatic equation $P V^{C_{p} / C_{v}}=$ constant, it also gives information about the number of degrees of freedom of the molecules constituting the gas.

1.4. VARIATION OF SPECIFIC HEATS WITH TEMPERATURE AND PRESSURE

It was mentioned in Section 1.1 that the specific heats depend to some extent upon the state of the substance, and Table 1.I shows how C_{p}, C_{v} in a solid are affected by temperature. The full details of such temperature dependences are very complicated, and their elucidation is the major task of the whole book. Here, only some simple consequences of general thermodynamic considerations are pointed out.

The use of Maxwell's relations (1.11) shows that

$$
\begin{align*}
& \left(\frac{\partial C_{v}}{\partial V}\right)_{T}=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{v} \\
& \left(\frac{\partial C_{p}}{\partial P}\right)_{T}=-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{p} \tag{1.17}
\end{align*}
$$

The prime use of these relations is in reducing the measured specific heats of gases to the ideal values at zero pressure with the help of the equation of state. For a perfect gas, C_{p} and C_{v} are independent of pressure.

The third law of thermodynamics specifies the behavior of specific heats at very low temperature. According to it, the entropy of any system in thermodynamic equilibrium tends to zero at the absolute zero. Since $S=0$ at $T=0$ and S is finite at higher temperatures, the difference in entropy at constant volume between $T=0$ and $T=T_{0}$ may be obtained from equation (1.6) as

$$
S\left(T_{0}\right)=\int_{0}^{T_{0}}\left(\frac{C_{v}}{T}\right) d T
$$

For the integral to converge, i.e., remain finite definite, at the lower limit $T=0, C_{v} / T$ must be a finite number (including zero) as $T \rightarrow 0$. In other words, when absolute zero is approached, the specific heat must tend to zero at least as the first power of T.

The vanishing of specific heats at $T=0$ is of great importance because it permits the use of $0^{\circ} \mathrm{K}$ as a reference for all thermodynamic calculations. For instance, the entropy at any temperature T may be uniquely expressed as

$$
\begin{equation*}
S(T)=\int_{0}^{T} C_{v} T^{-1} d T \tag{1.18}
\end{equation*}
$$

without any undetermined additive constants. Since C_{v} is known to vanish at $0^{\circ} \mathrm{K}$, it is enough to measure it to a sufficiently low temperature from where it may be safely extrapolated to zero. Unfortunately, the laws of thermodynamics do not give any indication of how low this temperature should be. For many solids, measurements down to liquid-helium temperature are adequate, whereas for some paramagnetic salts measurements well below $1^{\circ} \mathrm{K}$ are needed before a safe extrapolation is possible.

Figure 1.1 shows the specific heats of some materials near absolute zero. Dielectric solids (Figure 1.1a) have a low-temperature specific heat proportional to T^{3}, while metals (Fig. 1.1b) obey a relation $c=A_{1} T^{3}+A_{2} T$. These variations are simple enough to permit a ready extrapolation of the observations to $0^{\circ} \mathrm{K}$. However, if the material contains paramagnetic ions-and such materials are important in adiabatic demagnetization techniques-the behavior is often quite anomalous. The specific heat of chromium methylamine alum, ${ }^{6}$ shown in Fig. 1.2, is not falling off to zero even at $0.1^{\circ} \mathrm{K}$. Instead it appears to be increasing as the temperature is lowered! No doubt the specific heat will eventually tend to zero as $T \rightarrow 0$, but it is quite impossible to guess its behaviour from, say, $0.5^{\circ} \mathrm{K}$. It is also noteworthy that because of the low temperatures the entropy associated with these anomalous variations is often large (of the order of R per mole).

1.5. STATISTICAL CALCULATION OF SPECIFIC HEATS

The examples of Fig. 1.1 and 1.2 serve to illustrate the fact that while thermodynamics is powerful in specifying the general laws governing a phenomenon it does not give any clue about the detailed behavior. This belongs to the realm of statistical mechanics, and in the following chapters it will become abundantly clear that a variety of effects observed in the behavior of specific heats may indeed be satisfactorily explained. In statistical thermodynamics, the general

Fig. 1.1. Well-behaved heat capacities near $0^{\circ} \mathrm{K}$: (a) potassium bromide, ${ }^{4}$ (b) copper. ${ }^{5}$

Fig. 1.2. Anomalous variation of heat capacity in chromium methylamine alum. ${ }^{6}$
scheme for deducing the thermal properties is quite simple, although its derivation should be left to the texts on statistical mechanics. ${ }^{7}$

The systems that are of interest in practical problems consist of a very large number of basic constituents, for convenience called particles even if they are identified as atoms, molecules, or quanta of energy. The interaction among the particles can be analyzed on the basis of theoretical models to yield the energies E_{i} of the various possible levels of, say, a mole of the system. Once this is done-and it is in this process that the complex physical systems have to be judiciously represented by simple mathematical models-the thermodynamic quantities are contained in the partition function of the system

$$
\begin{equation*}
Z=\sum_{i} \exp \left(\frac{-E_{i}}{k T}\right) \quad \sum_{i} \text { over all levels of the system } \tag{1.19}
\end{equation*}
$$

which is related to the Helmholtz free energy per mole by the relation

$$
\begin{equation*}
A=-k T \ln Z \tag{1.20}
\end{equation*}
$$

Here, k is Boltzmann's constant, equal to $1.3805 \times 10^{-16} \mathrm{erg} / \mathrm{degK}$.

It is now a simple matter to get from A
$S=-\left(\frac{\partial A}{\partial T}\right)_{v} \quad E=k T^{2}\left(\frac{\partial \ln Z}{\partial T}\right)_{v} \quad C_{v}=T\left(\frac{\partial^{2}(k T \ln Z)}{\partial T^{2}}\right)_{v}$
These are the thermodynamic quantities of interest, and they are easily calculated if the partition function is set up in a convenient form.

Clearly, the specific heat at constant volume is the quantity that arises naturally in the theoretical analysis. The experimental measurement of C_{v} is possible in gases under favorable conditions because the pressures encountered, of the order of atmospheres, can be balanced by the walls of the container. For liquids and solids, on the other hand, the pressures needed to keep the volume constant run into thousands of atmospheres, and normally balancing such pressures is not practicable. Therefore, measurements are ordinarily done at constant pressure and C_{v} is calculated from equation (1.14). The difference $C_{p}-C_{v}$ is usually less than a few percent at low temperatures, unless the substance is near a phase transition.

1.6. DIFFERENT MODES OF THERMAL ENERGY

The above discussion underlines the fact that the heat capacity of a substance is governed by the manner in which the internal energy is distributed among its constituents. The molecules in a gas can have translational, rotational, vibrational, and electronic energy levels, and each type of thermal motion contributes its share to the specific heat of a gas. The atoms in a solid are usually held fixed at their lattice sites and can at most vibrate about their mean positions. This motion is called the lattice mode of thermal excitation. If the lattice consists of molecules, there are motions of atoms within the molecules besides the vibrations involving molecules as units. These internal vibrations may be described as molecular modes. There may be free electrons wandering through the lattice, as in metals, and the electronic contribution to C_{v} arises from the thermal excitation of these electrons. In some cases, the energy levels of bound electrons may be split into discrete levels. The transitions among the levels are known as excitation modes. Yet another complication is that in some cases the probability of exciting some mode of thermal agitation depends strongly upon the number of particles already excited. Excitations of the particles therefore increase extremely rapidly, as though by positive feedback, once the first of such modes are excited; these snow-balling processes are called cooperative phenomena.

The contributions from all these modes have to be added together to get the total heat capacity. This may be easily seen, since to a
first approximation the energy of a system is the sum of the energies due to the various modes of motion. An inspection of equation (1.19) shows that the partition function is the product of factors associated with each mode. For example, the partition function Z of a gas is the product

$$
\begin{equation*}
Z=Z_{t} Z_{r} Z_{v} Z_{e} \tag{1.22}
\end{equation*}
$$

of the translational, rotational, vibrational, and electronic functions. A involves $\ln Z$, which is the sum of $\ln Z_{t}, \ln Z_{r}$, etc., and it is clear that the thermodynamic quantities are the sums of the contributions from the various modes.

While all these possible types of thermal agitation give their share to the heat capacity of the substance, the observed specific heat depends also upon their variation with temperature. Some of the modes are excited over the entire temperature range and so contribute observable specific heat at all temperatures. The atoms in a lattice can vibrate at all temperatures, and the lattice contribution to heat capacity is significant at all temperatures. It falls off as T^{3} when $0^{\circ} \mathrm{K}$ is approached, as shown in Fig. 1.1a. The free electrons in a metal have very high heat content, but this varies so little with temperature that its contribution to specific heats is overshadowed by the lattice term at room temperature. However, the electronic specific heat, varying as the first power of T, becomes important at liquid-helium temperature, as was seen in Fig. 1.1b.

In contrast to these types of thermal excitation, there are some modes which are excited over a restricted range of temperatures and so contribute an appreciable specific heat over that small range only. Typical is the excitation of energy in a system with two levels approximately $k T_{0}$ apart. At temperatures much below T_{0}, the thermal energy is insufficient to cause many excitations, as $T \sim T_{0}$ transitions can occur freely, while at much higher temperature the levels are equally populated and little change in energy is possible. Hence, the specific heat is significant only in the region $T \sim T_{0}$ and is usually detected as a sharp bump superimposed on the other specific-heat contributions. Such behavior is called a specific-heat anomaly; Fig. 1.2 shows a good example. The hump at about $0.1^{\circ} \mathrm{K}$ is due to the transitions among the energy levels of the paramagnetic ions. The substance chrome methylamine alum, $\mathrm{Cr}\left(\mathrm{NH}_{3} \mathrm{CH}_{3}\right)\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$, is peculiar in showing another nearby anomaly. The sharp peak at $0.02^{\circ} \mathrm{K}$ is caused by a cooperative transition from a paramagnetic state to an ordered antiferromagnetic state.

Any theory of solids, liquids, or gases must take into account the different types of thermal agitation, and so must lead in the first place to the energy levels of the system. The calculation of heat
capacities involves no further assumptions. It is thus a special feature of the specific-heat studies that they provide a first ready test of the theory. However, the specific heat is only an averaged quantity; consequently, the full details of the energy levels are not usually elucidated unless the measurements are supplemented by the investigations of other properties of the substance. This interplay among the different properties of the systems will become evident in the later chapters, where the heat capacity due to the various modes of thermal agitation will be analyzed with the help of suitable simple models. Before proceeding to this, it is convenient to indicate how the specific heats are experimentally determined. Only an outline of the experimental methods will be given here, since the matter is taken up comprehensively in a forthcoming monograph in this series.

1.7. CALORIMETRY

At the turn of the present century, the vacuum calorimeter was introduced by Nernst for the determination of specific heats at low temperatures; subject to minor modifications, it is still the method widely used. In its simple form, Fig. 1.3a, it consists of the block B, over which an insulated coil W of platinum wire is wound. The block B may be either a piece of the solid to be studied or merely a container for some solid, liquid, or gas. B is suspended by the leads LL in a vacuum-tight container C , which is cooled in a dewar D containing liquid air, hydrogen, or helium, as the case may be. Initially, C is filled with helium gas at a low pressure of about 1 mm of mercury, and the block B is cooled to the temperature of the bath by the heat transfer through the gas. After B has been cooled, the gas is pumped away. Thereafter, B is thermally isolated. Known quantities of heat are applied to the coil W by passing known currents for definite intervals of time, and the resulting rise of temperature is measured by the change in resistance of the platinum wire. It is now common to have separate heaters and sensitive thermometers. It is sometimes advantageous to supply heat continuously and to derive the specific heats from a continuous record of the temperatures.

The vacuum space C avoids any heat transfer by gas conduction or convection. At temperatures above $20^{\circ} \mathrm{K}$, heat transfer by radiation, varying as T^{4}, becomes significant. This difficulty is avoided in adiabatic calorimetry, introduced at low temperatures by Lange, Southard, and Andrews, ${ }^{8}$ although at room temperature it has been brought to a high degree of refinement by Richards and many other earlier workers. The adiabatic shield S (Fig. 1.3b) contains a separate heater, and is made to follow the temperature of B accurately. This can be done either manually or by suitable electronic devices making

Fig. 1.3. Vacuum calorimeter and its modifications.
use of differential thermocouples between B and C to observe any temperature difference between them. In the liquid-helium range, a different problem arises because the helium gas used for precooling B is strongly absorbed on the surfaces of B and C. The vacuum is thereby spoiled, and even with fast pumps it may take a few hours to dislodge all the helium gas. So it is preferable to avoid the helium exchange gas altogether, though this necessitates alternative provisions for cooling the block B to low temperatures. In a simple form, a polished metal plate J (Fig. 1.3c), which can be operated from outside the cryostat and which is in good thermal contact with C , is made to press firmly against a similar polished metal disk attached to B. C remains evacuated throughout the operation. The drawback in this technique is that when the difference in temperature between B and C is small, especially at low temperatures, heat transfer across the mechanical contact becomes very inefficient. Several cryostats, ingeniously designed to minimize these and other difficulties, are described by White ${ }^{9}$ and Hill. ${ }^{10}$ These and other books ${ }^{11,12}$ contain a full account of the general cryogenic techniques.

The above method is useful for measuring the specific heat above about $1^{\circ} \mathrm{K}$. Below this temperature, one has to use the ${ }^{3} \mathrm{He}$ isotope as a coolant (up to about $0.3^{\circ} \mathrm{K}$), or use adiabatic demagnetization to attain low temperatures. The details of these refrigeration techniques are described in several texts. ${ }^{9,10,12}$ Mention need be made
here only of some special methods of finding specific heats in particular cases. Below $1^{\circ} \mathrm{K}$, the heat capacity of the demagnetization pill used to cool the specimen becomes large compared to the heat capacity of the specimens. One way of avoiding this interference is to pass a periodic heat-wave through the specimen and to derive C_{p} as in the Angstrom method of finding diffusivity at room temperatures. ${ }^{13}$ For magnetic materials, specific heats may be obtained from studies of paramagnetic relaxation or demagnetization from various magnetic fields (Chapter 4).

In the case of gases, measurements made by having the gas in a closed container, as originally done by Eucken and others for hydrogen, yield C_{v} directly, because the volume change under such conditions is very small. The specific heat at constant pressure can be determined by continuous-flow methods as at room temperatures. Information about C_{v} in gases may be obtained from the heat conduction when the mean free path becomes comparable to the dimensions of the measuring apparatus. Moreover, the ratio of specific heats C_{p} / C_{v} may be determined from the velocity of sound in gases (Section 8.3). A good survey of the measurement of specific heat in gases is given by Rowlinson. ${ }^{14}$

There are many problems associated with thermometry and heat leakages, the details of which are discussed in several reviews. ${ }^{15,16,17}$ A point often overlooked is the need for pure specimens. Parkinson ${ }^{16}$ has listed a number of anomalous results originally reported in such common materials as sodium, mercury, beryllium, germanium, etc., which had been puzzling and which have now proved to be not characteristic of the pure materials. When it is realized that at $0.1^{\circ} \mathrm{K}$ chrome methylamine alum has a molar heat capacity nearly 40,000 times that of copper, it is obvious that even traces of impurities may sometimes vitiate calorimetric measurements.

REFERENCES

1. M. W. Zemansky, Heat and Thermodynamics, McGraw-Hill, New York, 1957.
J. K. Roberts and A. R. Miller, Heat and Thermodynamics, Blackie, London, 1960.
2. H. B. Huntington, Solid State Phys. 7, 213 (1958). R. F. S. Hearmon, Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford, 1961.
3. R. Viswanathan and E. S. Raja Gopal, Physica 27, 1226 (1961).
4. H. R. O'Neal, Ph.D. thesis (unpublished), University of California, 1963.
5. J. A. Rayne, Austral. J. Phys. 9, 189 (1956). K. G. Ramanathan and T. M. Srinivasan, J. Sci. Industr. Res. 16B, 277 (1957).
6. W. E. Gardner and N. Kurti, Proc. Roy. Soc. (London), Ser. A 223, 542 (1954).
7. C. Kittel, Elementary Statistical Physics, Wiley, New York, 1958. D. K. C. MacDonald, Introductory Statistical Mechanics for Physicists, Wiley, New York, 1963.
8. F. Lange, Z. Phys. Chem. 110, 343 (1924). J. C. Southard and D. H. Andrews, J. Franklin Inst. 209, 349 (1930).
9. G. K. White, Experimental Techniques in Low Temperature Physics, Clarendon, Oxford, 1959.
10. F. E. Hoare, L. C. Jackson, and N. Kurti, Experimental Cryophysics, Butterworth, London, 1961.
11. F. Din and A. H. Cockett, Low Temperature Techniques, Newnes, London, 1960.
12. A. C. Rose-Innes, Low Temperature Techniques, English University Press, London, 1964.
13. D. H. Howling, E. Mendoza, and J. E. Zimmerman, Proc. Roy. Soc. (London), Ser. A 229, 86 (1955). N. V. Zavaritsky, Progr. Cryogenics 1, 207 (1959).
14. J. S. Rowlinson, The Perfect Gas, Pergamon, Oxford, 1963, chapter 2.
15. P. H. Keesom and N. Pearlman, Handbuch der Physik, XIV (I), 282 (1956).
16. D. H. Parkinson, Rept. Progr. Phys. 21, 226 (1958).
17. R. W. Hill, Progr. Cryogenics 1, 179 (1959). W. P. White, The Modern Calorimeter, Chem. Pub. Co., New York, 1928. J. M. Sturtevant, in: A. Weissberger (ed.), Physical Methods of Organic Chemistry, Part I, Interscience, New York, 1959, chapter 10.

Chapter 2

Lattice Heat Capacity

2.1. DULONG AND PETIT'S LAW

One of the earliest empirical generalizations concerning the specific heat of solids was enunciated by Dulong and Petit in 1819. Its theoretical justification was advanced by Boltzmann in 1871, and in 1907 Einstein showed why it failed at low temperatures. These dates are among the principal landmarks in the study of specific heats. To appreciate the significance of these developments, consider the specific heats of several common elements at room temperatures, as collected in Table 2.I. The specific heat per gram of the element varies considerably, being small for the elements of high atomic weight and large for those of low atomic weight. However, the heat capacity per gram-atom of all of them is nearly equal to $6.2 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$,

Table 2.I. Specific Heat of Solid Elements at Room Temperature ${ }^{1}$

	Element						
	Bi	Pb	Au	Pt	Sn	Ag	Zn
c_{p} Atomic weight C_{p}	0.02.99	0.0310	0.0309	0.0318	0.0556	0.0559	0.0939
	209.0	207.2	197.0	195.1	118.7	107.9	65.4
	6.22	6.43	6.10	6.21	6.60	6.03	6.14
	Cu	Fe	Al	Si	B	C(gr)	C (di)
Atomic	0.0930	0.110	0.218	0.177	0.26	0.216	0.12
weight	63.6	55.9	27.0	28.1	10.8	12.0	12.0
C_{p}	5.92	6.14	5.83	5.00	2.84	2.60	1.44

C_{p} in cal/mole $\cdot \mathrm{deg}, \mathrm{Sn}=$ grey tin, $\mathrm{C}(\mathrm{gr})=$ graphite, $\mathrm{C}(\mathrm{di})=$ diamond.

Table 2.II. Molar Heat Capacity of Compounds ${ }^{1}$ (in cal/mole•deg)

	Compound									
	NaCl	KBr	AgCl	PbS	CuS	$\mathrm{Ag}_{2} \mathrm{~S}$	PbCl_{2}	CaF_{2}	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	
C_{p}	11.93	12.25	12.15	12.01	12.33	17.83	18.05	16.56	27.2	

which is the rule found by Dulong and Petit in 1819. A closer inspection shows that for "light and hard" elements (silicon, boron, and carbon) the atomic heat capacity falls much below the Dulong-Petit value.

Subsequent experiments by several workers during the period 1840 to 1860 revealed an important extension of the Dulong-Petit rule. The molar heat capacity of a compound is equal to the sum of the atomic heat capacities of the constituent elements. Table 2.II illustrates this rule, which is sometimes called the law of Neumann and Kopp. Diatomic solids have a molar specific heat of approximately $12 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$, while triatomic solids have $C_{p} \sim 18$ units. As in Table 2.I, there are many substances that deviate greatly from this simple behavior, but on the whole there is enough evidence for taking the atomic specific heat to be about 6 cal , irrespective of the chemical structure of the substance. Since the gas constant $R=N k$ has a value of approximately $2 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$, this statement implies that each atom in a solid contributes about $3 k$ to the specific heat.

2.2. EQUIPARTITION LAW

The empirical results of the previous section can be readily interpreted on the basis of the theorem of equipartition of energy developed by Boltzmann. A derivation of this theorem may be found in the texts on statistical mechanics or in other places. ${ }^{2,3}$ In classical mechanics, a system executing small oscillations may be described in terms of normal coordinates; its energy is then expressed as the sum of several squared terms. For example, the energy of a linear harmonic oscillator is made up of kinetic and potential energies $(2 m)^{-1} p^{2}+\frac{1}{2} m \omega^{2} q^{2}$, where p is the momentum and q the coordinate. For a three-dimensional oscillator there are three $p_{x}^{2}, p_{y}^{2}, p_{z}^{2}$ terms and three $q_{x}^{2}, q_{y}^{2}, q_{z}^{2}$ terms. Each such square term in the energy expression is said to arise from a degree of freedom of the system, which is nothing more than an enumeration of the independent variables needed to describe the system. The equipartition law states
that in thermal equilibrium each degree of freedom contributes $\frac{1}{2} k T$ to the energy of the particle. Thus, a three-dimensional oscillator has an internal energy $3 k T$ when a system of such oscillators is in thermal equilibrium.

The atoms in a solid are arranged in a regular lattice and held in their lattice sites by interatomic forces acting on them. A simple model of a lattice would be a set of mass points connected to one another by elastic springs. The atoms can vibrate about their mean positions under the influence of the forces acting on them, and if the amplitude of oscillation is small, the atoms may be considered as harmonic oscillators. Each (three-dimensional) oscillator has six degrees of freedom, and by the equipartition theorem has an internal energy $3 k T$. In a gram-atom of the element there are N atoms and the internal energy is $3 N k T$. Therefore, the heat capacity is $C_{v}=\partial E / \partial T=3 R \approx 5.96 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$. For a compound with r atoms per molecule, the molar heat capacity is $3 r R$.

Classical statistical mechanics is thus able to justify the empirical observation of Dulong and Petit and others. The successful theoretical explanation of the heat capacity of solids (and of gases, which will be discussed in Chapter 6) was, at that time, partly instrumental in the acceptance of molecular mechanisms not only for mechanical properties but also for thermal properties of matter, a fact which is taken for granted nowadays.

A perusal of Table 2.I shows, however, that for some substances the heat capacity is much less than the equipartition value. Experiments performed above room temperature revealed that at high temperatures the heat capacity of even these substances increases to 3R. For example, diamond, which had $C_{p} \sim 1.4 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$ at $300^{\circ} \mathrm{K}$, had $C_{p} \sim 5.5$ units at $1200^{\circ} \mathrm{K}$. On the other hand, when cryogenic experiments were performed, it was found that the specific heat of all materials decreased at low temperatures. Illustrative is the behavior of copper with $C_{p} \sim 5.9 \mathrm{cal} / \mathrm{deg}$ at $300^{\circ} \mathrm{K}$ and ~ 3.9 units at $100^{\circ} \mathrm{K}$. At $4^{\circ} \mathrm{K}$, its value is only $1 / 4000$ of the equipartition value! Classical statistical mechanics could offer no cogent explanation whatsoever for such large temperature variations of specific heats. The clarification had to await the development of quantum theory.

2.3. QUANTUM THEORY OF SPECIFIC HEATS

In 1901, Planck was forced to conclude from his studies on the spectral distribution of blackbody radiation that the energy of an oscillator of frequency v must change in discrete steps of $h v$, and not continuously, as had been assumed in classical mechanics. The constant h, called Planck's constant, has a value of $6.626 \times 10^{-27} \mathrm{erg}$-sec.

Einstein soon realized that electromagnetic radiation travels in packets of energy $h v$ and momentum h / λ; these wave packets have come to be called photons. Finally, in 1907, Einstein took the bold step of applying quantum theory outside the field of electromagnetic radiation to the thermal vibrations of atoms in solids. The floodgates had been opened for quantum concepts to pervade the whole of our physical knowledge.

Before going into the details of the theory, it is best to grasp the simple implications of the quantization of energy. It was known even in 1907 that the atomic vibrations in a solid have frequencies of the order of $10^{13} \mathrm{cps}$. The energy $h v$ needed to excite such a vibration is approximately $6.6 \times 10^{-14} \mathrm{erg}$. In a naïve way, if this is equated to the classical energy of an oscillator $3 k T_{0}$, then T_{0} comes out to be $150^{\circ} \mathrm{K}$. At high temperatures, the atomic vibrations will be excited fully, but below about $150^{\circ} \mathrm{K}$ the vibrations cannot be excited because the minimum energy needed for this process is not available. Hence, the specific heat should drop from its classical equipartition value to zero below about $150^{\circ} \mathrm{K}$. In practice, the reduction will not be so abrupt as in this naïve picture, because at any temperature above $0^{\circ} \mathrm{K}$ there is a statistical probability of exciting some vibrations, given by the Boltzmann factor $\exp (-h v / k T)$. The effect of lowering the temperature is to reduce the number of excitations, and in this manner the quantization of energy levels brings about a reduction of specific heats at low temperatures.

The formal way of handling the problem, as outlined in Section 1.5 , is to calculate the partition function Z and the Helmholtz free energy A :

$$
\begin{equation*}
A=-k T \ln Z \quad Z=\sum_{i} \exp \left(\frac{-E_{i}}{k T}\right) \tag{2.1}
\end{equation*}
$$

An atom in a lattice vibrates under the influence of the forces exerted on it by all the other atoms of the system. If the amplitude of the vibrations is small, classical mechanics shows that the vibrations can be resolved into normal modes, i.e., into a set of independent onedimensional harmonic oscillations. In a mole of the substance, the molecules of which contain r atoms, there are $3 r N$ such independent modes. The total energy is the sum of their energies, and the total partition function is the product of the $3 r N$ modes:

$$
Z_{\mathrm{system}}=\Pi z_{\mathrm{mode}}
$$

Detailed quantum-mechanical considerations show that the energy levels of a linear oscillator are given by $\varepsilon_{n}=\left(n+\frac{1}{2}\right) h v$, the $\frac{1}{2} h v$ being the zero-point energy. Then, summing up the geometrical
series,

$$
\begin{equation*}
z=\sum_{n=0}^{\infty} \exp \left(\frac{-\varepsilon_{n}}{k T}\right)=\frac{\exp \left(-\frac{1}{2} h v / k T\right)}{1-\exp (-h v / k T)}=\frac{1}{2} \operatorname{csch}\left(\frac{\frac{1}{2} h v}{k T}\right) \tag{2.2}
\end{equation*}
$$

Now the number of modes in a crystal is so large, of the order of $10^{23} / \mathrm{cm}^{3}$, that it is advantageous to write

NUMBER OF MODES BETWEEN FREQUENCIES v AND $v+d v=3 r N g(v) d v$

Obviously, the total number of modes is $3 r N$, so that

$$
\begin{equation*}
\int_{0}^{\infty} g(v) d v=1 \tag{2.4}
\end{equation*}
$$

With the distribution of frequencies $g(v)$, equation (2.1) becomes

$$
\begin{align*}
A & =3 r N k T \int_{0}^{\infty} \ln \left[2 \sinh \left(\frac{\frac{1}{2} h v}{k T}\right)\right] g(v) d v \\
& =E_{0}+3 r N k T \int_{0}^{\infty} \ln \left[1-\exp \left(\frac{-h v}{k T}\right)\right] g(v) d v \tag{2.5}
\end{align*}
$$

where

$$
E_{0}=\frac{1}{2} 3 r N \int_{0}^{\infty} h v g(v) d v
$$

is the zero-point energy of the solid. The calculation of the specific heat is now straightforward, and it may be verified that

$$
\begin{equation*}
C_{v}=-T\left(\frac{\partial^{2} A}{\partial T^{2}}\right)_{v}=3 r N k \int_{0}^{\infty}\left(\frac{\frac{1}{2} h v}{k T}\right)^{2} \operatorname{csch}^{2}\left(\frac{\frac{1}{2} h v}{k T}\right) \mathrm{g}(v) d v \tag{2.6}
\end{equation*}
$$

This general introduction serves several purposes. For the sake of simplicity, the later calculations of specific heats will start from a discussion of the mean energy of the particles. In satisfying the didactic exigencies, it should not be forgotten that a pedestrian derivation from first principles is possible. Secondly, in some of the discussions it will not be obvious whether P or V is held constant, that is, whether C_{p} or C_{v} is calculated, mainly because there is no thermal expansion if harmonic vibrations are assumed. The above derivation makes it clear that only C_{v} is calculated. Thirdly, the thermodynamics of crystals has been reduced to the evaluation of the distribution of frequencies $g(v)$. The determination of $g(v)$ is a dynamical problem of great complexity, and it is best to introduce the subject with the simple models proposed by Einstein (1907), Debye (1912), and Born and Von Kármán (1912).

2.4. EINSTEIN'S MODEL

Einstein, in his fundamental paper, considered a very simple model of lattice vibrations, in which all the atoms vibrate independently of one another with the same frequency v_{E}. In a substance such as copper, for instance, an atom has the same environment as any other atom, and it is plausible to suppose as a first approximation that all atoms vibrate with the same frequency v_{E}. If that were so, $g(v)$ would be zero for $v \neq v_{E}$ and nonzero for $v=v_{E}$. Then equation (2.6) immediately gives

$$
\begin{equation*}
C_{v}=3 r N k\left(\frac{\frac{1}{2} h v_{E}}{k T}\right)^{2} \operatorname{csch}^{2}\left(\frac{\frac{1}{2} h v_{E}}{k T}\right) \tag{2.7}
\end{equation*}
$$

which is Einstein's well-known relation.
It is, however, instructive to derive the same relation by a different method. The atoms in a solid vibrate about their mean positions, and for such localized particles Maxwell-Boltzmann statistics is applicable. This means that the probability of exciting an energy ε at an equilibrium temperature T is proportional to $\exp (-\varepsilon / k T)$. According to quantum theory, the energy levels of an oscillator v are given by $\varepsilon_{n}=\left(n+\frac{1}{2}\right) h v$. In thermal equilibrium, the probability that a given oscillator will be in the energy state ε_{n} is proportional to the Boltzmann factor $\exp \left(-\varepsilon_{n} / k T\right)$, and so the average energy of the oscillator is

$$
\bar{\varepsilon}=\frac{\sum_{n} \varepsilon_{n} \exp \left(-\varepsilon_{n} / k T\right)}{\Sigma \exp \left(-\varepsilon_{n} / k T\right)}=\frac{1}{2} h v+h v \frac{\Sigma n e^{-n x}}{\Sigma e^{-n x}}
$$

where $x=h v / k T$. Now

$$
\frac{\sum n e^{-n x}}{\sum e^{-n x}}=-\frac{d}{d x} \ln \sum e^{-n x}=-\frac{d}{d x} \ln \frac{1}{1-e^{-x}}=\frac{1}{e^{x}-1}
$$

Therefore, at a temperature T, the mean energy of the oscillator is

$$
\begin{equation*}
\bar{\varepsilon}=\frac{1}{2} h v+\frac{h v}{\exp (h v / k T)-1} \tag{2.8a}
\end{equation*}
$$

On differentiating this, the specific-heat contribution from the oscillator is seen to be

$$
\begin{equation*}
\frac{\partial \bar{\varepsilon}}{\partial T}=\frac{k x^{2} e^{x}}{\left(e^{x}-1\right)^{2}} \quad\left(x=\frac{h v}{k T}\right) \tag{2.8b}
\end{equation*}
$$

In the Einstein model, all the $3 r N$ independent vibrations have the same frequency v_{E}. Hence, the total internal energy is

$$
\begin{equation*}
E=3 r R T\left[\frac{1}{2} x_{E}+\frac{x_{E}}{e^{x_{E}}-1}\right] \quad\left(x_{E}=\frac{h v_{E}}{k T}\right) \tag{2.9a}
\end{equation*}
$$

and the molar heat capacity is

$$
\begin{equation*}
C_{v}=3 r R \frac{x_{E}^{2} e^{x_{E}}}{\left(e^{x_{E}}-1\right)^{2}}=3 r R\left(\frac{1}{2} x_{E}\right)^{2} \operatorname{csch}^{2}\left(\frac{1}{2} x_{E}\right) \tag{2.7}
\end{equation*}
$$

The molar entropy is

$$
\begin{equation*}
S=3 r R\left[\frac{x_{E}}{e^{x_{E}}-1}-\ln \left(1-e^{-x_{E}}\right)\right] \tag{2.7a}
\end{equation*}
$$

The quantity $h v_{E} / k$ plays the role of a scaling factor for temperature and is called the Einstein temperature T_{E}. The Einstein functions $E\left(T_{E} / T\right)$ and $C_{r}\left(T_{E} / T\right)$ are tabulated in several places ${ }^{4,5}$ (see also the appendices at the end of Chapter 8). A consideration of the values of exponentials in equation (2.7) at very high and very low temperatures shows that

$$
\begin{align*}
C_{v} & =3 r R\left[1-\frac{1}{12}\left(\frac{T_{E}}{T}\right)^{2}+\ldots\right] \quad \text { (high temperature, } T \gg T_{E} \text {) } \\
& =3 r R\left(\frac{T_{E}}{T}\right)^{2} \exp \left(-\frac{T_{E}}{T}\right)+\ldots \quad \text { (low temperature, } T \ll T_{E} \text {) } \tag{2.10}
\end{align*}
$$

The Einstein theory leads to the Dulong-Petit value at high temperatures, and shows how at low temperatures the quantization of lattice vibrations results in a reduction of heat capacity. The theory contains one unknown parameter T_{E}, which may be approximately related to the compressibility and density of the solid. For many materials, $T_{E} \sim 200^{\circ} \mathrm{K}$, which accounts for the success of the Dulong-Petit law at room temperature. For diamond, with a value $T_{E} \sim 1326^{\circ} \mathrm{K}$, Einstein was able to explain quantitatively the variation of C_{v} then available over a range of 200 to $1200^{\circ} \mathrm{K}$ (Fig. 2.1). The simplicity of the theoretical analysis and the qualitative correctness of the conclusions left no doubt that the decrease of specific heats of low temperature was indeed a quantum phenomenon.

In order to check Einstein's theory in some detail, systematic calorimetric measurements were undertaken at low temperatures by Nernst, Eucken, and others. The qualitative features of Einstein's theory were confirmed very well, but the quantitative agreement was not satisfactory. In particular, equation (2.10) shows that below $T / T_{E} \sim 0.1$, the specific heat should become extremely small, of the

Fig. 2.1. Temperature variation of heat capacity in Einstein and Debye models. Original comparison of Einstein for diamond ($T_{E}=1326^{\circ} \mathrm{K}$) and of Debye for aluminum ($\theta_{D}=396^{\circ} \mathrm{K}$) are shown.
order of $\mathrm{mJ} / \mathrm{mole} \cdot \mathrm{deg}$, whereas experimentally the decrease was much slower (Fig. 2.1). Several workers, including Einstein himself, recognized that the model was oversimplified. ${ }^{6}$ In a tightly coupled system, such as a lattice, the motion of one atom affects the vibrations of the others and the atoms can vibrate with several frequencies. Experimentally, Nernst and Lindemann pointed out that the observations could be fitted better if two frequencies v_{E} and $\frac{1}{2} v_{E}$ were used instead of v_{E} alone. In the simple model, there is no provision for vibrations of low frequencies, which alone can be fully excited in the region of small energies, i.e., at low temperatures. These ideas culminated in the calculations (1912) of Debye and Born and Von Kármán, who used a better description of lattice vibrational frequencies. Debye's model is the simpler and will be taken up in the following section.

Despite the cursory dismissal usually accorded to Einstein's oversimplified model, the calculation was a fundamental step in enlarging the field of application of quantum ideas. A great deal of experimental and theoretical work on the specific heats of solids and gases was inspired by it. Indeed, even today Einstein's calculation remains useful as a very simple approximation in many problems of the solid state and in discussion of molecular vibrations.

2.5. DEBYE'S MODEL

The quantization of vibrational energy implies that at low temperatures only the low-frequency modes of lattice vibrations will be appreciably excited. Now the usual very-low-frequency vibrations of a solid are its acoustic oscillations. They have wavelengths much larger than atomic dimensions, and so in discussing their behavior the ideas of an elastic continuum may be borrowed. Debye calculated the distribution of frequencies which result from the propagation of acoustic waves of permitted wavelengths in a continuous isotropic solid and assumed the same distribution to hold good in a crystal, also. The use of such a $g(v)$ turned out to be so extraordinarily successful in explaining the thermal behavior of solids that it merits discussion in some detail.

A plane wave propagating with velocity c in an isotropic medium satisfies the equation

$$
c^{2} \nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial t^{2}}
$$

For convenience, take a rectangular parallelopiped of sides L_{1}, L_{2}, L_{3}, on the faces of which the displacement amplitude is zero. Then the wave equation has a standing-wave solution of the form

$$
\phi=A \sin q_{1} x \sin q_{2} y \sin q_{3} z \sin 2 \pi v t
$$

where the orders of the overtones n_{i} are related to the wave vectors $q_{i}=2 \pi / \lambda_{i}$ by

$$
q_{i}=\frac{n_{i} \pi}{L_{i}} \quad\left(n_{1}, n_{2}, n_{3}=0,1,2, \ldots\right)
$$

An enumeration of the values of n_{i} which give a frequency between v and $v+d v$ solves the problem of finding $g(v) d v$. In a practical case, the number of modes, approximately $10^{23} / \mathrm{cm}^{3}$, is so large that the n_{i} may well be treated as continuous variables. The number of allowed values of n_{i} in the range n_{i} to $n_{i}+d n_{i}$ is then equal to

$$
\Delta n_{1} \Delta n_{2} \Delta n_{3}=\frac{L_{1} L_{2} L_{3}}{\pi^{3}} \Delta q_{1} \Delta q_{2} \Delta q_{3}=\frac{V}{\pi^{3}} \Delta q_{1} \Delta q_{2} \Delta q_{3}
$$

where V is the volume of the solid. Now the frequency of the wave is

$$
v^{2}=\frac{\left(q_{1}^{2}+q_{2}^{2}+q_{3}^{2}\right) c^{2}}{4 \pi^{2}}=\frac{q^{2} c^{2}}{4 \pi^{2}}
$$

Since the n_{i} are all positive, this is nothing but the equation for the first octant of a sphere in the $q_{1} q_{2} q_{3}$-space. The volume of the shell
between q and $q+d q$, equal to $\frac{1}{8} 4 \pi q^{2} d q$, corresponds to $\left(V / 2 \pi^{2}\right) q^{2} d q$ allowed values of n_{i}. In terms of frequencies, the number of allowed modes between v and $v+d v$ is

$$
\begin{equation*}
n(v) d v=\frac{4 \pi V}{c^{3}} v^{2} d v \tag{2.11}
\end{equation*}
$$

In an elastic solid, three types of waves are possible. ${ }^{7,8}$ One is the longitudinal wave with velocity c_{L}, for which ϕ_{L} may be taken as the dilatation of a volume element. The other two are transverse shear weaves, and for them $\phi_{T 1}, \phi_{T 2}$ are the components of the rotation of a volume element. In an isotropic solid, which is being considered at first, the transverse waves have the same velocity c_{T}. Adding the three contributions, the number of frequencies between v and $v+d v$ in an elastic solid is

$$
\begin{equation*}
n(v) d v=4 \pi V\left(c_{L}^{-3}+2 c_{T}^{-3}\right) v^{2} d v \tag{2.12}
\end{equation*}
$$

Considerations of simplicity necessitated a derivation of equation (2.12) for a rectangular parallelepiped, but the result is not significantly altered by considering a large body with any shape. The same remark holds good for several other distributions of energy levels considered in this book (Sections 2.8 and 6.3). Mathematical proofs of this assertion have been given in various cases. ${ }^{9}$

Debye suggested that the collective low-frequency oscillations of the solid given by equation (2.12) should be applied even at high frequencies and that the discrete nature of the atomic lattice should be taken into account by setting a minimum to the allowed wavelengths. The corresponding upper limit v_{D} to the frequency is to be obtained from the normalizing condition, equation (2.4), that the total number of modes is equal to $3 r N$ per mole. Thus, taking the molar volume to be V,

$$
\frac{4 \pi V}{3}\left(c_{L}^{-3}+2 c_{T}^{-3}\right) v_{D}^{3}=3 r N
$$

or

$$
\begin{equation*}
v_{D}=\left(\frac{9 r N}{4 \pi V}\right)^{1 / 3}\left(c_{L}^{-3}+2 c_{T}^{-3}\right)^{-1 / 3} \tag{2.13}
\end{equation*}
$$

For the cut-off procedure to be meaningful, the limiting wavelength should have atomic dimensions. In a typical solid, the minimum possible wavelength is

$$
\sim\left(\frac{4 \pi V}{9 N}\right)^{1 / 3} \sim\left(\frac{4 \pi \times 10}{9 \times 6 \times 10^{23}}\right)^{1 / 3} \approx 3 \AA
$$

which is indeed of the same order as the lattice spacing.

The distribution of frequencies may therefore be taken as

$$
\begin{align*}
g(v) & =\frac{3 v^{2}}{v_{D}^{3}} & & \text { for } v \leq v_{D} \\
& =0 & & \text { for } v>v_{D} \tag{2.14}
\end{align*}
$$

Each wave of frequency v has an energy $h v$ and momentum h / λ. In the quantum formulation, the lattice waves are called phonons; equation (2.14) represents the Debye approximation to the phonon spectrum of a crystal lattice (Fig. 2.5b). The characteristic temperature

$$
\begin{equation*}
\frac{h v_{D}}{k}=\theta_{D} \tag{2.15}
\end{equation*}
$$

is known as the Debye temperature.
It is now a simple matter to check that

$$
\begin{align*}
E & =3 r N \int_{0}^{v_{D}}\left[\frac{1}{2} h v+\frac{h v}{e^{h v / k T}-1}\right] \frac{3 v^{2}}{v_{D}^{3}} d v \\
& =\frac{9 r N k \theta}{8}+\frac{9 r N k T^{4}}{\theta^{3}} \int_{0}^{\theta / T} \frac{x^{3} d x}{e^{x}-1} \tag{2.16a}\\
S & =\frac{9 r N k \theta^{3}}{T^{3}} \int_{0}^{\theta / T}\left[\frac{x}{e^{x}-1}-\ln \left(1-e^{-x}\right)\right] x^{2} d x \\
& =3 r N k\left[\frac{4 T^{3}}{\theta^{3}} \int_{0}^{\theta / T} \frac{x^{3} d x}{e^{x}-1}-\ln \left(1-e^{-\theta / T}\right)\right] \tag{2.16b}\\
C_{v} & =3 r N k \int_{0}^{v_{D}}\left(\frac{h v}{k T}\right)^{2} \frac{e^{h v / k T}}{\left(e^{h v / k T}-1\right)^{2}} \frac{3 v^{2}}{v_{D}^{3}} d v \\
& =\frac{9 r N k T^{3}}{\theta^{3}} \int_{0}^{\theta / T} \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} d x \\
& =9 r N k\left[\frac{4 T^{3}}{\theta^{3}} \int_{0}^{\theta / T} \frac{x^{3} d x}{e^{x}-1}-\frac{\theta / T}{e^{\theta / T}-1}\right] \tag{2.17}
\end{align*}
$$

These are the famous relations derived by Debye.
Two general remarks are appropriate here before discussing the theory in detail. According to quantum statistics ${ }^{2,3}$, the smallest possible cell in the p, q-phase space (momenta p_{x}, p_{y}, p_{z}, coordinates $q_{x} q_{y} q_{z}$) is of volume h^{3}. In a gas of free particles contained in an enclosure of volume V, the number of allowed cells $n(p) d p$ between momenta p and $p+d p$ is $h^{-3} \iiint \iiint p_{x} d p_{y} d p_{z} d q_{x} d q_{y} d q_{z}$. The integration over $d q$ is equal to V. Next, converting the integral over
$d p$ into spherical polar coordinates,

$$
\begin{equation*}
n(p) d p=\frac{4 \pi V}{h^{3}} p^{2} d p \tag{2.18}
\end{equation*}
$$

Considering phonons as free particles with $p=h / \lambda$, this immediately gives equation (2.11). Secondly, in the preceding derivation, MaxwellBoltzmann statistics was applied to the vibrations of localized atoms in deriving equation (2.7). Instead, one may consider a set of phonons obeying Bose-Einstein statistics and derive Debye's results. This point of view is adopted in Section 5.4 in treating a closely related problem.

2.6. COMPARISON OF DEBYE'S THEORY WITH EXPERIMENTS

The Debye model has been extremely successful in correlating the specific heats of solids. The temperature variation of C_{v} given by equation (2.17) is obeyed very well by a variety of substances, a typical example being given in Fig. 2.1. At high temperatures, the integrand in equation (2.17) approaches x^{2}, so that

$$
\begin{equation*}
C_{v}=3 r R\left[1-\frac{1}{20}\left(\frac{\theta}{T}\right)^{2}+\ldots\right] \quad(T \gtrdot \theta) \tag{2.11}
\end{equation*}
$$

At very low temperatures, the upper limit of the integral may be taken as infinity, when the integral has a value $12 \pi^{4} / 45$. Thus, for $T<\theta / 10$,

$$
\begin{align*}
C_{v}=\frac{12}{5} r R \pi^{4}\left(\frac{T}{\theta}\right)^{3} & =464.3\left(\frac{T}{\theta}\right)^{3} \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg} \tag{2.2}\\
& =1944\left(\frac{T}{\theta}\right)^{3} \mathrm{~J} / \mathrm{mole} \cdot \mathrm{deg}
\end{align*}
$$

At intermediate temperatures, the Debye function must be evaluated numerically, ${ }^{10}$ and several tables exist. ${ }^{4,11}$ A comprehensive numerical tabulation is reproduced at the end of Chapter 8.

The T^{3}-variation at low temperatures was one of the first predictions of the theory. The T^{4}-variation of the internal energy is the acoustic analog of the well-known Stefan-Boltzmann law that the energy density of a photon gas is proportional to T^{4}. Debye's prediction was soon verified, and the specific heat of many dielectric solids, such as rocksalt, sylvine, fluorspar, etc., show excellent agreement with the theoretical law. In Fig. 1.1a, an example was given to illustrate the T^{3}-behavior at sufficiently low temperatures. As a
matter of fact, the T^{3}-law is so universal at very low temperatures that it has found a permanent place in the theory of specific heats, although the range of validity has now been restricted to $T<\theta / 50$ on account of more recent theoretical work to be described later.

Apparent deviations are found in some cases for rather obvious reasons. Graphite, boron nitride, and other layered materials, which behave like two-dimensional crystals, show a T^{2}-variation at some temperatures. Similarly, long-chain molecules such as sulfur and some organic polymers exhibit a variation linear in T at some temperatures, as pointed out by Tarasov and coworkers. Even in these cases, detailed calculations show that at sufficiently low temperatures a T^{3}-law should be present, and such measurements have been carried out recently. ${ }^{12}$

Over wide ranges of temperature, the Debye theory has the noteworthy and attractive feature of making the specific heat depend upon a single parameter θ. Therefore, with a suitable choice of the temperature scales, the heat capacities of all substances should fall on the same curve. Schrödinger ${ }^{13}$ and later Eucken ${ }^{1}$ reviewed the specific-heat data available prior to 1928 and found extraordinarily good agreement with Debye's theory. Figure 2.2, adapted from Schrödinger's review, makes the excellence of the agreement selfevident. Striking agreements such as this have resulted in a widespread application of Debye's theory to a variety of solid state problems, some of which will be mentioned in Section 2.11.

Fig. 2.2. Heat capacities of several substances (in cal/mole•deg) compared with Debye's theory. For the sake of clarity, portions I and III are shown shifted.

It will be seen later that small deviations from the theory are found and that if at each temperature the specific heat is fitted to a Debye term then the resulting values of θ vary slightly with temperature. ${ }^{14}$ In a good many cases, the variation of θ from its mean value is less than about 10%, though a few exceptions, for instance, zinc and cadmium, show variations of more than 20%. For a preliminary calculation of specific heats, a list of Debye characteristic temperatures, as given in Table 2.III, can be used with complete confidence. The values given in Table 2.III have been taken at $T \sim \theta / 2$, which gives a reasonable fit over most of the specific-heat curve. ${ }^{10}$ In Chapter 3, θ values of some metals are given, but there θ refers to θ_{0}, the value at very low temperatures, since the specific-heat data at very low temperatures are involved.

Table 2.III. Debye Characteristic Temperatures of Some Representative Elements and Compounds (in deg K at $T \sim \theta / \mathbf{2}$)

Element	θ	Element	θ	Element	θ	Element	θ
A	90	Dy	155	Mg	330	Sb	140
Ac	100	Er	165	Mn	420	Se	150
Ag	220	Fe	460	Mo	375	Si	630
Al	385	Ga (rhom)	240	N	70	Sn (fcc)	240
As	275	Ga (tetra)	125	Na	150	Sn (tetra)	140
Au	180	Gd	160	Nb	265	Sr	170
B	1220	Ge	370	Nd	150	Ta	230
Be	940	H (para)	115	Ne	60	Tb	175
Bi	120	H (ortho)	105	Ni	440	Te	130
C (diamond)	2050	$\mathrm{H}\left(\mathrm{n}-\mathrm{D}_{2}\right)$	95	O	90	Th	140
C (graphite)	760	He	30	Os	250	Ti	355
Ca	230	Hf	195	Pa	150	Tl	90
Cd (hcp)	280	Hg	100	Pb	85	V	280
Cd (bcc)	170	I	105	Pd	275	W	315
Ce	110	In	140	Pr	120	Y	230
Cl	115	Ir	290	Pt	225	Zn	250
Co	440	K	100	Rb	60	Zr	240
Cr	430	Kr	60	Re	300		
Cs	45	La	130	Rh	350		
Cu	310	Li	420	Rn	400		
Compound	θ	Compound	θ	Compound	θ	Compound	θ
AgBr	140	BN	600	KCl	230	Rbl	115
AgCl	180	CaF_{2}	470	KI	195	SiO_{2} (quartz)	255
Alums	80	CrCl_{2}	80	LiF	680	TiO_{2} (rutile)	450
$\mathrm{As}_{2} \mathrm{O}_{3}$	140	CrCl_{3}	100	MgO	800	ZnS	260
$\mathrm{As}_{2} \mathrm{O}_{5}$	240	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	360	MoS_{2}	290		
AuCu_{3} (ord)	200	FeS_{2}	630	NaCl	280		
AuCu_{3} (disord)	d) 180	KBr	180	RbBr	130		

A fundamental feature of Debye's theory is the connection between elastic and thermal properties of substances. The characteristic temperature θ may be determined from the velocities of longitudinal and transverse sound waves, using equations (2.13) and (2.15). In crystals, a complication arises because the velocity of elastic waves depends upon the direction of propagation in the anisotropic medium. In general, the three modes have different velocities and are not separable into pure longitudinal and pure shear modes. ${ }^{7,8}$ It is then convenient to define a mean velocity

$$
3\left(\overline{c^{3}}\right)^{-1}=c_{L}^{-3}+2 c_{r}^{-3}=(4 \pi)^{-1} \int_{i=1,2,3} c_{i}^{-3} d \Omega
$$

where $d \Omega$ is an element of solid angle in which the velocities are c_{1}, c_{2}, c_{3}. Various approximate procedures for calculating the mean velocity in terms of the elastic constants are reviewed by Blackman ${ }^{10}$ and Hearmon. ${ }^{7}$ Table 2.IV gives some values of θ originally calculated by Debye from the elastic constants of polycrystalline materials. A comparison with the calorimetric results at moderate temperatures reveals a surprisingly good agreement in spite of the uncertainty in the elastic constants. Equation (2.13) gives a dependence of θ upon the density of the substance; in the case of solid helium-four and solid helium-three, which are highly compressible, θ can be changed by as much as 30% with a moderate pressure of about 150 atm . Another good example is the dependence of θ upon the isotopic mass of the atom, which is easily observable in lithium isotopes of masses 6 and 7. The experimental difference ${ }^{15}$ of $9 \pm 2 \%$ is in quantitative agreement with the theoretical estimate of 8%. Such a correlation of the thermal and mechanical properties of solids must be considered a great triumph of the theory.

In view of these remarkable successes, the Debye theory has found a permanent niche in solid state physics. It is based on a simple and understandable model. C_{v} is expressed in terms of a single parameter θ and is in reasonably good agreement with experimental values. The predicted T^{3}-behavior is verified at low tempera-

Table 2.IV. Comparison of θ-Values from Calorimetric and Elastic Data at Room Temperature

θ-value	Substance										
	Al	Cu	Ag	Au	Cd	Sn	Pb	Bi	Pt	Ni	Fe
Elastic	399	329	212	166	168	185	72	111	226	435	467
Calorimetric	396	313	220	186	164	165	86	111	220	441	460

tures. Further, the theory allows a satisfactory correlation of the calorimetric measurements with elastic and other properties of the substance.

2.7. SHORTCOMINGS OF THE DEBYE MODEL

The great popularity of Debye's theory of specific heats should not blind us to its defects. The first hint that all was not well with the theory came from the early observations of Eucken, Grüneisen, and others that if 0 was calculated from the low-temperature elastic constants, the agreement with the thermal values became worse instead of better. For instance, in aluminum, θ (elastic) is $399^{\circ} \mathrm{K}$ at room temperature and 426° at $0^{\circ} \mathrm{K}$ (Tables 2.IV and 2.V), while θ (thermal) is 396°. Further, θ as deduced from the T^{3}-law [equation (2.20)] did not always agree with the value needed to fit the whole of the specific-heat curve. This dilemma was resolved only after the development of the lattice theory.

When accurate values of specific heats at low temperatures became available with improved calorimetric techniques, it was found that equation (2.17) for C_{v} did not fit the experimental results exactly. This is usually demonstrated by calculating the effective values of θ necessary to fit the experimental data with equation (2.17) at each temperature. Of course, if Debye's model is really correct, a constant value of θ should be obtained, but in practice this is not so. ${ }^{14}$ Often, as the temperature is lowered the effective value of θ begins to decrease slightly around $\theta / 2$, has a minimum, and then rises to attain a constant value below $\theta / 50$. Thus, at temperatures well below $\theta / 50$ and above $\theta / 2$, the theory works well, with a different θ-value in each range. Figure 2.3 shows a recent study of the $\theta-T$ dependence in sodium iodide. ${ }^{16}$ At one time, such deviations were attributed to experimental errors, impure specimens, and other extraneous causes, but since the theoretical work of Blackman in 1937, to be discussed below, it has been known that these deviations are genuine.

The fundamental deficiency in the Debye model is the inadequate treatment of the effects arising from the discreteness of atomic arrangements in the crystal. The periodicity of the lattice causes the medium to be dispersive; that is, the velocity of propagation of the lattice wave is a function of the frequency. This phonon dispersion was correctly taken into account in the model proposed by Born and Von Kármán in the same year (1912) as Debye's work. However, the lattice model resulted in cumbersome mathematics, and Born and Von Kármán's original calculation did not give as good a fit with experiments as Debye's simpler analysis. Hence, the application of lattice dynamics (which Born continued to develop in connection

Fig. 2.3. Variation of effective Debye temperature θ with T for sodium iodide. ${ }^{16}$
with other problems in solid state) to the question of specific heats lay dormant until Blackman's analysis showed its fundamental significance. ${ }^{17}$

2.8. THE BORN-VON KÁRMÁN MODEL

A complete enumeration of the vibrational modes of a threedimensional lattice involves formidable computations, as will become obvious later. In an elementary text, it is not practicable to go into these details, and so only the simplified case of a one-dimensional lattice will be considered. It turns out that a linear monatomic lattice does not exhibit one of the characteristic features of a three-dimensional crystal, namely, the presence of optical modes. Therefore, the simplest illustrative case is that of a linear diatomic lattice.

To visualize the effects caused by the atomic structure of crystals, consider a one-dimensional chain with two kinds of atoms, spaced a apart. Atoms of mass m are placed at even lattice points ... $2 n a$, $(2 n+2) a, \ldots$, while masses M are at odd sites $\ldots(2 n-1) a,(2 n+1) a, \ldots$. For simplicity, assume further that each atom interacts only with its two neighbors so that a relative displacement $u_{n+1}-u_{n}$ causes a force $\beta\left(u_{n+1}-u_{n}\right)$ to act on atom n. Then the equations of motion for the $2 n$ and $2 n+1$ particles are

$$
\begin{aligned}
m \ddot{u}_{2 n} & =\beta\left(u_{2 n+1}-u_{2 n}+u_{2 n-1}-u_{2 n}\right) \\
M \ddot{u}_{2 n+1} & =\beta\left(u_{2 n+2}+u_{2 n}-2 u_{2 n+1}\right)
\end{aligned}
$$

The boundary conditions do not significantly alter the distribution of frequencies, ${ }^{9}$ and so the solutions may be taken in the simple form

$$
\begin{gather*}
u_{2 n}=\xi \exp i(\omega t+2 n q a) \\
u_{2 n+1}=\eta \exp i[\omega t+(2 n+1) q a] \tag{2.21}
\end{gather*}
$$

Substituting in the equations of motion,

$$
\begin{align*}
& -\omega^{2} m \xi=\beta \eta\left(e^{i q a}+e^{-i q a}\right)-2 \beta \xi \\
& -\omega^{2} M \eta=\beta \xi\left(e^{i q a}+e^{-i q a}\right)-2 \beta \eta \tag{2.22}
\end{align*}
$$

The condition that there are nonzero solutions ξ, η describing a wave is that the determinant of the coefficients must vanish:

$$
\left|\begin{array}{ll}
2 \beta-m \omega^{2} & -2 \beta \cos q a \tag{2.23a}\\
-2 \beta \cos q a & 2 \beta-M \omega^{2}
\end{array}\right|=0
$$

or

$$
\begin{equation*}
\omega^{2}=\beta\left(M^{-1}+m^{-1}\right) \pm \beta\left[\left(M^{-1}+m^{-1}\right)^{2}-4 M^{-1} m^{-1} \sin ^{2} q a\right]^{1 / 2} \tag{2.23b}
\end{equation*}
$$

The two roots correspond to two different branches of the frequency-wave vector relationship, which is shown in Fig. 2.4a. For small q, the roots are (i) $\omega^{2}=2 \beta a^{2} q^{2} /(M+m)$ and (ii) $\omega^{2}=$ $2 \beta\left(M^{-1}+m^{-1}\right)$. If the root (i) is used, equation (2.22) gives $\xi \approx \eta$; that is, the atoms move together as in ordinary sound vibrations with velocity $\left[2 \beta a^{2} /(M+m)\right]^{1 / 2}$. This branch is called the acoustical branch. If the root (ii) is used, equation (2.22) gives $\xi \approx-(m / M) \eta$; that is, the atoms vibrate against each other. If m and M have opposite charges, such a motion may be excited with electric waves, as, for example, by light waves. For this reason, the branch (ii) is called the optical branch. The $\omega-q$ curve may be stopped at $q=\pi / 2 a$,

Fig. 2.4. Phonon dispersion: (a) linear diatomic lattic showing dispersion of acoustical and optical branches, (b) elastic continuum, (c) atomic displacements for a wavelength $\frac{7}{8} a$ (broken line) indistinguishable from those for a wavelength $7 a$ (full line).
because a continuation beyond this gives no new frequency, and it may be shown ${ }^{18}$ from the solutions $u_{2 n}, u_{2 n+1} \ldots$, (see also Fig. 2.4c) that the atomic displacements are indistinguishable from those corresponding to $|q| \leq \pi / 2 a$. In three dimensions, the lattice constant a varies with direction in the crystal, and all the frequencies are included in a volume of q-space called the first Brillouin zone. Elementary discussions of wave propagation in crystals, together with several electrical and mechanical analogies, have been given by Brillouin ${ }^{18}$ and Wannier ${ }^{19}$.

Compared to the dispersion relation $\omega=c q$ in an elastic continuum (Fig. 2.4b), the lattice case has two special features. Firstly, the diatomic or polyatomic lattice has additional types of vibration in the form of optical modes, and secondly the phase velocity ω / q varies with q even in the acoustical vibrations. In recent years,
experiments using neutrons as probes have strikingly confirmed these predictions. ${ }^{20,21}$ It may be noted in passing that for a monatomic chain $(M=m)$ the determinant (2.23a) has only the acoustical branch as a solution.

Next, it is necessary to find out which values of q are allowed. For this purpose, consider first a chain of $N+1$ atoms with the atoms 0 and N fixed. Standing waves of the type $U_{n}=A \sin \omega t \sin n q a$ are the solutions appropriate to this case. The condition that the end atoms are fixed gives $\sin N q a=0$ or $q=(\pi / N a) r$, where $r=1,2, \ldots, N-1$. The condition $r=0$ is excluded because this gives $u_{n}=0$; that is, all the particles are at rest. The number of allowed modes is the same as the number of vibrating atoms. The $\omega-q$ relationship consists of $N-1$ discrete points, but when N is large (of the order of 10^{23}, as in practical cases) it may be taken as a continuous curve. While a finite chain has standing-wave solutions, it is often convenient to work with traveling waves, which are easily introduced by the Born-Von Kármán cyclic boundary condition. On account of the macroscopic homogeneity of a crystal, a segment containing a large number N of atoms may be assumed to have the same microstructure as a nearby piece. In other words, it is assumed that $u_{n+N}=u_{n}$. This gives $\exp (i N q a)=1$ or $q=(2 \pi / N a) r$, where $r= \pm 1, \pm 2, \ldots, \pm N / 2$. Again, $r=0$ is omitted because there is no motion in this case. There are N allowed values of q describing progressive waves traveling in either direction. The number of allowed modes is equal to the number of particles in the segment. The q-values are uniformly distributed in the fundamental interval, and when N is large the discrete distribution may be replaced by a continuous distribution. By a similar argument, it may be shown that in three dimensions the allowed values of q are uniformly distributed within the first Brillouin zone and that their number is thrice the number of atoms in the crystal.

Qualitatively, it is easy to see how the dispersion of acoustical and optical phonons affects the distribution of frequencies and the specific heat of a crystal. Suppose the dispersion relations have been found for all the directions in the lattice, each involving, of course, different limiting frequencies. Now, over a solid angle $d \Omega$ (instead of over 4π), equation (2.11) may be written as

$$
\begin{equation*}
n(v) d v d \Omega=V q^{2}(d q / d \omega) d(2 \pi v) d \Omega \tag{2.24}
\end{equation*}
$$

so that $g(v)$ is proportional to $q^{2}(d q / d \omega)$. In a continuum, this term is $c^{-3} v^{2}$ [equation (2.11)]. In the lattice case, $n(v)$ starts as v^{2} near zero on account of the low-frequency phonons. As the frequency is increased toward the limiting value of the acoustic mode, $d q / d \omega$ and
hence $n(v)$ become very large. With further increase of v, there is a gap, followed by another peak due to the limiting value of the optical modes at $q=\pi / 2 a$, and finally the contribution from the optical modes.

When $n(v)$ is summed over all directions, $g(v)$ has a characteristic presence of two peaks from the various limiting frequencies at $q=\pi / 2 a$ (Fig. 2.5c). Instead of a gap between the two peaks, there is only a smeared-out shallow minimum, because the limiting frequencies depend upon the direction of wave propagation. The frequencies of the optical modes in Fig. 2.4a do not vary very much, and since their contributions cover a narrow range of v, the second peak in Fig. 2.5c is very much higher than the broad acoustic peak. [In ionic crystals, the optical modes cover a wide range of frequencies, and correspondingly the optical peak is weak in comparison to the first peak (Fig. 2.6a).] Further, $g(v)$ is proportional to v^{2} at $v \rightarrow 0$, being the result of low-frequency acoustic modes averaged over all directions. These features were pointed out first by Blackman in 1937 in the calculation of $g(v)$ for a simple cubic lattice.

The lattice heat capacity $C_{g}(g$ from German Gitter $=$ lattice $)$ given by such a frequency distribution is easily estimated, if it is recalled that at low temperatures only the low-frequency modes with small values of $h v$ will be excited. Near $v=0, g(v)$ varies in the Debye fashion, which means that at very low temperatures θ will be a constant. As the temperature is raised, more modes are excited than given by the Debye model ; that is, the specific heat is greater. Therefore, the effective Debye temperature decreases. The presence of the maximum followed by a minimum ensures that the effective θ goes through a minimum and then levels off. Thus, θ varies in a manner very similar to that shown in Fig. 2.3. The lattice theory explains at one stroke why the Debye model is broadly successful and why the effective Debye temperature is slightly temperaturedependent. In Section 2.10, some examples will be given to show how the lattice calculations are successful in quantitatively explaining the observed variation of θ with T.

2.9. CALCULATION OF $g(v)$

In the elementary calculation of phonon-dispersion relations given above, drastic simplifications were made in assuming a onedimensional lattice with nearest-neighbor interactions. In an actual case, not only is the solid a three-dimensional lattice but also the atomic interactions extend over several neighbors. Thus the computation of $g(v)$ for any lattice involves two main hurdles: knowledge of the interatomic forces and solution of the equations of motion for a
large number of wave vectors along a large number of crystal directions. Since the logical necessity of knowing $g(v)$ to calculate C_{v} and many other properties of solids is hardly in doubt nowadays, much effort has been put into the problem of evaluating $g(v) .{ }^{10,21,22}$

Regarding the nature of interatomic forces, we know that Coulomb forces are present between charged ions, but apart from this little else can be said $a b$ initio. The practice has been to assume simple models of forces, for example, bond-stretching and bondbending forces, volume forces for electronic clouds in metals, etc., and to calculate their magnitude from the experimental values of elastic constants and optical frequencies at $q=0$. The early calculations of $g(v)$ were made in this way with two or three force constants. More recently, inelastic neutron-scattering experiments have given the $\omega-q$ relations along several directions in many crystals. By fitting the theoretical dispersion curves with the experimental ones, numerical values of a number of force constants may be obtained. In this manner, a reasonable, though by no means completely satisfactory, amount of information about interatomic forces may be gathered.

Getting enough frequencies to have a good picture of $g(v)$ is purely a question of the labor and tedium involved in such computations. The original sampling method pioneered by Blackman was to take a set of q-values along different directions and calculate the corresponding v. Use was made of the symmetry properties of the lattice. Of late, the exploitation of electronic computers for such work has eased the formidable computational task, and the resulting $g(v)$ is limited in accuracy only by the knowledge of the force constants. A measure of the progress made in the computational problem may be inferred from the fact that in 1964 Brockhouse, Woods, and coworkers, using phonon-dispersion curves of sodium obtained from neutron-scattering experiments, determined $g(v)$ from 35 million points inside the Brillouin zone, ${ }^{23}$ whereas in 1940 Kellerman's monumental work on sodium chloride was based on 6000 points. Actual frequencies were calculated for about one-twentieth of the total number of points, and the others were obtained by making use of the symmetry of the crystal. In the early calculations on sodium chloride and diamond lattices, symmetry considerations were not properly applied, ${ }^{21,24}$ so that the results, quoted widely in many reviews, are somewhat doubtful.

Since the calculation of $g(v)$ is laborious, several approximate methods have been used in the past. In effect, the Einstein and Debye models may be considered very crude approximations to $g(v)$. A somewhat better approximation, first used by Houston, is to calculate $\omega-q$ relations for a few symmetric (say, [100], [111], [110]) directions in a cubic crystal and use interpolation techniques to estimate $g(v)$.

Another method, developed by Thirring, Montroll, and others, is to approximate $g(v)$ from a knowledge of its moments $\int g(v) v^{2 n} d v$, which can be calculated from the dynamical equations of motion. Although these approximations are sometimes convenient for calculating thermodynamic quantities, they are falling into disfavor with regard to mapping $g(v)$.

Besides these numerical estimates, analytical methods have also had some success. Some one- and two-dimensional lattices are amenable to detailed discussions, and exact expressions for $g(v)$ have been obtained, ${ }^{21}$ but so far no realistic three-dimensional lattice has yielded its secrets. However, an important advance was made by Van Hove in 1953. Using topological arguments (for which simple explanations have been attempted ${ }^{19,21}$), he showed that the periodicity of the lattice implies the existence of various kinds of

Fig. 2.5. Frequency spectra of lattice vibrations: (a) Einstein model, (b) Debye model, (c) Blackman's approximation of lattice model, (d) schematic exact spectrum with singularities.
singularities in $g(v)$. Thus, in a three-dimensional lattice, infinite discontinuities in the derivative $\partial g / \partial v$ must appear at certain critical points and the curve must have certain well-defined shapes near the singularities. In the more recent calculations of $g(v)$, a knowledge of these critical points has been fruitfully exploited; Fig. 2.5d shows a typical $g(v)$ with the location of the various singularities.

If enough information on the interatomic forces is available and if $g(v)$ is carefully delineated, the lattice theory gives a very good account of the experimental variation of θ with temperature. Often, the theoretical situation is not so fortunate, and several authors have tried somewhat ad hoc combinations of Einstein and Debye terms to represent specific-heat variations. Mention was already made of the Nernst-Lindemann equation using two Einstein functions with frequencies v_{E} and $\frac{1}{2} v_{E}$. Simon attempted the combination of a Debye term with a Schottky term (Sections 4.9 and 7.1). Raman and coworkers have used a Debye term together with Einstein terms corresponding to optical frequencies, a practice common in representing the specific heats of organic solids. By a suitable choice of the frequencies, any type of $\theta-T$ curve may be obtained. ${ }^{25}$ All these refinements of the Einstein and Debye models may yield a reasonable variation of θ with T, but they have neither the simplicity of Debye's theory nor the theoretical justification of lattice dynamics. Since the specific heat is the average over the entire $g(v)$, agreement with the observed C_{v} should not be taken as a criterion for the correctness of a calculation of $g(v)$. It is also clear that any method to find $g(v)$ from the experimental values of C_{v} is not likely to be accurate. In the past, several attempts at the inversion of specific heats to get $g(v)$ have been made, which amply demonstrated how insensitive C_{v} is to the details of the frequency spectrum. ${ }^{10,26}$ At present, experimental information on phonon spectra is most conveniently obtained from neutron scattering, and to a lesser extent from diffuse X-ray scattering.

2.10. COMPARISON OF LATTICE THEORY WITH EXPERIMENTS

The literature on the theoretical calculation of $g(v)$, both as an exercise in mathematical physics and in relation to specific heats c_{g} of the lattice, is extensive. ${ }^{10,21,22}$ The purpose of the present work is best satisfied by a few examples illustrating the problems involved.

The first example is sodium chloride, ${ }^{27}$ which is a simple lattice investigated several times. The Na^{+}and Cl^{-}ions exert Coulomb forces on one another in addition to the short-range repulsive forces arising from the overlap of electron clouds. Dielectric studies reveal

Chapter 2

that the effective charge on the ions is about $\pm 0.8 e$ rather than $\pm 1 e$, on account of the partial shielding of the charges by the electronic clouds. Further, the polarizability of the ions means that small virtual dipoles will be induced during the lattice vibrations. These factors were taken into account using elastic and optical data at $q=0$, but the distribution was calculated from only about 500 points in the Brillouin zone. A smooth line drawn through the histogram is shown in Fig. 2.6a; such $g(v)$ are typical of many early calculations. The temperature variation of θ shown in Fig. 2.6b follows the experimental results closely. Considering the uncertainties in estimating the interatomic forces and the approximate calculation of $g(v)$, we should hardly expect an exact fit with the experiments. The fact that theory and experiment follow the same trend and differ only in a normalizing factor must be considered satisfactory. It is also to be noticed that the minimum in θ is very shallow and may easily be mistaken for the true T^{3}-region reached at very much lower temperatures. For this reason, such shallow minima are called pseudo T^{3}-regions.

The second example to be considered is aluminum, ${ }^{28}$ for which a model of interatomic forces was fitted to the experimental phonon dispersions along simple directions obtained from diffuse scattering of X-rays at about $300^{\circ} \mathrm{K}$. The $g(v)$ was deduced from a total (including those obtained by symmetry) of 150,000 points, and is illustrated in Fig. 2.7a. The singularities were located by Phillips, and the full line shows the theoretical curve, taking into account the infinite changes in slope at, for example, $v=4.1,5.9,7.8,8.1,8.3,9.0$, and $9.4 \times 10^{12} \mathrm{cps}$. This has transformed $g(v)$ from a dull-looking affair into an interesting curve. Only after such detailed calculations can it be said that for the given force constants the curve of Fig. 2.7b is representative of $g(v)$. The calculated values of θ (curve A) do not at first agree well with the experimental values for the simple reason that no account has been taken of the anharmonic effects present. (For the sake of simplicity, we have preferred to leave the complicated effects of anharmonicity in lattice dynamics to the specialized reviews ${ }^{29}$ on the subject.) When they are approximately included (curve B of Fig. 2.7b), the agreement with the experiments is noticeably improved. At $0^{\circ} \mathrm{K}$, the θ-values calculated from elastic data must agree with the calorimetric values (Table 2.V); the fact that they do not in Fig. 2.7b shows that the model of force constants used in the calculations is not very accurate, as later studies have also revealed. Nevertheless, there is little doubt that if better force constants are used, the theory will accurately describe the experimental variation of θ with T.

Our final example is sodium, ${ }^{23}$ subjected to one of the most detailed studies so far. Information about the interatomic forces was

(a)

(b)

Fig. 2.7. Aluminum ${ }^{28}$: (a) frequency distribution (full line calculated using singularities in phonon spectra), (b) effective θ-values obtained from $g(v)$. Curve A is with no allowance for anharmonicity, and B is with partial allowance for anharmonicity.
derived from the complete phonon-dispersion relations along several directions obtained by inelastic scattering of neutrons. The $g(v)$, given in Fig. 2.8a, was based on 35 million frequencies. Critical points are located at $v=0.93,1.67,2.56,2.88,3.47,3.58$, and 3.82 (units $10^{12} \mathrm{cps}$). The calculated specific heats are in good agreement with the experimental values. Unfortunately, a martensitic transformation at low temperatures makes an interpretation of the experiments below about $30^{\circ} \mathrm{K}$ very difficult, and the values given refer to a slightly different crystal structure. Nevertheless, the calculated $\theta-T$ curve fits reasonably well with the experimental curve. Sodium melts at $370^{\circ} \mathrm{K}$, and even at about $200^{\circ} \mathrm{K}$ the lattice vibrations are no longer harmonic. The specific heat usually rises above the classical Dulong-Petit value of $3 R$, although detailed measurements are not available in many cases. At $T \approx \theta$, anharmonic effects are appreciable, and the consequent increase in specific heats is reflected as a reduction of the effective θ, as in Fig. 2.8b. Theoretically, the change in $g(v)$ caused by the presence of anharmonicity has to be taken into consideration. Moreover, near the melting point, the generation of vacancies makes an additional contribution to the specific heat (Section 8.4).

There are numerous calculations of $g(v)$ and its relation to specific heats and other properties. The net impression is that the lattice theory is logically correct and esthetically satisfying. It correlates thermal, elastic, dielectric, and other properties not only with each other but also with the fundamental interactions among the atoms. In practice, it requires formidable calculations involving several parameters. Where detailed information on the interatomic forces and facilities for computation are available, the experimental variation of θ with T is explained to satisfaction, an example of the saying, "No pains, no gains." If the Debye theory is sufficient as a rule of thumb, the lattice calculation repays the labor involved in it with a significant improvement.

2.11. DEBYE θ IN OTHER PROPERTIES OF SOLIDS

From the above discussion, it is obvious that the Debye characteristic temperature θ has lost its original significance as a measure of the limiting frequency of lattice vibrations and has become an effective parameter describing the thermal behavior of the solid. Many phenomena in solids involve lattice vibrations, and their theories become far too complicated to be of practical use unless they descend to mundane levels by approximating $g(v)$ with a simple Debye function. Thus, the Debye θ is commonly encountered in solid state studies. In view of the approximations made in the theories,

Chapter 2

Fig. 2.8. Sodium ${ }^{23}$: (a) $g(v)$, (b) $\theta-T$ plot.
there is no reason to expect the numerical values of θ derived from the calorimetric measurements (denoted for clarity by θ_{D}) to be exactly equal to those obtained from various other properties. All the same, specific heats may be roughly estimated from them if calorimetric data do not exist; conversely, a knowledge of specific heats is of use in other fields of study. In order to illustrate this interrelationship, a brief discussion is given here, leaving the details to suitable reviews. ${ }^{\mathbf{1 0 , 3 0 , 3 1}}$

2.11.1. θ-Values from Elastic Properties

In Debye's theory, the correlation between thermal and elastic properties is very simple and has been mentioned earlier. In the detailed lattice calculations, $g(v) \propto v^{2}$ dependence holds good only near $v=0$ and is the result of averaging low-frequency acoustic phonons over all directions. Near $0^{\circ} \mathrm{K}$, only these waves will be excited to any degree. The propagation of phonons whose wavelength is very much longer than the atomic spacings is not influenced by the details of atomic structure or interatomic forces. Thus, according to lattice theories, θ-values calculated from elastic and thermal measurements should be identical as $T \rightarrow 0$. Table 2.V, taken from a careful survey by Alers and Neighbours, ${ }^{32}$ shows how closely this relation is obeyed.

At higher temperatures, specific heats depend upon the full $g(v)$, whereas elastic constants measure $g(v)$ only at $v \rightarrow 0$. Thus, θ_{D} is in general different from θ (elastic). This was the anomaly noted earlier in connection with Debye's theory (Section 2.7), and it is now obvious that the difference is not really "anomalous." A calculation of the difference using a quasi-harmonic theory, where the temperature variation of lattice spacings and interatomic forces are included, is obviously very involved. Even at low temperatures, small discrepancies between $\theta(\mathrm{El}$.) and θ (thermal) are sometimes observed in glasses, fused quartz, and other glassy materials. They are attributed to nonelastic low-frequency modes present in such amorphous media. ${ }^{33}$

Table 2.V. Comparison ${ }^{32}$ of θ_{D} and θ (El.) at $T \rightarrow 0$

	Substance						
	Ag	Cu	Al	NaCl	KBr	LiF	
θ (El.)	226.4	344.4	428.2	321.9	172.8	734.1	
$\theta_{\boldsymbol{D}}$	226.2	345.1	426	320	174	737	

2.11.2. θ-Values from Compressibility and Melting Point

It was originally noted by Madelung and Einstein that a relation between the compressibility and the characteristic temperature can be derived using simple models of a solid. More recently, Blackman showed that for ionic crystals of NaCl or CsCl structure, the Debye temperature at high temperatures is related to the compressibility x by means of the relation

$$
\begin{equation*}
\theta_{\chi}=\frac{\hbar}{k}\left(\frac{5 r_{0}}{m \varkappa}\right)^{1 / 2} \tag{2.25}
\end{equation*}
$$

where $2 r_{0}$ is the lattice spacing and m is the reduced mass of the ions. Table 2.VI compares such values of θ (denoted as θ_{χ}) with the thermal values at high temperatures ${ }^{10}$ and a reasonable correlation is found.

Another simple relation, due to Lindemann, connects the characteristic temperature with the melting point T_{m} of the solid, assuming again a very crude model of the melting process. If M is the mean atomic weight and V the mean atomic volume, then

$$
\begin{equation*}
\theta_{m}=B\left(\frac{T_{m}}{M V^{2 / 3}}\right)^{1 / 2} \tag{2.26}
\end{equation*}
$$

The quantity $B(\approx 115)$ varies slightly with the type of crystal; some values with $B=115$ are given in Table 2 .VI, where approximate agreement is evident.

Table 2.VI. Comparison of θ_{x} and θ_{m} with High-Temperature $\theta_{\boldsymbol{D}}$

	Substance						
	LiF	NaCl	KCl	KBr	KI	RbBr	RbI
$\theta_{\boldsymbol{x}}$	686	292	233	185	162	136	119
$\theta_{\boldsymbol{m}}$	1020	294	229	171	119	123	109
$\theta_{\boldsymbol{D}}$	$607-750$	$275-300$	$218-235$	$152-183$	$115-200$	$120-135$	$100-118$

The chief merit of these relations is that they give an estimate of the Debye temperature if calorimetric data are completely lacking. Such instances have occurred in the past.

2.11.3. θ-Values from Thermal Expansion

The Einstein and Debye theories give a simple expression for the internal energy of a solid. Grüneisen ${ }^{34}$ showed that if the vibrational frequency is taken to depend upon the interatomic distances, a reasonable account of the equation of state is obtained. In particular, the coefficient of thermal expansion β is connected to the heat capacity
C_{v} and the compressibility x by

$$
\begin{equation*}
\beta=\frac{\gamma x C_{v}}{V} \tag{2.27}
\end{equation*}
$$

with $\gamma=-\partial \ln v / \partial \ln V$ called Grüneisen's constant. Thus, a plot of β versus T should essentially be of the Debye form $D(T / \theta)$; Table 2.VII shows some values of the characteristic temperature θ_{β} obtained from such curves. The correlation with θ_{D} is quite good at high temperatures.

Table 2.VII. Comparison of θ_{β} with θ_{D}

	Substance					
	Pt	Cu	Au	Diamond	CaF_{2}	FeS_{2}
θ_{β}	236	325	180	1860	474	645
θ_{D}	225	310	185	1940	479	620

Recent studies by Barron and others, based on lattice dynamics, have shown that the Grüneisen constant γ does vary with temperature and that different acoustical and optical branches have different γ values. Further, the linear expansion along some directions becomes negative for a few crystals such as $\mathrm{Si}, \mathrm{ZnS}, \mathrm{AgI}$, and InSb at low temperatures. This can be qualitatively explained by lattice models, but cannot be understood easily from the Debye-Grüneisen equation of state. ${ }^{35}$

2.11.4. θ-Values from Infrared Data

In ionic crystals, there are strong absorption bands in the infrared, associated with the "residual rays." It was one of the early suggestions to use these frequencies to calculate the characteristic temperature, and, indeed, reasonable agreement was found. The situation is somewhat complicated by the fact that the frequency of the reflection maximum is somewhat higher than that of the absorption maximum, the difference being related to the refractive index of the crystal. Thus, the Debye temperature calculated from the reflection maximum (denoted by θ_{R}) will be larger than θ_{A} calculated from the absorption maximum. Table 2. VIII ${ }^{10}$ shows that θ_{R} agrees well with the calorimetric θ_{D} values at high temperatures. The frequency of the absorption maximum is the same as that of the main maximum in the vibrational spectrum, and, since $g(v)$ extends beyond the maximum (Fig. 2.6a), it is not surprising that $\theta_{A}<\theta_{D}$. The ratio θ_{A} / θ_{R} may be calculated from the lattice models, and fair agreement is found for some ionic crystals.

Table 2.VIII. Debye Temperatures from Infrared Data

	Substance						
	LiF	NaCl	KCl	KBr	KI	RbBr	RbI
$\theta_{\boldsymbol{R}}$	845	276	226	176	153	143	122
$\theta_{\boldsymbol{A}}$	440	235	203	162	141	126	122
$\theta_{\boldsymbol{D}}$	$607-750$	$275-300$	$218-235$	$152-183$	$115-200$	$120-135$	$100-118$

Actual infrared spectra show complicated structure, and some progress has been made in getting information about phonondispersion frequencies from the details of infrared and second-order Raman spectra. ${ }^{36}$

2.11.5. θ-Values from Electrical Resistivity

The temperature variation of the electrical resistivity of metals has been studied extensively, and a calculation of θ, denoted here as θ (E.R.), on the basis of Bloch's theory of electrical conductivity was suggested by Grüneisen. He showed that the ratio of the specific resistance σ to its value σ_{∞} at high temperatures is of the form

$$
\begin{equation*}
\frac{\sigma}{\sigma_{\infty}}=\frac{20}{x^{4}} \int_{0}^{x} \frac{\xi^{4} d \xi}{e^{\xi}-1}-\frac{4 x}{e^{x}-1} \quad\left(x=\frac{\theta}{T}\right) \tag{2.28}
\end{equation*}
$$

However, as pointed out by Blackman, ${ }^{10} \theta$ (E.R.) involves only longitudinal phonons in the theory, hence, it should differ considerably from θ_{D}. In practice, there is a very surprising correlation between θ (E.R.) and θ_{D} for many metals, as shown by Table 2.IX. At present, there is no satisfactory explanation of the agreement!

Table 2.IX. Correlation of θ (E.R.) with θ_{D}

	Metal						
	Li	Cu	Ag	Au	Pb	Al	W
θ (E.R.)	363	333	203	175	86	395	333
$\theta_{\boldsymbol{D}}$	$340-430$	$310-330$	212	$168-186$	$82-88$	385	$305-357$

2.11.6. Scattering of X-Rays, γ-Rays, and Neutrons

The vibrations of atoms in a solid affect the reflection of X-rays and other radiations of similar wavelength λ from the crystal lattices. There are two principal effects-a reduction of the intensity of Bragg

Table 2.X. Values of θ (X.R.), θ (El.), and θ_{D} at $300^{\circ} \mathrm{K}$

	Substance					
	Al	Cu	Pb	Fe	Diamond	Si
θ (X.R.)	379	307	80	393	1491	593
$\theta_{\boldsymbol{D}}$	396	310	93	425	1850	640
θ (El.)	406	331	91	464	2242	647

reflections (by the so-called Debye-Waller factor) and a diffuse scattering of radiation in the non-Bragg directions. The intensity of the Bragg reflection at an angle ϕ from a monatomic solid depends upon the temperature T in the form $I=I_{0} \exp (-2 M)$, where $M=8 \pi^{2} u^{2} \sin ^{2} \phi / \lambda^{2}$. The mean square amplitude u^{2} perpendicular to the reflecting plane may be calculated if a model of the lattice vibration is assumed. For a Debye solid at high temperatures,

$$
M=\left(\frac{2 k T \sin \phi}{m \grave{\iota}}\right)^{2} \frac{3 h^{2}}{k^{2} \theta^{2}}
$$

and thus from the Debye-Waller factor, the characteristic temperature, denoted as $\theta(X . R$.$) in Table 2.X, may be calculated. In the lattice$ case, the term $3 h^{2} / k^{2} \theta^{2}$ is replaced by $\int g(v) v^{-2} d v / \int g(v) d v$, so that θ (X.R.) is in general different from $\theta_{\boldsymbol{D}}$. Some representative values ${ }^{30}$ of θ (X.R.), $\theta(\mathrm{El}$.$) , and \theta_{D}$ at $300^{\circ} \mathrm{K}$ are given in Table 2.X. In general, θ (X.R.) is less than $\theta(\mathrm{E} 1$.$) or \theta_{D}$; this is roughly what is expected from the lattice theory. Herbstein ${ }^{30}$ has given a detailed discussion of the thermal effects in X-ray, Mössbauer, and neutron scattering, which may be referred to for further details.

The use of diffuse X-ray reflections and inelastic neutronscattering in providing information about phonon-dispersion relations has already been mentioned. ${ }^{20-22,37}$

REFERENCES

[^1]6. J. de Launay, Solid State Phys. 2, 219 (1956).
7. R. F. S. Hearmon, Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford, 1961.
8. M. J. P. Musgrave, Rept. Progr. Phys. 22, 74 (1959); Progr. Solid Mech. 2, 63 (1961).
9. H. Weyl, Math. Ann. 71, 441 (1911). R. D. Courant, Math. Ztschr. 7, 14 (1920). W. Ledermann, Proc. Roy. Soc. (London), Ser. A. 182, 362 (1944). R. E. Peierls, Proc. Nat. Inst. Sci. India 20A, 121 (1954).
10. M. Blackman, Handbuch der Physik, VII (I), 325 (1955).
11. J. A. Beattie, J. Math. Phys. (MIT), 6, 1 (1926).
12. G. F. Newell, J. Chem. Phys. 23, 2431 (1955). L. S. Kothari and V. K. Tewary, J. Chem. Phys. 38, 417 (1963). B. J. C. van der Hoeven and P. H. Keesom, Phys. Rev. 130, 1318 (1963).
13. E. Schrödinger, Handbuch der Physik, X, 275 (1926).
14. D. Bijl, Progr. Low Temp. Phys. 2, 395 (1957).
15. J. D. Filby and D. L. Martin, Proc. Roy. Soc. (London), Ser. A 276, 187 (1963).
16. W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London), Ser. A 242, 467 (1957).
17. M. Blackman, Rept. Progr. Phys. 8, 11 (1941).
18. L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York, 1954.
19. G. H. Wannier, Elements of Solid State Theory, Cambridge University Press, Cambridge, 1959, chapter 3.
20. L. S. Kothari and K. Singwi, Solid State Phys. 8, 109 (1959).
21. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (suppl. 4 to Solid State Physics), Academic Press. New York, 1963.
22. W. Cochran, Rept. Progr. Phys. 26, 1 (1963).
23. A. E. Dixon, A. D. B. Woods, and B. N. Brockhouse, Proc. Phys. Soc. (London) 81, 973 (1963). G. Gilat and G. Dolling, Phys. Letters 8, 304 (1964).
24. B. Dayal and S. P. Singh, Proc. Phys. Soc. (London) 76, 777 (1960). B. Dayal and B. B. Tripathi, Proc. Phys. Soc. (London) 77, 303 (1961).
25. G. Leibfried, Handbuch der Physik, VII (I), 104 (1955).
26. R. G. Chambers, Proc. Phys. Soc. (London) 78, 941 (1961).
27. S. O. Lundqvist, V. Lundstrom, E. Tenerz, and I. Waller, Ark. Fysik 15, 193 (1959).
28. C. B. Walker, Phys. Rev. 103, 547 (1956).
29. G. Liebfried and W. Ludwig, Solid State Phys. 12, 275 (1961). T. H. K. Barron and M. L. Klein, Phys. Rev. 127, 1997 (1962). R. A. Cowley, Advan. Phys. 12, 421 (1963).
30. F. H. Herbstein, Advan. Phys. 10, 313 (1961).
31. J. R. Partington, Advanced Treatise on Physical Chemistry, Vol. 3, LongmansGreen, London, 1952, section 9N.
32. G. A. Alers and J. R. Neighbours, Rev. Mod. Phys. 31, 675 (1959). J. L. Feldman, Proc. Phys. Soc. (London) 84, 361 (1964).
33. O. L. Anderson, J. Phys. Chem. Solids 12, 41 (1959). P. Flubacher, A. I. Leadbetter, J. A. Morrison, and B. P. Stoicheff, J. Phys. Chem. Solids 12, 53 (1959). H. B. Rosenstock, J. Phys. Chem. Solids 23, 659 (1962).
34. E. Grüneisen, Handbuch der Physik X, 1 (1926). J. K. Roberts, and A. R. Miller, Heat and Thermodynamics, Blackie, London, 1960, chapter 22.
35. C. Domb in Proceedings of the Eighth International Conference on Low Temperature Physics (London, 1962, R. O. Davies, editor), Butterworth, London, 1963, p. 385. J. G. Collins and G. K. White, Progr. Low Temp. Phys. 4, 450 (1964).
36. S. S. Mitra, Solid State Phys. 13, 1 (1962). F. A. Johnson and R. Loudon, Proc. Roy. Soc. (London), Ser. A 281, 274 (1964).
37. W. A. Wooster, Diffuse X-Ray Reflections from Crystals, Clarendon, Oxford, 1962.

Chapter 3

Electronic Specific Heat

3.1. SPECIFIC HEAT OF METALS

Metals are characterized by their high electrical and thermal conductivities at ordinary temperatures. When the discrete nature of electric charges became clear, by about 1900 , it was also realized that freely moving electrons were the charge carriers in metals. Drude, Lorentz, and others applied the methods used in the kinetic theory of gases to explain how these electrons were responsible for the observed high thermal and electrical conductivities. ${ }^{1}$

In spite of the success of the free-electron gas model, the classical theory had a fundamental inconsistency. If the electrons are considered as small particles freely moving through the crystal lattice, the equipartition law attributes to each electron an internal energy $\frac{3}{2} k T$, associated with the three translational degrees of freedom. Therefore, the electrons should contribute $\frac{3}{2} R$ per mole to the specific heat. A monovalent metal such as copper should thus have $C_{v} \approx 9$ $\mathrm{cal} / \mathrm{mole} \cdot \operatorname{degK}, 3 R$ from the lattice and $\frac{3}{2} R$ from the conduction electrons. The experimental value of $6 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{degK}$ is entirely accounted for by the lattice contribution. The same is true for almost all metals at room temperature, as can be seen from the values given in Table 2.I. The model of an electron gas in a metal explained the transport properties reasonably well, but the caloric behavior was in complete disagreement with the equipartition theorem.

It was only in 1928, after Sommerfeld's application of quantum statistics to free electrons in a metal, that the reason for the small electronic specific heat became evident. Even as Bose-Einstein statistics applied to phonons brings about a reduction of lattice heat capacity at low temperatures, the Fermi-Dirac statistics obeyed by electrons makes the electronic specific heat comparatively small at room temperatures. It became clear that the electronic contribution could be observed only at very low temperatures, in the liquid-
helium range, and the first experiments to study electronic specific heats in detail were performed by Keesom and coworkers in the early 1930's.

3.2. QUANTUM STATISTICS OF AN ELECTRON GAS

It is a fundamental feature of quantum statistics, as explained in several texts, ${ }^{1,2}$ that because of the Pauli exclusion principle and because the various electrons are indistinguishable from one another, Fermi-Dirac statistics should be applied to electronic systems. According to $F-D$ statistics, the probable number N_{k} of particles in energy state ε_{k} is

$$
\begin{equation*}
N_{k}=\frac{g_{k}}{\exp \left[\left(\varepsilon_{k}-\varepsilon_{F}\right) / k T\right]+1} \tag{3.1}
\end{equation*}
$$

where g_{k} is the number of levels with energy ε_{k} and the parameter ε_{F} (the Fermi energy) is so chosen that the total number of particles is equal to N. The energy levels are often so closely spaced that it is convenient to define the density of states $\mathfrak{N}(\varepsilon) d \varepsilon$ as the number of energy states per unit volume between ε and $\varepsilon+d \varepsilon$.

For a $F-D$ system, marked deviations from classical MaxwellBoltzmann behavior occur when the temperatures are lower than the Fermi temperature $T_{F}=\varepsilon_{F} / k$, which in ordinary metals is of the order of $10^{5}{ }^{\circ} \mathrm{K}$. The shape of the $\mathrm{F}-\mathrm{D}$ function

$$
\begin{equation*}
f(\varepsilon)=\frac{1}{1+\exp \left[\left(\varepsilon-\varepsilon_{F}\right) / k T\right]} \tag{3.2}
\end{equation*}
$$

is shown in Fig. 3.1 for various temperatures. As $T \rightarrow 0, f(\varepsilon)$ equals unity for any energy less than ε_{F} and then abruptly drops to zero for $\varepsilon>\varepsilon_{F}$. In other words, all the energy states below ε_{F} are fully occupied, while all states above ε_{F} are empty. At a finite temperature T, some of the particles within a distance of approximately $k T$ of ε_{F} have enough thermal energy to become excited to higher energy states, as shown in Fig. 3.1. However, at $T / T_{F} \sim 0.01$, the distribution has changed little from the behavior at $T \sim 0$; it is only for $T \sim T_{F}$ that the familiar Boltzmann tail of the distribution makes its appearance.

The magnitude of the Fermi temperature T_{F}, which is obviously fundamental to an understanding of the behavior of an electron gas, can be easily calculated as follows. In Chapter 2, it was shown that for free particles in a volume V, the number of allowed energy states between momenta p and $p+d p$ is

$$
\begin{equation*}
n(p) d p=\frac{4 \pi V}{h^{3}} p^{2} d p \tag{2.18}
\end{equation*}
$$

Fig. 3.1. Shape of the $F-D$ function [equation (3.2)] at various temperatures.

If m is the mass of an electron, the number of allowed states can be written in terms of the energy $\varepsilon=p^{2} / 2 m$ as

$$
\begin{equation*}
V \mathfrak{P}(\varepsilon) d \varepsilon=2 \pi(2 m)^{3 / 2} \frac{V}{h^{3}} \varepsilon^{1 / 2} d \varepsilon \tag{3.3}
\end{equation*}
$$

At $0^{\circ} \mathrm{K}$, all states below ε_{F} are occupied, and, further, each state can be filled by two electrons of opposite spins. So the total number of states is

$$
\frac{N}{2}=\frac{4}{3} \pi(2 m)^{3 / 2} \frac{V}{h^{3}} \varepsilon_{F}^{3 / 2}
$$

or

$$
\begin{equation*}
\varepsilon_{F}=\frac{1}{2 m}\left(\frac{\frac{3}{8} N h^{3}}{\pi V}\right)^{2 / 3} \tag{3.4}
\end{equation*}
$$

This formula is valid for a gas of free electrons; nevertheless, suppose a value typical of a metal $N / V \approx 10^{23} / \mathrm{cm}^{3}$ is substituted. Then

$$
T_{F}=\frac{\varepsilon_{F}}{k} \approx 90,000^{\circ} \mathrm{K}
$$

The Fermi energy ε_{F} of a gas of electrons with metallic densities is two or three orders of magnitude greater than the thermal energy of
approximately $k T$ at room temperatures. The electron gas is said to be highly degenerate under such conditions.

It is very surprising that in spite of such high energy content the specific heat of the electron gas is quite small. This comes about because the internal energy changes very little at ordinary temperatures. To a first approximation, a fraction $\left(\sim k T / \varepsilon_{F}\right)$ of the number of electrons is excited at a temperature T into higher energy states (see Fig. 3.5). Each electron gains an energy of about $k T$, and so the increase in energy per mole is $\delta E \sim R T\left(k T / \varepsilon_{F}\right)$. The heat capacity is therefore approximately $2 R\left(T / T_{F}\right)$ per mole. Since $T_{F} \approx 10^{4}$ to $10^{5} \mathrm{~K}$, the electronic heat capacity is about $10^{-2} R$ at room temperature. This is only 1% of the lattice heat capacity at ordinary temperatures. However, at very low temperatures, the lattice heat capacity, falling off as T^{3}, decreases much faster and becomes comparable to the electronic term, which decreases only linearly with T. These qualitative conclusions are in excellent agreement with experimental results.

3.3. SPECIFIC HEAT OF ELECTRONS IN METALS

The model of a free-electron gas, although forming an elementary introduction to the behavior of electronic systems, is unnecessarily crude when applied to actual metals. The electrons in the inner shells of an atom are tightly bound to the nucleus; only the electrons in the outer unfilled shells have any chance to wander through the metal. Their movement is subject to the three-dimensional periodic potential field associated with the atoms of the lattice. Under these conditions, the energy levels, instead of being a continuous function $p^{2} / 2 m$ of the momentum, become grouped into energy bands. ${ }^{3}$ In each band, the energy is a continuous function of momentum, but the bands themselves are separated by gaps in which there are no energy levels (Fig. 3.2). Ordinarily, the first band is completely filled (valence band), while the second band is only partially filled (conduction band). Electrons in any unfilled band can move under applied electric fields and thereby transport quantities of electricity or heat. In an ordinary dielectric, the valence band is just full; in the absence of any free carriers, the material behaves as an insulator. In three momentum dimensions, the surfaces of constant energy have complicated shapes because the energy-momentum relationship depends upon the crystallographic directions. The shape of the Fermi surface, i.e., the surface in the momentum space enclosing the occupied states of electrons in a metal, can in some cases be determined from other electronic properties of the metal. ${ }^{4,5}$

Fig. 3.2. Energy-momentum relation for an electron in a one-dimensional periodic lattice. Dotted line is the parabolic relation for free electrons.

A complete knowledge of the energy levels is luckily not required for calculation of the specific heat of electrons in a metal. The discussions of the previous section show that only electrons within approximately $k T$ of the Fermi surface are excited at room temperature; consequently, knowledge of the number of energy states in the vicinity of the Fermi surface is sufficient to evaluate the electronic specific heat c_{e}.

Quantitatively, the discussion is fairly straightforward. The energy per mole of the electronic system is

$$
E=2 V \int_{0}^{\infty} \varepsilon f(\varepsilon) \mathfrak{P}(\varepsilon) d \varepsilon=2 V(k T)^{2} \int_{0}^{\infty} \frac{\mathfrak{N}(k T x) x d x}{e^{x-\xi}+1}
$$

where $x=\varepsilon / k T$ and $\xi=\varepsilon_{F} / k T$. The integral may be split into two ranges, $(0, \xi)$ and (ξ, ∞), so that

$$
\frac{E}{2(k T)^{2} V}=\int_{0}^{\xi} \mathfrak{P} x d x-\int_{0}^{\xi} \frac{\mathfrak{P} x d x}{1+e^{\xi-x}}+\int_{\xi}^{\infty} \frac{\mathfrak{P} x d x}{e^{x-\xi}+1}
$$

where the first range has itself been decomposed into two terms. On substituting $u=x-\xi$ in the third term, it becomes the integral 0 to ∞ of $(u+\xi) \mathfrak{N} /\left(e^{u}+1\right)$. If we set $u=\xi-x$ in the second term, it becomes the integral ξ to 0 of $(\xi-u) \mathfrak{N} /\left(e^{u}+1\right)$, but extending its range of integration from ∞ to 0 causes a negligible error of only
$e^{-\xi}$. Therefore, to the lowest-order terms,

$$
E=2 V \int_{0}^{\xi} \mathfrak{N}(\varepsilon) \varepsilon d \varepsilon+4 V(k T)^{2} \mathfrak{N}\left(\varepsilon_{F}\right) \int_{0}^{\infty} \frac{u d u}{e^{u}+1}
$$

The first term on the right is the internal energy at $0^{\circ} \mathrm{K}$, while the integral 0 to ∞ of $u /\left(e^{u}+1\right)$ may be transformed into the series

$$
\sum_{1}^{\infty}(-1)^{s+1} s^{-2}
$$

which has the value $\pi^{2} / 12$. So the energy per mole is

$$
\begin{equation*}
E=E_{0}+\frac{1}{3} \pi^{2} V(k T)^{2} \mathfrak{N}\left(\varepsilon_{F}\right) \tag{3.5}
\end{equation*}
$$

The molar heat capacity of the electronic system is

$$
\begin{equation*}
C_{e}=\frac{2}{3} \pi^{2} k^{2} V \mathfrak{N}\left(\varepsilon_{F}\right) T=\gamma T \tag{3.6}
\end{equation*}
$$

The electronic specific heat is determined only by the density of states at the Fermi surface $\mathfrak{N}\left(\varepsilon_{F}\right)$, as was expected earlier. To make a numerical estimate of C_{e}, assume the metallic electrons to be free. From equations (3.3) and (3.4), the molar density of states is

$$
\begin{equation*}
V \mathfrak{P}\left(\varepsilon_{F}\right)=\frac{2 \pi m}{h^{2}}\left(\frac{3 N V^{2}}{\pi}\right)^{1 / 3} \tag{3.7}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
C_{e} & =\frac{4 \pi^{3} m k^{2}}{3 h^{2}}\left(\frac{3 N V^{2}}{\pi}\right)^{1 / 3} T \\
& =3.26 \times 10^{-5} V^{2 / 3} n_{\alpha}^{1 / 3} T \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg} \tag{3.8}\\
& =1.36 \times 10^{-4} V^{2 / 3} n_{\alpha}^{1 / 3} T \mathrm{~J} / \mathrm{mole} \cdot \mathrm{deg}
\end{align*}
$$

where n_{α} is the number of free electrons per atom. For a typical metal, say, copper at room temperature, $V \sim 7 \mathrm{~cm}^{3} / \mathrm{mole}, n_{\alpha}=1, T \sim 300^{\circ} \mathrm{K}$, and so $C_{e} \approx 0.04 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$. This is less than 1% of the lattice heat capacity of $6 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$ at the same temperature. Therefore, the electronic specific heat is not normally detected in room-temperature measurements. This explanation was indeed one of the great triumphs of Sommerfeld's application of quantum statistics to the theory of metals.

The above linear variation of electronic specific heat is valid only at low temperatures ($T \ll T_{F}$). At higher temperatures, the calculations are involved ${ }^{6}$; the full variation is shown in Fig. 3.3. For $T \gg T_{F}$, the limiting value is $\frac{3}{2} R$, which is the classical equipartition value for a gas of structureless mass points (Section 6.2).

Fig. 3.3. Temperature variation of the heat capacity of an electron gas.

3.4. ELECTRONIC SPECIFIC HEAT AT LOW TEMPERATURES

Although at room temperature the electronic contribution to the heat capacity of a metal is insignificant compared to the lattice contribution, the situation is quite different at low temperatures. C_{e} decreases linearly with T, whereas C_{g}, as seen in the previous chapter, is proportional to T^{3} at low temperatures. Therefore, at some temperature, the two terms become equal; at still lower temperatures, C_{e} is larger than C_{g} (Fig. 3.4). For instance, copper at about $4^{\circ} \mathrm{K}$ has $C_{v} \sim 6 \times 10^{-3} \mathrm{~J} / \mathrm{mole} \cdot \mathrm{degK}$, which is equally shared between electronic and lattice contributions. Above about $4^{\circ} \mathrm{K}$, the lattice part rapidly dominates the specific heat, while below that temperature the electronic part remains significant. In general, at liquid-helium temperature, both terms are of comparable magnitude and the observed specific heat is of the form

$$
\begin{equation*}
C=C_{g}+C_{e}=\beta T^{3}+\gamma T \tag{3.9}
\end{equation*}
$$

A plot of C / T against T^{2} should therefore be a straight line, and, indeed, a typical example was given in Fig. 1.1b to illustrate how well the relation (3.9) is obeyed, if the T^{3}-region of the lattice specific heat has been reached. Such a plot permits determination of both β and γ. From equation (2.20) it is evident that $\beta=12 \pi^{4} R / 5 \theta^{3}$. The value of the Debye temperature at very low temperatures $\left(\theta_{0}\right)$ and the coefficient γ of the electronic specific heat for a number of metals are given in Table 3.I. The values refer to materials of the highest-

Fig. 3.4. Typical low-temperature heat capacity of a metal, sodium: $:^{7}-0-0-0-$ observed $C_{p} ;-\cdot-\cdot-\cdot$ lattice term;--- electronic term.
available purity. Impurities in the metal affect the specific heat slightly, and in some cases anomalous values have been obtained. ${ }^{8}$ Besides the possible changes in $\mathfrak{N}\left(\varepsilon_{F}\right)$ due to the impurities, dilute magnetic contaminations may in some cases give a term linear in T; careful analysis is needed to unravel the various effects (Section 3.6).

The free-electron gas model is obviously oversimplified. Nevertheless, equation (3.8) gives a value of γ of the right order of magnitude. For example, in sodium, there is one electron in the outer unfilled shell, which is almost free to move; according to (3.8), γ should have a value of $11 \times 10^{-4} \mathrm{~J} / \mathrm{mole}^{2} \cdot \mathrm{deg}^{2}$. Similarly, copper, which also has one outer electron, should have $\gamma=5.4$ in the same units. The experimental values are $\mathrm{Na}=13.7$ and $\mathrm{Cu}=7.0$. A simple way of illustrating the difference between theory and experiment is to introduce an "effective mass" m^{*} which takes into account the partial binding, namely, the fact that the electrons are not completely free but are only loosely bound to the metallic ions. The electron mass m in equation (3.8) is now replaced by m^{*}, so that

$$
\begin{equation*}
\frac{\gamma_{\mathrm{exp}}}{\gamma_{\text {theor }}}=\frac{m^{*}}{m} \tag{3.10}
\end{equation*}
$$

Table 3.I. Representative Values of θ_{0} (in $\operatorname{deg} \mathbf{K}$) and γ (in $10^{-4} \mathrm{~J} / \mathrm{mole}^{2} \cdot \mathrm{deg}^{2}$)

Metal	θ_{0}	γ	Metal	θ_{0}	γ
Ag	225	6.09	Na	158	13.7
Al	426	13.6	Nb	250	88.2
Au	164	7.0	Ni	440	72.8
Ba	110	27.0	Os	500	23.5
Be	1160	2.22	Pb	108	33.6
Ca	229	27.3	Pd	299	99
Cd	209	6.9	Pt	221	66.3
Co	443	47.5	Rb	55	24.1
Cr	585	15.5	Re	450	24.5
Cs	39	32.0	Rh	478	48.9
Cu	348	7.0	Ru	600	33.5
Fe	464	50.2	$\mathrm{Sn}(\mathrm{white})$	195	17.5
Ga	324	6.0	Sr	147	36.5
Hf	261	26.4	Ta	245	58.5
Hg	72	18.6	Ti	170	46.8
In	109	18.4	Tl	930	35.5
Ir	420	31.4	U	90	15.2
K	91	20.8	V	200	109
Li	369	17.5	W	380	92
Mg	342	13.7	Zn	305	12.1
Mn	450	180	Zr	310	6.27
Mo	470	21.1		30.3	

Thus, m^{*} / m has a value of about 1.2 for sodium and about 1.3 for copper. For other metals, the appropriate valence of the atom is used to represent n_{∞} the number of electrons per atom. In this manner, m^{*} / m-values have been calculated and tabulated in several reviews. ${ }^{8-10}$

Although the value of m^{*} / m suggests the degree of departure from the electron gas model, the quantity has only a limited significance. In metals, the bands usually overlap, and the details of the band structure are quite complicated. ${ }^{4,5}$ The idea of an effective mass, which can be easily introduced in the case of a single band, is not appropriate under such conditions. Moreover, in cyclotron resonance, the de Haas-van Alphen effect, and other phenomena which reveal the properties of Fermi surfaces more directly, different "effective masses" are introduced, leading to some confusion in comparing the values of m^{*} / m for any particular substance. The situation corresponds to the confusion concerning the indiscriminate use of the Debye θ to characterize different physical properties, as mentioned in Chapter 2. Therefore, it appears best to express the experimental results in terms of γ, as done in Table 3.I.

Electrons, because of their electric charge, exert Coulomb forces upon one another; these forces are of long range, falling off as $1 / r^{2}$. It would appear that the use of a perfect-gas model is inconsistent with the existence of such long-range interactions. In fact, early approximate calculations showed that the specific heat would be about ten times smaller than the Sommerfeld value and would also have a different temperature dependence, thereby destroying even the qualitative agreement between equation (3.8) and experiments. More recently, the exchange and correlation effects of the Coulomb interaction have been analyzed in detail, using the mathematical techniques developed for handling many-body problems. It turns out that each electron is shielded, as it were, by the nearby polarization cloud of the electron gas. The interaction potential $V(r)$ becomes screened, $V(r) \sim e^{2} r^{-1} \exp (-\lambda r)$, so that it becomes a short-range force, which is compatible with the perfect-gas model of the electrons. The collective motion of the electron clouds is then described in terms of what are called plasma modes, which have too high a frequency to be involved in specific-heat studies. The details of these calculations are left to suitable reviews. ${ }^{11}$

Another aspect of the electronic specific heats of metals, which cannot be treated here, is the interaction between electrons and phonons. In writing equation (3.9), it is implictly assumed that electronic motions are independent of lattice vibrations, so that the two terms are simply added together. It is, however, obvious that the vibrations of an atom will influence the motion of electrons in its neighborhood; conversely, the presence of the electron cloud will affect the lattice vibrations. For many metals, the effect is very small, ${ }^{12}$ but two exceptional situations occur. In some cases, the electronphonon interaction results in the phenomenon of superconductivity, as originally suggested by Fröhlich in 1950. The properties of superconductors are so striking that they are discussed separately in Sections 3.8 to 3.10 . In a few special cases, electron-phonon interactions result in small anomalies, known as Kohn anomalies, in the lattice $\omega-q$ dispersion relations. ${ }^{13}$

3.5. SPECIFIC HEAT AND BAND STRUCTURE OF METALS

A discussion of the values of γ for all metals is clearly to be left to special reviews on the subject. ${ }^{8,9,10,14}$ Only a few typical metals are considered here, in order to illustrate the special factors involved in a study of electronic specific heats.

The alkali metals lithium, sodium, potassium, rubidium, and cesium, have one "free" electron in the outer shells. The inner closed shells are tightly bound to the nucleus, and consequently we may
assume that there are N electrons per gram-atom. The number of states in the valence band is N, which can be filled by $2 N$ electrons. The first Brillouin zone is thus only half-filled, and the free-electron model may be expected to be useful. This model gives

$$
V \mathfrak{P}(\varepsilon) d \varepsilon=2 \pi(2 m)^{3 / 2} V h^{-3} \varepsilon^{1 / 2} d \varepsilon
$$

as shown in Fig. 3.5. Nevertheless, the observed values of γ are not in good agreement with equation (3.8). Apart from sodium, mentioned earlier, m^{*} / m has a value ${ }^{15}$ of $1.25(\mathrm{~K}), 1.26(\mathrm{Rb})$, and $1.43(\mathrm{Cs})$, showing that even in such simple cases the free-electron model is not adequate. Calculations using details of the band structure, electron-phonon and electron-electron couplings, account reasonably well for the experimental values of m^{*} / m.

The noble metals, copper, silver, and gold, are also monovalent and have their first Brillouin zones half-empty. The values of m^{*} / m, $1.36(\mathrm{Cu}), 1.05(\mathrm{Ag})$, and $1.16(\mathrm{Au})$, differ appreciably from unity, which at this stage is not surprising. The Fermi surface of copper has been investigated by several methods; its shape is shown in Fig. 3.6. In a free-electron gas model, it will be a sphere, whereas in copper it is actually pulled out and touches the zone boundaries along the $\langle 111\rangle$ directions. Detailed calculations based on such Fermi surfaces do fit in well with the experiments. The specific-heat data are not very useful for finding the shape of the Fermi surface, because the electronic term measures merely an averaged density of states at

Fig. 3.5. Energy distribution in an electron gas. Full line is the number of electrons at a finite temperature, broken line is that at absolute zero.

Fig. 3.6. Fermi surface of copper.
the Fermi surface. If the shape of the Fermi surface is known from other studies, ${ }^{4,5} \gamma$ can be used as a final check.

The divalent metals, beryllium, magnesium, calcium, zinc, cadmium, etc., have hexagonal crystal structure. With two "free" electrons per atom, the Brillouin zones should be exactly filled and the substances should be insulators. As a matter of fact, the first and second bands overlap to some extent, which accounts for the electrical conductivity of the metals. The Fermi surface intersects the zone boundary and has a complex shape. The theoretical calculation of $\mathfrak{N}\left(\varepsilon_{F}\right)$ is a matter of considerable labor. The only simple statement that can be made ${ }^{16}$ is that $\mathfrak{R}\left(\varepsilon_{F}\right)$ varies rapidly when the axial ratio c / a of the hexagonal lattice is small and is nearly constant when the ratio is large. Beryllium ($c / a=1.57, \gamma=2.22 \times 10^{-4} \mathrm{~J} / \mathrm{mole}^{2} \mathrm{deg}^{2}$) and magnesium $(c / a=1.62, \gamma=13.7)$ belong to the first set, while zinc $(c / a=1.86, \gamma=6.3)$ and cadmium $(c / a=1.89, \gamma=6.3)$ are examples of the second case.

The transition metals form another interesting example of the effect of electronic structure, as was first pointed out by Mott. An inspection of the values of γ for the first group of metals (Table 3.II) shows that the electronic specific heats are unusually large. In

Table 3.II. Values of γ for the First Group of Transition Metals

	Metal						
	Ti	V	Cr	Mn	Fe	Co	Ni
$\gamma \times 10^{4} \mathrm{~J} / \mathrm{mole}^{2} \cdot \mathrm{deg}^{2}$	35.5	92	15.5	180	50.2	47.5	72.8

isolated atoms of these metals, the filled $4 s$-subshell, containing two electrons, has as usual a lower energy than the partially filled $3 d$ states (chromium has only one electron in the $4 s$-level, and the value of γ is also exceptional). When the atoms are brought together to form a metal, the wave functions of the states overlap, which produces a characteristic broadening of the energy levels. The wave functions for the $4 s$-states are more extended than those of the $3 d$-states. Consequently, the $4 s$-band is broader and covers a much wider range than does the $3 d$-band. This occurs to such an extent that some states in the $4 s$-band have higher energies in the metal than those of the $3 d$-band, as schematically represented in Fig. 3.7a. Moreover, the $4 s$-band contains only two states per atom, or $2 N$ states per mole of the metal. It has a large energy spread, and so its density of states is low. The $3 d$-band contributes 10 N states to the metal; since its energy spread is small, the density of states is large. The resultant density of states as shown in Fig. 3.7b, has a sharp maximum. The Fermi levels lie in this region, and hence C_{e} is unusually large for

Fig. 3.7. (a) Broadening of $4 s$ - and $3 d$-bands in a metal due to overlap. (b) Density of states for $4 s$ - and $3 d$-bands. Dotted line is the resultant density of states.
these metals. For a quantitative analysis, the details of the band structure must be worked out. ${ }^{14}$

The metals of the second and third transition groups also have large values of γ, for similar reasons. Furthermore, the unfilled shells give rise to magnetic interactions among the atoms. The resulting para-, ferro-, and antiferromagnetic behavior produces interesting effects in specific heats which will be discussed in the next chapter. The ions of rare-earth metals also have unfilled shells. But the coupling among the ions is weak, and various magnetic and other transitions occur below room temperature. Rare-earth specific heats are discussed in Chapter 7, Section 6.

3.6. SPECIFIC HEAT OF ALLOYS

When two metals are alloyed, there is in general a change in the lattice structure. A structural change alters not only the lattice specific heat directly, as is clear from Chapter 2, but also the electronic term, through the influence of the lattice structure upon the energyband scheme. In such general cases, no simple rule can be given. It is only in special circumstances that simple correlations exist. One such instance is that of a binary alloy, for instance, β-brass (CuZn), which exhibits an order-disorder transition, but this is more appropriately taken up in Chapter 7.

In several dilute alloys, especially of elements of near atomic number and similar atomic radii, the elements go into solid solution without any appreciable change of crystal structure. The observed variation of specific heats may then be attributed to variation in $\mathfrak{N}(\varepsilon)$, and some information may be obtained about the shape of the den-sity-of-states curve. The simplest hypothesis, the rigid-band model, is to assume that in the process of alloying, the band structure remains unchanged and only the number of available electrons is altered. The value of $\mathfrak{N}\left(\varepsilon_{F}\right)$ at the new Fermi level determines the electronic specific heat of the alloy [equation (3.6)]; depending upon the slope of the $\mathfrak{N}(\varepsilon)$ curve at the band edge, the γ of the alloy will be larger or smaller than that of the pure metal. In this manner, the electronic specific heat may be correlated with the shape of the energy-band scheme.

As an instance, palladium can be freely alloyed with its neighboring elements silver and rhodium. The γ-values of these alloys ${ }^{17}$ are shown in Fig. 3.8a. In the rigid-band model, the addition of silver to palladium gives an extra electron per atom of silver; these extra electrons fill the band to a higher energy level. The alloying with rhodium gives one hole per Rh atom, and so the Fermi level occurs at a lower value of energy. Thus, the density-of-states curve (Fig. 3.8b)
$\begin{gathered}\text { Composition (atomic\%) } \\ \text { (a) }\end{gathered}$
Fig. 3.8. (a) Electronic specific-heat coefficients for palladium-silver and palladium-rhodium alloys. (b) (b) Density of states per
atom, rhodium-palladium-silver, for one direction of spin. ${ }^{17}$
Composition (atomic\%)
Fig. 3.8. (a) Electronic specific-heat coefficients for palladium-silver and palladium-rhodium alloys. (b) Density of states per
atom, rhodium-palladium-silver, for one direction of spin. ${ }^{17}$

 atom, rhodium-palladium-silver, for one direction of spin. ${ }^{17}$
may be drawn at once. For reasons set forth in the previous section, the $4 d$-band in a metal of the second transition group should be sharply peaked, while the $5 s$-band should be comparatively flat. There is indeed a striking similarity between Figs. 3.7b and 3.8 b . Theoretical calculations of the band structures are in good agreement with Fig. 3.8b, but the details of such studies ${ }^{14,17}$ cannot be included here.

Dilute alloys of transition elements show several peculiarities which have not yet been clarified. ${ }^{18}$ As an example, if small amounts of manganese are added to copper, the specific heat in the liquidhelium range is abnormally increased. ${ }^{19}$ The heat capacity is linear in T at very low temperatures and is roughly independent of the manganese concentration c. At higher temperatures, it falls rapidly to the pure-metal value. The temperature at which this decrease occurs is proportional to c, so that the entropy associated with the extra heat capacity ΔC is proportional to the number of manganese ions. Figure 3.9 shows how at low concentrations of manganese, the γ values are abnormally high and independent of c, while at high concentrations normal behavior is approached. Similar results are obtained in dilute alloys of iron in copper, also. In some alloy systems, the specific heat shows a definite maximum before the $\Delta C \propto T$ region is reached. These deviations are accompanied by corresponding anomalies in other properties such as magnetic susceptibility and electrical conductivity.

The theoretical picture of dilute alloys of transition elements is

Fig. 3.9. Electronic specific-heat coefficients of copper-manganese alloys. ${ }^{19}$ The broken line shows the expected behavior of dilute manganese in copper.
still under debate, although considerable progress has been made by Friedel and others ${ }^{18}$ regarding the formation of localized moments. It was Overhauser ${ }^{20}$ who suggested an explanation for the observed specific-heat behavior; subsequent developments have been due to Marshall and others. ${ }^{20}$ They all involve some form of magnetic ordering and the extra specific heat ΔC arises when a number of spins are located in regions of near-zero magnetic field. The near-zero field regions may arise from the stationary spin-density waves, from the large separation between the magnetic ions, or from the approximate cancellation of the exchange interactions of opposite sign. Although magnetic interactions are taken up in Chapter 4 only, the effects may be calculated in a crude manner as follows. At a temperature T and in a field H, a magnetic dipole μ has an average energy [see equation (4.15)] $-\mu H \tanh (\mu H / k T)$. In an alloy, the local magnetic field varies from site to site, and, if $f(H)$ is the probability of having a field H at the site of μ, the internal energy is

$$
E \approx-\frac{1}{2} N c \int_{-\infty}^{\infty} f(H) \mu H \tanh \left(\frac{\mu H}{k T}\right) d H
$$

where c is the concentration of manganese ions and $N c$ their total number. Most of the ions will be rigidly aligned because they are in effective fields much larger than $k T / \mu$ at low temperatures. So they do not contribute to the heat capacity. Only the ions situated in near-zero fields $\mu|H| \lesssim k T$ will be able to change their orientations and hence give an excess specific heat ΔC. Thus

$$
\Delta C \sim \frac{1}{2} N c f(0) \int_{-\infty}^{\infty}\left(\frac{\mu^{2} H^{2}}{k T^{2}}\right) \operatorname{sech}^{2}\left(\frac{\mu H}{k T}\right) d H
$$

In a fully aligned perfect lattice, the magnetic field at an ion has a definite value, though thermal fluctuations smear out the field to some extent. In an alloy, the field is completely smeared out and has a wide range of values. Under these conditions, the probability of finding zero field at a site is proportional to $1 /\langle H\rangle$, where $\langle H\rangle$ is the mean field at an ion. Since the interactions are mainly dipolar, $\langle H\rangle$ will be proportional to R^{-3} (R is the mean distance between Mn ions) and hence to c, the concentration of Mn ions. Therefore, with suitable constants A, A^{\prime},

$$
\Delta C \approx A T \int_{-\infty}^{\infty} x^{2} \operatorname{sech}^{2} x d x=A^{\prime} T
$$

At low temperatures, the specific heat is proportional to T and independent of the manganese concentration; these are the two important experimental observations. Detailed calculations ${ }^{20}$ show
that at higher temperatures ΔC falls off as T^{-2}; the temperature at which this occurs is proportional to c, which again agrees with the observations. The subject is of current interest, and the overall picture is just emerging.

3.7. SPECIFIC HEAT OF SEMICONDUCTORS

A pure semiconductor differs from a metal in that, at absolute zero, the first Brillouin zone is completely filled by electrons and the next zone is completely empty. There is no overlap between the bands (Fig. 3.10a). The energy gap is small, however, and at ordinary temperatures some electrons are excited from the valence band to the conduction band (Fig. 3.10b.) The material is now electrically conducting and becomes more so when the temperature is raised, unlike pure metals, which become less conducting when T is increased. In practical applications, materials with controlled amounts of suitable impurities (dope) are of tremendous importance. The impurity atoms introduce extra energy levels into what was earlier the forbidden energy gap. The presence of such levels alters the electrical properties profoundly, because electrical conduction can take place without thermal activation of electrons across the energy gap. The special properties of semiconductors are far too numerous to chronicle here; for an introduction, one may refer to the elementary texts mentioned earlier. ${ }^{3}$

In all types of semiconductors, whether pure or slightly doped, the density of excited current carriers decreases rapidly as the temperature is reduced. Therefore, at low temperatures only the lattice specific heat is observed for most semiconductors. ${ }^{21}$ Germanium, silicon, and indium antimonide are among the most intensely studied

Fig. 3.10. Simplified energy-level diagram of semiconductors. (a) Pure semiconductor at $0^{\circ} \mathrm{K}$. The valence band is full, the conduction band is empty, and there is no electrical conduction. (b) At $T>0^{\circ} \mathrm{K}$, some excitation of electrons across the gap takes place, permitting electrical conduction. (c) Doped semiconductor, with impurity levels depending upon the dope.

Fig. 3.11. Temperature variation of Debye θ for several diamond-type lattices.
semiconductors. They all have the diamond-type of crystal structure, and the lattice vibrational spectra may be expected to be of a similar form for all of them. This is supported by the fact that the Debye θ has the same type of temperature dependence for these substances, as shown in Fig. 3.11. The true T^{3}-region is observed below $\theta / 100$. At higher temperatures, θ drops considerably and passes through a minimum at about $\theta / 20$. The actual θ-values form a regular sequence, as shown in Table 3.III.

In heavily doped silicon and germanium (containing approximately 10^{19} carriers $/ \mathrm{cm}^{3}$), the specific heat of free carriers has been observed. ${ }^{22}$ In these specimens, the impurity states overlap the conduction or valence band, so that free carriers are present even without thermal activation. The specific heat at low temperatures is of the form $C=\beta T^{3}+\gamma T$ [equation (3.9)], as in a metal. The value of the

Table 3.III. Values of θ for Semiconductors with Diamond-Type Crystal Structure

	Material				
	Diamond	Si	Ge	Sn(grey)	InSb
$\theta(\operatorname{deg} K)$	2200	636	360	212	200

effective mass m^{*} calculated from the values of γ agrees well with the effective mass derived from measurements of cyclotron resonance.

While on the subject of semiconductors, it is appropriate to point out that the use of semiconductors (in particular, commercial carbon radio resistors and suitably doped germanium crystals) as thermometers has greatly facilitated calorimetric measurements at low temperatures. Nowadays, almost all workers dealing with the liquid-helium range use such semiconducting thermometers for ease of operation and accuracy of thermometry.

3.8. PHENOMENON OF SUPERCONDUCTIVITY

In 1911, Kamerlingh Onnes discovered superconductivity in mercury. The electrical resistance of the substance, which was gradually decreasing as the temperature was lowered from room temperature (Fig. 3.12a), abruptly became immeasurably small at $4.2^{\circ} \mathrm{K}$. Experiments showed that in the superconductive state below T_{c} the resistance is for all practical purposes equal to zero. Another fundamental property of superconductors, namely, perfect diamagnetism, was discovered by Meissner and Ochsenfeld in 1933. If placed in a small magnetic field, the superconductor completely expels the magnetic flux from its inside (Fig. 3.12b). This perfect diamagnetism as well as the perfect conductivity are destroyed if the magnetic field H is increased beyond a critical value H_{c}. For many common superconductors, mercury, lead, tin, vanadium, cadmium, tantalum, etc., the dependence of H_{c} upon temperature is approximately of the form

$$
\begin{equation*}
H_{c}=H_{0}\left[1-\left(\frac{T}{T_{c}}\right)^{2}\right] \tag{3.11}
\end{equation*}
$$

Detailed studies show, however, that the magnetic field penetrates the surface layers to a depth of about $10^{-4} \mathrm{~cm}$. Further, the critical field H_{c} and the critical temperature T_{c} depend upon the purity and perfection of the specimen. If a suitable magnetic field is applied to a spherical specimen, some layers of the specimen become normal, while some remain superconductive, resulting in what is known as the intermediate state. Superconductors exhibit other special electrodynamic and transport properties. These matters belong to the special texts on the subject. ${ }^{23}$ For the present simple discussion of specific heats, an idealized sharp transition at $\left(H_{c}, T\right)$ may be assumed and demagnetization effects dependent upon the shape of the specimen may be neglected.

In the following chapter it will be shown that in many magnetic problems H behaves in the same way as P in ordinary thermodynamic

Temperature \rightarrow
Fig. 3.12. (a) Temperature variation of resistance, showing sudden infinite conductivity at superconducting transition T_{c}. (b) Meissner effect. Magnetic flux is expelled by a superconductor. (c) $H-T$ phase diagram of a superconductor.
considerations. It is therefore natural to represent the equilibrium between the normal and superconductive states as a curve in the $H-T$ plane (Fig. 3.12c) which separates the two phases. If G_{s} is the Gibbs' free energy of the superconductive phase at zero field, its value at a field H is $G_{s}-\frac{1}{2} M H$ (see Chapter 4), where because of perfect diamagnetism the moment induced per unit volume is $M / V=-H / 4 \pi$. On the equilibrium curve, the free energies of both phases must be equal, and so

$$
\begin{equation*}
G_{n}-G_{s}=\frac{H_{c}^{2}}{8 \pi} V \tag{3.12}
\end{equation*}
$$

Since $S=-\partial G / \partial T$, the entropy difference is

$$
\begin{equation*}
S_{n}-S_{s}=-\frac{H_{c} V}{4 \pi} \frac{\partial H_{c}}{\partial T} \tag{3.13}
\end{equation*}
$$

The temperature variation of H_{c}, given by equation (3.11), shows that $\partial H_{c} / \partial T$ is always negative, and hence $S_{s} \leqslant S_{n}$; that is, the superconductive state is more ordered than the normal state. The entropy difference vanishes at $T_{c}\left(H_{c}=0\right.$ at $\left.T=T_{c}\right)$ and at $0^{\circ} \mathrm{K}\left(\partial H_{c} / \partial T=0\right.$ at $T \rightarrow 0$). At an intermediate temperature, about $0.3 T_{c}, S_{n}-S_{s}$ reaches a maximum. $S=0$ at $T \rightarrow 0$, it will be recalled, is in consonance with the third law of thermodynamics. $S=0$ at $T=T_{c}$ implies that in the transition at zero field, no latent heat is involved. (This is an example of a phase change of the second order to be discussed in Section 8.1.) At intermediate temperatures, the liberated latent heat L is equal to

$$
\begin{equation*}
L=-T \frac{H_{c} V}{4 \pi} \frac{\partial H_{c}}{\partial T} \tag{3.14}
\end{equation*}
$$

which agrees well with the experiments.
The entropy difference (3.13) shows that there is a difference between the heat capacities of the superconductive and normal phases:

$$
\begin{equation*}
C_{n}-C_{s}=T \frac{\partial}{\partial T}\left(S_{n}-S_{s}\right)=-\frac{T V}{4 \pi}\left[H_{c} \frac{\partial^{2} H_{c}}{\partial T^{2}}+\left(\frac{\partial H_{c}}{\partial T}\right)^{2}\right] \tag{3.15}
\end{equation*}
$$

At the transition temperature, there is an abrupt jump in the specific heats

$$
\begin{equation*}
\left(C_{n}-C_{s}\right)_{T_{c}}=-\frac{T_{c} V}{4 \pi}\left(\frac{\partial H_{c}}{\partial T}\right)^{2} \tag{3.16}
\end{equation*}
$$

a relation often called Rutger's relation. Near T_{c}, the superconductive phase has a higher specific heat than the normal state, whereas at very low temperatures the normal phase has a higher heat capacity. At a temperature where the magnitude of ΔS is maximum, C_{n} and C_{s} are equal.

The above formulas are strictly valid only when the magnetic field destroying the superconductivity is along the axis of a long cylindrical specimen. For other orientations and shapes, an intermediate state must be considered. It was shown by Peierls that the specific heat then exhibits two discontinuities, a sharp rise and a sharp fall, marking the beginning and the end of the intermediate state. ${ }^{24}$ For the sake of simplicity, these calculations are not worked out here.

3.9. SPECIFIC HEAT OF SUPERCONDUCTORS

The measurements of specific heat made immediately after the discovery of superconductivity showed no striking difference between C_{n} and C_{s}. With improvements in thermometry, Keesom and Van

Fig. 3.13. Typical variation of heat capacities in the superconductive and normal states (vanadium ${ }^{25}$).
den Ende discovered the discontinuity [equation (3.16)] in the specific heat of tin at the superconducting transition. A typical variation of specific heat, shown in Fig. 3.13, brings out the characteristic features: C_{n} is greater than C_{s} at very low temperatures, C_{s} overtakes C_{n} as the transition is approached, and a sharp discontinuity occurs at T_{c}.

If the $H_{c}-T$ threshold curve is known completely, equation (3.15) enables $C_{n}-C_{s}$ to be calculated. In general, the calculation involves a double differentiation of the $H_{c}-T$ curve and is therefore not very accurate. At T_{c}, however, only the first derivative is needed, and a test of the thermodynamic relation (3.16) is possible. The measured values of $\left(C_{s}-C_{n}\right)_{T_{c}}$ in the carefully studied cases of indium, tin, and tantalum are $\mathrm{In}=9.75, \mathrm{Sn}=10.6, \mathrm{Ta}=41.5 \mathrm{~mJ} / \mathrm{mole} \cdot \mathrm{deg}$, while the values calculated from the threshold curves are $\mathrm{In}=9.62, \mathrm{Sn}=10.56$, $\mathrm{Ta}=41.6$, showing excellent agreement. In some cases, especially with alloys, discrepancies arising from a different cause are found (Section 3.10). In most cases, the experimental confirmation of the thermodynamic relations is good.

Besides the simple relation given in Section 3.8, a somewhat more involved relation connecting the coefficients of thermal expansion and the compressibility of the two phases may be derived by taking the higher derivatives of equation (3.12) with respect to p and T (see Ehrenfest relations in Section 8.1). There are many experimental difficulties in confirming these relations, but, on the whole, reasonable agreement is found. ${ }^{23}$

Thermodynamics by itself does not give any further information on the variation of C_{s}, C_{n} with T. In general, the observed specific heat may be separated into lattice and electronic contributions $C_{n}=C_{g n}+C_{e n}, C_{s}=C_{g s}+C_{e s}$. In the normal state, equation (3.9) shows that $C_{g n}=\beta T^{3}, C_{e n}=\gamma T$ at low temperatures. Now, in the superconducting transition, no structural changes are observed in the lattice, and the elastic properties are changed only minutely. Therefore, it is reasonable to assume that the lattice part of C_{s} and C_{n} are equal, so that

$$
\begin{equation*}
C_{n}-C_{s}=C_{e n}-C_{e s} \tag{3.17}
\end{equation*}
$$

By such an analysis, $C_{\text {es }}$ may be calculated; in many cases, it is approximately proportional to T^{3}. This variation is indeed compatible with equations (3.11) and (3.15). From them, it follows that

$$
\begin{equation*}
C_{n}-C_{s}=C_{e n}-C_{e s}=\frac{H_{0}^{2} V}{2 \pi T_{c}^{2}} T\left[1-3\left(\frac{T}{T_{c}}\right)^{2}\right] \tag{3.18}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\gamma & =\frac{H_{0}^{2} V}{2 \pi T_{c}^{2}} \tag{3.19}\\
C_{e s} & =\left(\frac{3 H_{0}^{2} V}{2 \pi T_{c}^{4}}\right) T^{3} \tag{3.20}\\
\left(C_{s}-C_{n}\right)_{T_{c}} & =2 \gamma T_{c} \tag{3.21}
\end{align*}
$$

These relations [equations (3.18 to 3.21)] suggest several methods of finding γ, the coefficient of electronic specific heat in the normal state, from the magnetic threshold curves. Actual computations ${ }^{26}$ show that γ calculated in this manner from magnetic measurements agrees well with the calorimetric determinations. Such a comparison depends upon the assumed T^{3}-variation of $C_{e s}$ or the equivalent parabolic variation of H_{c}. Without invoking this, but assuming that $C_{e s}$ contains no term linear in T, it follows from equation (3.17) that

$$
\begin{equation*}
\lim _{T \rightarrow 0} \frac{C_{n}-C_{s}}{T}=\gamma \tag{3.22}
\end{equation*}
$$

The advantage of this procedure in not assuming the parabolic temperature dependence of H_{c} is to some extent countered by the need for making magnetic measurements down to very low temperatures. Where this has been done, the relation (3.22) is found to be obeyed very well.

While all these results show the internal consistency in the application of thermodynamic relations to superconductors, they do not throw much light on the microscopic mechanism of superconductivity. Very accurate measurements of $C_{e s}$ made since 1954 have revealed that at low temperatures it varies as

$$
\begin{equation*}
C_{e s} \approx a e^{-b / T} \tag{3.23}
\end{equation*}
$$

A typical result based on one of the early measurements is shown in Fig. 3.14. Departures from a T^{3}-law occur at very low temperatures, and thus probably escaped notice in the experiments made earlier. Similar small deviations of the $H_{c}-T$ curve from the parabolic law were also observed. By analogy to the studies of Einstein's model of lattice vibrations (Section 2.4), the Schottky peak in paramagnetic salts (Section 4.9), and the roton specific heat in liquid helium II (Section 5.4), it may be inferred that such an exponential variation

Fig. 3.14. Variation of $C_{e s}$ in vanadium. ${ }^{25}$
of the specific heat is characteristic of the presence of an energy gap separating the normal and superconducting electrons.

In 1950, it was also found that the transition temperature T_{c} depended on the isotopic mass M of the atom, $T_{c} \sim \alpha M^{-1 / 2}$, which suggested that the interaction of the electrons with the lattice was somehow responsible for superconductivity. These ideas culminated in a satisfactory theory of simple superconductors by Bardeen, Cooper, and Schrieffer in 1957.

3.10. RECENT STUDIES

It is hardly possible here to do justice to the theoretical concepts underlying the Bardeen-Cooper-Schrieffer (BCS) theory, which has successfully correlated several effects discovered earlier and predicted new phenomena as well. The task is ameliorated by the existence of several texts. ${ }^{27}$ The theory shows that owing to the presence of virtual phonons, there is a tendency for the electrons to be correlated in pairs, called Cooper pairs. It requires an energy of approximately $k T_{c}$ to break up this correlation, and the presence of such pairs allows a dissipationless flow of electric current. We shall content ourselves with a brief exposition of how the specific-heat studies fit into the theory.

The fact that an exponential variation of $C_{e s}$ [equation (3.23)] indicates the presence of an energy gap is easily visualized from Section 4.9, where it is proved that if two energy levels are separated by a gap ε, the specific heat at low temperatures has a dominant term of the form $\exp (-\varepsilon / k T)$. The detailed calculations of the BCS theory yield

$$
\begin{align*}
\frac{C_{e s}}{\gamma T_{c}} & =8.5 \exp \frac{-1.44 T_{c}}{T} & & \text { for } 2.5<\frac{T_{c}}{T}<6 \tag{3.24}\\
& =26 \exp \frac{-1.62 T_{c}}{T} & & \text { for } 7<\frac{T_{c}}{T}<12
\end{align*}
$$

where the gap $2 \varepsilon_{0}$ is related to T_{c} by means of the relation

$$
\begin{equation*}
2 \varepsilon_{0}=3.52 k T_{c} \tag{3.25}
\end{equation*}
$$

The form of the specific-heat curves resemble equation (3.24) closely, and some values of $2 \varepsilon_{0} / k T_{c}$ determined by fitting this equation are given in Table 3.IV. For widely different metals, the values do cluster around the idealized 3.52 of the BCS model, which incidentally assumes the metal to be isotropic.

Another simple prediction of the theory is that

$$
\begin{equation*}
C_{e s}\left(T_{c}\right)=2.43 \gamma T_{c} \tag{3.26}
\end{equation*}
$$

Table 3.IV. Values of $2 \varepsilon_{0} / k T_{c}$ Obtained from $C_{e s}-T$ Curves

	Metal				
	In	Ta	Tl	Sn	V
$\frac{2 \varepsilon_{0}}{k T_{c}}$	3.9	3.6	3.2	3.6	3.6

analogous to equation (3.21). A few values shown in Table 3.V show that many metals do not deviate much from this equation. Considering the simplicity of the model chosen for analysis and the wide variety of phenomena explained by it, the BCS theory must surely be considered as a significant advance toward the elucidation of a very complicated physical phenomenon.

Earlier, it was mentioned that the thermodynamic relations (3.12) to (3.16) are not very well satisfied for many alloys. Recent studies have shown that superconductors must be broadly divided into two categories. The superconductors of the first kind exhibit complete Meissner diamagnetism and seem to obey the thermodynamic relations derived for them. The BCS model explains their behavior reasonably well. Superconductors of the second kind do not exhibit the full Meissner effect. As shown in Fig. 3.15b, the magnetic field begins to penetrate the specimen at a lower critical field $H_{c 1}$, but the last traces of superconductivity are destroyed only at a much higher field $H_{c 2}$. Thus, type II superconductors show even in longitudinal magnetic fields the characteristics similar to the intermediate state of an ordinary type I superconductor. Following some earlier suggestions by Ginzburg and Landau, Abrikosov showed that the mixed state between $H_{c 1}$ and $H_{c 2}$ of a type II superconductor may be considered as a bundle of normal filaments in a superconductive medium. The filaments, or fluxoids, which are the magnetic analogs of hydrodynamic vortices, have special quantum properties and may also be pinned down by dislocations and other defects in the solid. Therefore,

Table 3.V. Values of $C_{e s}$ at T_{c}

	Metal					
	Hg	Sn	Al	Ta	Zn	Tl
$\frac{C_{e s}\left(T_{c}\right)}{\gamma T_{c}}$	3.18	2.60	2.60	2.58	2.25	2.15

Fig. 3.15. (a) Expulsion of flux in a superconductor of the first kind up to a critical field H_{c}. (b) Incomplete Meissner effect in a superconductor of the second kind. Flux penetration begins at $H_{c 1}$ and is complete at $H_{c 2}$.
the model allows the irreversibility of magnetization observed in type II superconductors. Further, the magnetization measurements do not have the same simple relationship to the measurement of electrical resistivity, as in type I superconductors. Many alloys are type II superconductors, and obviously the simple relations derived in Section 3.8 have to be generalized suitably. ${ }^{28}$ Indeed, careful measurements on ideal type II superconductors, clearly exhibiting the specific-heat singularities at the transitions, are only now available. ${ }^{29}$ The theory of Ginzburg and Landau, developed by Abrikosov and Gor'kov, explains many features of the behavior of type II superconductors, which are gaining technical importance in the generation of high magnetic fields. These matters are taken up at length in some recent reviews of the field. ${ }^{27,30}$

REFERENCES

1. J. L. Olsen, Electron Transport in Metals, Interscience, New York, 1962.
2. M. Born, Atomic Physics, Blackie, London, 1962, chapter 8. D. ter Haar, Elements of Statistical Mechanics, Rinehart, New York, 1954, chapter 4.
3. C. Kittel, Solid State Physics, Wiley, New York, 1956, chapters 11 and 13. A. J. Dekker, Solid State Physics, Prentice-Hall, New York, 1957, chapters 10 and 13. L. V. Azaroff and J. J. Brophy, Electronic Processes in Materials, McGraw-Hill, New York, 1963, chapters 7, 8, and 10.
4. J. M. Ziman, Contemp. Phys. 3, 241, 321, 401 (1962); 4, 1, 81 (1963).
5. W. A. Harrison and M. B. Webb (editors), The Fermi Surface, Wiley, New York, 1960.
6. E. C. Stoner, Phil. Mag. 21, 145 (1936).
7. R. E. Gaumer and C. V. Heer, Phys. Rev. 118, 955 (1960).
8. D. H. Parkinson, Rept. Progr. Phys. 21, 226 (1958).
9. J. G. Daunt, Progr. Low Temp. Phys. 1, 202 (1955).
10. P. H. Keesom and N. Pearlman, Handbuch der Physik, XIV(I), 282 (1956).
11. D. Pines, Solid State Phys. 1, 367 (1955). S. Raimes, Rept. Progr. Phys. 20, 1 (1957).
12. G. V. Chester, Advan. Phys. 10, 357 (1961).
13. P. L. Taylor, Phys. Rev. 131, 1995 (1963). S. K. Koenig, Phys. Rev. 135, A 1693 (1964).
14. N. F. Mott, Rept. Progr. Phys. 25, 218 (1962); Advan. Phys. 13, 325 (1964).
15. W. H. Lien and N. E. Phillips, Phys. Rev. 133, A1370 (1964).
16. W. Hume-Rothery, Electrons, Atoms, Metals, and Alloys, Iliffe, London, 1955, chapter 29.
17. F. E. Hoare, in: Electronic Structure and Alloy Chemistry of Transition Elements, P. A. Beck (ed.), Interscience, New York, 1963, p. 29.
18. G. J. van den Berg, Progr. Low Temp. Phys. 4, 194 (1964).
19. J. E. Zimmerman and F. E. Hoare, J. Phys. Chem. Solids 17, 52 (1960). J. E. Zimmerman and H. Sato, J. Phys. Chem. Solids 21, 71 (1961). J. P. Franck, F. D. Manchester, and D. L. Martin, Proc. Roy. Soc. (London), Ser. A 263, 494 (1961).
20. A. W. Overhauser, J. Phys. Chem. Solids 13, 71 (1960). W. Marshall, Phys. Rev. 118, 1519 (1960). K. P. Gupta, C. H. Cheng, and P. A. Beck, J. Phys. Chem. Solids 25, 73 (1963).
21. V. A. Johnson and K. Lark-Horovitz, Progr. Low Temp. Phys. 2, 187 (1957).
22. P. H. Keesom and G. Seidel, Phys. Rev. 113, 33 (1959).
23. D. Shoenberg, Superconductivity, Cambridge University Press, Cambridge, 1952. E. A. Lynton, Superconductivity, Methuen, London, 1962.
24. D. C. Rorer, H. Meyer, and R. C. Richardson, Z. Naturforsch. 18a, 130 (1963).
25. W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler, Phys. Rev. 102, 656 (1956).
26. J. Eisenstein, Rev. Mod. Phys. 26, 277 (1954). B. Serin, Progr. Low Temp. Phys. 1, 138 (1955).
27. J. Bardeen and J. R. Schrieffer, Progr. Low Temp. Phys. 3, 170 (1961). J. M. Blatt, Theory of Superconductivity, Academic, New York, 1964. G. Rikayzen, Theory of Superconductivity, Interscience, New York, 1965. J. R. Schrieffer, Theory of Superconductivity, Benjamin, New York, 1965.
28. R. R. Hake (in press).
29. T. McConville and B. Serin, Phys. Rev. Letters 13, 365 (1964). B. B. Goodman, Phys. Letters 12, 6 (1964).
30. Proceedings of the IBM Conference on Superconductivity, IBM J. Res. Dev. 6, 1-125 (1962). Proceedings of the Colgate Conference on Superconductivity, Rev. Mod. Phys. 36, 1-331 (1964).

Chapter 4

Magnetic Contribution to Specific Heats

4.1. THERMODYNAMICS OF MAGNETIC MATERIALS

The behavior of magnetic materials at low temperatures is of widespread interest, be it in demagnetization techniques to produce very low temperatures or in the use of superconducting magnets. Therefore, it is worthwhile to consider the specific heats of magnetic materials separately. It is well known that the magnetic energy depends upon the operative magnetic field H, and so it is first necessary to inquire how the specific heat is defined for a system capable of magnetization.

For a simple fluid, the basic thermodynamic relation used in Chapter 1 was

$$
\begin{equation*}
T d S=d E+d W=d E+P d V \tag{4.1}
\end{equation*}
$$

If the fluid is magnetizable, a term $\mathbf{M} \cdot d \mathbf{H}$ must be added to $d W$ as the work done in changing the magnetic field. For simplicity, the scalar product $\mathbf{M} \cdot d \mathbf{H}$ may be replaced by $\mathbf{M d H}$ where M, the magnetic moment of the substance, is interpreted as the component of \mathbf{M} in the direction of \mathbf{H}. Then

$$
T d S=d E+P d V+M d H=d E^{\prime}+P d V-H d M
$$

where $E^{\prime}=E+M H$. It is somewhat arbitrary whether E or E^{\prime} is considered as the internal energy of the substance. This depends on whether the energy $M H$ arising from the simultaneous presence of the field and the body is included in the energy content of the field or of the body. In several cases, it is advantageous and logical ${ }^{1}$ to use E^{\prime} as the internal energy. Further, in the problems of interest here, the mechanical work $P d V$ may be neglected in comparison with the magnetic part $-H d M$. So the fundamental relation may be written as

$$
\begin{equation*}
T d S=d E^{\prime}-H d M \tag{4.2}
\end{equation*}
$$

A comparison of equations (4.1) and (4.2) shows immediately that all the relations derived in Chapter 1 may be taken over to the magnetic case simply by replacing P and V by H and $-M$, respectively. The principal magnetic heat capacities, C_{H} at constant field and C_{M} at constant magnetization, are

$$
\begin{equation*}
C_{H}=\left(\frac{d Q}{d T}\right)_{H}=T\left(\frac{\partial S}{\partial T}\right)_{H} \quad C_{M}=\left(\frac{d Q}{d T}\right)_{M}=T\left(\frac{\partial S}{\partial T}\right)_{M} \tag{4.3}
\end{equation*}
$$

The equations (1.12) and (1.14) between C_{p} and C_{v} are transformed into

$$
\begin{equation*}
C_{H}-C_{M}=-T\left(\frac{\partial H}{\partial T}\right)_{M}\left(\frac{\partial M}{\partial T}\right)_{H}=\frac{T(\partial M / \partial T)_{H}^{2}}{(\partial M / \partial H)_{T}} \tag{4.4}
\end{equation*}
$$

while the relation (1.16) giving the ratio of isothermal to adiabatic compressibility becomes

$$
\begin{equation*}
\frac{(\partial M / \partial H)_{T}}{(\partial M / \partial H)_{S}}=\frac{C_{H}}{C_{M}} \tag{4.5}
\end{equation*}
$$

In general, $(\partial M / \partial H)$ depends upon the shape of the body. For a long rod set parallel to H, the field H_{i} inside the body is the same as the outside field H, whereas for other orientations and shapes, appropriate coefficients of demagnetization have to be introduced. Assuming this to be done, the differential molar susceptibility χ may be introduced by the relation

$$
\begin{equation*}
\frac{\partial M}{\partial H}=\chi \tag{4.6}
\end{equation*}
$$

where M refers to the moment per mole.
The correspondence $C_{p} \leftrightarrow C_{H}$ and $C_{v} \leftrightarrow C_{M}$ suggests that C_{M} is the quantity of greater theoretical interest. This is true to some extent because in an "ideal" paramagnetic material, which obeys the relation $M=f(H / T), C_{M}$ is independent of the external field. A simple way of showing this is to write the magnetic analogs of equation (1.17), namely,

$$
\begin{equation*}
\left(\frac{\partial C_{M}}{\partial M}\right)_{T}=-T\left(\frac{\partial^{2} H}{\partial T^{2}}\right)_{M} \quad\left(\frac{\partial C_{H}}{\partial H}\right)_{T}=T\left(\frac{\partial^{2} M}{\partial T^{2}}\right)_{H} \tag{4.7}
\end{equation*}
$$

For an "ideal" paramagnet, $M=f(H / T)$ or $H=T f^{-1}(M)$. Therefore, $\left(\partial C_{M} / \partial M\right)_{T}=0$, whereas C_{H} depends upon H.

These relations concerning the magnetic contributions to the heat capacity and hence to the entropy of a substance are of importance in the process of adiabatic demagnetization. A full discussion of the question may be found in the many reviews on the subject. ${ }^{2}$

4.2. TYPES OF MAGNETIC BEHAVIOR ${ }^{3}$

The molecules of most materials have no permanent magnetic moments. Under such conditions, an applied field H induces a magnetic moment in the electronic system of the molecules which is in a direction opposite to that of H; this behavior is said to be diamagnetic. Diamagnetism is independent of temperature, and so it is of little interest in specific-heat studies. Some molecules, oxygen, for example, have elementary magnetic moments μ; at high temperatures, they are ordinarily oriented at random. On applying a magnetic field, there is a preferential orientation of the moments along H, resulting in a magnetization parallel to H (paramagnetic behavior). At low temperatures, an ordered arrangement of the elementary magnets is possible. This ordering process was attributed phenomenologically to internal magnetic fields by Weiss in 1907, but in 1928 Heisenberg showed that it is due to the quantum-mechanical exchange interaction between neighboring electrons. An ordered state with parallel spins and therefore parallel magnetic moments (Fig. 4.1b) produces a large spontaneous magnetization even in the absence of H. In this ferromagnetic state, M becomes a nonlinear function of H and hysteresis effects are also present.

The exchange interaction is able to overcome the thermal randomization of the spins at a sufficiently low temperature. The Curie temperature T_{c}, below which the spins become ordered, is as high as $1080^{\circ} \mathrm{K}$ for iron and less than $1^{\circ} \mathrm{K}$ for some alums. However, the ordered state need not always be ferromagnetic, as was shown by Néel. In some cases, the adjacent spins may be aligned antiparallel (Fig. 4.1c). In this antiferromagnetic state there is no net spontaneous magnetization, but hysteresis is present and the susceptibility shows a sharp maximum at the transition temperature (Néel point). In a few cases, alternate magnetic moments are unequal and become arranged with adjacent spins antiparallel (Fig. 4.1d). This ferrimagnetic state is macroscopically similar to a ferromagnetic state, but the substances-ferrites and garnets find important practical

Fig. 4.1. Schematic order-disorder state in a lattice of elementary magnets: (a) para-magnetism-disordered spins; (b) ferromagnetism-parallel spins; (c) antiferro-magnetism-adjacent spins antiparallel; (d) ferrimagnetism-adjacent unequal spins antiparallel.
applications-are poor conductors of electricity. Other types of ordering in which the spins are arranged along spirals are also possible (Section 7.6), and simple surveys of para-, ${ }^{4}$ ferro-, ${ }^{5}$ antiferro-, ${ }^{6}$ and ferrimagnetic ${ }^{7}$ states are available.

It is clear that, if the atoms or molecules of a substance possess permanent magnetic moments, the magnetic state depends very much upon the temperature, which means that interesting effects may be expected in the specific heats. In discussing them, it is convenient to start from the ordered state at low temperatures and then to pass on to the behavior as the temperature is raised.

4.3. SPIN WAVES-MAGNONS

The ideal ordered state described above exists only in the absence of thermal agitation. Taking first the case of ferromagnets, the spins at the lattice sites are aligned at $0^{\circ} \mathrm{K}$ along, say, Z so that the angular momentum $\hbar s$ is along Z. At a finite temperature, the spins at some sites j may be excited to higher energy states, i.e., point in other directions. Such distributions may be Fourier-analyzed into a set of waves. A spin wave may then be described as a sinusoidal disturbance of the spin system. The usefulness of describing a ferromagnet at finite temperatures as a superposition of spin waves was pointed out by Bloch in 1930. It permits a correlation of the various magnetic and other properties. A full description of the subject ${ }^{8}$ is outside the scope of the present work, and only a qualitative derivation ${ }^{9}$ of the spin wave spectrum in a ferromagnet can be given here. Unfortunately, this conceals some of the difficulties involved in the concept of spin waves, which are treated at length elsewhere. ${ }^{8}$

For simplicity, consider a linear ferromagnetic chain with a small field H_{0} along $-Z$. Then the spins will all be pointing up with angular momenta $\hbar s_{i}$ about Z. Further, $s_{i}=\mu_{i} / g \beta=\mu_{i} / \hbar \gamma$ where $\beta=h e / 4 \pi m c$ is the Bohr magneton, $\gamma=g e / 2 m c$ is the magnetomechanical ratio, and g is the Landé factor equal to approximately 2 in ferromagnets. Classically, at $0^{\circ} \mathrm{K}$ all the spins will precess in phase about Z at the Larmor frequency $\omega_{0}=\gamma H_{0}$. If now a spin wave is excited, the situation will be as shown in Fig. 4.2a. The spins are no longer in phase, and the phase angle between successive spins is equal to $q a$, where a is the lattice constant and $2 \pi / q$ is the wavelength.

In an effective field $H_{\text {eff }}$, each spin, because of its magnetic moment, will experience a torque $\mu_{i} \times \mathbf{H}_{\text {eff }}=\gamma \hbar s_{i} \times \mathbf{H}_{\text {eff }}$. This torque is equal to the time rate of change of angular momentum

$$
\frac{d\left(\hbar \mathbf{s}_{i}\right)}{d t}=\gamma \hbar \mathbf{s}_{i} \times \mathbf{H}_{\mathrm{eff}}
$$

Fig. 4.2. Classical picture of a spin wave q in a linear ferromagnetic chain.

The effective field is calculated from the Hamiltonian [compare equation (4.18)]

$$
\mathscr{H}_{i}=-g \beta \mathbf{s}_{i} \cdot\left(\mathbf{H}_{0}+\frac{2 J}{g \beta} \sum_{j} \mathbf{s}_{j}\right)=-g \beta \mathbf{s}_{i} \cdot \mathbf{H}_{\mathrm{eff}}
$$

where the sum Σ_{j} is over the two near neighbors and J is the quantummechanical exchange constant. Using this value of $\mathbf{H}_{\text {eff }}$,

$$
\begin{equation*}
\frac{d\left(\hbar \mathbf{s}_{i}\right)}{d t}=\gamma \hbar \mathbf{s}_{i} \times\left(H_{0}+\frac{2 J}{g \beta} \sum_{j} \mathbf{s}_{j}\right) \tag{4.8}
\end{equation*}
$$

If R is the amplitude of precession, $\mathbf{s}_{i} \times \mathbf{H}_{0}=s H_{0} \sin \left(s, H_{0}\right)=R H_{0}$. Figures 4.2 (a and b) shows that the resultant of $O P_{1}$ and $O P_{3}$ is $2 O Q$ where $P_{2} Q=\frac{1}{2} R q^{2} a^{2}$, and from Fig. 4.2c $\phi=\angle P_{2} O Q=\frac{1}{2} R q^{2} a^{2} s^{-1}$. Therefore, the right-hand side of equation (4.8) is equal to $\gamma \hbar\left[R H_{0}+(2 J / g \beta) s R q^{2} a^{2}\right]$. The left-hand side is $\hbar \omega^{\prime} R$, where ω^{\prime} is the angular velocity of precession, and so

$$
\omega^{\prime}=\gamma H_{0}+\frac{2 J}{g \beta} s q^{2} a^{2}
$$

The Larmor frequency of the spin system is γH_{0}, and the frequency of the spin wave itself is

$$
\begin{equation*}
\omega=\frac{2 J}{\hbar} s a^{2} q^{2} \tag{4.9}
\end{equation*}
$$

In a three-dimensional crystal, the same dispersion law $\omega \propto q^{2}$, first found by Bloch, is obeyed, and the general ferromagnetic spin
wave frequency may be taken as

$$
\begin{equation*}
\omega_{q}=\alpha_{f} \frac{2 J s a^{2}}{\hbar} q^{2} \tag{4.10}
\end{equation*}
$$

The constant α_{f} depends upon the details of the crystal structure and has been calculated in several practical cases. ${ }^{8}$ The same $\omega \propto q^{2}$ is also obeyed by the spin waves in a ferrimagnet. However, in antiferromagnets, special considerations come into play in defining the normal modes of disturbances. It was first shown by Hulthén that the spin-wave spectrum is given as

$$
\begin{equation*}
\omega_{q}=\alpha_{a} \frac{2 J^{\prime} s a^{2}}{\hbar} q \tag{4.11}
\end{equation*}
$$

where J^{\prime} is the magnitude of the exchange constant. The antiferromagnetic spectrum is linear in q, unlike the quadratic dependence in ferro- and ferrimagnets. To establish equation (4.11) would require a longer discussion than is warranted here, and so it suffices to mention the references to elementary ${ }^{9}$ and rigorous ${ }^{8}$ derivations.

It is interesting to compare the spin waves with the lattice waves analyzed in Chapter 2. At low frequencies, the normal modes of a lattice have a dispersion relation $\omega \propto q$, whereas the allowed modes in the spin system may be either $\omega \propto q^{2}$ as in ferromagnets or $\omega \propto q$ as in antiferromagnets. A set of mass points connected by elastic springs will form a model for lattice vibrations. A model for spin waves will be a set of arrows, each connected to its two neighbors by torsional springs. The angular displacement of a spin out of the line with its neighbors gives rise to a torque proportional to the excess displacement and tending to restore equilibrium. The analogy with lattice waves is actually very deep. The spin waves may be quantized into magnons, which play the same role in magnetic phenomena as phonons do in lattice dynamics. Magnons and phonons obey BoseEinstein statistics. These similarities have been very fruitful in the study of magnetic systems.

4.4. SPIN WAVE SPECIFIC HEATS

The fact that magnons obey Bose statistics allows easy calculation of the low-temperature thermal properties of magnetic materials. It was seen in Chapter 2 that at a temperature T the mean energy of a Bose oscillator of angular frequency ω is $\hbar \omega /[\exp (\hbar \omega / k T)-1]$ [equation (2.8a)] and that the number of energy states between momenta p and $p+d p$ is $\left(4 \pi V / h^{3}\right) p^{2} d p$ [equation (2.18)]. Using the dispersion relations (4.10) and (4.11), the specific-heat contributions at low temperatures can be easily derived.

Taking first ferro- and ferrimagnets, where $\omega \propto q^{2}$,

$$
\begin{align*}
E & =4 \pi V \int_{0} \frac{\left(2 \alpha_{f} J s a^{2} q^{2}\right) q^{2} d q}{\exp \left(2 \alpha_{f} J s a^{2} q^{2} / k T\right)-1} \\
& =4 \pi V\left(2 \alpha_{f} J s a^{2}\right)\left(\frac{k T}{2 \alpha_{f} J s a^{2}}\right)^{5 / 2} \int_{0} \frac{x^{4} d x}{e^{x^{2}}-1} \tag{4.12}
\end{align*}
$$

The upper limit of integration over q cannot be specified without detailed analysis, but at low temperatures the upper limit for x may be taken as infinity without serious error and the integral may be evaluated suitably. The specific heat now follows as

$$
\begin{equation*}
C_{M}=\frac{d E}{d T}=c_{f} N k\left(\frac{k T}{2 J S}\right)^{3 / 2} \tag{4.13}
\end{equation*}
$$

where the constant c_{f} has been calculated for several crystal structures. ${ }^{8}$ For example, $c_{f} \sim 0.113$ in a simple cubic arrangement of spins. Equation (4.13) is an important result, that at low temperatures the ferromagnetic contribution to specific heats is proportional to $T^{3 / 2}$. A similar $T^{3 / 2}$-variation is obeyed by the saturation magnetization of ferromagnets, for which the $T^{3 / 2}$ behavior had been observed for a long time. In specific heats, the measurement of spin wave contributions has been only recently successful.

In metals (Chapter 3), the conduction electrons give a specific heat proportional to T, the phonons give a T^{3}-term, and, if the above magnetic term is added, the low-temperature specific heat will be of the form

$$
C_{v}=\gamma T+\beta T^{3}+\delta T^{3 / 2}
$$

The temperature variation of the heat capacity will be dominated by the term with the lowest power of T, namely, the electronic term. With a few exceptions discovered recently, most ferromagnets are metallic; therefore, a clear resolution of the magnetic $T^{3 / 2}$-term is a matter of considerable experimental difficulty. Not surprisingly, the spin wave effects were not easily observed in the specific heats of ferromagnets, although the magnetic measurements had borne out the theoretical predictions. The situation is quite different in ferrimagnets. They are electrical insulators, and in the absence of free electrons the specific heat is of the form

$$
C_{v}=\beta T^{3}+\delta T^{3 / 2}
$$

At low temperatures, the spin wave is dominant, and a plot of $C T^{-3 / 2}$ against $T^{3 / 2}$ should be a straight line. The first such experiments

Fig. 4.3. Low-temperature specific heat of YIG showing the spin wave $T^{3 / 2}$ contribution. ${ }^{10}$
were made on magnetite $\mathrm{Fe}_{3} \mathrm{O}_{4}$ by Kouvel in 1956 ; since then, similar measurements have been made on several garnets, ferrites, and very recently on some ferromagnetic insulators. Figure 4.3 shows a typical result for yttrium iron garnet (YIG), with clear evidence for the $T^{3 / 2}$-term. ${ }^{10}$ The exchange constant J may also be obtained from various other experiments, such as magnetic resonance and neutron scattering. The agreement among the values of J is fair, when the large corrections for demagnetizing effects and anisotropy are taken into account.

Going now to the case of antiferromagnets, the dispersion relation $\omega=\alpha_{a}\left(2 J^{\prime} s a^{2} / \hbar\right) q$ means that

$$
\begin{aligned}
E & =4 \pi V \int_{0} \frac{2 \alpha_{a} J^{\prime} s a^{2} q^{3} d q}{\exp \left(2 \alpha_{a} J^{\prime} s a^{2} q / k T\right)-1} \\
& =4 \pi V\left(2 \alpha_{a} J^{\prime} s a^{2}\right)\left(\frac{k T}{2 \alpha_{a} J^{\prime} s a^{2}}\right)^{4} \int_{0} \frac{x^{3} d x}{e^{x}-1}
\end{aligned}
$$

Fig. 4.4. Heat capacity of MnCO_{3} (circles and thick lines) and CaCO_{3} (thin lines) showing antiferromagnetic contribution. ${ }^{11}$

At low temperatures, the upper limit for x may again be taken as infinity, and the specific heat becomes

$$
\begin{equation*}
C_{M}=c_{a} N k\left(\frac{k T}{2 J^{\prime} S}\right)^{3} \tag{4.14}
\end{equation*}
$$

The constant c_{a} has been calculated for several types of lattices. The T^{3} spin wave specific heat in antiferromagnets is strikingly different from the $T^{3 / 2}$-dependence in ferromagnets. The temperature dependence is of the same form as the lattice contribution in the Debye T^{3}-region. This makes an experimental separation of the spin wave and lattice specific heats almost impossible in metals and very difficult in nonmetallic antiferromagnets. In the carbonates of manganese and cobalt, the antiferromagnetic T^{3}-contribution is about ten to twenty times larger than the lattice term, as may be seen in Fig. 4.4, where the specific heat of MnCO_{3} is compared with that of CaCO_{3}, which has no magnetic contribution. ${ }^{11}$ The experimental values agree very well with those calculated from magnetic measurements.

It must be added that the spin wave specific-heat relations (4.13) and (4.14) hold good at moderate temperatures only. At very low
temperatures, some of the approximations made above are not valid and the specific heat may decrease exponentially. At high temperatures, interactions among magnons give rise to other terms, as shown in detail by Dyson, and the simple spin wave picture is no longer very useful. For the sake of simplicity, these details ${ }^{8}$ are left out here.

4.5. THE WEISS MODEL FOR MAGNETIC ORDERING

As mentioned earlier, the ordered ferro-, ferri-, or antiferromagnetic states go over into the paramagnetic state at sufficiently high temperatures. The change in the magnetic properties is accompanied by a sharp peak in the specific-heat curve at T_{c}. Figure 4.5 shows the typical example of nickel. The magnetic contribution C_{M} is obtained by subtracting the lattice and electronic terms from the total C_{v}. The behavior near T_{c} is typical of a general class of cooperative transitions, which will be discussed at length in Chapter 7.

Historically, it was Weiss who in 1907 gave a simple explanation of ferromagnetism. A few years earlier, Langevin had shown that the

Fig. 4.5. Heat capacity of nickel (in cal/g-atom $\cdot \mathrm{deg}$) showing the magnetic contribution C_{M} besides lattice and electronic terms.
competition between the magnetic field \mathbf{H} tending to align the elementary magnets μ and the thermal agitation causing a random arrangement results in a net magnetization of the form

$$
\begin{equation*}
M=N \mu \tanh \left(\frac{\mu H}{k T}\right) \tag{4.15}
\end{equation*}
$$

Langevin's theory explained many aspects of paramagnetic behaviorin particular, Curie's law, that the susceptibility varies as $1 / T$, arises because for ordinary fields and temperatures $\mu H / k T \ll 1$. Weiss suggested that because of the magnetization of the other parts of a solid there is an internal magnetic field αM (α a constant) and that the effective field acting on the elementary dipoles is

$$
H_{\mathrm{eff}}=H_{\mathrm{ext}}+\alpha M
$$

Substitution of $H_{\text {eff }}$ in place of H in equation (4.15) shows that even in the absence of an external field $H_{\text {ext }}$ there is a spontaneous magnetization given by the implicit equation

$$
\begin{equation*}
M_{s}=N \mu \tanh \left(\frac{M_{s} T_{c}}{N \mu T}\right) \tag{4.16}
\end{equation*}
$$

where $T_{c}=\alpha N \mu^{2} / k$. This is the ferromagnetic state. Weiss's theory also explained hysteresis and other features of $M-H_{\text {ext }}$ curves. For many metals, equation (4.16) satisfactorily describes the variation of M_{s} with T, except very near the transition temperature T_{c}. The moment μ comes out to be equal to the Bohr magneton he $/ 4 \pi m c$, showing that ferromagnetism is due to the magnetic moment of electrons. [As a matter of fact, equation (4.15) is the quantummechanical expression for particles of spin $\frac{1}{2} \hbar$.]

The energy of magnetization in the absence of $H_{\text {ext }}$ is

$$
E_{M}=-\int_{0}^{M} H_{\mathrm{int}} d M=-\frac{1}{2} \alpha M^{2}
$$

and so the magnetic contribution to specific heat is

$$
\begin{equation*}
C_{M}=-\frac{1}{2} \alpha \frac{d M^{2}}{d T} \tag{4.17}
\end{equation*}
$$

The magnetic specific heat given by the Weiss model is shown in Fig. 4.6. C_{M} steadily increases from zero at $T=0$ to a maximum $\frac{3}{2} R$ at $T=T_{c}$. This maximum is followed by a discontinuous drop to $C_{M}=0$ in the paramagnetic state $T>T_{c}$. No latent heat is liberated at T_{c}, and the transition in the Weiss model is a phase change of the second order (see Section 8.1).

Fig. 4.6. Schematic variation of magnetic heat capacity near T_{c} in the Weiss model (full line) and in statistical theories (broken lines).

The experimental values of C_{M}, as seen in Figs. 4.4 and 4.5, follow the general trend in being small at low temperatures and beginning to rise as T_{c} is approached. Near T_{c}, there is not even qualitative agreement with the above theory. C_{M} often rises to a value much higher than the predicted maximum; furthermore, the specific-heat curve has a "tail" above the transition. C_{M} decreases sharply, no doubt, but instead of falling abruptly to zero it lingers on for a considerable range of temperatures before becoming immeasurably small.

The phenomenological theory may be suitably modified to give a small "tail" to the specific-heat curve, ${ }^{12}$ but the agreement is not very much improved. It is generally believed that an explanation of the behavior of ferro- and antiferromagnets near T_{c} belongs to the realm of proper statistical theories.

4.6. THE HEISENBERG AND ISING MODELS

Very soon after the development of quantum mechanics, Heisenberg (in 1928) gave an explanation of the origin of Weiss's internal magnetic fields, whose large magnitudes of around $10^{5} \mathrm{Oe}$ remained puzzling. On account of the Pauli exclusion principle, two electrons with spins $\mathbf{s}_{1}, \mathbf{s}_{2}$ have an interaction energy of the form $-2 J \mathbf{s}_{1} \cdot \mathbf{s}_{2}$, where the exchange integral J is a function of distance. For large separations of the electrons, J is very small, but for spacings of the
order of a few Ångstroms the exchange energy becomes large enough to be comparable to chemical binding energies. Thus, if the energy were written in terms of the electronic magnetic moments μ, it would be of the same form and magnitude as the internal magnetic energy in the Weiss model, even though it is basically electrostatic in origin. If J were positive, a parallel (ferromagnetic) alignment of spins would be favored, while a negative J results in antiparallel alignment.

The statistical theory of magnetic systems thus involves the calculation of the partition function $\Sigma \exp \left(-E_{r} / k T\right)$ of the system. With the general form of the exchange interaction, the calculations are so prohibitively complicated that it is normal to make two stages of approximations. The Heisenberg model assumes that, since J falls off rapidly with increasing distance, it is enough to take the interactions as extending only to the nearest neighbors. Thus the energy of the system in this model is

$$
\begin{equation*}
E(\text { Heisenberg })=-2 J \sum_{i, j} \mathbf{s}_{i} \cdot \mathbf{s}_{j}-\mu \mathbf{H} \cdot \sum_{i} \mathbf{s}_{i} \tag{4.18}
\end{equation*}
$$

where Σ is over all pairs of direct neighbors. This model has been quite successful in explaining, for example, the spin waves at low temperatures (Section 4.3). However, even this approximation involves formidable difficulties, so that in many statistical problems a further simplification is commonly used, though the model was introduced slightly earlier by Ising. In the Ising model, the scalar product $\mathbf{s}_{i} \cdot \mathbf{s}_{j}$ is replaced by $s_{i z} s_{j z}$ on the basis that if Z is the direction of alignment, the expectation value of \mathbf{s} in X, Y directions is zero. Then

$$
\begin{equation*}
E(\text { Ising })=-2 J \sum_{i, j} s_{i z} s_{j z}-\mu H \sum_{i} s_{i z} \tag{4.19}
\end{equation*}
$$

where Σ is again over pairs of adjacent neighbors.
The Ising model is a scalar problem in that it deprives magnetism of its intimate connection with the angular momentum of electrons. Further, it does not admit a spin wave picture at low temperatures. Hence, it may be considered a poor model for magnetic studies. However, near or above T_{c}, the statistical enumeration of the states, which is correctly taken into account, assumes dominant importance in the thermodynamic and other properties of the system. Therefore, a large amount of theoretical work has been done on the behavior of the simple Ising model near T_{c}, where its deficiencies are unimportant. There are two reasons for the great interest in the field: In the first place, the Ising and Heisenberg models furnish instructive theoretical schemes not only for magnetic transitions but also for other cooperative transformations, which will be discussed in Chapter 7. The Ising model is the simplest one which appears to reproduce many of the
features observed experimentally. Secondly, the general problem for a three-dimensional solid has remained so far an unsolved challenge. The exact solution for a two-dimensional Ising model was given by Onsager in 1944, but even this is a remarkable tour de force to be savored only by professional theoreticians. ${ }^{13}$

It is now superfluous to add that the solutions of the Heisenberg and Ising models, even in their approximate form, are far too sophisticated to be reproduced here. As regards the specific heat, which is the prime concern in this text, the two-dimensional Ising lattice exhibits a logarithmic singularity:

$$
\begin{align*}
C_{M} & \approx A \log \left(T-T_{c}\right) \ldots & & T>T_{c} \tag{4.20}\\
& \approx B \log \left(T_{c}-T\right) \ldots & & T<T_{c}
\end{align*}
$$

where the constants A, B have been calculated for several lattices. In a three-dimensional case, such exact relations are not yet available, and various approximate calculations have been made. The nature of the singularity, whether an inverse power of $\left|T-T_{c}\right|$ or logarithmic in $\left|T-T_{c}\right|$, cannot be described with certainty, although for a diamondtype Ising lattice the approximations have been carried sufficiently far to suggest a logarithmic infinity in specific heat below the ferromagnetic transition. ${ }^{14}$ To be fair, it must be mentioned that a logarithmic singularity at the cooperative transition had been revealed by calorimetric measurements performed somewhat earlier (Figs. 4.9 and 5.5). Above T_{c} the experiments can be fitted to a logarithmic term in some cases and to a power law singularity in others. ${ }^{14 a}$

It is also possible to estimate the ferromagnetic transition temperature T_{c}, as well as the magnetic part of the entropy S and internal energy E that are removed at the transition. For a fcc lattice, the values are

$$
\begin{array}{rcc}
2 k T_{c} / \mathrm{z} J & 0.68 & 0.82 \\
\left(S_{\propto}-S_{c}\right) / k & 0.27 & 0.10 \tag{4.21}\\
\left(E_{\propto}-E_{c}\right) / k T_{c} & 0.44 & 0.15
\end{array}
$$

Here z is the number of nearest neighbors and J is the exchange constant. The values are for spin $\frac{1}{2}$, and the first column refers to the Heisenberg model and the second to the Ising model. The entropy values show that the Heisenberg model has a larger tail on the hightemperature side than the Ising model. For bcc or other types of lattices, the constants in (4.21) are slightly different. Similar small variations arise for spins greater than $\frac{1}{2}$. In particular, the specific
heat on the high-temperature side rises more rapidly for larger spins. Antiferromagnetic transitions may be studied similarly, but calculations are scanty. A schematıc variation oî the specifl híât ñã \boldsymbol{T}_{c} is shown in Fig. 4.6.

In contrast to these approximate values, which depend upon the model chosen for calculations, a very general result may be given for the total magnetic entropy S_{M}. It is well known that a particle with spin $s \hbar$ has $2 s+1$ quantized orientations. In a field H, the levels have slightly different energies, but in the absence of H the energies are all equal and there is a $2 s+1$ degeneracy in the state of the system. The entropy corresponding to this is $k \ln (2 s+1)$ per particle, which is the entropy that comes into play here. The rule

$$
\begin{equation*}
S_{M}=R \ln (2 s+1) \text { per mole } \tag{4.22}
\end{equation*}
$$

has been verified in many cases. ${ }^{15}$ Only a small part of this entropy is removed as the substance is cooled to T_{c} from a high temperature. This percentage is slightly larger in a Heisenberg model with its larger tail above T_{c}. Most of the ordering takes place below the transition.

4.7. SPECIFIC HEATS NEAR THE TRANSITION TEMPERATURE

It is only recently that careful experimental studies have been made to check the various predictions of the statistical theories; on the whole, reasonable agreement is found. ${ }^{16}$ As an example of ferromagnets, the complete magnetic and calorimetric studies ${ }^{17}$ on copper ammonium and copper potassium chlorides, $\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cl}_{4}$. $2 \mathrm{H}_{2} \mathrm{O}\left(T_{c}=0.70^{\circ} \mathrm{K}\right)$ and $\mathrm{CuK}_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(T_{c}=0.88^{\circ} \mathrm{K}\right)$, may be considered. Below about $0.5 T_{c}$, the specific heat follows the variation given by this spin wave theory (Section 4.3). For the ammonium salt, the exchange constant J / k given by the spin wave variation is about $0.28^{\circ} \mathrm{K}$, compared to the values of approximately $0.30^{\circ} \mathrm{K}$ calculated from the Curie-Weiss constant and approximately $0.29^{\circ} \mathrm{K}$ derived from the behavior of the specific heat in the paramagnetic state $T>T_{c}$. Near T_{c}, the statistical theory suggests that the specific heat is a function of T / T_{c} only; Fig. 4.7 shows how closely this is verified. (The lattice contribution is negligible at these low temperatures.) The entropy calculated from the full line has a value of $5.8 \mathrm{~J} / \mathrm{mole} \cdot \operatorname{deg} \mathrm{K}$, whereas the theoretical value for $s=\frac{1}{2}$ of Cu^{2+} ion is $R \ln 2=$ $5.76 \mathrm{~J} / \mathrm{mole} \cdot \operatorname{degK}$. Further, the authors obtain $2 k T_{c} / z J=0.75$, $\left(S_{\infty}-S_{c}\right) / k=0.22, \quad\left(E_{\infty}-E_{c}\right) / k T_{c}=0.38$. These values are in between the numbers given in (4.21), although the Heisenberg model gives a good explanation of the other properties of the substance. A part of the discrepancy may be due to the bcc structure of these salts,

Fig. 4.7. Heat capacity of $\mathrm{CuK}_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(T_{\mathrm{c}}=0.882^{\circ} \mathrm{K}\right.$, circles $)$ and $\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($T_{c}=0.704^{\circ} \mathrm{K}$, triangles) plotted as a function of $T / T_{c} .{ }^{16}$
whereas equation (4.21) refers to a fcc lattice. Support for this view is given by the fact that a Heisenberg model for a bcc lattice gives $2 k T_{c} / z J=0.72$, in much better agreement with the experiments.

Antiferromagnetic transitions are exemplified by the study ${ }^{18}$ of nickel and cobalt chlorides, $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(T_{N}=5.34^{\circ} \mathrm{K}\right), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($T_{N}=2.29^{\circ} \mathrm{K}$). The specific heat of the nickel salt is shown in Fig. 4.8, while that of the cobalt salt is similar except for the change in the Néel temperature. The lattice term, which is nearly the same in both salts, was found from the T^{3}-behavior of the lattice specific heat and the T^{-2}-variation of the paramagnetic specific heat at $T \gg T_{N}$ (compare Section 4.9). The magnetic specific heat is obtained by subtracting the lattice contribution from the total specific heat. Because of the influence of the crystalline electric field upon the electronic levels of the transition metal ions, one should expect $s=\frac{1}{2}$ for the cobaltous ion and $s=1$ for the nickelous ion. The magnetic entropy was equal to $9.13 \mathrm{~J} / \mathrm{mole} \cdot \operatorname{degK}$ for the nickel salt, which is within 1% of $R \ln 3$. That of cobaltous chloride was $5.80 \mathrm{~J} / \mathrm{mole} \cdot \operatorname{deg} \mathrm{K} \sim R \ln 2$. The exchange constant $|J| / k$ has a value of approximately $1.6^{\circ} \mathrm{K}$ for $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ if calculated from the total ordering energy and about $1.5^{\circ} \mathrm{K}$ if calculated from the Néel temperature. Of more interest is

Fig. 4.8. Heat capacity of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{18}$
the behavior of C_{M} found near T_{N} (Fig. 4.9). The data appear to suggest that the specific heat becomes logarithmically infinite at the Néel temperature. This singularity and the similar behavior found in liquid ${ }^{4} \mathrm{He}$ (Fig. 5.6) are of special interest because Onsager's solution for a two-dimensional cooperative transition shows a logarithmic infinity, while no firm predictions are as yet available for a threedimensional case.

4.8. PARAMAGNETIC RELAXATION

Specific-heat studies in paramagnetic salts are important in two respects. In the first place, the attainment of temperatures much lower than $1^{\circ} \mathrm{K}$ by adiabatic demagnetization techniques involves a thorough knowledge of the magnetic entropy which can be extracted from the system. Secondly, paramagnetic salts furnish an interesting class of specific-heat anomalies, namely, the Schottky peak. Before these matters are taken up in detail, it is convenient to discuss a special method of measuring specific heats which is very useful when they are not easily separated from the lattice contributions.

The method is based on paramagnetic relaxation, ${ }^{3,4}$ discovered by Gorter. If a magnetic field is applied to a paramagnetic salt, the internal energy of the system is changed. It is found that the time
taken for the transfer of the heat of magnetization from the dipoles to the crystal lattice (spin-lattice relaxation time) is much longer than the time needed for the establishment of thermal equilibrium among the dipoles themselves (spin-spin relaxation time). On suddenly changing H, the dipoles very quickly (in about $10^{-10} \mathrm{sec}$) follow the field, but the magnetic energy is given to the lattice only in a leisurely (of the order of $10^{-6} \mathrm{sec}$) fashion. Therefore, for any variation of H over a time long compared to the spin-spin relaxation time but short compared to the spin-lattice relaxation time, the dipoles are in equilibrium among themselves but do not exchange heat with the lattice. A measurement of the variation of M under such conditions gives the adiabatic susceptibility χ_{S}. The normal DC measurement yields the isothermal susceptibility χ_{T}. Equations (4.4) to (4.6) now show that

$$
\begin{equation*}
\frac{\chi_{T}}{\chi_{S}}=1+\frac{T(\partial M / \partial T)_{H}^{2}}{\chi_{T} C_{M}} \quad \text { or } \quad C_{M}=T\left(\frac{\partial M}{\partial T}\right)_{H}^{2} \frac{\chi_{S}}{\left(\chi_{T}-\chi_{S}\right) \chi_{T}} \tag{4.23}
\end{equation*}
$$

As pointed out first by Casimir, du Pre, and de Haas in 1938-1939, the lattice temperature is not changed during the measurement, and so the lattice specific heat does not enter the calculation.

Fig. 4.9. Plot of C_{M} versus $\log \left|T-T_{N}\right|$ for $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

By this technique it is possible to measure magnetic contributions to specific heats at liquid-nitrogen temperatures, where they may amount to only 10^{-6} of the total heat capacity of the salt. Since the spin-lattice relaxation time is about $10^{-6} \mathrm{sec}$ at these temperatures, the adiabatic susceptibility must be determined at radio frequencies. At liquid-helium temperatures the spin-lattice relaxation time is usually of the order of $10^{-3} \mathrm{sec}$ and audiofrequency measurements suffice. The details of the experimental techniques are thoroughly discussed by Benzie and Cooke. ${ }^{19}$ At very low temperatures ($\ll 1^{\circ} \mathrm{K}$), the heating produced in AC measurements is considerable, and direct calorimetry is preferred. At these temperatures, the lattice specific heat is so small that the entire specific heat measured calorimetrically may be taken as arising from magnetic effects. At higher temperatures, the paramagnetic relaxation technique is very useful, because the lattice and magnetic terms are nearly comparable and not easily separated out.

At very low temperatures, since the spin system can exist for an appreciable time without interacting with the lattice, it is advantageous in magnetic studies to attribute a separate (spin) temperature and specific heat to the spin system. Discussions of such nonequilibrium concepts can be found in the treatises on magnetic resonance and are not appropriate here.

4.9. SCHOTTKY EFFECT

It is well known that a particle with spin $s \hbar$ has $2 s+1$ possible orientations of the spin; in a magnetic field, the particle has a number of discrete energy levels. This spacing of the quantized energy levels is reflected in the specific heat in an interesting way. Consider for a moment a system with two levels, Δ apart. At $T \ll \Delta / k$, the upper level will scarcely be populated, whereas at $T \gg \Delta / k$ both levels will be nearly equally populated. Only at temperatures comparable to Δ / k will transitions from one level to another take place in appreciable amounts. This rapid change in the internal energy corresponds to a large specific heat which becomes zero at both high and low temperatures. Thus there is the intriguing possibility of a hump in C_{v}, which will in general be superimposed on the lattice and other contributions.

A general problem of this kind was considered by Schottky in 1922. Suppose there is a system in which the particles can exist in a group of m levels, separated from the ground state by energies $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}$ and with degeneracies $g_{1}, g_{2}, \ldots, g_{m}$. Using the Boltzmann factor $\exp (-\varepsilon / k T)$, the probability of a particle occupying the r th
level is

$$
\frac{g_{r} \exp \left(-\varepsilon_{r} / k T\right)}{\sum_{n} g_{r} \exp \left(-\varepsilon_{r} / k T\right)}
$$

With N independent particles in the system, the mean energy at a temperature T is

$$
\begin{equation*}
E=\frac{N \sum_{r=0}^{m} \varepsilon_{r} g_{r} \exp \left(-\varepsilon_{r} / k T\right)}{\sum_{r=0}^{m} g_{r} \exp \left(-\varepsilon_{r} / k T\right)} \tag{4.24}
\end{equation*}
$$

The specific heat is obtained by calculating $d E / d T$. The simple case of two levels illustrates all the features of such calculations. For a two-level system, equation (4.24) becomes

$$
E=\frac{N g_{1} \varepsilon_{1} \exp \left(-\varepsilon_{1} / k T\right)}{g_{0}+g_{1} \exp \left(-\varepsilon_{1} / k T\right)}
$$

and the Schottky specific heat is

$$
\begin{align*}
C_{\mathrm{Sch}} & =\frac{N \varepsilon_{1}^{2}}{k T^{2}} \frac{g_{0}}{g_{1}} \frac{\exp \left(\varepsilon_{1} / k T\right)}{\left[1+\left(g_{0} / g_{1}\right) \exp \left(\varepsilon_{1} / k T\right)\right]^{2}} \tag{4.25}\\
& =R\left(\frac{\delta}{T}\right)^{2} \frac{g_{0}}{g_{1}} \frac{\exp (\delta / T)}{\left[1+\left(g_{0} / g_{1}\right) \exp (\delta / T)\right]^{2}}
\end{align*}
$$

where $\delta=\varepsilon_{1} / k$ is the energy separation measured in $\operatorname{degK} . C_{\text {Sch }}$ is plotted in Fig. 4.10 for a few values of g_{1} / g_{0}.

The qualitative remarks made earlier about the behavior at low and high temperatures may now be made quantitative. From equation (4.25) it is easy to see that

$$
\begin{align*}
C_{\mathrm{Sch}} & =R\left(\frac{g_{1}}{g_{0}}\right)\left(\frac{\delta}{T}\right)^{2} \exp \left(-\frac{\delta}{T}\right) & & T \ll \delta \tag{4.26}\\
& =R g_{0} g_{1}\left(g_{0}+g_{1}\right)^{-2}\left(\frac{\delta}{T}\right)^{2} & & T \gg \delta \tag{4.27}
\end{align*}
$$

The specific heat attains a maximum value at an intermediate temperature T_{m} given by

$$
\begin{equation*}
\left(\frac{g_{0}}{g_{1}}\right) \exp \left(\frac{\delta}{T_{m}}\right)=\frac{\left(\delta / T_{m}\right)+2}{\left(\delta / T_{m}\right)-2} \tag{4.28}
\end{equation*}
$$

and the maximum itself is equal to

$$
\begin{equation*}
C_{\mathrm{Sch}}(\max)=\frac{R}{4} \frac{T_{m}}{\delta}\left[\left(\frac{\delta}{T_{m}}\right)^{2}-4\right] \tag{4.29}
\end{equation*}
$$

Fig. 4.10. Schottky heat capacity of a two-level system for several values of g_{1} / g_{0}.

Thus if $g_{0} / g_{1}=1$, the maximum occurs at $T_{m}=0.42 \delta$ and has a value $C_{\mathrm{Sch}}(\max)=3.6 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{deg}$. Table 4.I gives T_{m} / δ and $C_{\mathrm{Sch}}(\max)$ for several values of g_{1} / g_{0}. When these values are compared with the typical lattice and electronic contributions of $10^{-2} \mathrm{~J} / \mathrm{mole} \cdot \mathrm{deg}$ at $4^{\circ} \mathrm{K}$, it is evident that a Schottky peak occurring at liquid-helium temperatures will dominate the variation of specific heat (see Fig. 4.11).

If $C_{\text {Sch }}$ is isolated from the observed total specific heat, by the methods to be discussed below, there are several ways of finding δ and g_{1} / g_{0}. The position and magnitude of the peak, the behavior at high temperatures $\left(C_{\text {Sch }} \cdot T^{2}=\right.$ constant $)$ or at low temperatures $\left(\log \left(C_{\mathrm{Sch}} \cdot T^{2}\right)\right.$ linear in $\left.1 / T\right)$ may all be used. This, of course, assumes that there are only two energy levels to be considered. If more levels are involved, the full equation (4.24) has to be used, or, alternatively,

$$
C_{\mathrm{Sch}}=T \frac{d^{2}(R T \ln z)}{d T^{2}}=R T^{-2} \frac{d^{2} \ln z}{d(1 / T)^{2}}
$$

TABLE 4.I

	$C_{\text {sch }}(\max)$ $\mathrm{J} / \mathrm{mole} \cdot \mathrm{deg}$	T_{m} / δ	Total entropy
g_{1} / g_{0}	2.00	0.448	$R \ln \frac{3}{2}$
0.5	3.64	0.417	$R \ln 2$
1.0	5.06	0.394	$R \ln \frac{5}{2}$
1.5	6.31	0.377	$R \ln 3$
2.0	12.0	0.320	$R \ln 6$
5.0			

where

$$
z=\sum g_{r} \exp \left(-\frac{\varepsilon_{r}}{k T}\right)
$$

Apart from the behavior $C_{\mathrm{Sch}} \propto T^{-2}$ at high temperatures, no simple results can be given. In such cases it is necessary to start with some schemes of energy levels derived either theoretically or from susceptibility, paramagnetic resonance, and other data. The specific-heat curve then serves as a check on the correctness of the assumed model.

The entropy associated with the Schottky peak may be obtained by integrating $C_{\text {Sch }} \cdot T^{-1}$; the values for the two-level case are given in Table 4.I. These results may also be obtained by enumerating the possible configurations of the system, as was done with equation (4.21). For example, if there are m levels of equal degeneracy, the extra entropy is $R \ln m$ per mole. In the two-level case, $S=R \ln [1$ $\left.+\left(g_{1} / g_{0}\right)\right]$. Usually, a comparison of the theoretical and experimental values of the excess entropy serves to verify the correctness of separating out $C_{\text {sch }}$ from the observed total specific heat.

The problem of getting $C_{\text {sch }}$ from the observed specific heat by subtracting the lattice and other contributions is one of considerable difficulty. If the Schottky peak occurs at low temperatures, the lattice term may be taken as βT^{3}. At temperatures well above the peak, $C_{\text {Sch }} \propto T^{-2}$, and the total specific heat will be of the form $C=\beta T^{3}+B T^{-2}$. Thus a plot of $C T^{2}$ versus T^{5} should be a straight line, which permits the desired resolution to be carried out. The magnetic contribution in Fig. 4.9 was obtained from Fig. 4.8 in this manner. For this separation to work, the lattice term must be proportional to T^{3} and the two terms must be of similar magnitude. If this restriction cannot be satisfied, it is usual to take for $C_{\text {lattice }}$ the specific heat of a salt of similar composition and same crystal structure, but which does not have an anomaly. The case of MnCO_{3} and CaCO_{3} (Fig. 4.4) is an example of this type of analysis. In some cases, the magnetic contribution may be evaluated separately from measurements of paramagnetic relaxation or adiabatic demagnetization from different magnetic fields. In general, the Schottky term, if present at liquid-helium temperatures, is so large a fraction of the observed specific heat that small errors in evaluating the lattice corrections are not serious.

4.10. SPECIFIC HEAT OF PARAMAGNETIC SALTS

Paramagnetic salts, in which the magnetic dipoles have energy levels with spacings of approximately 1 to $10^{\circ} \mathrm{K}$, form the natural examples of simple systems exhibiting a variety of Schottky peaks. That such a close relationship should exist may be inferred in the
following way. For the magnetic moment of a paramagnet, Langevin's theory gives an expression of the form

$$
\begin{equation*}
M=N \mu \tanh (\mu H / k T) \tag{4.15}
\end{equation*}
$$

In a field H, the energy of the magnetic moment of the body is $M H$; this corresponds to a specific heat

$$
\begin{equation*}
C_{M}=\left(N \mu^{2} H^{2} / k T^{2}\right) \operatorname{sech}^{2}(\mu H / k T) \tag{4.30}
\end{equation*}
$$

If the energy difference between two levels $2 \mu H$ of a particle is put equal to ε_{1}, this is nothing but equation (4.25) with $g_{0}=g_{1}$. Figure 4.10 with $k T / 2 \mu H$ instead of T / δ and $g_{1} / g_{0}=1$ will represent equation 4.30 equally well. In a paramagnetic gas, the position of the specificheat maximum may be shifted at will by applying a magnetic field. For the fields normally used, this is practicable only at low temperatures. ${ }^{20}$ The entropy of the spin system can be increased merely by demagnetizing a magnetically saturated specimen. If the process is done adiabatically, a compensating decrease of temperature is enforced to keep the entropy constant. This forms the basis of the adiabatic demagnetization technique to reach temperatures below $1^{\circ} \mathrm{K}$ and to measure the magnetic specific heats in that region. ${ }^{2}$

A similar electrocaloric effect is also possible, in which excitations occur between the different levels of electric dipoles. ${ }^{20 a}$

In a solid, the magnetic ions have energy levels about $1^{\circ} \mathrm{K}$ apart even in the absence of external fields. These closely spaced levels arise in several ways. In any solid, there are crystalline electric fields which remove the spin degeneracy of some atomic energy levels through the familiar Stark effect. There are magnetic dipole and exchange interactions among neighboring ions, which also split the energy levels, though Stark-splitting accounts for the major share in the level splitting. Besides these causes attributed to the electronic spin, nuclear effects may also arise from the energy levels of the nuclear dipoles and quadrupoles. The specific-heat studies, being integrated measurements, give no clue to the origin of the energy splittings. This must come from other theoretical and experimental studies, especially those on magnetic susceptibility and paramagnetic resonance. The resonance studies are particularly fruitful in directly giving the separation and degeneracy of the various levels. A good account of the interrelations among the various measurements is given by Rosenberg. ${ }^{21}$

A prerequisite for applying the simple Schottky theory is that the various ions should be independent of one another. Since the magnetic interactions do not fall off very rapidly with increasing distance, the ions will not respond independently, except as a first approximation, to the applied magnetic fields. An approximate correction for the
lack of statistical independence may be applied, but it is more usual to dilute the specimen with isomorphous diamagnetic salts so that the various ions are far removed from one another. In some salts, such as alums and Tutton salts, the water molecules in the crystal provide the necessary dilution, but where nature does not perform the decoupling well enough, artificial measures have to be employed. Even when a complete picture of the energy levels is available, small discrepancies between the calculated and theoretical specific heats are often present. They are usually attributed to the lack of statistical independence caused by coupling among the ions themselves and among the ions and the lattice phonons. ${ }^{22}$

An example of the good agreement between theory and experiment is the Schottky effect in $\alpha-\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{23}$ The Ni^{2+} ion can have in general three energy levels on account of the removal of spin degeneracy by the crystalline electric and magnetic fields, although approximate calculations suggested two levels with $g_{1}=2$ and $g_{0}=1$. The experimental curve does resemble Fig. 4.10, with

Fig. 4.11. Heat capacity of $\alpha-\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{23}$ Full line is the calculated magnetic term. Dot-dashed line is the lattice heat capacity.
$g_{1} / g_{0}=2$ as regards $C_{\text {Sch }}(\max)$. Detailed comparisons showed three levels with spacings 6.44 and $7.26^{\circ} \mathrm{K}$ above the lowest spin state. The agreement with the experimental values, after taking into account the lattice contribution (which is about 7% of the total C_{v} at $6^{\circ} \mathrm{K}$ and about 1% at $4^{\circ} \mathrm{K}$), is seen to be very good. The total entropy of the magnetic system is $R \ln 3$. With this knowledge of the energy levels, other properties, such as susceptibility and magnetization, have been calculated in reasonable agreement with the observed values.

An illustration of the great utility of calorimetric data in supplementing the information from paramagnetic resonance and susceptibility measurements is furnished by the case of ferric methylammonium sulfate $\mathrm{Fe}\left(\mathrm{NH}_{3} \mathrm{CH}_{3}\right)\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O} .{ }^{24} \quad$ Paramagnetic resonance studies by Bleaney and coworkers showed that Fe^{3+} ion has three doublet states. The middle $S_{z}= \pm \frac{3}{2}$ level is separated from the other two by energies of 1.05 and $0.58^{\circ} \mathrm{K}$, but it was not known which of the levels $\pm \frac{1}{2}, \pm \frac{5}{2}$ was the lowest spin level. Therefore two schemes, shown in Fig. 4.12, are possible, and the corresponding $C_{\text {sch }}$ are compared with the experimental specific heats. There is no doubt that scheme 2 , with $S_{z}= \pm \frac{1}{2}$ as the lowest level, is the correct one. The addition of

Fig. 4.12. Heat capacity of $\mathrm{Fe}\left(\mathrm{NH}_{3} \mathrm{CH}_{3}\right)\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ compared with two possible level schemes. Obviously, scheme 2 with $\pm \frac{1}{2}$ level lowest gives a better fit.
the magnetic dipolar contribution removes the small discrepancy found in Fig. 4.12. In this salt, measurements of susceptibility could not throw much light on the energy level schemes, and the calorimetric data gave an elegant solution to the problem.

Although the spin disorder in the paramagnetic state, which gives a T^{-2} specific heat at high temperatures, should eventually be removed at $0^{\circ} \mathrm{K}$, it is not easy to say whether the removal will involve a Schottky peak or a cooperative singularity. In general, with dilute systems, the spin disorder is removed with a Schottky peak. If the exchange interactions are strong, a cooperative transition to the ferromagnetic, antiferromagnetic, or other states occurs before a Schottky peak can be observed.

4.11. NUCLEAR SCHOTTKY EFFECTS

Schottky effects are widely observed in the electron paramagnetism of crystalline salts or of some gases such as nitric oxide and oxygen. In the solid state, Schottky peaks may arise from a different source. If the atomic nucleus has a magnetic moment μ_{N}, it may have a set of energy levels in an effective field $H_{\text {eff }}$, arising from orbital and conduction electrons. The splitting is similar to the hyperfine structure (hfs) observed in spectroscopy. Moreover, if the nucleus has a quadrupole moment, its interaction with the field gradients produced by neighboring atoms will cause small level splittings. The change in population of these levels is readily observed as a Schottky effect in the specific heats.

The hfs effect was first observed in ferromagnetic materials, where the presence of internal fields of the order of $10^{5} \mathrm{Oe}$ obviously suggests that the nuclear levels will be appreciably split. Since then, such effects have been observed in antiferromagnets and more prominently in many ferromagnetic rare-earth metals. In holmium, the peak occurs at a reasonable temperature of $0.3^{\circ} \mathrm{K}$, and so the complete anomaly has been mapped out. ${ }^{25}$ The levels of a nucleus of spin I may be written as

$$
\varepsilon_{i} / k \approx a i
$$

where $i=-I,-I+1, \ldots, I$ and a is the hfs coupling constant. For holmium, $I=\frac{7}{2}$ and there are eight levels. From paramagneticresonance studies, Bleaney had calculated $a \approx 0.31^{\circ} \mathrm{K}$. The specificheat studies give $a \approx 0.32^{\circ} \mathrm{K}$, in excellent agreement with para-magnetic-resonance data. Actually, in holmium there is a small quadrupole contribution which is taken into account in the theoretical curve of Fig. 4.13. The excellent fit with the experiments needs no further description.

Fig. 4.13. Heat capacity of holmium metal. ${ }^{25}$ Full line is theoretical Schottky curve.
If a nucleus with a quadrupole moment is situated in a nonspherical or noncubic electronic environment, the quadrupole interaction with the electric field gradient gives a set of energy levels

$$
\varepsilon_{i} / k \approx P^{\prime}\left[i^{2}-\frac{1}{3} I(I+1)\right]
$$

Here P^{\prime} is the quadrupole coupling constant, which may be related to the quadrupole moment and the field gradient. The T^{-2} hightemperature Schottky term arising from such splittings has been observed in substances such as rhenium, mercury, indium, and gallium. ${ }^{26}$

Because of the smallness of the nuclear moments compared to the electronic moments, the nuclear anomalies occur in the region of $10^{-2} \mathrm{~K}$, whereas the electronic peaks are present at 1 to $10^{\circ} \mathrm{K}$. On the other hand, the nuclear effects may arise even in diamagnetic materials.

REFERENCES

1. E. A. Guggenheim, Thermodynamics, North Holland, Amsterdam, 1957, chapter 12. A. B. Pippard, Elements of Classical Thermodynamics, Cambridge University Press, Cambridge, 1957, pp. 23 and 63.
2. C. G. B. Garrett, Magnetic Cooling, Harvard University Press, Cambridge, 1954.
D. de Klerk and M. J. Steenland, Progr. Low Temp. Phys. I, 273 (1955).
D. de Klerk, Handbuch der Physik, XV(2), 38 (1956).
E. Ambler and R. P. Hudson, Rept. Progr. Phys. 18, 251 (1955).
W. A. Little, Progr. Cryogenics 4, 99 (1964).
3. A. J. Dek ker, Solid State Physics, Prentice-Hall, New York, 1957, chapters 18 and 19.
J. B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York, 1963, chapter 2.
4. J. H. van den Handel, Advan. Electron. Electron Phys. 6, 463 (1954).
5. E. C. Stoner, Rept. Progr. Phys. 11, 43 (1948); 13, 83 (1950).
6. A. B. Lidiard, Rept. Progr. Phys. 17, 201 (1954). T. Nagamiya, K. Yosida and R. Kubo, Advan. Phys. 4, 1 (1955).
7. W. P. Wolf, Rept. Progr. Phys. 24, 212 (1961). R. K. Wangsness, Progr. Cryogenics 4, 73 (1964).
8. J. van Kronendonk and J. H. van Vleck, Rev. Mod. Phys. 30, 1 (1958). A. I. Akhiezer, V. G. Bar’yakhtar, and M. I. Kagano, Soviet Phys. Uspekhi 3, 567, 661 (1960).
9. F. Keffer, H. Kaplan, and Y. Yafet, Am. J. Phys. 21, 250 (1953).
10. D. T. Edmonds and R. G. Petersen, Phys. Rev. Letters 2, 499 (1959).
11. A. S. Borovik-Romanov and I. N. Kalinkina, Soviet Phys. JETP 14, 1205 (1962). I. N. Kalinkina, Soviet Phys. JETP 16, 1432 (1963).
12. K. P. Belov, Magnetic Transitions, Consultants Bureau, New York, 1959.
13. G. H. Wannier, Elements of Solid State Theory. Cambridge University Press, Cambridge, 1959, chapter 4. H. Eyring, D. Henderson, B. J. Stover, and E. M. Eyring, Statistical Mechanics and Dynamics, Wiley, New York, 1964, chapter 10.
14. J. W. Essam and M. F. Sykes, Physica 29, 378 (1963).

14a. A. R. Miedema, R. F. Wielinga, and W. J. Huiskamp, Phys. Letters 17, 87 (1965). D. T. Teaney, Phys. Rev. Letters 14, 898 (1965).
15. J. A. Hofmann, A. Paskin, K. J. Tauer, and R. J. Weiss, J. Phys. Chem. Solids 1, 45 (1956).
16. C. Domb and A. R. Miedema, Progr. Low Temp. Phys. 4, 296 (1964).
17. A. R. Miedema, H. van Kempen, and W. J. Huiskamp, Physica 29, 1266 (1963).
18. W. K. Robinson and S. A. Friedberg, Phys. Rev. 117, 402 (1960). J. S. Skalyo and S. A. Friedberg, Phys. Rev. Letters 13, 133 (1964).
19. R. J. Benzie and A. H. Cooke, Proc. Phys. Soc. (London), Ser. A 63, 213 (1950).
20. W. F. Giauque, D. N. Lyon, E. W. Hornung, and T. E. Hopkins, J. Chem. Phys. 37, 1446 (1962).
20a. I. Shepherd and G. Feher, Phys. Rev. Letters 15, 194 (1965).
21. H. M. Rosenberg, Low Temperature Solid State Physics, Oxford University Press, Oxford, 1963, chapters 1 and 9.
22. J. H. van Vleck, J. Chem. Phys. 5, 320 (1937). M. H. Hebb and E. M. Purcell, J. Chem. Phys. 5, 338 (1937). V. F. Sears, Proc. Phys. Soc. (London) 84, 951 (1964). J. W. Tucker, Proc. Phys. Soc. (London) 85, 559 (1965).
23. J. W. Stout and W. B. Hadley, J. Chem. Phys. 40, 55 (1964).
24. A. H. Cooke, H. Meyer, and W. P. Wolf, Proc. Roy. Soc. (London), Ser. A 237, 404 (1956).
25. O. V. Lounasmaa, Phys. Rev. 128, 1136 (1962). H. van Kempen, A. R. Miedema, and W. J. Huiskamp, Physica 30, 229 (1964).
26. P. H. Keesom and C. A. Bryant, Phys. Rev. Letters 2, 260 (1959). H. R. O’Neal, N. M. Senozan, and N. E. Phillips, Proceedings of the Eighth International Conference on Low Temperature Physics (London, 1962, R. O. Davies, ed.), Butterworth, London, 1963. N. E. Phillips, M. H. Lambert, and W. R. Gardner, Rev. Mod. Phys. 36, 131 (1964). J. C. Ho and N. E. Phillips, Phys. Letters 10, 34 (1964).

Chapter 5

Heat Capacity of Liquids

5.1. NATURE OF THE LIQUID STATE

Among the three states of aggregation, solids \rightleftharpoons liquids \rightleftharpoons gases, less is known about the liquid state than about the other two. To some extent this is not surprising, because the limiting cases of solids and gases are sufficiently clear-cut and simple to allow schematic models to represent their behavior. In gases, the molecules are far apart and have no spatial correlation. In solids, the atoms are arranged in lattice sites. Such situations can be analyzed to a first approximation on the basis of idealized models, perfect gases, or perfect lattices, and these elementary calculations may then be refined, if necessary. The difficulty in developing an adequate theory of the liquid state is that such convenient starting points are not available. Near the freezing point, liquids exhibit many of the characteristics of solids, whereas near the boiling point the behavior of liquids is to some extent similar to that of gases. ${ }^{1}$ In liquids, the atomic arrangement in the immediate vicinity of any atom is partially ordered (shortrange order), but at great distances the arrangement is completely random (long-range disorder). The absence of long-range order distinguishes a liquid from a solid, while the presence of short-range order differentiates between a liquid and a gas.

The phenomena that occur in a liquid may be described as follows. After melting, the system is no longer crystalline, but each atom still retains much the same relationship to its nearest neighbors as it did in a solid. The thermal energy of vibration of each atom is changed only slightly. In the liquid, rotational motion is possible; furthermore, the atoms can jump from one position to another. The fluidity of a liquid arises because such a jumping process can relax an applied shear stress in a very short time, of the order of $10^{-10} \mathrm{sec}$; as a matter of fact, at frequencies higher than about $10^{10} \mathrm{cps}$, liquids do behave like solids in supporting shear waves. As the liquid is
warmed, the molecules acquire more freedom of motion and the distance up to which there is short-range order is progressively reduced. This continues until the boiling point is reached, when the molecules are liberated from the liquid lattice at the expense of considerable latent heat.

5.2. SPECIFIC HEAT OF ORDINARY LIQUIDS AND LIQUID MIXTURES

On the basis of the above ideas, one would expect the specific heat to show a small increase on melting, and thereafter in the liquid state it should show a gradual increase until the boiling point is reached. Many liquids do behave in this way. Table 5.I shows the measured specific heat under saturated vapor pressure C_{s} for some common cryogenic liquids. The gradual increase in C_{s} up to the boiling point of the liquid is in conformity with the expected behavior.

The specific heat at saturated vapor pressure C_{s} is the quantity of practical relevance in liquids, since it is more easily measured than C_{p} or C_{v}. In Section 8.2 it will be proved that if β is the coefficient of volume expansion, then

$$
\begin{equation*}
C_{s}=C_{p}-T V \beta\left(\frac{\partial P}{\partial T}\right)_{\mathrm{svp}} \tag{5.1}
\end{equation*}
$$

The term $T V \beta(\partial P / \partial T)_{\text {sat }}$ increases as the liquid is warmed so that $\left(C_{p}-C_{s}\right) / C_{s}$ is about 1% near the melting point and about 25% near the boiling point. Thus in Table 5.I the increase in C_{p} as the liquid is warmed is somewhat larger than the rise in C_{s}. The behavior of C_{v} is not so simple. The difference between C_{p} and C_{v}

$$
\begin{equation*}
C_{p}-C_{v}=\frac{T V \beta^{2}}{k_{T}} \tag{5.2}
\end{equation*}
$$

where k_{T} is the isothermal compressibility [equation (1.14)], and the ratio C_{p} / C_{v} both increase with rise in temperature. C_{p} / C_{v} may become

Table 5.I. Heat Capacity of Some Cryogenic Liquids (in cal/mole•deg)

Substance	T (degK)	C_{p} (solid)	C_{s} (liquid)	T (degK)	C_{s} (liquid)	C_{p} (gas)
N_{2}	63.2	5.7	6.7	77.3	6.9	6.8
O_{2}	54.4	5.6	6.4	90.2	6.5	6.9
A	83.8	4.2	5.0	87.3	5.1	5.0

as high as 1.5 in some cases. The specific heat at constant volume, as calculated from the measured values of C_{s}, β, and k_{T}, increases with temperature near the melting point, reaches a shallow maximum, and then decreases as the boiling point is approached. ${ }^{2}$ In the gaseous state, there are no mean positions for the atoms to vibrate, and only free translation and rotation are possible. Under such conditions, C_{v} becomes about $\frac{5}{2} R$ for gases such as nitrogen and oxygen and $\frac{3}{2} R$ for gases such as argon, as will be seen in the next chapter.

There are some exceptions to the above general behavior. Water, for instance, is an exception to many of the above statements. This most common of all liquids is in many ways the most exceptional one as well.

Although the behavior of liquids is understood qualitatively, there is no satisfactory theory to explain the details. Several approximate models have been proposed with varying degrees of success. Space does not permit an elaboration of these attempts to calculate the properties of liquids. ${ }^{1,2}$ Only in the case of quantum liquids, ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$, has any reasonable theory accounted for the mass of available observations. Since these two unique liquids are almost ubiquitous in cryogenic laboratories, they are treated separately in detail.

Curiously, the special properties of liquid mixtures are somewhat better understood. When two liquids are mixed, the specific heat, density, and other properties of the mixture are slightly different from what may be expected from a mere addition of the contribution due to the parent liquids. Simple thermodynamic and statistical considerations permit correlation of the various excess quantities with one another. There is a considerable physicochemical literature on this subject, and it appears best to consult some of the introductory texts. ${ }^{2,3}$

5.3. LIQUID ${ }^{4} \mathrm{He}$ AT LOW TEMPERATURES

The helium isotope of mass 4 exhibits several bizarre properties in the condensed state. The atoms obey Bose-Einstein statistics, and the liquid becomes a degenerate Bose system below $2.17^{\circ} \mathrm{K}$. Heliumfour exists as a liquid even at $0^{\circ} \mathrm{K}$ and becomes a solid only under a pressure of about 25 atm or more. Below $2.17^{\circ} \mathrm{K}$, it flows through narrow channels with practically zero viscosity; it can sustain undamped temperature waves; sometimes it creeps in the form of thin films even against gravitational potential; in fact, its unusual behavior has formed a fascinating field of study in its own merit. Rather than do injustice to the subject by trying to summarize the field, ${ }^{4}$ we must content ourselves with an account of the caloric properties.

A fundamental step toward an understanding of the behavior of liquid ${ }^{4} \mathrm{He}$ was taken by Landau in 1941. The zero-point energy of the atoms is so large that the substance remains a liquid even at $0^{\circ} \mathrm{K}$. In such a quantum region, one cannot identify any single particle and follow its motion. Instead, we should look at the collective behavior of the system as a whole and enumerate the quantum states. This amounts to the formulation of a theory assuming solid-like behavior rather than gas-like, on the grounds that the determining feature of the entire situation is the interaction among all the atoms.

As seen in Chapter 2, the simplest type of thermal excitation possible in a condensed system is a sound wave or a phonon. In a solid, it can be either longitudinal or transverse, but a liquid can support only longitudinal oscillations. The energy $\varepsilon=\hbar \omega$ and the momentum $p=\hbar q$ of a phonon are related by

$$
\begin{equation*}
\varepsilon=c p \tag{5.3a}
\end{equation*}
$$

where c is the velocity of sound. A molecule in a liquid is capable of much more complicated motions than mere back-and-forth oscillations. Rotational or vortex motions are simple examples of the more general motions. On the basis of some plausible arguments, Landau assumed for such motions (called rotons) the energymomentum dispersion relation of the form

$$
\begin{equation*}
\varepsilon=\Delta+\frac{\left(p-p_{0}\right)^{2}}{2 \mu} \tag{5.3b}
\end{equation*}
$$

This equation has turned out to be so useful in interpreting the behavior of liquid helium that the uncertain foundations on which it was based were rather glossed over for a long time. Recent theoretical work by Feynman and several others has shown that in a Bose system the dispersion relation has the phonon form (5.3a) at low momenta and the roton form (5.3b) at high momenta, so that the complete spectrum has the form shown in Fig. 5.1. Neutronscattering experiments carried out since 1958 have strikingly confirmed the details of Landau's energy-momentum relationship. ${ }^{5}$

At thermal equilibrium, the excitations in the liquid are distributed mainly in the regions of energy minima, that is, near $\varepsilon=0$ and $\varepsilon=\varepsilon\left(p_{0}\right)=\Delta$. Thus it is convenient to speak of long-wave excitations (phonons, $p \sim 0$) and short-wave excitations (rotons, $p \sim p_{0}$) separately, even though the spectrum of Fig. 5.1 is continuous. The thermodynamic properties may then be calculated as phonon and roton contributions. In the following section, this is carried out in a simple manner.

Fig. 5.1. Energy-momentum spectrum in liquid ${ }^{4} \mathrm{He}$.

The specific heat of liquid ${ }^{4} \mathrm{He}$ has been measured by several investigators, ${ }^{6}$ and is shown in Fig. 5.2. This plot immediately exhibits the interesting features of the specific-heat variation. At very low temperatures $\left(T<0.6^{\circ} \mathrm{K}\right)$, the specific heat is given by $c_{s}=(0.0205 \pm 0.0004) T^{3} \mathrm{~J} / \mathrm{g} \cdot \mathrm{deg}$. The T^{3}-proportionality is reminiscent of the low-temperature behavior of the lattice specific heat and indeed arises from the same reasons, as will be explained in the following section. Above $0.6^{\circ} \mathrm{K}$, the specific heat rises faster, somewhat as T^{6} or $\exp (-10 / T)$, culminating in a high narrow peak at the transition temperature $2.17^{\circ} \mathrm{K}$. The specific heat drops sharply above this temperature and reaches a value of about $3 \mathrm{~J} / \mathrm{g} \cdot \mathrm{deg}$, which is typical of an ordinary liquid at low temperatures. Much above $2.17^{\circ} \mathrm{K}$, liquid ${ }^{4} \mathrm{He}$ behaves like an ordinary liquid. It is the curious transition at $2.17^{\circ} \mathrm{K}$ and the exotic properties below the transition that are responsible for the great interest in the subject.

5.4. PHONON AND ROTON SPECIFIC HEATS

An instructive way of calculating the specific-heat contributions from phonons and rotons is to evaluate first the number of thermal excitations. The number of energy states per mole between momenta p and $p+d p$ is $\left(4 \pi V / h^{3}\right) p^{2} d p$ [equation (2.18)] and the number of Bose excitations in this range is $\left(4 \pi V / h^{3}\right) p^{2} d p /[\exp (\varepsilon / k T)-1]$. Therefore, the total number of excitations N and the total energy

Fig. 5.2. Specific heat of liquid ${ }^{4} \mathrm{He}$ under its saturated vapor pressure. ${ }^{6}$
E per mole are

$$
\begin{align*}
N & =\frac{4 \pi V}{h^{3}} \int \frac{p^{2} d p}{\exp (\varepsilon / k T)-1} \tag{5.4a}\\
E & =\frac{4 \pi V}{h^{3}} \int \frac{\varepsilon p^{2} d p}{\exp (\varepsilon / k T)-1} \tag{5.4b}
\end{align*}
$$

Consider first the case of phonons $\varepsilon=c p$. The situation is the same as that occurring in the Debye theory of lattice heat capacity except that only longitudinal phonons are possible in the liquid state. The Debye temperature in the helium problem, obtained as usual by terminating $g(v)$ at v_{D}, is

$$
\begin{equation*}
\theta=\frac{h c}{2 \pi k}\left(\frac{18 \pi^{2} \rho}{m_{\mathrm{He}}}\right)^{1 / 3} \tag{5.5}
\end{equation*}
$$

and has a value of about $30^{\circ} \mathrm{K}$. Therefore, regions up to $2^{\circ} \mathrm{K}$ may be considered as the Debye T^{3}-region. In this low-temperature region no serious error is made in extending to infinity the integration in
equation (5.4) over $p / k T$, and hence per mole

$$
\begin{align*}
& N_{\text {phon }}=\frac{4 \pi V}{h^{3}}\left(\frac{k T}{c}\right)^{3} \int_{0}^{\infty} \frac{x^{2} d x}{e^{x} 1}=\frac{4 \pi V}{h^{3}}\left(\frac{k T}{c}\right)^{3} \times 2.404 \tag{5.6}\\
& E_{\mathrm{phon}}=\frac{4 \pi V c}{h^{3}}\left(\frac{k T}{c}\right)^{4} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{4 \pi V c}{h^{3}}\left(\frac{k T}{c}\right)^{4} \times \frac{\pi^{4}}{15} \tag{5.7}
\end{align*}
$$

The corresponding specific heat per gram is

$$
\begin{equation*}
c_{\mathrm{phon}}=\frac{16 \pi^{5} k^{4}}{15 h^{3} c^{3} \rho} T^{3} \tag{5.8}
\end{equation*}
$$

For rotons, $\varepsilon=\Delta+\left(p-p_{0}\right)^{2} / 2 \mu$. In practice, Δ / k is found to have a value of about $10^{\circ} \mathrm{K}$; therefore, nothing is lost by using the simpler Maxwell-Boltzmann statistics, so that

$$
N_{\text {rot }}=\frac{4 \pi V}{h^{3}} \int p^{2} d p \exp \left\{\frac{-\left[\Delta+\left(p-p_{0}\right)^{2} / 2 \mu\right]}{k T}\right\}
$$

Further, the parameter p_{0} in the helium problem is found to be much greater than $\mu k T$, so that in the integration over $d p$ the quantity p^{2} may be replaced by p_{0}^{2}. Moreover, because of the rapid reduction of the exponential factor for large values of $p-p_{0}$, the integration may be performed over $p-p_{0}$ from $-\infty$ to ∞. Thus per mole

$$
\begin{equation*}
N_{\mathrm{rot}}=\frac{4 \pi V}{h^{3}} p_{0}^{2} e^{-\Delta / k T} \int_{-\infty}^{\infty} e^{-x^{2} / 2 \mu k T} d x=\frac{4 \pi V p_{0}^{2}}{h^{3}}(2 \pi \mu k T)^{1 / 2} e^{-\Delta / k T} \tag{5.9}
\end{equation*}
$$

A similar calculation gives the specific heat per gram as

$$
\begin{equation*}
c_{\mathrm{rot}}=\frac{4 \pi}{\rho h^{3}}\left(\frac{2 \pi \mu}{k T^{3}}\right)^{1 / 2} p_{0}^{2} \Delta^{2}\left[1+\frac{k T}{\Delta}+\frac{3}{4}\left(\frac{k T}{\Delta}\right)^{2}\right] e^{-\Delta / k T} \tag{5.10}
\end{equation*}
$$

The temperature dependence of the roton part of the thermodynamic quantities is basically of the form $\exp (-\Delta / k T)$. This is a consequence of the finite energy gap Δ and the need for the Boltzmanntype excitation across the gap [compare equations (2.10) and (4.26)]. The number of phonons is proportional to T^{3}, and a numerical estimate shows that below $0.6^{\circ} \mathrm{K}$, practically all the excitations are of the phonon type. Around $0.7^{\circ} \mathrm{K}$, the number of rotons overtakes the number of phonons; at temperatures above about $1{ }^{\circ} \mathrm{K}$, most of the excitations are of the roton type. Figures 5.2 and 5.3 show how the specific heat follows the gradual transition in the nature of the thermal excitations.

The phonon-type behavior at low temperatures is similar to the Debye T^{3}-region discussed in Chapter 2. As a matter of fact, if only

Fig. 5.3. Specific heat of liquid ${ }^{4} \mathrm{He}$ showing phonon and roton contributions. ${ }^{7}$
longitudinal phonons are present, equations (2.13) and (2.20) become

$$
\begin{aligned}
\theta & =\frac{h c}{k}\left(\frac{9 N}{4 \pi V}\right)^{1 / 3} \\
C_{v} & =\frac{16}{15} \frac{\pi^{5} k^{4} V}{c^{3} h^{3}} T^{3}
\end{aligned}
$$

and they are similar to equations (5.5) and (5.8). The velocity of sound in liquid ${ }^{4} \mathrm{He}$ at low temperatures is $239 \pm 2 \mathrm{M} / \mathrm{sec}$. Equation (5.8) now gives $c_{\text {phon }}=(0.0204 \pm 0.0005) T^{3} \mathrm{~J} / \mathrm{g} \cdot \mathrm{deg}$, which is to be compared with the experimental value $c_{v}=(0.0205 \pm 0.0004) T^{3}$ mentioned earlier. The excellent agreement provides strong support for the above picture of thermal excitations in liquid ${ }^{4} \mathrm{He}$ at low temperatures.

Above $0.6^{\circ} \mathrm{K}$, the roton contribution becomes significant; up to about $1.6^{\circ} \mathrm{K}$, the specific heat can be accurately fitted by the addition of phonon and roton contributions. In 1947, Landau calculated the values of Δ, p_{0}, and μ from such an analysis of specific-heat data (which at that time were not known with any great accuracy). A similar analysis was performed by Kramers and coworkers in 1956,

Table 5.II. Comparison of the Values of Δ, p_{0}, and μ

	$\frac{\Delta}{k}(\operatorname{deg~K})$	$\frac{p_{0}}{\hbar}\left(\AA^{-1}\right)$	$\frac{\mu}{m_{4}}$
Calorimetry Landau (1947)	9.6	2.0	0.77
Kramers (1956)	8.8 ± 0.1	1.96 ± 0.05	0.23 ± 0.1
Neutron scattering $1.1^{\circ} \mathrm{K}$	8.65 ± 0.04	1.92 ± 0.01	0.16 ± 0.01

using carefully determined values of specific heats. In Table 5.II the numerical values of Δ, p_{0}, and μ are compared with the results of neutron-scattering experiments in which the energy-momentum dispersion relation ${ }^{5}$ was studied directly. The close agreement between the values must be taken as a striking vindication of Landau's calculation of the properties of liquid ${ }^{4} \mathrm{He}$ on the basis of the special $\varepsilon-p$ relation (5.3).

Above $1.6^{\circ} \mathrm{K}$, the number of rotons becomes so large that it is no longer possible to neglect the interactions among the excitations. (The analogy in the case of solids is the anharmonicity of lattice vibrations.) The neutron-scattering experiments show that the parameter Δ changes slightly because of the interactions among the rotons. Taking into account the small temperature dependence of the parameters and also using the full $\varepsilon-p$ curve, the Los Alamos group of workers ${ }^{8}$ has calculated the specific heats and find excellent agreement over the whole temperature range up to $2^{\circ} \mathrm{K}$.

Finally, it must be added that the above picture of a gas of phonon and roton excitations accounts satisfactorily for a number of other properties of liquid ${ }^{4} \mathrm{He}$. A full account is given in the works cited earlier. ${ }^{4.5}$

5.5. TRANSITION IN LIQUID ${ }^{4} \mathrm{He}$

It was the specific-heat measurement by Keesom and coworkers in 1932 that gave a definite indication of the special phase change in liquid helium at $2.17^{\circ} \mathrm{K}$. There is a sharp peak at $2.17^{\circ} \mathrm{K}$, and the shape of the curve (Fig. 5.2) resembles the Greek letter lambda (λ). Phase transitions in which there is a similar sharp λ-peak in the specific heat are now commonly called lambda-transitions; they are the result of cooperative effects in the system. A few other λ-anomalies will be discussed in Chapter 7, while the thermodynamics of such phase changes is taken up in Chapter 8.

The characteristic feature of the λ-transitions in liquids and solids is the appearance of a sharp peak in the specific heat (and hence calorimetric measurements are frequently used to detect such transitions). It is obviously of interest to know whether the peak is a sharp maximum or really an infinite singularity with $\int C d T$ still remaining finite. The question assumes fundamental importance in the theoretical understanding of such transitions. On the one hand, approximate statistical calculations on reasonable models of substances predict a finite maximum at the transition T_{λ}, the peak being rounded off in a temperature interval of about $10^{-30} \mathrm{~K}$ near T_{λ} in some calculations and there being a jump in the specific heat in other theories. On the other hand, exact calculations on highly simplified models predict that the specific heat has a logarithmic or other infinity, i.e., of the form $C \approx$ constant $\times \log \left|T_{\lambda}-T\right|$ near T_{λ} (see Section 4.6). No reliable guidance could be obtained from experiments on solids, owing to the difficulty of keeping the temperature constant throughout the specimen to within about $10^{-60} \mathrm{~K}$. Fairbank, Buckingham, and Kellers ${ }^{9}$ realized that a temperature resolution of about $10^{-60} \mathrm{~K}$ was possible in liquid helium. It was also pointed out in the Introduction that thermal equilibrium occurs very quickly, in a few seconds at temperatures below around $4^{\circ} \mathrm{K}$. These workers placed the liquid in intimate contact with copper fins and succeeded in measuring the specific heat to within a microdegree of the λ-point.

In order to exhibit the nature of the specific heat very near $T_{\lambda}=2.17^{\circ} \mathrm{K}$, the results are shown on successively expanded temperature scales in Fig. 5.4. The very large amount of expansion of each successive curve is vividly demonstrated by the fact that the width of the small vertical line directly above the origin indicates the fraction of the curve which is shown enlarged in the next curve on the right. The specific-heat curve maintains the same geometrical shape on all the expanded scales, and clearly there is no indication of any rounded maximum within $10^{-40} \mathrm{~K}$ of T_{λ}, as suggested by some approximate theories. There was also no hysteresis between the values measured with increasing and decreasing temperatures.

The same data are plotted on a logarithmic scale in Fig. 5.5. On both sides of the λ-point the data fall in two parallel straight lines over a factor of 10^{4} in $\left|T-T_{\lambda}\right|$. The observations (in $\mathrm{J} / \mathrm{g} \cdot \mathrm{degK}$) near the λ-point are well fitted by the equation

$$
\begin{equation*}
c=4.55-3.00 \log _{10}\left|T-T_{\lambda}\right|-5.20 \delta \tag{5.11}
\end{equation*}
$$

where $\delta=0$ for $T<T_{\lambda}$ and $\delta=1$ for $T>T_{\lambda}$. The inclusion of a logarithmic term permits a simple representation of the specific heat

Fig. 5.4. Specific heat of liquid ${ }^{4} \mathrm{He}$ near the λ-point. ${ }^{9}$ The solid lines represent equations (5.11) and (5.12). The width of the small line above the origin indicates the fraction of the curve which is expanded in the next figure on the right.
in joules per gram of liquid helium up to about $3.5^{\circ} \mathrm{K}$:

$$
\begin{align*}
c & =c_{D}(T)+\left[130-90.9 \log \left|T-T_{\lambda}\right|\right] \exp \left(\frac{-7.40}{T}\right) & & T<T_{\lambda} \\
& =c_{D}(T)+\left[23.5-16.4 \log \left|T-T_{\lambda}\right|\right] \exp \left(\frac{-3.70}{T}\right) & & T>T_{\lambda} \tag{5.12}
\end{align*}
$$

where $c_{D}(T)$ represents the Debye function, evaluated at each temperature with the appropriate value of density and velocity of sound.

Besides the specific heat, the thermal expansion coefficient also shows a logarithmic infinity as the λ-point is approached, although measurements have been performed up to $\left|T-T_{\lambda}\right| \approx 10^{-4 \circ} \mathrm{~K}$ only. It will be seen in Section 8.1 that the behaviors of the two quantities are interconnected and that

$$
\begin{equation*}
\left(\frac{T_{\lambda}}{T}\right) C_{p}=T_{\lambda}\left(\frac{\partial S}{\partial T}\right)_{\lambda}-\frac{T_{\lambda}}{\rho_{\lambda}}\left(\frac{\rho_{\lambda}}{\rho}\right)\left(\frac{\partial P}{\partial T}\right)_{\lambda} \beta \tag{5.13}
\end{equation*}
$$

Fig. 5.5. Specific heat of liquid helium versus $\log \left|T-T_{\lambda}\right|^{9}$. Solid lines represent equations (5.11) and (5.12).

Figure 5.6 shows a parametric plot of the specific heat and the expansion coefficient. ${ }^{9}$ The straight line is the asymptotic value given by equation (5.13) with the experimental values of the various other quantities. The tendency of the observations to attain the limiting value is clear. Thus we must conclude that both the expansion coefficient and the specific heat are consistent with an infinite logarithmic singularity at T_{λ}.

At present, there is no complete theory of cooperative transitions. In special cases, as with magnetic transitions treated in Section 4.6, much progress has been made in expressing the thermodynamic quantities in powers of $\left|T-T_{\lambda}\right|$. The outstanding observation of a logarithmic singularity in C_{p} and β is an experimental property which must be explained by any proper statistical theory.

5.6. SPECIFIC HEAT OF LIQUID ${ }^{3} \mathbf{H e}$

The ordinary liquid helium used in bulk is the isotope of mass 4. The isotope ${ }^{3} \mathrm{He}$ is present to about 1 part in 10^{7} in natural helium. However, since 1948 , small quantities of ${ }^{3} \mathrm{He}$, produced by nuclear

Fig. 5.6. Cylindrical approximation near $T_{\lambda}{ }^{9}$ Parametric plot of $\left(T_{\lambda} / T\right) C_{p}$ versus $\left(\rho_{\lambda} / \rho\right) \beta$. Full line is the calculated asymptotic value.
reactions, have been available for research, and its use in cooling cryostats to approximately $0.3^{\circ} \mathrm{K}$ was mentioned in Chapter 1. Helium-three exists as a liquid even at $0^{\circ} \mathrm{K}$ and becomes a solid only under a pressure of about 30 atm or more. It obeys Fermi-Dirac statistics, and the properties of liquid ${ }^{3} \mathrm{He}$ are quite different from those of ${ }^{4} \mathrm{He}$. The experimental and theoretical evidence unequivocally points out that liquid ${ }^{3} \mathrm{He}$ must be considered a Fermi system, whereas the superfluid properties of liquid ${ }^{4} \mathrm{He}$ arise from the Bose-Einstein condensation. ${ }^{5}$ Since ${ }^{3} \mathrm{He}$ offers the possibility of studying a simple Fermi liquid, it has of late become the subject of an active field of study. ${ }^{10,11}$

The equations derived in Chapter 3 for an ideal Fermi-Dirac gas were initially considered as a convenient framework for describing the properties of liquid ${ }^{3} \mathrm{He}$. For a $\mathrm{F}-\mathrm{D}$ gas, the degeneracy temperature is

$$
\begin{equation*}
T_{F}=\frac{1}{2 m k}\left(\frac{3}{8} \frac{N h^{3}}{\pi V}\right)^{2 / 3} \tag{5.14}
\end{equation*}
$$

which for the density of liquid ${ }^{3} \mathrm{He}$ has a value of about $5^{\circ} \mathrm{K}$. Early measurements of nuclear susceptibility showed that χT was constant down to about $1.5^{\circ} \mathrm{K}$, and the deviations at lower temperatures could be fitted to a perfect-gas model with a degeneracy temperature of about $0.5^{\circ} \mathrm{K}$, nearly ten times smaller than the expected value. In a simple-minded way, this could be explained by saying that the effective mass m^{*} is about ten times the mass of the ${ }^{3} \mathrm{He}$ atom. The measurements ${ }^{12}$ of specific heat above $0.5^{\circ} \mathrm{K}$ destroyed this naïve

Fig. 5.7. Heat capacity of liquid ${ }^{3} \mathrm{He}$ under its saturated vapor pressure (curve A). ${ }^{12}$ Curve B is the specific heat of $\mathrm{F}-\mathrm{D}$ gas with $T_{F}=5.0^{\circ} \mathrm{K}$ and curve C is that with $T_{F}=0.5^{\circ} \mathrm{K}$.

Fig. 5.8. Heat capacity of liquid ${ }^{3} \mathrm{He}$ below $0.4^{\circ} \mathrm{K} .{ }^{14}$
picture. The specific heat does not resemble, even qualitatively, the behavior of an ideal F-D gas with any value of m^{*}. Figure 5.7 compares the specific heats of a F-D gas having $T_{F}=5.0$ or $0.5^{\circ} \mathrm{K}$ with the experimental results. (Strictly, C_{v} should be compared instead of $C_{\text {sat }}$, but this does not improve matters. In fact, the deviations of C_{v} are equally serious. ${ }^{13}$)

Below $0.2^{\circ} \mathrm{K}$, the specific heat of the liquid does vary proportionally with T, as may be expected from the F-D gas relationship:

$$
\begin{equation*}
C_{v}=\frac{4 \pi^{3} m k^{2}}{3 h^{2}}\left(\frac{3 N V^{2}}{\pi}\right)^{1 / 3} T \tag{5.15}
\end{equation*}
$$

Any satisfaction at such simple behavior is, however, short-lived.

The $\mathbf{F}-\mathrm{D}$ theory also shows that if γ_{0} is the magnetic moment per atom, the molar susceptibility χ should tend to the value

$$
\begin{equation*}
\frac{\chi}{V}=\frac{4 \pi m \gamma_{0}}{h^{2}}\left(\frac{3 N}{\pi V}\right)^{1 / 3} \tag{5.16}
\end{equation*}
$$

This functional relationship is obeyed very well, but quantitatively the agreement is very poor. The $m^{*} / m_{3^{\mathrm{He}}}$ calculated from the specificdata has a value of about 2 , that from susceptibility is about 10 , from compressibility data about 0.3 , and so on. In other words, even though the $\mathrm{F}-\mathrm{D}$ gas formulas give the correct temperature dependence at very low temperatures ($<0.3^{\circ} \mathrm{K}$), the observations are not consistent with the quantitative interrelationships among the various formulas.

5.7. LIQUID ${ }^{3} \mathrm{He}$ AS A FERMI LIQUID

A solution to this dilemma at very low temperatures was suggested in 1956 by Landau; since then, the microscopic foundations of such theories have been intensely studied by Brueckner and others. ${ }^{5,11}$ According to Landau's theory of a Fermi liquid, the presence of strong interactions among the atoms renders a description of the behavior of single particles meaningless and the statistical behavior is determined by the elementary excitations of the whole system. These excitations or quasiparticles obey Fermi-Dirac statistics and may be taken as an effective description of an atom together with its polarization field caused by the correlated interactions. At low temperatures, the system may be visualized as made up of N quasiparticles of effective mass m^{*}, but in calculating any physical property the fundamental quantity to be considered is the interaction function. Thus, in calculating the magnetic susceptibility, we must consider the dependence of the interaction function upon the nuclear orientations. In compressibility, the volume dependence of the interactions is involved. The specific heat is determined by the density of states at the Fermi level, and so on.

Detailed calculations show that the specific heat is given by equation (5.15) with m^{*} instead of m. Therefore, from the experimental data, we can conclude that $m^{*} / m_{3^{\mathrm{He}}} \approx 2$. The expression for susceptibility involves besides m^{*} the constants of the spin-dependent part of the interaction function. Thus a calculation of m^{*} using (5.16) will not give the same effective mass as that calculated from specificheat data. In this manner, the Fermi-liquid theory gives different
interrelationships among the various properties of liquid ${ }^{3} \mathrm{He}$, although the temperature dependence is in many cases the same as that given by the $\mathrm{F}-\mathrm{D}$ gas calculations. The details of the theory are unfortunately very complicated, and the mathematical techniques used in these many-body problems are not commonly known. Hence, it seems best to suggest suitable reviews ${ }^{5,15}$ for those interested rather than give a garbled version of the theory here. On the whole, the Fermi-liquid theory of the behavior of liquid ${ }^{3} \mathrm{He}$ below $0.2^{\circ} \mathrm{K}$ appears to be in reasonable accord with the experiments.

The situation at higher temperatures ($T>0.5^{\circ} \mathrm{K}$) is not very satisfactory. As seen from Fig. 5.7, the curve bears no resemblance to the variation expected for a F-D gas. A heuristic approach ${ }^{13}$ has been to assume that the alignment of the nuclear spins gives a spin contribution (similar to the Schottky term discussed in Section 4.9) with a peak around $0.3^{\circ} \mathrm{K}$ and that at high temperatures there are contributions from excitations not dependent upon the quantum statistics of the atoms. Such calculations have had quite some success in explaining thermal and magnetic properties. However, the concept of splitting the entropy into such contributions has been questioned by others as having no fundamental justification. Further, nothing is said about the origin of the assumed high-temperature contribution, which is independent of the statistics. ${ }^{11}$ On account of these factors, the calculations are not here discussed in any detail.

The electrons in a metal form another example of an interacting Fermi system, which has already been considered in Chapter 3. Several authors have conjectured that a phenomenon analogous to superconductivity of the electronic system (Sections 3.8 to 3.10) should occur in liquid ${ }^{3} \mathrm{He}$, also. The transition temperature cannot be calculated precisely, but is estimated to be approximately $10^{-3}{ }^{\circ} \mathrm{K}$, if not lower. One of the characteristics of the transition, which has been reviewed by Sessler ${ }^{5,10}$, for example, is that the specific heat should exhibit an anomaly (Fig. 5.9) similar to the anomaly at the superconducting transition (Fig. 3.11). As mentioned earlier, phase transitions are best detected by specific-heat measurements, and so calorimetric measurements are being made to as low a temperature as possible. At the time of writing, Peshkov ${ }^{16}$ has reported a small bump at $0.0055^{\circ} \mathrm{K}$. Above $8 \times 10^{-30} \mathrm{~K}$, the specific heat increases linearly with T (Fig. 5.8), the value being given by $C_{\text {sat }} \approx 20 T$ $\mathrm{J} / \mathrm{mole} \cdot \mathrm{deg}$. The evidence is not quite conclusive, ${ }^{17}$ but Peshkov's observations will constitute the discovery of an eagerly sought phase transition in liquid ${ }^{3} \mathrm{He}$-of course, by specific-heat studies!

One question which cannot be answered here is why although sound waves can be propagated through liquid ${ }^{3} \mathrm{He}$ as through any

Fig. 5.9. Predicted specific heat of the superphase of liquid ${ }^{3} \mathrm{Hc}$.
other system, phonon terms are not included in the specific heat of liquid ${ }^{3} \mathrm{He}$. The answer lies deeply involved in quantum statistics. ${ }^{18}$ Phonon-type thermal excitations obey Bose-Einstein statistics, whereas the system of ${ }^{3} \mathrm{He}$ atoms obeys Fermi-Dirac statistics.

5.8. MIXTURES OF ${ }^{4} \mathrm{He}$ AND ${ }^{3} \mathrm{He}$

Liquid ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ are completely miscible, except at low temperatures, where phase separation occurs for a range of concentrations. It has already been mentioned that the properties of mixtures are of considerable interest in chemical thermodynamics. ${ }^{2,3}$ In the helium case, since the two pure liquids exhibit peculiar properties of their own, a study of the mixtures has special significance in quantum statistics. ${ }^{19}$

Although considerations of space prohibit a detailed account of the various studies, ${ }^{10,20}$ one interesting result is worth mentioning. Taconis, Beenakker, and de Bruyn Ouboter ${ }^{5}$ have found that for dilute mixtures of ${ }^{3} \mathrm{He}$ in liquid ${ }^{4} \mathrm{He}$, the specific heat at low temperatures $\left(<1^{\circ} \mathrm{K}\right)$ is nearly constant and equal to $\frac{3}{2} R x$ per mole of the mixture where x is the mole fraction of ${ }^{3} \mathrm{He}$. This may be explained simply on the basis of an idea put forward by Pomeranchuk that in dilute solutions the ${ }^{3} \mathrm{He}$ atoms do not interact with the superfluid ${ }^{4} \mathrm{He}$, and so form a gas of excitations. At low concentrations, the ${ }^{3} \mathrm{He}$ atoms may be taken as nondegenerate and so will have a perfectgas specific heat $C_{v}=\frac{3}{2} R$ per mole (as will be explained in Chapter 6). Therefore, the excess specific heat of the solution will be $\frac{3}{2} R x$ per
mole of the mixture. Other properties, such as the velocity of sound, confirm this simple picture of the role of ${ }^{3} \mathrm{He}$ atoms.

5.9. SUPERCOOLED LIQUIDS GLASSES

When a liquid is cooled ordinarily, it solidifies into a crystalline state at its normal freezing point; however, some substances can be supercooled. A classic example is glycerine, which can be easily cooled below its normal freezing point of about $290^{\circ} \mathrm{K}$. With some care in avoiding nucleation, the supercooled liquid can be taken right down to approximately $0^{\circ} \mathrm{K}$ without any crystallization. At about $T_{g} \sim 180^{\circ} \mathrm{K}$, the behavior of glycerine changes from a liquid-like fluidity above T_{g} to a solid-like rigidity below T_{g}. The free energy of this solid is greater than that of the crystalline solid, but it represents a metastable thermodynamic state which can exist indefinitely under certain conditions. This highly supercooled liquid state is typical of most glasses; hence it is called the glassy state. The situation is thermodynamically the same with allotropes such as diamond, a metastable form of carbon.

The specific heat of glycerol has been measured by several workers and is summarized in the review on the glassy state by Davies and Jones. ${ }^{21}$ The heat capacity of the crystalline state [curve (a) in Fig. 5.10] is due to the vibrations of the molecules in the lattice, as analyzed in Chapter 2. The specific heat of the supercooled liquid [curve (b)] is considerably greater because of the additional complex motions possible in the liquid state. However, over a narrow interval of temperature around $T_{g} \sim 180^{\circ} \mathrm{K}$, the specific heat falls rapidly to a value just above that of the crystalline solid. Only a small difference persists at lower temperatures. Similar marked decrease around T_{g} is shown in the thermal-expansion coefficient, electrical conductivity, and other properties. It is an important characteristic of supercooled liquids that the viscosity increases by several orders of magnitude as the temperature is lowered through the transition region. In glycerine, it increases from about 10^{6} poise at $190^{\circ} \mathrm{K}$ to about 10^{13} poise at $170^{\circ} \mathrm{K}$. Thus at about $170^{\circ} \mathrm{K}$, the stress applied to maintain a strain relaxes to $1 / e$ of its initial value in hours, compared to $10^{-3} \mathrm{sec}$ at about $190^{\circ} \mathrm{K}$, so that for practical purposes the substance behaves like a solid. Above T_{g}, the molecules have all the mobility characteristic of liquids, but below T_{g} they cannot change their configurations in any reasonable amount of time; the only other modes of motion are the lattice vibrations about their mean positions, as in a solid. This is the reason why the specific heat decreases sharply in the transition region.

Fig 5.10. Measured heat capacity of glycerine: (a) crystalline solid, (b) supercooled liquid, (c) glassy state, (d) very slowly cooled liquid.

However, the glassy state is not a crystalline state. The viscosity increases so rapidly as the substance is cooled through T_{g} that the spatial disorder of the liquid has been abruptly "frozen-in." X-ray diffraction studies ${ }^{22}$ confirm the molecular disorder in the glassy state. An interesting check is the calculation of the entropy difference between the supercooled glass and the crystalline state (Fig. 5.11). At the melting point, the entropy difference, obtained from the latent heat, is about $15 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$, but below T_{g} a difference of about 5 units persists right down to $0^{\circ} \mathrm{K}$. This is a measure of the configurational entropy of glass which is "frozen-in" at T_{g}. The persistence of such an entropy difference at $0^{\circ} \mathrm{K}$ is not really a contradiction of the third law of thermodynamics, ${ }^{23}$ because the glassy state is not one of stable internal equilibrium. Suitable nucleation can precipitate a crystallization of the whole system (devitrification of glass). Figure 5.11 shows that above T_{g} the difference in entropy between the supercooled liquid and the crystal decreases rapidly with lowering temperature. At T_{g}, however, the liquid

Fig. 5.11. Excess entropy of the glassy solid over the crystalline state (full line). Curve d shows the excess entropy if the liquid is cooled very slowly at T_{g}.
becomes so viscous that configurational changes to lower the entropy do not take place in short periods of time. Oblad and Newton showed experimentally that if glycerine is kept undisturbed for a long time before the measurement is made at any temperature, the specific-heat curve appears as a smooth extension of the behavior above T_{g} [broken curves (d) in Figs. 5.10 and 5.11]. This shows clearly that if sufficient time (a whole week of undisturbed waiting just a few degrees below T_{g}) is allowed, molecular rearrangements do take place. Because of the experimental difficulties, measurements could be made to only a few degrees below T_{g}. Nevertheless, an inspection of Fig. 5.11 shows that the entropy difference will undoubtedly extrapolate to zero at $0^{\circ} \mathrm{K}$. If a liquid can exist in internal equilibrium, such as liquid ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$, its entropy will vanish at absolute zero.

The entropy difference between crystalline and glassy states is similar to the problem of entropy differences between the various
allotropes of some solids. Materials such as sulfur, tin, and carbon exist in different crystalline states with different specific heats. An investigation of the entropy differences among them was originally used by Nernst and coworkers to check the validity of the third law of thermodynamics. With crystalline solids, it is, of course, possible to calculate the vibrational specific heats from suitable theoretical models. ${ }^{24}$

Numerical values of the specific heat of glasses are of importance in practice, and Stevels ${ }^{22}$ has collected the data for a variety of glasses. Some cases of cryogenic interest are mentioned in Table 8.I.

REFERENCES

1. J. Frenkel, Kinetic Theory of Liquids, Dover, New York, 1954.
2. J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworth, London, 1959.
3. E. A. Guggenheim, Mixtures, Clarendon, Oxford, 1952.
4. K. Mendelssohn, Handbuch der Physik, XV (2), 370 (1956). J. Wilks, Rept. Progr. Phys. 20, 38 (1957). K. R. Atkins, Liquid Helium, Cambridge University Press, Cambridge, 1957.
5. Liquid Helium, Proceedings of the International Summer School "Enrico Fermi," (Varenna, 1961, G. Careri, ed.), Academic, New York, 1963. J. Wilks, Liquid Helium, Clarendon, Oxford, 1966.
6. H. C. Kramers, J. Wasscher, and C. J. Gorter, Physica 18, 329 (1952). R. W. Hill and O. V. Lounasmaa, Phil. Mag. 2, 143 (1957). J. Wiebes, C. G. Niels-Hakkenberg, and H. C. Kramers, Physica 23, 625 (1957).
7. H. C. Kramers, Progr. Low Temp. Phys. 2, 59 (1957).
8. P. J. Bendt, R. D. Cowan, and J. L. Yarnell, Phys. Rev. 113, 1386 (1959).
9. M. J. Buckingham and W. M. Fairbank, Progr. Low Temp. Phys. 3, 80 (1961).
10. J. C. Daunt (ed.), Helium Three, Ohio State University Press, Columbus, 1960.
11. E. R. Grilly and E. F. Hammel, Progr. Low Temp. Phys. 3, 113 (1961). N. Bernades and D. F. Brewer, Rev. Mod. Phys. 34, 190 (1962). D. F. Brewer, Progr. Cryogenics 4, 25 (1964).
12. G. de Vries and J. G. Daunt, Phys. Rev. 92, 1572 (1953); 93, 631 (1954). T. R. Roberts and S. G. Sydoriak, Phys. Rev. 93, 1418 (1954). D. W. Osborne, B. M. Abraham, and B. Weinstock, Phys. Rev. 94, 202 (1954).
13. L. Goldstein, Phys. Rev. 112, 1465 (1958).
14. D. F. Brewer, J. G. Daunt, and A. K. Sreedhar, Phys. Rev. 115, 836 (1959). M. Strongin, G. O. Zimmerman, and H. A. Fairbank, Phys. Rev. Letters, 6, 404 (1961). A. C. Anderson, G. F. Salinger, W. A. Steyert, and J. C. Wheatley, Phys. Rev. Letters 7, 295 (1961).
15. A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys. 22, 329 (1959).
16. V. P. Peshkov, Soviet Phys. JETP 19, 1023 (1964).
17. E. S. R. Gopal, J. Sci. Indus. Res. 23, 496 (1964). W. R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley, Phys. Rev. Letters 14, 129 (1965).
18. K. Huang, Statistical Mechanics, Wiley, New York, 1963, pp.262, 384.
19. I. Prigogine, A. Bellemans, and V. Mathot, Molecular Theory of Solutions, North Holland, Amsterdam, 1957, chapters 18 and 19.
20. J. J. M. Beenakker and K. W. Taconis, Progr. Low Temp. Phys. 1, 108 (1955). K. W. Taconis and R. de Bruyn Ouboter, Progr. Low Temp. Phys. 4, 38 (1964).
21. R. O. Davies and G. O. Jones, Advan. Phys. 2, 370 (1953).
22. J. M. Stevels, Handbuch der Physik, XIII, 510 (1962).
23. J. Wilks, Third Law of Thermodynamics, Oxford University Press, Oxford, 1961, chapter 5 .
24. F. Seitu, Míúcioí Theoriy of Solids, McGraw-Hill, New York, 1940 , chapter 14.

Chapter 6

Specific Heats of Gases

6.1. C_{p} AND C_{v} OF A GAS

The heat capacity of a gas depends strongly upon the conditions under which heating is done, whether at constant pressure or at constant volume. Indeed, it was pointed out in Chapter 1 that the ratio C_{p} / C_{v} is as high as 1.67 for a monatomic gas. It is possible to measure directly both C_{p} and C_{v} in gases and vapors, and a representative list ${ }^{1}$ of the values at $300^{\circ} \mathrm{K}$ is given in Table 6.I. The specific heats refer to the "ideal" state of a gas at zero pressure and are calculated from the values at higher pressures by using a knowledge of the equation of state [see equation (1.17)]. Typically, at a pressure of $1 \mathrm{~atm}, C_{p}$ and C_{v} are higher than the "ideal" values by less than 1% in the so-called permanent gases and by about 1 to 2% in organic vapors.

The specific heat per gram is different for different gases. For heavy gases, the value of C_{v} is small, and for light gases, C_{v} is large.

Table 6.I. Molar Heat Capacities (in cal/mole•deg) at $300^{\circ} \mathrm{K}$ and $P=0 \mathrm{~atm}$

	Gas								
	He	A	H_{2}	$\mathrm{~N}_{2}$	O_{2}	CO	NO	HCl	Cl_{2}
C_{p}	4.97	4.97	6.85	6.94	7.02	6.96	7.08	6.97	8.02
C_{v}	2.98	2.98	4.86	4.96	5.03	4.97	5.10	4.98	6.02
$C_{p}-C_{v}$	1.99	1.99	1.99	1.98	1.99	1.99	1.98	1.99	2.00
	CO_{2}	$\mathrm{~N}_{2} \mathrm{O}$	SO_{2}	$\mathrm{H}_{2} \mathrm{~S}$	NH_{3}	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$
C_{p}	8.77	9.25	9.20	8.15	8.49	8.48	10.35	10.15	12.25
C_{v}	6.78	7.27	7.20	6.15	6.50	6.49	8.35	8.15	10.25
$C_{p}-C_{v}$	1.99	1.98	2.00	2.00	1.99	1.99	2.00	2.00	2.00

The consideration of molar heat capacities provides a great simplification: C_{v} turns out to be about $3 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$ for monatomic gases (such as helium and argon) and about $5 \mathrm{cal} / \mathrm{mole} \cdot d e g$ for diatomic gases (such as $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{CO}, \mathrm{NO}, \mathrm{HCl}$). $C_{p}-C_{v}$ is approximately equal in all cases to $2 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$. When it is recalled that the gas constant R has a value 1.987 in the same units, the difference between C_{p} and C_{v} is nothing other than equation (1.13):

$$
C_{p}-C_{v}=R
$$

a relation first used by Mayer in 1842. Since the natural unit for the molar heat capacity is R, the striking feature of Table 6.I, demanding an immediate explanation, is that $C_{v} \sim \frac{3}{2} R$ for monatomic gases and $C_{v} \sim \frac{5}{2} R$ for diatomic gases.

6.2. CLASSICAL THEORY OF C_{v} OF GASES

Boltzmann's equipartition theorem is able to provide an explanation for the simple coefficients $\frac{3}{2}$ and $\frac{5}{2}$. This theorem, as explained in Section 2.2, connects the internal energy of a system with its number of degrees of freedom (that is, the number of squared terms in the Hamiltonian function, which is the same as the number of independent coordinates required to describe the motion of the system). Each degree of freedom contributes $\frac{1}{2} R T$ to the internal energy of a mole of the substance at thermal equilibrium. A mass point is a good model of the atoms in a monatomic gas. It has three translational degrees of freedom (Hamiltonian $\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right) / 2 m$ where the p are the momenta of the molecules). Therefore, the internal energy is $E=3 \times \frac{1}{2} R T$ and $C_{v}=\partial E / \partial T=\frac{3}{2} R$, as is found to be the case. The molecules of a diatomic gas may be represented by a pair of masses rigidly connected together, i.e., a rigid dumbell. Then, besides having the three translatory motions, the molecules can rotate about any pair of directions perpendicular to its axis. There are altogether five degrees of freedom; consequently, $E=\frac{5}{2} R T$ and $C_{v}=\frac{5}{2} R$. Thus the specific heats of permanent gases are readily understood in classical statistics.

A closer study of Table 6.I reveals, however, that this agreement between the equipartition law and the observed values is only limited. A linear triatomic molecule, such as CO_{2} or $\mathrm{N}_{2} \mathrm{O}$, should behave like a diatomic molecule, because it can rotate only about the directions perpendicular to its axis. Therefore, C_{v} should be $\frac{5}{2} R$, whereas the actual values for CO_{2} and $\mathrm{N}_{2} \mathrm{O}$ exceed $\frac{5}{2} R$ quite significantly. A general polyatomic molecule which can rotate about all three principal axes should have $C_{v}=\frac{6}{2} R$, which is also not the case. Even
a diatomic molecule such as chlorine exceeds its equipartition value of $C_{v}=\frac{5}{2} R$.

The discrepancy is partly due to the fact that the molecules can have internal vibrations. Each mode of vibration has two square terms in the Hamiltonian, one for kinetic and one for potential energy, and so counts as two degrees of freedom. A diatomic molecule has one vibrational frequency, and a general polyatomic molecule has $3 n-6$ vibrational modes. If the vibrational contributions are added, $C_{v}=\frac{7}{2} R \sim 7 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$ for diatomic gases and $C_{v}=$ $3(n-1) R$ for polyatomic gases. (If the molecules of a polyatomic gas are linear, there are only $3 n-5$ vibrations, and C_{v} is correspondingly less.) The specific heats in Table 6.I are all less than this value. The vibrational heat capacity of polyatomic gases (and of chlorine) falls short of this equipartition value. Experiments made at higher temperatures (Table 6.II) revealed that at $2000^{\circ} \mathrm{C} \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$, and SO_{2} attain their equipartition value of $3(n-1) R \sim 12 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$, while $N_{2}, \mathrm{O}_{2}, \mathrm{HCl}, \mathrm{CO}$, and H_{2} are obviously moving toward their value of approximately $7 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$. (Chlorine exceeds the equipartition value because of anharmonicity and dissociation ${ }^{1,2}$, both of which are not considered in this elementary account.)

Measurements at low temperatures revealed another shortcoming of the classical theory. Eucken, as early as 1905, noticed that the heat capacity of hydrogen at liquid-nitrogen temperatures was significantly lower than the room-temperature value. Table 6.III shows that C_{v} has become equal to about $\frac{3}{2} R$ below about $60^{\circ} \mathrm{K}$. C_{p} decreases by the same amount (recall $C_{p}-C_{v}=R$), and the ratio C_{p} / C_{v} goes from 1.40 at room temperature to 1.67 at $50^{\circ} \mathrm{K}$. The values below $60^{\circ} \mathrm{K}$ are typical of a monatomic gas, for which only translational degrees of freedom are possible.

The equipartition law provides no reasonable explanation for the observation that at low temperatures the vibrational and rotational degrees of freedom remain "frozen in" and begin to "thaw out" as the temperature is raised. The clarification came from the application

Table 6.II. C_{v} at High Temperatures (in cal/mole $\cdot \mathrm{deg}$)

	Gas						
Temperature (deg C)	A	$\mathrm{N}_{2}, \mathrm{O}_{2}$, $\mathrm{HCl}, \mathrm{CO}$	H_{2}	Cl_{2}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{CO}_{2}, \mathrm{SO}_{2}$	
0	2.98	4.98	4.90	5.90	5.93	6.90	
500	2.98	5.35	5.29	6.30	6.95	9.43	
2000	2.99	6.22	6.10	7.4	11.9	11.5	

Table 6.III. Heat Capacities of Hydrogen (in cal/mole.deg)

	Temperaiure (deg K)					
	300	200	100	80	60	40
C_{v}	4.86	4.49	3.42	3.18	3.05	3.00
C_{p} / C_{v}	1.41	1.45	1.56	1.62	1.66	1.67

of quantum concepts to the problem. Inspired by Einstein's fundamental resolution of the temperature variation of vibrational specific heat in 1907, Nernst suggested in 1911 the quantization of rotational and vibrational levels in gases. Hydrogen remained somewhat anomalous until Dennison suggested an explanation in 1927, following the earlier calculation of Hund. The advances made in quantum mechanics and spectroscopy after 1925 brought the theoretical calculation of thermodynamic properties of simple gases over wide ranges of temperatures to such a high degree of precision that it surpassed the accuracy of the experimental measurements.

6.3. QUANTUM THEORY OF C_{v} OF GASES

It is qualitatively easy to see why the rotational and vibrational degrees of freedom are not fully excited at low temperatures. For the common molecules, the vibrational frequencies are in the range of about $10^{14} / \mathrm{sec}$, and the associated energy levels have a spacing equivalent to $h v / k \sim 1000^{\circ} \mathrm{K}$. So, at room temperature ($\sim 300^{\circ} \mathrm{K}$), only a few molecules have enough energy to excite the vibrational modes. The rotational frequencies are about 100 times smaller, so that at any temperature above $10^{\circ} \mathrm{K}$ the rotational modes are fully excited. The rotational energy levels in hydrogen are rather high because of the low moment of inertia of the molecule; therefore, hydrogen begins to contribute the rotational specific heat only above $60^{\circ} \mathrm{K}$. The translation of these ideas into quantitative results is, of course, a standard problem in statistical mechanics. ${ }^{3,4}$ The present discussion is limited to some simple cases, which are nevertheless sufficient to illustrate the principles involved.

The simplest case to consider is a monatomic gas, schematically taken as a set of mass points with no interatomic forces. Let a large number of such atoms, each of mass m, be enclosed in a vessel of sides L_{1}, L_{2}, L_{3} in which they obey the Schrödinger equation

$$
\nabla^{2} \psi+\frac{8 \pi^{2} m E}{h^{2}} \psi=0
$$

for free particles of energy E. The wave functions should vanish at the walls, but because the number of particles N is very large in any physical system, the boundary conditions do not affect the final result (see also Section 2.5). It is therefore mathematically convenient to impose a periodic boundary condition, as in lattice dynamics,

$$
\psi(x, y, z)=\psi\left(x \pm L_{1}, y, z\right)=\ldots=\psi\left(x, y, z \pm L_{3}\right)
$$

so that the solutions can be taken as progressive waves instead of standing waves. The wave functions satisfying these conditions are

$$
\psi=A \exp \left[2 \pi i\left(p_{1} x+p_{2} y+p_{3} z\right)\right]
$$

where $p_{i}=h n_{i} / L_{i}$ and n_{i} are positive or negative integers. The energy of a molecule is $\varepsilon=\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right) / 2 m$. The energy of the system is the sum of the energies of the particles, and so the final partition function of the system will involve the product of N terms each equal to

$$
\begin{equation*}
z=\sum_{n_{i}=-\infty}^{\infty} \exp \left[\frac{-\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)}{2 m k T}\right] \tag{6.1}
\end{equation*}
$$

A simple calculation shows that the energy levels are approximately $h^{2} / 2 m k L^{2} \approx 10^{-150} \mathrm{~K}$ apart, so that the summation over n_{i} may be replaced by an integration over p_{i} :

$$
z=\frac{V}{h^{3}} \iiint \exp \left[\frac{-\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)}{2 m k T}\right] d p_{1} d p_{2} d p_{3}
$$

Here $V=L_{1} L_{2} L_{3}$ is the volume of the system. The integral from $-\infty$ to ∞ of $e^{-x^{2}}$ is well known to be $\pi^{1 / 2}$, and so

$$
\begin{equation*}
z=V\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} \tag{6.2}
\end{equation*}
$$

The partition function of the system Z would have been just the product of N such terms but for the fact that all the particles are indistinguishable. This means that

$$
\begin{equation*}
Z=\frac{1}{N!}(z)^{N} \tag{6.3}
\end{equation*}
$$

because the N ! ways of permuting the particles are indistinguishable from one another and must hence be counted as only one way. Therefore,
$A=-k T \ln Z=-N k T \ln \left[V\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2}\right]+N k T \ln N-N k T$
where Stirling's approximation $\ln N!\approx N \ln N-N$ is used. It is now a simple matter to calculate

$$
\begin{equation*}
E=-k T^{2}\left(\frac{\partial \ln Z}{\partial T}\right)_{v}=\frac{3}{2} R T \quad C_{n}=\frac{3}{2} R \tag{6.5}
\end{equation*}
$$

The specific heat at constant volume is approximately $3 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$, as was borne out in Table 6.I. This value was also explained by the equipartition law, but the present calculations give the absolute value of the entropy at a pressure $P=N k T / V$ as

$$
\begin{equation*}
S=-\left(\frac{\partial A}{\partial T}\right)_{v}=R\left\{\frac{5}{2}+\ln \left[\frac{(k T)^{5 / 2}}{P} g\left(\frac{2 \pi m}{h^{2}}\right)^{3 / 2}\right]\right\} \tag{6.6}
\end{equation*}
$$

(Here a weight factor g, equal to 1 for structureless particles and equal to 2 for vapors of sodium, potassium, and thallium, which have doubly degenerate ground state, has been added for completeness.) This equation, first derived in a different manner by Sackur and Tetrode in 1912, is in excellent agreement with the experimental values of entropy determined calorimetrically (see Table 6.VII). As a matter of historic interest, Tetrode, from the calorimetric entropy of mercury vapor, obtained Planck's constant h to within 5% of the accepted value.

6.4. ROTATIONAL PARTITION FUNCTION

The power of statistical thermodynamics becomes obvious when the rotational degrees of freedom are considered. The simplest case is a heteronuclear molecule of moment of inertia I perpendicular to its axis. With spherical polar coordinates, the expression for the kinetic energy is $\mathscr{T}=\frac{1}{2} I\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\varphi}^{2}\right)$. The generalized momenta are $p_{\theta}=\partial \mathscr{T} / \partial \dot{\theta}=I \dot{\theta}, p_{\phi}=\partial \mathscr{T} / \partial \dot{\varphi}=I \sin ^{2} \theta \dot{\varphi}$, and so the classical Hamiltonian is $\mathscr{H}=\left(p_{\theta}^{2}+\sin ^{-2} \theta p_{\phi}^{2}\right) / 2 I$. The transcription into quantum mechanical operators leads to the Schrödinger equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{8 \pi^{2} I E}{h^{2}} \psi=0 \tag{6.7}
\end{equation*}
$$

The eigenfunctions of this equation are $\psi=P_{j}^{|m|}(\cos \theta) e^{i m \phi}$, with $m=-j, \quad-j+1, \ldots, j-1, j$, where $P_{j}^{|m|}(\cos \theta)$ are the associated Legendre functions. The energy levels are $\varepsilon_{j}=j(j+1) h^{2} / 8 \pi^{2} I$, where $j=0,1, \ldots$. Each energy level j possesses $2 j+1$ independent wave functions and so must be assigned a weight $2 j+1$. Proceeding as before, the partition function is

$$
Z=\frac{1}{N}(z)^{N}
$$

Fig. 6.1. Rotational heat capacity of a gas of heteronuclear diatomic molecules.
where the partition function z for a single molecule is

$$
\begin{equation*}
z=\sum_{j=0}^{\infty}(2 j+1) \exp \left[-\frac{j(j+1) \theta_{r}}{T}\right] \tag{6.8}
\end{equation*}
$$

where $\theta_{r}=h^{2} / 8 \pi^{2} I k$. Over the entire range of temperatures, the summation has to be carried out by numerical methods ${ }^{3,4}$, and the rotational specific heat has the values shown in Fig. 6.1. C_{v} (rot.) has a simple form at high or low temperatures:

$$
\begin{align*}
C_{v}(\text { rot. }) & =R\left[1+\frac{1}{45}\left(\frac{\theta_{r}}{T}\right)^{2}+\ldots\right] & & \text { for } T \gtrdot \theta_{r} \tag{6.9}\\
& =12 R \frac{\theta_{r}}{T} \exp \left(-\frac{\theta_{r}}{T}\right)+\ldots & & \text { for } T \ll \theta_{r} \tag{6.10}
\end{align*}
$$

The rotational heat capacity of diatomic molecules has the equipartition value $R \sim 2 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$ at high temperatures. As the temperature is lowered, C_{v} (rot.) attains a shallow maximum of about $1.1 R$ at $T / \theta_{r} \sim 0.8$ and then drops down steeply. Below about $T / \theta_{r} \sim 0.2$, the rotational specific heat becomes too small to be resolved experimentally.

Table 6.IV. Rotational Characteristic Temperatures θ_{r} of Gases (in $\operatorname{deg} \mathrm{K}$)

	Gas										
	H_{2}	HD	HT	D_{2}	DT	T_{2}	HCl	N_{2}	O_{2}	CO	NH_{3}
θ_{r}	85.4	65.7	58.4	43.0	36.5	29.1	15.2	2.86	2.07	2.77	12.3

Clearly, θ_{r} is the characteristic temperature governing the behavior of C_{v} (rot.). Now a study of the band spectra enables the moment of inertia of the molecules to be determined, ${ }^{5}$ and some values of θ_{r} calculated from such spectroscopic observations are given in Table 6.IV. For most gases, θ_{r} is in the region where the substances would have become liquids or solids, and so in the gaseous state they have the limiting value of R, thus accounting for the success of the equipartition law. Only in the case of the light hydrogeneous molecules is there any possibility of observing the "freezing" of the rotational degrees of motion. Hydrogen and deuterium are specially treated below because of the additional interesting effects arising from nuclear symmetry in the molecules. The rotational heat capacity of hydrogen deuteride (HD), obtained by subtracting the translational contribution $\frac{3}{2} R$ from the observed heat capacity, is in good agreement with the theoretical curve of Fig. 6.1 if θ_{r} is taken as $65.7^{\circ} \mathrm{K}$. However, the observations are incomplete.

The treatment of polyatomic molecules is along similar lines, taking into account the possibility of rotation about all three axes and the molecular symmetry. For all polyatomic molecules, the equipartition value is reached in the gaseous state. The interest in the polyatomic gases is in calculating the entropy from the statistical partition function. The relevant formulas are analogous to the Sackur-Tetrode equation (6.6) and may be found in several treatises. ${ }^{3,4,6}$ A comparison of the statistical entropy with the experimental value often gives information about the ordered state of the solid. This will be taken up in Section 6.7.

6.5. HOMONUCLEAR MOLECULES-ISOTOPES OF HYDROGEN

The heat capacity of homonuclear molecules, of which H_{2} and D_{2} are of great interest, ${ }^{7}$ involves a consideration of the symmetry of the wave functions of the nuclei. Quantum mechanics shows that if the nuclei have an even mass number (for example, the deuteron), the wave function describing their motion must be symmetrical in
nuclear coordinates, while if the nuclei have an odd mass number (for example, the proton) the wave functions must be antisymmetrical. Since the total wave function contains the product of the rotational and the nuclear spin functions, it is convenient to consider the two separately.

Interchanging the two nuclei of a diatomic molecule is equivalent to replacing θ by $\pi-\theta$ and ϕ by $\pi+\phi$ in the rotational eigenfunction $P_{j}^{|m|}(\cos \theta) e^{i m \phi}$, that is, replacing the function by $(-1)^{m} P_{j}^{|m|}(-\cos \theta) e^{i m \phi}$, which is equal to $(-1)^{j} P_{j}^{|m|}(\cos \theta) e^{i m \phi}$ because $P_{j}^{|m|}(\cos \theta)$ is even or odd according to whether $j+|m|$ is even or odd. Hence the molecular rotational function is symmetric in the nuclear coordinates for even values of j and antisymmetrical for odd j. It is convenient to write

$$
\begin{align*}
& z_{e}=\sum_{j=0,2,4, \ldots}(2 j+1) \exp \left[-j(j+1) \frac{\theta_{r}}{T}\right] \tag{6.11}\\
& z_{0}=\sum_{j=1,3,5, \ldots}(2 j+1) \exp \left[-j(j+1) \frac{\theta_{r}}{T}\right] \tag{6.12}
\end{align*}
$$

If the nucleus has a spin I (in units of \hbar), there will be orientational quantization in an external magnetic field, with an eigenfunction for each of the $\rho=2 I+1$ states. In the absence of a magnetic field, the orientated states become indistinguishable, but their number remains unaltered. Thus there are ρ spin wave functions $\psi_{r}(a)$, $\psi_{s}(b)$, where $r, s=1,2, \ldots, \rho$, for each nucleus a, b of a homonuclear diatomic molecule. From them, there are $\frac{1}{2} \rho(\rho-1)$ combinations of the type $\psi_{r}(a) \psi_{s}(b)-\psi_{r}(b) \psi_{s}(a)$ (where $\left.r \neq s\right)$, which are antisymmetric in the nuclear coordinates, and there are $\frac{1}{2} \rho(\rho-1)$ combinations of the type $\psi_{r}(a) \psi_{s}(b)+\psi_{r}(b) \psi_{s}(a)$ (where $\left.r \neq s\right)$, symmetric in the nuclei, as well as ρ products $\psi_{r}(a) \psi_{r}(b)$ also symmetric in the nuclei. In all, there are $\frac{1}{2} \rho(\rho-1)$ antisymmetric and $\frac{1}{2} \rho(\rho+1)$ symmetric spin wave functions of the molecule. These are the spin weight factors.

After these preliminaries, the rotational specific heat of hydrogen may be taken up. The hydrogen nucleus (proton spin $I=\frac{1}{2}, \rho=2$) has an odd mass, and so the total wave function must be antisymmetric. This means that the symmetric rotational functions z_{e} must be combined with the antisymmetric spin functions, while the antisymmetric rotational functions z_{0} are to be associated with the symmetric spin functions of degeneracy $\frac{1}{2} \rho(\rho+1)$. If these weight factors $\frac{1}{2} \rho(\rho-1)=1, \frac{1}{2} \rho(\rho+1)=3$ are taken into account, the partition function for the equilibrium state of hydrogen becomes

$$
z=z_{e}+3 z_{0}
$$

and the specific heat will be

$$
\begin{equation*}
C_{v}(\text { rot. })=\frac{d}{d T}\left[R T^{2} \frac{d}{d T} \ln \left(z_{e}+3 z_{0}\right)\right] \tag{6.13}
\end{equation*}
$$

This formula, derived by Hund, ${ }^{8}$ did not agree with the measured specific heats of hydrogen if the spectroscopic value of the moment of inertia, $4.67 \times 10^{-40} \mathrm{~g}-\mathrm{cm}^{2}$, was used.

The reason was very soon pointed out by Dennison. ${ }^{9}$ The transitions between the states of different nuclear spins are due to the very small interaction of the nuclear magnetic moment with the magnetic field produced by the rotation. The normal hazards of molecular collision do not affect the nuclear spins, and so the transitions between the two states are extremely rare. Therefore, hydrogen normally behaves as if it were a metastable mixture of two entirely separate species of molecules-parahydrogen and orthohydrogen. In parahydrogen, the nuclear spins are antiparallel (resultant spin and magnetic moment of the molecule are zero), and so this antisymmetric spin state is associated with even rotational states. Orthohydrogen has the spins of the nuclei parallel and corresponds to odd rotational states. In normal hydrogen, the relative abundance of the two types of molecules will be determined by the equilibrium conditions at room temperature. Since at high temperatures, z_{0} is approximately equal to z_{e}, the relative abundance of para and ortho molecules will be in the ratio $p-\mathrm{H}_{2}: o-\mathrm{H}_{2}=1: 3$. The specific heat of normal hydrogen must be calculated by adding the contributions from the two species in this ratio, because during the course of an ordinary calorimetric measurement the ratio does not change appreciably. Thus

$$
\begin{equation*}
C_{v}(\text { rot. })=\frac{1}{4} \frac{d}{d T}\left(R T^{2} \frac{d}{d T} \ln z_{e}\right)+\frac{3}{4} \frac{d}{d T}\left(R T^{2} \frac{d}{d T} \ln z_{0}\right) \tag{6.14}
\end{equation*}
$$

This formula is in excellent agreement with the observations on ordinary hydrogen (for which the usual abbreviation is $n-\mathrm{H}_{2}$).

Although the transitions between the ortho and para forms of hydrogen are so infrequent that the mixture retains its room-temperature composition of $o-\mathrm{H}_{2}: p-\mathrm{H}_{2}=3: 1$ during normal measurements of the specific heat, it is possible to catalyze the transitions by bringing the gas into contact with activated charcoal or paramagnetic salts. Substances such as ferric hydroxide are commonly used as catalysts. The lowest energy state of the ortho molecule is the $j=1$ state, unlike the para molecule with a zero-energy $j=0$ state. So, at low temperatures the equilibrium gas contains mostly para molecules. Typically, equilibrium hydrogen contains $25 \% p-\mathrm{H}_{2}$ at $300^{\circ} \mathrm{K}$ and over $99 \% p-\mathrm{H}_{2}$ at $20^{\circ} \mathrm{K}$. This almost pure parahydrogen, or any

Fig. 6.2. Rotational heat capacity of ortho, para, normal, and equilibrium hydrogen

$$
\left(\theta_{r}=85.4^{\circ} \mathrm{K}\right)
$$

other mixture, will remain in metastable equilibrium if the temperature is changed in the absence of catalysts. Therefore, the specific heats of various ortho-para mixtures have been studied; the results are in excellent agreement with the theoretical calculations if θ_{r} is taken as $85.4^{\circ} \mathrm{K}$. By selective adsorption of the ortho molecules on alumina, 99% pure orthohydrogen has been prepared recently ${ }^{10}$ and its properties studied.

The rotational specific heat of the various forms (ortho, para, normal, and equilibrium states) of hydrogen are shown in Fig. 6.2.

For deuterium, the nuclear spin I is 1 , and so $\rho=3$. Since the deuteron contains two particles (proton and neutron), the total wave function must be symmetrical. The even rotational functions z_{e} are to be coupled to even nuclear spin functions of weight $\frac{1}{2} \rho(\rho+1)=6$, while the antisymmetrical rotational functions z_{0} are to be associated with the antisymmetrical spin functions of weight $\frac{1}{2} \rho(\rho-1)=3$. So for a metastable mixture of deuterium ($n-D_{2}$),

$$
\begin{equation*}
C_{v}(\text { rot. })=\frac{6}{9} \frac{d}{d T}\left(R T^{2} \frac{d}{d T} \ln z_{e}\right)+\frac{3}{9} \frac{d}{d T}\left(R T^{2} \frac{d}{d T} \ln z_{0}\right) \tag{6.15}
\end{equation*}
$$

The measurements on ordinary deuterium are in good agreement with this relation.

The para molecules have antiparallel nuclear spins. Therefore, paradeuterium is associated with odd rotational states, unlike parahydrogen, which is associated with even j-states because of the difference in nuclear mass and hence symmetry. The temperature variation of C_{v} (rot.) for paradeuterium is thus similar to that of orthohydrogen. The specific heat of orthodeuterium resembles the behavior of parahydrogen in having a maximum in C_{ν} (rot.), but because of the increased moment of inertia, the peak occurs at about $85^{\circ} \mathrm{K}$ in orthodeuterium as compared to about $170^{\circ} \mathrm{K}$ in parahydrogen. Further, because of the higher percentage of even rotational states, normal deuterium shows a weak maximum in the specific heat at about $100^{\circ} \mathrm{K}$. The theoretical variation of C_{v} (rot.) shown in Fig. 6.3 is in good agreement with experiments if θ_{r} is taken as $43.0^{\circ} \mathrm{K}$. At low temperatures, orthodeuterium is the more favored

Fig. 6.3. Rotational heat capacity of para, ortho, normal, and equilibrium deuterium $\left(\theta_{r}=43.0^{\circ} \mathrm{K}\right)$.
state, and so almost pure metastable orthodeuterium can be prepared for experimental studies. Enrichment of paradeuterium requires a special process. ${ }^{10}$

Similar considerations apply to other cases such as that of $\mathbf{C H}_{4}$, where the four hydrogen atoms are indistinguishable. However, these substances are no longer in the gaseous state when the deviations from the equipartition value are expected to arise. The study of tritium and its hydrides is barely possible. ${ }^{11}$

6.6. VIBRATIONAL AND ELECTRONIC SPECIFIC HEATS

The vibrational levels of molecules are 100 to 1000 times higher than the rotational levels; consequently, for many "permanent" gases the vibrational contribution becomes appreciable only at high temperatures. There are some substances, especially the organic vapors, which have rather low vibrational frequencies; for them, the vibrations are excited at room temperatures, as shown in Table 6.I.

The vibrational specific heat has been already calculated, in a different context. In Chapter 2, it was pointed out that a harmonic vibrator of frequency v has energy levels $\varepsilon_{n}=\left(n+\frac{1}{2}\right) h v$, and so

$$
z=\sum_{n=0}^{\infty} \exp \left[-\frac{\left(n+\frac{1}{2}\right) h v}{k T}\right]=\frac{\exp \left(\frac{1}{2} h v / k T\right)}{1-\exp (h v / k T)}
$$

Thus

$$
\begin{equation*}
C_{v}(\mathrm{vib} .)=R\left(\frac{\theta_{v}}{T}\right)^{2} \frac{\exp \left(\theta_{v} / T\right)}{\left[\exp \left(\theta_{v} / T\right)-1\right]^{2}} \tag{6.16}
\end{equation*}
$$

where $\theta_{v}=h v / k$. This is the well-known Einstein function [equation (2.9)], and the temperature variation of C_{v} was represented in Fig. 2.1. (There is a small difference in that three-dimensional oscillators were considered in Chapter 2, whereas the present C_{v} (vib.) for the onedimensional case is one-third the C_{v} considered in Section 2.4.) From spectroscopic studies of the vibrational frequencies, the values of θ_{v} may be calculated, some of which are given in Table 6.V. For simple molecules, the vibrational specific heat is barely excited at

Table 6.V. Vibrational Characteristic Temperatures $\theta_{v}\left(\right.$ in $\left.10^{\mathbf{3}} \mathrm{K}\right)$

	Gas									
	H_{2}	HD	D_{2}	HCl	HBr	CO	N_{2}	O_{2}	Cl_{2}	Br_{2}
θ_{v}	6.0	5.3	4.3	4.1	3.7	3.1	3.4	2.2	0.80	0.46

Table 6.VI. Vibrational Heat Capacity of Chlorine (in cal/mole•deg)

	Temperature (deg K)				
	243	270	317	391	452
Calculated	0.848	0.985	1.188	1.407	1.530
Experimental	0.840	0.977	1.148	1.459	1.557

$300^{\circ} \mathrm{K}$, i.e., at about one-tenth θ_{v}. Chlorine is an exception; the values, calculated from a band-spectrum value of $v=16.95 \times 10^{12} / \mathrm{sec}$, are compared with the experimental results ${ }^{1}$ in Table 6.VI. There is indeed good agreement.

In polyatomic molecules, there are several vibrational frequencies, and the corresponding Einstein terms must be summed up. In many cases, to get full agreement with experiments, corrections have to be applied for the coupling between vibrational and rotational levels of the molecule and for the anharmonicity of the vibrations at higher temperatures. These problems are treated in several texts. ${ }^{3,4}$

Electronic energy levels, being of the order of $10^{4 \circ} \mathrm{~K}$ apart, are not excited at room temperatures. In nitric oxide (NO) and a few free radicals, there are exceptionally low-lying levels with spacings of about $100^{\circ} \mathrm{K}$. The excitations between such levels give rise to the Schottky type of specific heat (Section 4.9). Measurements in the gaseous state, which exists only at temperatures well above the specific-heat peak, are in reasonable accord with the calculations. ${ }^{4}$

6.7. CALORIMETRIC AND STATISTICAL ENTROPIESDISORDER IN SOLID STATE

The study of the entropy of gases offers some interesting information about possible disorder in the solid state, which is of fundamental interest in connection with the third law of thermodynamics. ${ }^{12}$ Statistical thermodynamics allows calculation of the absolute entropy of gases, ${ }^{\text {© }}$ as was outlined for the case of translational degrees of freedom. The expressions involve, besides the fundamental constants h, k, m, etc., the frequencies of rotational and vibrational modes and the possible degeneracy of the states of the gas. These quantities can be determined from spectroscopic observations, and the entropy can be calculated. ${ }^{5}$ On the other hand, from the measured specific heats of the solid and liquid phases as well as the latent heats of the phase changes, it is easy to calculate the entropy of the gas at, say, the normal boiling point. The calorimetrically determined values must agree with the statistically calculated values, if the conceptions

Table 6.VII. Statistical and Calorimetric Entropies (in cal/mole•deg)

	Gas and boiling point (deg K)									
	$\begin{gathered} \text { A } \\ 87.3 \end{gathered}$	$\begin{gathered} \mathrm{Kr} \\ 120.2 \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \\ 77.4 \end{gathered}$	$\begin{gathered} \mathrm{Cl}_{2} \\ 238.6 \end{gathered}$	$\begin{array}{r} \mathrm{HCl} \\ 188.2 \end{array}$	$\underset{237.5}{\mathrm{HI}}$	$\begin{aligned} & \mathrm{CH}_{4} \\ & 111.5 \end{aligned}$	$\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{4} \\ 169.3 \end{gathered}$	$\begin{aligned} & \mathrm{CO}_{2} \\ & 194.7 \end{aligned}$	$\begin{aligned} & \mathrm{NH}_{3} \\ & 239.7 \end{aligned}$
Statistical	30.87	34.65	36.42	51.55	41.45	47.8	36.61	47.35	47.55	44.10
Calorimetric	30.85	34.63	36.53	51.56	41.3	47.8	36.53	47.26	47.59	44.13

of the third law and the statistical mechanics of the substances are correct. Table 6.VII, giving the relevant data at the boiling point of several simple substances, shows that the agreement is very good in most cases. This is indeed gratifying.

In some cases, calorimetric and statistical entropies do not agree so well as in Table 6.VII. Among the possible reasons for the discrepancy are (i) errors of calorimetry in the form of impure specimens, etc.; (ii) anomalous variations of specific heat below the temperatures up to which measurements have been made, resulting in an incorrect extrapolation to $0^{\circ} \mathrm{K}$ (compare Section 1.4); and (iii) inadequate knowledge of the molecular parameters or the equation of state. Even when these reasons are ruled out, differences between the statistical and calorimetric values persist in some cases. ${ }^{13}$ Table 6.VIII shows that they are significantly greater than the limits of experimental error, which is of the order of $\pm 0.1 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$ in the unfavorable cases involving specific-heat anomalies in the solid state. Although at one time there was considerable discussion about these discrepancies, it is now settled that in these substances the solid phases are not in internal equilibrium. As in the case of glassy materials discussed in Section 5.9, the solid state contains "frozen-in" configurational disorder not revealed in the calorimetric measurements of specific heats and hence in the evaluation of the entropy. Whereas the statistical calculations give the entropy difference between the gas at its boiling point and a perfectly ordered state at $0^{\circ} \mathrm{K}$, calorimetry gives the entropy difference between the gas at its boiling point and a slightly disordered state at $0^{\circ} \mathrm{K}$. Therefore, the calorimetric values must be smaller than the statistically calculated results, which is in fact one of the salient features of Table 6.VIII.

Carbon monoxide is a molecule with quite similar atoms; in an ideal solid state, the atoms should be arranged in the perfect order ... CO CO CO CO A disordered state ... CO CO OC CO ... will have a slightly higher energy Δ, dependent upon the difference between C and O atoms. If the temperature T is much larger than Δ / k, fluctuations in thermal energy of the order of Δ / k are possible,

Table 6.VIII. Discrepancies Between Statistical and Calorimetric Entropies ${ }^{13}$

	Gas and boiling point (deg K)							
	CO	$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{D}$	FClO_{3}	$\mathrm{SO}_{2} \mathrm{~F}_{2}$	NO	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{D}_{2} \mathrm{O}$
	83	184.6	99.7	226.5	217.8	121.4	298^{*}	298^{*}
Statistical 38.32 48.50 39.49 62.59 64.14 43.75 45.10 46.66 Calorimetric	37.2	47.36	36.72	60.17	62.66	43.03	44.28	45.89
Statistical- Calorimetric	1.1	1.1	2.8	2.4	1.5	0.7	0.8	0.8

${ }^{*} \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ at room temperature.
and the molecule rotates freely from the CO to OC configuration and back. At very low temperatures ($T \ll \Delta / k$), the solid will become completely ordered if allowed to do so. However, in any solid there are always intermolecular potential barriers δ opposing the molecular motions. If these barriers are small compared to Δ, an ordered state sets in at $T \sim \Delta / k$. If, however, the potential barriers are much larger than Δ, then the high-temperature disordered state becomes frozen at $T \sim \delta / k$. The ordering at lower temperatures is not possible, because the mismatch energy Δ is not sufficient to overcome the potential barrier δ. If a molecule can take up one of two possible sites, the entropy of the frozen disorder is $R \ln 2$ per mole. The discrepancy in Table 6.VIII is $1.1 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$, which is slightly smaller than $R \ln 2 \sim 1.38$ units, suggesting that a part of the disorder had been removed before the potential barriers in the solid prevented any trend toward a perfect arrangement. Similar arguments apply to nitrous oxide. This is a linear molecule with the atoms nearly alike, so that its orientation in the solid state may be either NNO or ONN. The discrepancy, 1.1 units, is again a little smaller than $R \ln 2$. The same end-for-end disorder occurs in the long-chain 1 -olefins with more than eleven carbon atoms, ${ }^{14}$ while 1 -decene and smaller molecules are fully ordered in the solid state.

The magnitude of the difference in $\mathrm{CH}_{3} \mathrm{D}$ is about $2.7 \mathrm{cal} /$ mole•deg, which immediately gives a clue to the nature of the disorder. In a completely ordered state, the $\mathrm{CH}_{3} \mathrm{D}$ molecules may be expected to take up a position with the deuterium atoms in one particular site among the four tetrahedral carbon-hydrogen bonds. If the rotational motion has been frozen at relatively high temperatures, there will be a residual entropy of $R \ln 4 \sim 2.75$ units, which is very close to the experimental value. The same is the situation with the perchloryl fluoride FClO_{3}, where the crystal fails to distinguish
between the oxygen and the fluorine atoms in orienting the molecule in the solid state. There are four possible positions for the fluorine atoms, giving a disorder entropy $R \ln 4 \sim 2.75$ units, which is close to the observed value of 2.42 units. In sulfuryl fluoride $\left(\mathrm{SO}_{2} \mathrm{~F}_{2}\right)$, the slightly asymmetric top molecules have two possible orientations in the solid state, resulting in an entropy difference of about 1.5 units.

The statistical entropy of nitric oxide is only 0.7 units higher than the calorimetric values. X-ray studies ${ }^{15}$ show that nitric oxide is present as a dimer

$$
\begin{aligned}
& \underset{\mathrm{N}}{\mathrm{O}} . \mathrm{O} \\
& \mathrm{~N}
\end{aligned}
$$

with nitrogen-oxygen bonds of 1.1 and $2.4 \AA$, respectively. The X-ray diffraction patterns suggest that the dimer is distributed in the crystal without distinguishing between the corners occupied by the N atoms and those occupied by the O atoms. This randomness gives an entropy of $R \ln 2$ per mole of the dimer and so accounts for the observed difference $\frac{1}{2} R \ln 2 \sim 0.69$ units per mole of the monomer NO.

Ice provides a celebrated example of a more complicated type of disorder which was first elucidated by Pauling. ${ }^{16}$ In gaseous $\mathrm{H}_{2} \mathrm{O}$, the $\mathrm{HOH}_{\mathrm{a}}$ angle is about 105°, and the two H atoms are at a distance of $0.95 \AA$ from the oxygen atom. In ice, the various molecules are bound together into a loose open structure by hydrogen bonds, and each O atom is surrounded by four other O , tetrahedrally situated at a distance of $2.76 \AA$. The water molecules retain their individuality to a large extent, but there is space only for one H atom along each tetrahedral $\mathrm{O}-\mathrm{O}$ direction at a distance of $0.95 \AA$ from either oxygen. In a mole of ice there are $2 N \mathrm{H}$ atoms, and if there are two possible positions along each $\mathrm{O}-\mathrm{O}$ bond, the possible number of configurations is $2^{2 N}$. Of these, only a few are acceptable. Consider any O atom and the available sites along the four tetrahedral directions. There is one way of putting four hydrogens close to the O atom, giving $\left(\mathrm{OH}_{4}\right)^{2+}$ ionic arrangement; there are four ways of getting $\left(\mathrm{OH}_{3}\right)^{+}$, six ways of getting $\left(\mathrm{OH}_{2}\right)$, and four ways of getting $(\mathrm{OH})^{-}$; and there is one way of getting $(\mathrm{O})^{2-}$ ionic arrangement. Of these sixteen possibilities, only six yield the desired $\mathrm{H}_{2} \mathrm{O}$ molecule; that is, only three-eighths of all possible configurations are acceptable to that O atom. Thus the total number of possible arrangements of a mole of the solid is $(2)^{2 N} \cdot\left(\frac{3}{8}\right)^{N}=\left(\frac{3}{2}\right)^{N}$. Therefore, the entropy associated with this is $R \ln \frac{3}{2}=0.81 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$. This agrees very well with the difference of 0.8 units observed for both $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$. There is considerable evidence from neutron- and electron-diffraction studies for the essential correctness of the statistical disorder in ice, and the matter has been recently reviewed by Chidambaram. ${ }^{17}$

The hydrated sodium sulfate $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ shows a residual entropy of about 1.5 units, which has been explained on the basis of X-ray structural work ${ }^{18}$ A four-member hydrogen-bonded ring exists in the structure, with the protons unsymmetrically located in the hydrogen bonds. Therefore, two arrangements,

are possible, and a random population of the two schemes gives a disorder entropy of $R \ln 2$. Isomorphous $\mathrm{Na}_{2} \mathrm{CrO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ has the same structure and presumably would have the same residual entropy.

It was mentioned earlier that if the mismatch energy Δ is much larger than the intermolecular potential barriers, an ordered state is achieved at a temperature $T \sim \Delta / k$. Consider, for example, HI instead of CO. The atoms are so different that the energy difference Δ between HI and IH configurations is very large. Even at relatively high temperatures, there is insufficient thermal energy to permit such a disorder. As a matter of fact, such substances display the ordering process in spectacular specific-heat singularities, the typical example ${ }^{19}$ of HI and DI being given in Fig. 6.4. These cooperative anomalies were first found in ammonium chloride by Simon in 1922 and have since been found in a large number of substances. They are discussed fully in the following chapter. The configurational entropy in these materials is removed at relatively high temperatures. Hence there should be no discrepancy between statistical and calorimetric entropies. The examples given in Table 6.VII confirm this.

6.8. HINDERED ROTATION

A molecule does not always rotate as a rigid body, as was implied in the calculations of Section 6.4. In many organic molecules, groups of atoms can rotate freely or partially about the bond directions. A classic example is the difference between ethane $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$ and dimethylacetylene $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$. In ethane, the influence of the hydrogen atoms of one methyl group can be felt by the other CH_{3}

Fig. 6.4. Heat capacities of HI and DI. ${ }^{19}$
group, and so a rotation of one group about the $\mathrm{C}-\mathrm{C}$ axis may be expected to have a potential of the form $V=V_{0}(1-\cos 3 \phi)$. In dimethylacetylene, the CH_{3} groups are far away, and so the methyl groups experience little, if any, potential barrier for rotation about the $\mathrm{C} \equiv \mathrm{C}$ bond. In fact, the entropy calculated by assuming a free rotation of the methyl group agrees well with the calorimetric value in the case of this substance. On the other hand, the measured entropy of ethane falls between the entropies calculated by assuming free or no rotation about the $\mathrm{C}-\mathrm{C}$ bond. It is clear that from such entropy differences a knowledge of the potential barriers may be obtained.

The hindered rotation of the radicals in a molecule can also be studied from infrared and microwave spectra of the substance. Wilson ${ }^{20}$ has recently reviewed the various methods of determining V_{0}. The thermodynamic method, though used first to obtain this information (mainly by Pitzer and his coworkers), is rather inaccurate because it depends upon the small difference between two large quantities, namely, the calorimetric entropy and the statistical contribution from translational, vibrational, and other modes. The
spectroscopic determination is more accurate; V_{0} thus determined can be used to interpret the calorimetric data. Methyl chloroform is one of the early substances for which spectroscopic data made possible the satisfactory interpretation of specific-heat measurements. Methanol has been studied extensively by various methods, and the results are in very good agreement with one another. ${ }^{4}$

6.9. ENTROPY OF HYDROGEN

The entropy of hydrogen depends upon its composition. Johnston and coworkers ${ }^{21}$ calculated the entropy of parahydrogen by using the measured specific heats up to $12^{\circ} \mathrm{K}$ and then making a Debye-type extrapolation of the heat capacity of the solid down to absolute zero. At the boiling point $\left(20.76^{\circ} \mathrm{K}\right)$, the entropy comes out to be

Fig. 6.5a. Heat capacities of mixtures of orthohydrogen and parahydrogen in the solid state.

Fig. 6.5b. λ-peaks with ortho concentrations exceeding about $60 \%{ }^{23}$ Curve (a) $=74 \%$ and curve (b) $=66 \%$ orthohydro-

$14.8 \pm 0.1 \mathrm{cal} /$ mole \cdot deg. The statistical entropy is easily calculated from the translational and rotational functions and a small vibrational partition function. The value 14.76 agrees very well with the calorimetric evaluation.

A similar statistical calculation of the entropy of normal hydrogen shows that it exceeds that of parahydrogen by $4.29 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$. This excess arises from three sources. Normal hydrogen is a mixture of orthohydrogen and parahydrogen in the ratio $o: p=3: 1$, and the entropy of mixing is equal to $-R\left(\frac{1}{4} \ln \frac{1}{4}+\frac{3}{4} \ln \frac{3}{4}\right) \sim 1.14$ units. A second source is the nuclear-spin entropy of orthohydrogen. The ortho molecules, with a resultant nuclear spin $I=1$, have three possible orientations, and the degeneracy will not be revealed until the specific heats are measured down to about $10^{-6 \circ} \mathrm{~K}$. The excess entropy is $R \ln 3$ per mole of orthohydrogen, and so it contributes $\frac{3}{4} R \ln 3 \sim 1.64$ to the ordinary $3: 1$ mixture.

A third contribution comes from the ordering of the rotational axes of the molecules at low temperatures. As mentioned earlier, ortho-para transitions take place only slowly in liquid and solid states, which makes it possible to measure the thermal properties of the condensed phases with various ortho-para concentrations.

Such measurements were first performed by Simon, Mendelssohn, and Ruheman ${ }^{22}$ and more recently by Hill and Ricketson ${ }^{23}$ and by Ahlers and Orttung. ${ }^{24}$ Measurements above helium temperatures (Fig. 6.5a) show that the specific heats of solid solutions of orthohydrogen considerably exceed those of pure parahydrogen. With ortho concentrations in excess of about 60%, the specific heat exhibits a pronounced λ-peak at about $2^{\circ} \mathrm{K}$ (Fig. 6.5b). The additional specific heat increases with increasing ortho concentration, and the entropy associated with the anomaly is only a little lower than $R \ln 3$ per mole of orthohydrogen.

The excess entropy is in fact what is expected. The ground state of the ortho-molecule is the $j=1$ rotational state, which, because of the low moment of inertia, has considerable energy. Solid hydrogen has a very open structure, largely on account of the high zero-point energy; therefore, the potential barriers opposing rotation of the molecules are small. The ortho molecules may be rotating right down to $0^{\circ} \mathrm{K}$. The rotational level $j=1$ is threefold degenerate, but since the molecular field in the solid is cubic and not spherical, different relative orientations have slightly differing energies of interaction. The lowest energy of the system occurs for an ordered arrangement of the axis of rotation; indeed, NMR experiments ${ }^{25}$ show that the ortho molecules become ordered in this way. The specific-heat anomaly is due to this cooperative ordering process, though recent investigations ${ }^{24}$ show that the details of the ordering process are more complicated than was originally supposed. It is evident that the removal of the threefold degeneracy gives an extra entropy $R \ln 3$ per mole of orthohydrogen, or $\frac{3}{4} R \ln 3 \sim 1.64$ per mole of normal hydrogen. The sum of the three contributions $(1.14+1.64+1.64 \sim 4.4 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg})$ is in satisfactory agreement with the calculated difference of 4.3 units.

A similar entropy contribution due to the removal of the threefold degeneracy of para molecules is present in deuterium. Following the earlier experiments, ${ }^{26}$ which revealed anomalous specific heats similar to those shown in 6.5 a , Grenier and White ${ }^{27}$ detected λ-peaks (as in Fig. 6.5 b) at about $3^{\circ} \mathrm{K}$ in the specific heat of solid deuterium, with para concentrations of more than approximately 65%. They used a special enrichment procedure ${ }^{10}$ to get para concentrations greater than the normal $33 \frac{1}{3} \%$. Taking into account the various contributions, there is satisfactory agreement between calorimetric and statistical entropies.

REFERENCES

1. J. R. Partington and W. G. Shilling. The Specific Heats of Gases, Benn, London, 1924. A. Eucken, Handbuch der Experimental Physik, VIII(I) (1929), chapter 10.
2. E. Justi, Spezifische Warme, Entropie, und Dissoziation technischer Gase, Springer, Berlin, 1938.
3. J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, New York, 1940, chapters 6, 7, and 8. J. G. Aston and J. J. Fritz, Thermodynamics and Statistical Thermodynamics, Wiley, New York, 1959, chapters 18, 19, and 20.
4. J. S. Rowlinson, The Perfect Gas, Pergamon, Oxford, 1963, chapter 3.
5. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York, 1945, p. 501; Spectra of Diatomic Molecules, Van Nostrand, New York, 1950, p. 466. K. S. Pitzer, Quantum Chemistry, Prentice-Hall, Englewood Cliffs, N.J., 1953, chapter 9.
6. L. S. Kassel, Chem. Rev. 18, 277 (1936). E. B. Wilson, Chem. Rev. 27, 17 (1940).
7. H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Res. Nat. Bur. Std. 41, 379 (1948).
8. F. Hund, Z. Physik 42, 93 (1927).
9. D. M. Dennison, Proc. Roy. Soc. (London), Ser. A 115, 483 (1927).
10. C. M. Cunningham, D. S. Chapin, and H. L. Johnston, J. Am. Chem. Soc. 80, 2382 (1958).
11. W. M. Jones, J. Chem. Phys. 16, 1077 (1948); 17, 1062 (1949).
12. J. Wilks, Third Law of Thermodynamics, Oxford University Press, Oxford, 1961, chapter 5.
13. J. O. Clayton and W. F. Giauque, J. Am. Chem. Soc. 54, 2610 (1932). (Carbon monoxide.) K. Clusius, Z. Elektrochem. 40, 99 (1934); R. W. Blue and W. F. Giauque, J. Am. Chem. Soc. 57, 991 (1935). (Nitrous oxide.) K. Clusius, L. Popp, and A. Frank, Physica 4, 1105 (1937). (Monodeutro methane.) J. K. Koehler and W. F. Giauque, J. Am. Chem. Soc. 80, 2659 (1958). (Perchloryl fluoride.) F. J. Bockoff, R. V. Petrella, and E. L. Pace, J. Chem. Phys. 32, 799 (1960); 36, 3502 (1962). (Sulfuryl fluoride.) H. L. Johnston and W. F. Giauque, J. Am. Chem. Soc. 51. 3194 (1929). (Nitric oxide.) W. F. Giauque and J. W. Stout, J. Am. Chem. Soc. 58, 1144 (1936). (Water.) E. A. Long and J. D. Kemp, J. Am. Chem. Soc. 58, 1829 (1936). (Heavy water.)
14. J. P. McCullough, H. L. Finke, M. E. Gross, J. F. Messerly, and G. Waddington, J. Phys. Chem. 61, 289 (1957).
15. W. J. Dulmage, E. A. Meyers, and W. N. Lipscomb, Acta cryst. 6, 760 (1953).
16. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935); Nature of the Chemical Bond, Cornell University Press, Ithaca, N.Y., 1960, p. 464.
17. R. Chidambaram, Acta cryst. 14, 467 (1961).
18. K. S. Pitzer and L. V. Coulter, J. Am. Chem. Soc. 60, 1310 (1938); G. Brodale and W. F. Giauque, J. Am. Chem. Soc. 80, 2042 (1958). H. W. Ruben, D. H. Templeton, R. D. Rosenstein, and I. Olovsson, J. Am. Chem. Soc. 83, 820 (1961).
19. A. Eucken and E. Karwat, Z. phys. Chem. 112, 467 (1924). W. F. Giauque and R. Wiebe, J. Am. Chem. Soc. 51, 1441 (1929). K. Clusius and D. Wolf, Z. Naturforsch. 2a, 495 (1947).
20. E. B. Wilson, Advan. Chem. Phys. 2, 367 (1959).
21. H. L. Johnston, J. T. Clarke, E. B. Rifkin, and E. C. Kerr, J. Am. Chem. Soc. 72, 3933 (1950).
22. K. Mendelssohn, M. Ruheman, and F. Simon, Z. phys. Chem. B15, 121 (1931).
23. R. W. Hill and B. W. A. Ricketson, Phil. Mag. 45, 277 (1954).
24. G. Ahlers and W. H. Orttung, Phys. Rev. 133, A1642 (1964).
25. J. Hatton and B. V. Rollin, Proc. Roy. Soc. (London), Ser. A 199, 222 (1949). F. Reif and E. M. Purcell, Phys. Rev. 91, 631 (1953). T. Sugawara, Y. Masuda, T. Kanda, and E. Kanda, Sci. Rept. Res. Inst. Tohoku, Univ. A7, 67 (1955). G. W. Smith and R. N. Housley, Phys. Rev. 117, 732 (1960).
26. O. D. Gonzalez, D. White, and H. L. Johnston, J. Chem. Phys. 61, 773 (1957).
27. G. Grenier and D. White, J. Chem. Phys. 40, 3015 (1964).

Chapter 7

Specific-Heat Anomalies

7.1. SPURIOUS AND GENUINE ANOMALIES

The idea that the specific heats of some materials show abnormal variations at certain temperatures was introduced as early as Chapter 1 , and several examples of such uncommon behavior were mentioned in Chapters 3 to 6. Before embarking upon a systematic classification of such unusual specific-heat variations, it is worthwhile to digress a little upon what constitutes anomalous behavior. Any definition of an anomaly is to some extent negative in that it invokes the standards for normal behavior, which obviously depend upon the progress of our knowledge concerning the thermal properties of physical systems. Thus, deviations from Einstein and Debye models of specific heats, at one time considered to be anomalous variations of specific heats, are now taken as normal in the light of detailed lattice calculations. Similarly, the unexpected behavior of the specific heat of a superconductor is now viewed as a simple consequence of the onset of superconductivity in the electronic system. The possibility always exists that the puzzles of one era may become clarified in the succeeding years. Consequently, it is best to adopt as a pragmatic simplification that, in most substances and in many simple theoretical models of solids, the specific heat decreases continuously as the temperature is lowered. If there is an increase associated with reduction of temperatures, giving in effect a maximum in the heat capacity, the behavior is generally called a specific-heat anomaly. Although at one time such events were rarely observed, they are now known to occur in numerous substances. In general, if the origin of the effect is known, we shall call a finite small maximum a peak in the heat capacity and a large, nearly infinite, maximum a singularity. It appears best to reserve the term anomaly for the cases where the explanation is unknown.

It is useful to illustrate the above statements with some examples. For the majority of common solids, the typical low-temperature specific heat is that shown by the thick line in Fig. 7.1a, decreasing continuously to zero as $0^{\circ} \mathrm{K}$ is approached. A few substances exhibit a definite maximum as shown in Fig. 7.1b, a specific-heat peak. A practical case, that of nickel sulfate at low temperatures, was shown in Fig. 4.11. Here, on the basis of theoretical and experimental studies of thermal and other properties, it was possible to resolve the observations into a lattice contribution and a Schottky term, as shown schematically in Fig. 7.1b. Much effort has gone into the resolution of experimentally determined total specific heats into simple

Fig. 7.1. (a) Typical specific-heat variation of many common solids (thick lines). Broken lines show a possible resolution into Debye and Schottky contributions. (b) Schematic picture of a specific heat peak. Broken lines show decomposition into lattice and Schottky contributions. (c) Frequency distribution for a combination of Debye and Schottky terms. The Schottky term is equivalent to removing frequencies at $2 v_{E}$ and adding them at v_{E} shown as shaded portions.
lattice, electronic, and other contributions so that the anomalous part can be discussed independently. Unfortunately, this sort of decomposition game, played with numerical data, can be carried to extremes. It was noticed by Simon in 1930 that the specific heats of many solids could be fitted very well by a combination of a Debye and a Schottky term, somewhat as shown by the broken lines in Fig. 7.1a. It was then postulated that the lattice follows the Debye variation, while the electronic system follows the Schottky relation as a result of excitation between the ground state and a higher energy state. With several adjustable constants, the agreement in such cases is, as expected, very good.

The underlying physical reason for this kind of agreement is as follows. ${ }^{1}$ A comparison of the Schottky equation (4.25) for the case $g_{0}=g_{1}$ with the Einstein equation (2.9) reveals that the Schottky term is the same as the difference $C_{v}\left(T_{E} / T\right)-C_{v}\left(2 T_{E} / T\right)$ between two Einstein models with frequencies v_{E} and $2 v_{E}$. Thus, the above decomposition is equivalent to adding a number of frequencies at v_{E} and removing the same number at $2 v_{E}$ in the Debye spectrum. The resulting $g(v)$ (thick line in Fig. 7.1c) has a slightly better resemblance to the actual frequency spectra of solids-compare Figs. 2.5 to $2.8-$ than a single Debye spectrum, and the better representation of the specific heats by such a frequency spectrum is not surprising. With other approximate representations of $g(v)$, such as those attempted by Raman and coworkers, the situation is similar.

It is now natural to ask whether a Schottky term obtained by such a decomposition justifies considering the specific-heat variation to be anomalous. At present, such specific-heat contributions are not called anomalous. The Debye spectrum is now known beyond all doubts to be nothing more than a good approximation to the $g(v)$ of solids; a judicious combination of Debye and other terms is at best a better approximation. Hence, any peak separated out from the observations is artificial and without proper theoretical justification; the actual specific heat can be represented equally well by an appropriate $g(v)$, which can be studied and confirmed by other independent methods such as neutron-diffraction studies. It is only when there is an actual maximum in the observed total specific heat that the lattice and electronic modes are insufficient for an explanation. Therefore, a practical criterion for a specific-heat anomaly is the presence of a maximum in the temperature variation of specific heat.

It is thus clear that what could have been considered a specificheat anomaly in, say, 1930 is now taken to be normal behavior of the lattice. Another way in which later studies establish the presence of normal behavior is in bringing to light insidious experimental errors.

In particular, three sources of error in many early observations have been revealed. Where hydrogen or helium exchange gas is used to cool the specimen to low temperatures, the desorption of the gas at low temperatures vitiates calorimetric studies by preventing the easy attainment of good vacuum insulation and by causing liberation of the heat of desorption. Secondly, small amounts of impurities, especially of materials which have pronounced specific-heat peaks, often result in apparent anomalies. Magnetic materials showing transitions at low temperatures should be scrupulously avoided. Thirdly, uncertainties in temperature scales may cause errors in the evaluation of heat capacities. Several anomalies reported earlier in many common materials ${ }^{1}$ have now proved to be results of these experimental shortcomings.

7.2. COOPERATIVE AND NONCOOPERATIVE ANOMALIES

In discussing the model systems which show specific-heat peaks it is convenient to start with a system of independent particles or modes. Indeed, the simple models of solids and gases in Chapters 2, 3 , and 6 invoked only such independent modes of excitation, namely, independent phonons, electrons, and molecules. The simplicity of such a system is that the total energy is just the sum of the energies of the various independent modes. Since there is no mutual interdependence among the modes, the system is called a noncooperative one. Under these conditions, a rather complete theoretical analysis of the system is possible. The examples of Schottky effect (Section 4.9), rotational specific heat of gases (Section 4.5), and the heat capacity of some liquids and solutions ${ }^{2}$ show that even in these noncooperative processes specific-heat maxima can occur. The practical examples of such peaks and their theoretical interpretation have been fully discussed elsewhere, and there is no need for further analysis in this chapter. As a matter of fact, the rotational specific heat of gases is so well understood that many authors do not classify its maximum as a specific-heat anomaly.

In some physical systems, the interactions among the constituents are so strong that the energy state of one constituent depends upon the energy states of its neighbors. For example, in a ferromagnet the probability of a given spin pointing along $+Z$ is large if the nearby spins also point along $+Z$ and small if they are aligned along $-Z$. Thus, the spin states are not mutually independent. The probability of transferring a particle to an excited state depends upon the degree to which the excited state is occupied. Under such conditions, the excited states are often too few until some critical mean energy, that is, some critical temperature, is approached. Then the process of
excitation by mutual cooperative action takes over and the particles of the system are very rapidly transfered to the excited states in the vicinity of the transition temperature. Thus, the energy of the system is changed in a small interval of temperature. In consequence, the cooperative transition is revealed in the specific heat as a pronounced singularity at the transition temperature T_{c}.

Several categories of cooperative phenomena are now known. The alignment of magnetic dipoles (spins), superconductivity of electronic systems, superfluidity in liquid helium, order-disorder transitions, and the onset of molecular rotation are some topics mentioned earlier. The phenomenon of ferroelectricity is analogous to ferromagnetism. There are other specific-heat singularities in rare-earth metals and at liquid-gas critical points. The present chapter will be concerned with these cooperative effects.

Specific-heat singularities due to magnetic interactions are by far the most frequent peaks observed at low temperatures. There are many ions which are paramagnetic; the presence of any one of them in a substance gives rise to either noncooperative Schottky peaks or cooperative ordering singularities. In the latter case, the ordered state at low temperatures may be ferro-, ferri-, or antiferromagnetic. Even in diamagnetic solids, the nuclear moments, if any, become ordered at sufficiently low temperatures. The experimental and theoretical aspects of these phenomena were discussed at some length in Chapter 4. Here it suffices to remark that if the spins become noncooperatively ordered, there is a smooth Schottky maximum, whereas in cooperative ordering the specific heat is probably infinite at the transition temperature T_{c}. Where sufficiently careful measurements have been made, the specific heat shows a logarithmic infinity on the low-temperature side of T_{c}. On the high-temperature side, it is not settled whether the singularity is logarithmic or of the powerlaw type.

Cooperative transitions in superconductors and superfluids were also fully discussed in earlier chapters. The two processes differ from the other cooperative phenomena in that the ordering takes place in the momentum space rather than in the coordinate space. For instance, a ferromagnet becomes ordered with all spins along one direction in the ordinary coordinate space. On the other hand, the superfluid properties of liquid ${ }^{4} \mathrm{He}$ are basically the result of Bose condensation of the particles into zero-momentum states. The Cooper pairs, which are responsible for superconductivity, behave very much like condensed bosons. There are, however, differences between the specific-heat behavior of superfluids and superconductors. Liquid ${ }^{4} \mathrm{He}$ exhibits the famous λ-transition at $2.17^{\circ} \mathrm{K}$, with the heat capacity showing logarithmic infinities both below and above T_{λ} (Section 5.5).

Superconductors show only a finite jump at the transition (Section 3.9). Further, liquid ${ }^{4} \mathrm{He}$ has a specific-heat tail on the high-temperature side of the transition, whereas at temperatures higher than T_{c}, superconductors give no clue about their dramatic properties below the transition. There have been suggestions that superconductors should also exhibit i-type singularities, but careful experiments have up to now failed to reveal any such behavior. ${ }^{3}$ The transition in liquid ${ }^{3} \mathrm{He}$, if confirmed, should prove very interesting. Several authors have predicted a peculiar anisotropic state of the liquid below T_{c}.

With a variety of known cooperative effects, obviously no general theory of such processes can be given, and each effect is best treated on its own merits. Thereafter, it will be appropriate to show how cooperative phenomena can be interpreted in terms of simple models.

7.3. ORDER-DISORDER TRANSITIONS

In an ordinary alloy, the atoms are distributed at random over the available lattice sites. As the temperature is lowered, the third law of thermodynamics predicts that an ordered state having less entropy should result. However, in many cases the random arrangement is forcibly preserved by the interatomic potential barriers preventing the free movement of atoms. An illustration would be a typical tin-lead solder. This freezing-in of disorder has been mentioned earlier (Sections 5.9 and 6.7). In other cases, the material lowers its entropy by precipitating individual grains of the component pure metals. In a few cases, the alloy (say $\mathrm{A}_{\boldsymbol{m}} \mathrm{B}_{n}$ of metals A and B) lowers its entropy by taking up a structure appropriate to a crystalline chemical compound $A_{m} B_{n}$. This last transformation is the one under consideration here.

A classic example is the alloy β-brass, CuZn . At or below room temperature, the substance has perfect cubic symmetry. The Zn atoms occupy the corners of a cubic unit cell, and the Cu atoms occupy the cube center. Thus, in this state β-brass may be visualized as two interpenetrating simple cubic lattices of Cu and Zn . At a temperature of about $1000^{\circ} \mathrm{K}$, the structure is disordered in the sense that the Cu and Zn atoms occupy sites at random. As the temperature is raised from $0^{\circ} \mathrm{K}$, the ordered state (schematically shown in Fig. 7.2a) is gradually transformed into the disordered state (shown in Fig. 7.2b), although the process occurs very rapidly in the vicinity of the transition temperature $T_{c} \approx 469^{\circ} \mathrm{C}$. The change in lattice structure is most easily followed by X-ray or neutron scattering. Many alloys, among them $\mathrm{AuCu}, \mathrm{AuCu}_{3}, \mathrm{CuPt}$, and AgZn , show order-disorder transformations. ${ }^{4}$

(a)

(b)

$\boldsymbol{O} \longrightarrow A$ or B atom
(c)

Fig. 7.2. Schematic view of order-disorder changes in an alloy AB: (a) ordered arrangement, (b) random arrangement, (c) illustration of the difference between long-range and short-range order.

The transformation is accompanied by changes in electrical, mechanical, and thermal properties. The specific heat of CuZn near its $T_{c}\left(\approx 469^{\circ} \mathrm{C}\right)$ is shown in Fig. 7.3a. ${ }^{5}$ The λ-shaped peak characteristic of cooperative transitions is evident. The specific heat has a sharp rise below T_{c} and retains a small tail above T_{c}. Although we are not yet in a position to discuss the details of such specific-heat curves, a simple rule for the excess entropy is easily formulated. If the atoms have the possibility of choosing between r configurations, the associated entropy is

$$
\begin{equation*}
\Delta S=R \ln r \tag{7.1}
\end{equation*}
$$

per mole. Thus in β-brass $r=2$; indeed, the excess entropy in Fig. 7.3 a is found to be very close to $R \ln 2$. Since the excess arises from the possibility of different configurations, ΔS is sometimes called the configurational entropy.

So far, the idea of order has been used in a qualitative manner. At this stage, we can introduce a quantitative description, used by Bragg and Williams in 1934, of what is strictly long-range order. Consider the alloy AB with an interpenetrating lattice of A and B . We may refer to the sites corresponding to one interpenetrating lattice as α-sites and the sites of the other lattice as β-sites. In a completely ordered state, let A atoms occupy α-sites and B atoms β-sites. Then, in a slightly disordered state, some atoms will be in right positions (A on α, B on β), while some will be in wrong positions (A on β, B on α). If there are R right atoms and W wrong atoms, the longrange order parameter σ_{l} may be defined as

$$
\begin{equation*}
\sigma_{\imath}=\frac{R-W}{R+W} \tag{7.2}
\end{equation*}
$$

When $W=0$, there is complete order and $\sigma_{l}=1$. The case $R=0$, $\sigma_{l}=-1$ also corresponds to a state of complete order, since by interchanging the names of α - and β-sites it becomes physically

Fig. 7.3. (a) Specific heat of $\mathrm{CuZn} .^{5}$ (b) Temperature variation of order parameters.
identical to the case $W=0$. Complete disorder exists when there are as many right atoms as wrong ones, that is, when $R=W$ and $\sigma_{l}=0$. Therefore, only the range between $\sigma_{l}=1$ (complete order) and $\sigma_{l}=0$ (complete disorder) is of physical interest. At very low temperatures, σ_{l} is unity, and it drops rapidly to zero when T_{c} is reached, as represented in Fig. 7.3b.

The short-range order parameter σ_{s} may also be easily introduced, following the work of Bethe in 1935. In many systems, the interaction among the atoms is significant only for the nearest neighbors. For instance, the spin exchange integrals of Section 4.6 are nearest-neighbor interactions. Therefore, as a criterion of order we may compare the number of right pairs (AB type) and the number of wrong (AA or BB) pairs of near neighbors. An illustration will clarify this concept. From the point of view of long-range order defined by equation (7.2), the lattice of Fig. 7.2c is highly disordered. Yet nearly all atoms have unlike atoms as nearest neighbors. So if the relative number of right and wrong neighbors is taken as a measure of the ordering in the vicinity of any atom, the lattice is only slightly disordered. Consider an A atom. Let the probability that a given neighbor is a B atom be $\left(1+\sigma_{s}\right) / 2$ and the probability that it is an A atom be $\left(1-\sigma_{s}\right) / 2$. For complete order $\sigma_{s}=1$ and for complete disorder $\sigma_{s}=0$. Therefore, σ_{s} is called the short-range order parameter. The temperature variation of σ_{s} is shown schematically in Fig. 7.3b. As T_{c} is approached, σ_{s} decreases rapidly from unity, but even above T_{c} short-range order persists for some temperatures.

7.4. ONSET OF MOLECULAR ROTATION

The nature of atomic motions in solids is obviously controlled by the interatomic forces. In rocksalt, the Na^{+}ions are equally strongly bound to the six surrounding Cl^{-}atoms, and it is hard to identify a single NaCl molecule or the molecular frequencies. If the intramolecular forces are comparable to the intermolecular forces, it is sometimes possible to identify distorted motions of parts of the molecules, for example, the CO_{3} vibrations in solid CaCO_{3}. In the extreme case of loosely bonded molecules, the molecular motions are practically unaffected at high temperatures; it was mentioned in Section 6.7 that under such circumstances the molecules or radicals may be freely rotating. Consider as an example solid methane, in which the spherical CH_{4} molecules are loosely held together by Van der Waals forces. The methane molecules are freely rotating at "high" temperatures. On reducing the energy content of the solid by cooling it to "low" temperatures, the rotational motion is found to die down in a cooperative way. The specific heat of methane, ${ }^{6}$

Fig. 7.4. Heat capacity of methane. ${ }^{6}$
given in Fig. 7.4, shows the familiar λ-peak. Structural studies, ${ }^{7}$ in particular those in which magnetic resonance and neutron diffraction were used, reveal that the CH_{4} molecules are freely rotating above $T_{c}=20^{\circ} \mathrm{K}$. At lower temperatures, they perform hindered rotations or torsional oscillations backward and forward about a mean position.

The transition in solid hydrogen, treated in Section 6.9, is another well-known example of a cooperative onset of molecular rotation. In orthohydrogen, the axis of rotation, which is not unique above T_{c}, becomes ordered below the transition. Similar specificheat singularities in hydrogen halides and in various ammonium salts were mentioned in Section 6.7. As a matter of fact, the specificheat singularity in solid $\mathrm{NH}_{4} \mathrm{Cl}$, observed by Simon in 1922, was the first true λ-anomaly to be discovered. In many cases, the precise nature of molecular rotations is not yet clear, and the available evidence suggests that they differ from substance to substance. However, a discussion of the various individual cases ${ }^{7}$ is not appropriate here.

7.5. FERROELECTRICITY

Solids belonging to ten of the thirty-two crystallographic classes lack inversion symmetry. They can exhibit electric polarization in the absence of an electric field, owing to the spontaneous alignment
of electric dipoles. In contrast to the magnetic case, this electric polarization cannot be observed under ordinary static conditions, because it is compensated by free charges on the surfaces. However, the polarization is temperature-dependent, and so changes in it can be deduced from the current flowing in a closed circuit when the temperature of the crystal is changed. For this reason, substances belonging to the ten noncentrosymmetric classes are called pyroelectric.

Some pyroelectrics have the additional property that the spontaneous polarization can be reversed in sense by an applied electric field. The material is then said to be ferroelectric. Thus, in ferroelectrics the polarization can be measured simply by reversing the applied electric field. In nonferroelectric pyroelectrics, dielectric breakdown occurs well before a field large enough to reverse the polarization can be applied. The dielectric behavior of a ferroelectric is complex. Not only is the relation between the polarization P and the applied field E nonlinear, but there is also a hysteresis loop, analogous to the ferromagnetic case. The alignment of the dipoles is opposed by thermal agitation. On increasing the temperature, the ordering is disturbed, and at a critical temperature, the ferroelectric Curie point, it breaks up. The crystal loses its ferroelectricity and becomes an ordinary dielectric (paraelectric state). Rochelle salt, ammonium dihydrogen phosphate, barium titanate, and triglycine sulfate are among the well-known ferroelectrics. There are several excellent reviews of this field. ${ }^{8}$

The onset of ferroelectric ordering gives rise to λ-type peaks in the heat capacity. The behavior of potassium dihydrogen phosphate (KDP), which is ferroelectric below $123^{\circ} \mathrm{K}$, is typical of the specificheat studies. ${ }^{9}$ Superimposed on the usual lattice contribution is the configurational specific heat associated with ferroelectric ordering at $123^{\circ} \mathrm{K}$ (Fig. 7.5). The detailed behavior near the Curie point is slightly uncertain in most ferroelectrics because of the existence of thermal hysteresis; that is, the specific heat on cooling is slightly different from that on warming. The entropy associated with the excess specific heat is about $0.7 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$, which is close to the value $\frac{1}{2} R \ln 2$. The spontaneous polarization P_{s} decreases slowly as the temperature is raised from $0^{\circ} \mathrm{K}$, but drops rapidly as T_{c} is approached. Just as in the magnetic case [equation (4.17)], the excess specific heat should be proportional to $d P_{s}^{2} / d T$. This relationship is approximately obeyed in KDP. ${ }^{10}$ Further, there is evidence ${ }^{10 \mathrm{a}}$ that the specific heat near T_{c} may be fitted to logarithmic singularities, of the type discussed in Sections 4.6 and 4.7.

The similarity between ferroelectricity and ferromagnetism extends to other forms of ordering as well. Ferroelectricity and

Fig. 7.5. Heat capacity of $\mathrm{KH}_{2} \mathrm{PO}_{4} .{ }^{9}$
antiferroelectricity are also known; these topics are discussed in the many reviews on the subject. ${ }^{8}$ In spite of these similarities, the molecular basis of the electric phenomenon is apparently very different. Taking the example of $\mathrm{KH}_{2} \mathrm{PO}_{4}$, the deuterated $\mathrm{KD}_{2} \mathrm{PO}_{4}$ has a transition temperature ($\sim 213^{\circ} \mathrm{K}$) nearly double that of KDP. Yet the entropy associated with the transition is nearly the same in the two salts. The entropy excess suggests some form of order-disorder process, while the dependence on the mass of hydrogen shows that the hydrogen atoms are involved in the ordering. Indeed, the theoretical explanations of ferroelectricity, originally advanced by Mueller, Slater, and others, invoke an ordering of the hydrogen bonds. For a large number of compounds, order-disorder structures of the hydrogen bonds are possible. ${ }^{8}$ In ionic ferroelectrics such as BaTiO_{3}, another mechanism has been suggested by Anderson, Cochran, and others. ${ }^{11}$ This is based on the idea that in an optical mode (Section 2.8) the
adjacent charges vibrate out of phase. If the restoring forces and hence the frequency tend to zero, a spontaneous separation of charges, which is nothing but the spontaneous polarization under consideration here, is possible. Thus, it is suggested that as the temperature is lowered the frequency of some optical mode decreases rapidly and becomes zero at T_{c}. Such a mechanism, which is supported by neutrondiffraction studies on SrTiO_{3}, explains many observations on $\mathrm{BaTiO}_{3}-$ type ferroelectrics. These questions are treated at length in the reviews already cited.

7.6. TRANSITIONS IN RARE-EARTH METALS

The rare-earth metals, lanthanum (atomic number $Z=57$) to lutetium ($Z=71$), can be isolated and purified only with some special techniques developed in the last twenty years. Much of the work done before 1950 was on impure metals; as seen earlier, the impurities often have very disturbing effects on specific heats. Recent studies ${ }^{12}$ on relatively pure metals have shown very complicated thermal and magnetic properties. The rare-earth metals show unusual types of ferro- and antiferromagnetic orderings ${ }^{13}$ which give rise to these complicated phenomena. Thus, a discussion of the heat capacity of rare-earth metals should belong to Chapter 4. However, on account of the variety of abnormal effects observed and the very large gaps in our knowledge, these matters are considered here.

The electronic structure of the rare-earth metals may be written as Xe core- $4 f^{n} ; 5 s^{2}, 5 p^{6} ; 6 s^{2}, 5 d^{1}$ —although some exchange between the $4 f$; and $5 d$-shells takes place. As the atomic number Z increases from 57 to $71, n$ increases from 0 to 14 . The $4 f$-shells are largely screened by the closed $5 s$ - and $5 p$-shells, so that magnetic and Stark interactions are weak. As a result of the subtle balance between these interactions and the normal thermal energy, the metals show very complicated thermal, magnetic, and other properties. A brief account of the specific-heat behavior will highlight the challenging problems in the study of these metals.

Lanthanum ($Z=57, n=0$) has no $4 f$-electron, is a superconductor, and behaves in a normal way.

Cerium has one $4 f$-electron and exhibits the complex specific-heat behavior shown in Fig. 7.6. As the specimen is cooled from room temperature, the specific heat follows the curve A in the region $200>T>120^{\circ} \mathrm{K}$. On warming from a low temperature, the specific heat follows the curve \mathbf{B}, exhibiting a pronounced thermal hysteresis. Some latent heat is also evolved in the region L around $100^{\circ} \mathrm{K}$. At $13^{\circ} \mathrm{K}$, there is a large peak in the specific heat, which is due to the onset of antiferromagnetism at lower temperatures. At about $200^{\circ} \mathrm{K}$,

$C_{p}\left(C_{\text {el }}\right)$ (col/mole - aeg)

Fig. 7.6. Heat capacities of cerium and neodymium. ${ }^{14}$
the fcc lattice of cerium starts to undergo a transition into a compressed fcc' lattice of about 15% less volume. Besides the fcc' phase, there is another hcp phase at low temperatures. ${ }^{15}$ Apparently the $\mathrm{fcc} \rightleftharpoons \mathrm{fcc}^{\prime}$ transition is an electronic one in which the magnetic $4 f$-electron goes over into the $5 d$ conduction band. These phase changes involve very little rearrangement of atoms and show a pronounced dependence upon the stresses and strains in the crystal, past thermal history, and the state of crystalline imperfections. Thus, on repeated cooling to $20^{\circ} \mathrm{K}$ and warming to $300^{\circ} \mathrm{K}$, the hysteresis loop at $160^{\circ} \mathrm{K}$ collapses and the peak at $13^{\circ} \mathrm{K}$ is enhanced. Such a sluggish dependence upon thermal history is characteristic of martensitic transformations, ${ }^{16}$ of which another example, namely, that of sodium, was mentioned in Section 2.10. At the present time, however, there is no quantitative explanation of the hysteresis effects.

Praseodymium has a large specific-heat bump distributed around $40^{\circ} \mathrm{K}$. Neodymium $(Z=60)$ has two peaks, one at $8^{\circ} \mathrm{K}$ and another at $19^{\circ} \mathrm{K}$ (Fig. 7.6). Below $8^{\circ} \mathrm{K}$, there is an ordering into the ordinary
antiferromagnetic state discussed in Section 4.2. The peak at $19^{\circ} \mathrm{K}$ is due to the onset of a special type of antiferromagnetism, which will be mentioned later (Fig. 7.8e). The peak in praseodymium also arises from a similar special type of antiferromagnetic ordering. ${ }^{17}$

The heat capacity of promethium, an element which has to be produced artificially, has not been studied so far. Samarium $(Z=62)$ has a sharp singularity at $15^{\circ} \mathrm{K}$ due to antiferromagnetic ordering. There is a second peak at $106^{\circ} \mathrm{K}$, but as yet no corresponding anomaly in the magnetic behavior has been found. Europium is antiferromagnetic below about $90^{\circ} \mathrm{K}$.

The ferromagnetism of gadolinium below $289^{\circ} \mathrm{K}$ is very well known. The specific heat has a large λ-singularity at that temperature (Fig. 7.7). The next five metals, in which n runs from 8 to 12, show complex ferro- and antiferromagnetic states. Terbium is paramagnetic down to $230^{\circ} \mathrm{K}$, where it becomes ferromagnetic. Dysprosium (Fig. 7.7) is paramagnetic down to $175^{\circ} \mathrm{K}$, when it becomes antiferromagnetic, and then at $85^{\circ} \mathrm{K}$ it becomes ferromagnetic. There is a large λ-peak at $175^{\circ} \mathrm{K}$ and a symmetrical peak at $85^{\circ} \mathrm{K}$. Holmium behaves in a similar manner, with a λ-peak at the Néel point $\left(132^{\circ} \mathrm{K}\right)$ and a symmetrical peak at the ferromagnetic Curie point of $20^{\circ} \mathrm{K}$. In between the two temperatures, the specific heat rises rather nonuniformly, a feature which is aggravated in erbium (Fig. 7.7). Between its Néel point of $80^{\circ} \mathrm{K}$ and its Curie point of $19^{\circ} \mathrm{K}$, there is a rounded maximum at $54^{\circ} \mathrm{K}$, just discernible in the scale of Fig. 7.7. This arises from complications in magnetic ordering, which are discussed below. Thulium becomes antiferromagnetic on cooling to $15^{\circ} \mathrm{K}$. With these metals, the specific heat at the ferromagnetic transition shows considerable hysteresis.

In yttrium $(Z=70)$, the $5 d$-electron goes into the $4 f$-shell, which otherwise should have $n=13$, and completes it. Therefore, the metal does not exhibit any striking magnetic or thermal phenomena. Likewise, lutetium, which has a closed shell $(n=14)$ of $4 f$-electrons, behaves normally.

Even this sketchy summary is enough to show that nearly every type of specific-heat abnormality is present in these metals. This complex behavior corresponds to the complicated magnetic structure, which is being slowly unravelled as a result of careful neutrondiffraction and magnetic measurements. Although the details of such studies ${ }^{13}$ go beyond the scope of the present discussion, an indication of the complexity of the problem is appropriate here.

Simple cases of magnetic ordering were outlined in Section 4.2. Ferromagnetism corresponds to parallel alignment of adjacent spins and antiferromagnetism to antiparallel alignment. This simple arrangement holds good, for example, in ferromagnetic dysprosium,

Fig. 7.7. Heat capacities of gadolinium, dysprosium, and erbium. ${ }^{18}$ Note off-set scales for the ordinates.
$T<85^{\circ} \mathrm{K}$, when the magnetic moments lie parallel in the basal plane (Fig. 7.8a). In the antiferromagnetic phase ($85^{\circ}<T<175^{\circ} \mathrm{K}$), the resultant moment in each plane is rotated by an angle α with respect to the moment in the next plane (Fig. 7.8b), the angle α changing with T. It is evident that the magnetic moments in the hexagonal lattice lie on a spiral, the characteristic helicoidal structure, and that this ordering has no net moment on a bulk scale. The same helicoidal arrangement is found in terbium, also.

Holmium is more complex. In the ferromagnetic state, the magnetic moment has a common component normal to the hexagonal planes and a helicoidally ordered component in the basal plane (Fig. 7.8c). Thus, the ferromagnetic moment of holmium below $20^{\circ} \mathrm{K}$

(a)

(b)

(d)

(e)

Fig. 7.8. Complex magnetic ordering in rare-earth metals: (a) collinear ferro-magnetism-dysprosium, (b) helicoidal antiferromagnetism-dysprosium, (c) helicoidal ferromagnetism-holmium and erbium, (d) cycloidal antiferro-magnetism-erbium, (e) transverse oscillatory antiparallel ordering-praseodymium and neodymium. The drawings are based on projections of regular hexagons. In (a), the vector (arrow) always points toward the horizontal vertex. In (b), the arrow moves uniformly in the plane, the rotation angles $\alpha, 2 \alpha$, and 3α being shown. In (c), the arrow rotates uniformly in the ellipse so that its projection in the plane (broken line) rotates uniformly in the plane while the projection perpendicular to the plane is constant. In (d), the projection in the plane rotates uniformly while the ellipses move up and down. In (e), the vector is always in the plane and lies on either side of the main diagonal in the second and fourth rows.
is due only to the component parallel to the hexagonal c-axis. This component decreases with the increase of T, and in the antiferromagnetic state ($20<T<132^{\circ} \mathrm{K}$), only the helical structure remains.

Ferromagnetic erbium has a structure similar to that shown in Fig. 7.8c, a constant component along the c-axis and helicoidally arranged components in the basal plane. In the antiferromagnetic region ($19<T<80^{\circ} \mathrm{K}$), the magnitude and sign of the moment along c vary periodically from layer to layer in accordance with a sine law (Fig. 7.8d). Below about $52^{\circ} \mathrm{K}$, the moments in the basal plane are helicoidally ordered, but at higher temperatures they become disordered. This change of the basal components makes itself felt in specific heats as a small bump at approximately $54^{\circ} \mathrm{K}$, which was mentioned earlier.

There remains one more type of magnetic ordering, which in the absence of any better name may be called transverse oscillatory anti-
parallel ordering. Neodymium below $7^{\circ} \mathrm{K}$ has the usual type of collinear antiparallel ordering of the moments, which lie on the basal plane. Between 7 and $19^{\circ} \mathrm{K}$, there is a superimposed sinusoidal modulation of the basal moments in a direction perpendicular to the usual ordering direction (Fig. 7.8e). This ordering disappears above $19^{\circ} \mathrm{K}$ and gives rise to a specific-heat bump at $19^{\circ} \mathrm{K}$. A similar situation exists in praseodymium, also.

Any theoretical discussion of such types of magnetic ordering is bound to be complicated, ${ }^{13}$ though considerable progress has been made recently. With a very delicate balance between thermal and magnetic forces, the situation offers a challenge to theoreticians and experimenters alike to improve the existing knowledge of the phenomenon.

7.7. LIQUID-GAS CRITICAL POINTS

A perusal of the specific-heat singularities mentioned earlier brings out the fact that they are associated with some change in the ordered state or a phase change. The close relation of the thermal properties to molecular ordering has been the aim of the discussions, while the relation of phase changes to phenomenological considerations has been left to Section 8.1. The liquid-gas phase equilibrium is historically important for having been the source of the idea of the equation of state. At the liquid-gas critical point (for convenience simply called critical point in this section), the isothermal bulk modulus vanishes, differences between liquid and gaseous states disappear, and the region is dominated by molecular fluctuations. Obviously, unusual effects in thermal properties should be expected. Early experiments showed a large peak as the critical point was approached. In the related case of critical liquid-liquid mixtures, the existence of singular behavior in specific heat ${ }^{19}$ and other properties has also been known for some time. Nevertheless, it is only recently that specific heats have been measured near enough to the critical point to reveal the unusual behavior. Since the compressibility of the system is high in the critical region, a direct measurement of the specific heat at constant volume C_{v} is possible using containers strong enough to withstand the critical pressure.

The first experiments of this kind were completed by Bagatskii, Voronel', and Gusak ${ }^{20}$ on argon near its critical point; they showed that C_{v} had a tendency to become infinite at T_{c}. Subsequent work ${ }^{20}$ by Voronel' and coworkers on oxygen and by Little and Muldover on ${ }^{4} \mathrm{He}$ has abundantly verified that C_{v} tends to an infinite value at T_{c}. In the helium case, experiments to within $10^{-4 \circ} \mathrm{~K}$ of T_{c} show that the approach to infinity is logarithmic in $\left|T-T_{c}\right|$ both below
and above T_{c}. The situation is very similar to the λ-transition at $2.17^{\circ} \mathrm{K}$ in liquid ${ }^{4} \mathrm{He}$ (Section 5.5), and the coefficient of the logarithmic term is of the same order in both cases. The behavior of argon and oxygen appears to be more complicated. The original discussion indicated a logarithmic approach both below and above T_{c} with the same slope (Fig. 7.9). Fisher ${ }^{21}$ has analyzed the data again to show that although below T_{c} the approach is certainly logarithmic, above T_{c} it may be a power law of the form $c \propto\left(T-T_{c}\right)^{-1 / 5}$. Figure 7.9 shows the situation in the case of argon. Obviously, only further work can settle the exact nature of the approach to infinity on the high-temperature side.

The singularity in the specific heat at constant volume is of special interest. The experiments quoted earlier to show the possibility of infinite specific heats at some transitions all refer to the heat capacity at constant pressure or at constant saturation. Other parameters such as the coefficient of thermal expansion also show

Fig. 7.9. (a) Heat capacity C_{v} of argon. (b) Behavior near its liquid-gas critical temperature $T_{c}=150.5^{\circ} \mathrm{K}$. Full lines refer to logarithmic singularity both above and below T_{c}. Broken line is a power-law fit above T_{c} with an exponent $-\frac{1}{5}$.
singularities, and it was believed that though C_{p} is infinite, C_{v} remains finite. The phenomenological theories of phase transitions based on an expansion of some order parameters in powers of $\left|T-T_{c}\right|$, as originally done by Landau and Lifshitz, are based on such ideas. The experiments at the critical point show that, in some cases at least, such assumptions are not valid. The thermodynamic consequences of infinite singularities in C_{v} have been considered by several authors. ${ }^{22}$ It is found, for instance, that the adiabatic compressibility should tend to zero at T_{c}; experiments on sound propagation in ${ }^{4} \mathrm{He}$ near the critical region verify this prediction. ${ }^{23}$ It is somewhat amusing that while the theoretical two-dimensional Ising model gives a logarithmic infinity in C_{v}, it is only for an ideal incompressible lattice. The introduction of lattice compressibility results in a finite specific heat together with a latent heat at the transition. ${ }^{24}$

One might at first expect that the properties of gases are so well known that a satisfactory theory of the condensation into a liquid could easily be formulated. Unfortunately, it is not so. The interatomic forces in a gas normally play only a secondary role and may therefore be treated as small corrections to ideal gases. On the other hand, the phenomenon of condensation arises solely from the cohesive forces; in this limiting case, the usual methods of calculation do not work well. The principal theoretical contribution of sufficient generality is Mayer's demonstration of the existence of a condensation in the theory of nonideal gases. ${ }^{7}$ Calculations based on simple models have been rather more successful. Mention should be made of Lee and Yang's analysis showing that the properties of a weakly interacting gas have some similarity to those of an Ising lattice (Section 4.6). The ferromagnetic ordering and the random paramagnetic arrangement are the respective formal analogs of the condensed and gaseous phases. ${ }^{25}$ Near the transition temperature, the specific heats of ferromagnets and liquids show similar singularities, which lends some credence to this view, although it is not possible here to go into the details of the calculations.

7.8. MODELS OF COOPERATIVE TRANSITIONS

Having seen the variety of possible cooperative effects, it is obvious that no general theory of such phenomena is possible. The main difficulty in developing a theory of strongly interacting systems is that the total energy of the system can no longer be calculated from the simple sum of the energies of the individual particles, as was done earlier with systems of noninteracting particles. A natural way under such circumstances is to ask how the system is altered when a new particle is added to the existing N particles-in other words,
to determine the response of the system to small perturbations. This approach is usuaily called the method of Green's functions; it is along these lines that much recent progress has been made. The mathematical techniques involved in such computations are quite esoteric. Even so, except for the case of superconductivity of electronic systems, no complete theory, applicable right up to the transition temperature, has been worked out for the phenomena of interest. Therefore, in an elementary text it is instructive to mention how the cooperative effect may be incorporated in simple models.

It turns out that the Ising lattice, introduced in connection with magnetic ordering (Section 4.6), is a reasonable model of many types of cooperative phenomena. In this model, spins are placed at lattice sites, and each spin can point along $+\mathbf{Z}$ or $-\mathbf{Z}$. The interactions, which extend to nearest neighbors only, have two possible values, corresponding to parallel or antiparallel alignment of a pair of adjacent spins. It is not hard to see that the same model can be applied to order-disorder transformations, also. In such case, the atoms are at lattice sites and the atomic interactions have two possible values, corresponding to right or wrong pairing of nearest neighbors. Further, it was mentioned in the preceding section that the liquid-gas transformation can also be brought into the general scheme of Ising models. Other association problems, such as the ordering of hydrogen bonds, lead to similar mathematical calculations. Indeed, cooperative phenomena in quite different fields, such as traffic flow or melting of polymers, can be viewed against the same framework. Because of such varied applications, the Ising model has received considerable attention from theoreticians. ${ }^{26}$

It was mentioned in Section 4.6 that the exact solution of the three-dimensional Ising lattice has not been obtained so far. For two dimensions, Onsager showed in 1944 that the specific heat exhibits a logarithmic approach to infinity both above and below T_{c}. In three dimensions, approximate calculations show that the specific heat has the form

$$
\begin{aligned}
c & \sim A \ln \left(T_{c}-T\right)+\ldots & & T<T_{c} \\
& \sim B\left(T-T_{c}\right)^{-\alpha}+\ldots & & T>T_{c}, \alpha \sim \frac{1}{5}
\end{aligned}
$$

although the behavior on the high-temperature side is not quite settled. The mathematical details of even these calculations are too specialized to be proper here.

The experimental evidence for a variety of transitions is consistent with the predicted variation in the lower temperature ($T<T_{c}$) region. For $T>T_{c}$, the data can be fitted well by a power law in some cases and by a logarithmic term in some others. This remains a challenging unsolved problem.

Although the Ising lattice gives a workable model of configurational ordering, the complexity of the mathematical calculations has led to several further approximate models. The Weiss model of ferromagnetism and the Bragg-Williams model of order-disorder transitions and its extensions are some of the well-known simplifications of the Ising problem. All these calculations are still not quantitatively applicable to real physical systems, because of the restriction to nearest-neighbor interactions. Any consideration of more realistic interatomic forces appears to be too formidable a problem to be attempted at present.

So far, most λ-type specific-heat singularities have been ascribed to configurational ordering. The possibility exists, however, that the singularities may arise from the vibrational modes of the lattice. If some optical branch of the vibration spectrum approaches zero frequency, a λ-type of specific-heat singularity can result. ${ }^{27}$ As mentioned in Section 7.5, if the frequency of an optical mode vanishes in an ionic crystal, it can give rise to ferroelectric polarization.

REFERENCES

1. D. H. Parkinson, Rept. Progr. Phys. 21, 226 (1958).
2. L. A. K. Staveley, K. R. Hart, and W. I. Tupman, Dis. Faraday Soc. 15, 130 (1953). G. N. Lewis, M. Randall, K. S. Pitzer, and L. Brewer, Thermodynamics, McGraw Hill, New York, 1961, chapter 25.
3. J. F. Cochran, Ann. Phys. (N.Y.) 19, 186 (1962).
4. H. Lipson, Progr. Metal Phys. 2, 1 (1950). T. Muto and Y. Takagi, Solid State Phys. 1, 193 (1955). L. Guttman, Solid State Phys. 3, 145 (1956). E. W. Elcock, Order-Disorder Phenomena, Methuen, London, 1956.
5. H. Moser, Phys. Z. 37, 737 (1936). C. Sykes and H. Wilkinson, J. Inst. Metals 61, 223 (1937). C. W. Garland, Phys. Rev. 135, A1696 (1964).
6. K. Clusius, Z. phys. Chem. B3, 41 (1929). K. Clusius and A. Perlick, Z. phys. Chem. B24, 313 (1934). J. H. Colwell, E. K. Gill, and J. A. Morrison, J. Chem. Phys. 36, 2223 (1962).
7. H. N. V. Temperley, Changes of State, Cleaver-Hume, London, 1956.
8. E. T. Jaynes, Ferroelectricity, Princeton University Press, Princeton, 1953. A. F. Devonshire, Advan. Phys. 3, 85 (1954). P. W. Forsberg, Handbuch der Physik, XVII, 264 (1956). W. Kanzig, Solid State Phys. 4, 1 (1957). H. D. Megaw, Ferroelectricity in Crystals, Methuen, London, 1957. F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon, Oxford, 1962. W. J. Merz, Progr. Dielectrics 4, 101 (1962). A. F. Devonshire, Rept. Progr. Phys. 27, 1 (1964).
9. J. Mendelssohn and K. Mendelssohn, Nature 144, 595 (1939). C. C. Stephenson and J. G. Hooley, J. Am. Chem. Soc. 66, 1397 (1944).
10. A. von Arx and W. Bantle, Helv. phys. acta 16, 211 (1943).

10a. B. A. Strukov, Soviet Phys. Solid State 6, 2278 (1965). J. Grindlay, Phys. Letters 18, 239 (1965).
11. W. Cochran, Advan. Phys. 9, 387 (1960); 10, 401 (1961).
12. F. H. Spedding, S. Levigold, A. H. Daane, and L. D. Jennings, Progr. Low Temp. Phys. 2, 368 (1957).
13. K. P. Belov, R. Z. Levitin, and S. A. Nikitin, Soviet Phys. Uspekhi 7, 179 (1964). K. Yosida, Progr. Low Temp. Phys. 4, 265 (1964). W. C. Koehler, J. Appl. Phys. 36, 1078 (1965).
14. D. H. Parkinson, F. E. Simon, and F. H. Spedding, Proc. Roy. Soc. (London), Ser. A 207, 137 (1951). D H. Parkinson and L. M. Roberts, Froc. Phys. Soc. (London), Ser. B 70, 471 (1957). O. V. Lounasmaa, Phys. Rev. 133, A502 (1964).
15. C. J. McHargue and H. L. Yakel, Acta Met. 8, 637 (1960). M. K. Wilkinson, H. R. Child, C. J. McHargue, W. C. Koehler, and E. O. Wollan, Phys. Rev. 122, 1409 (1961). K. A. Gschneidner, R. O. Elliot, and R. R. McDonald, J. Phys. Chem. Solids 23, 555 (1962).
16. C. S. Barrett and M. Cohen, in: Phase Transformations in Solids (R. Smoluchowski, J. E. Mayer, and W. A. Weyl, editors), Wiley, New York, 1951, chapters 13 and 17. M. A. Jaswon, Research 11, 315 (1958).
17. R. M. Moon, J. W. Cable, and W. C. Koehler, J. Appl. Phys. 35, 1041 (1964). J. W. Cable, R. M. Moon, W. C. Koehler, and E. O. Wollan, Phys. Rev. Letters 12, 553 (1964).
18. M. Griffel, R. E. Skochdopole, and F. H. Spedding, Phys. Rev. 93, 657 (1954); J. Chem. Phys. 23, 2258 (1955); 25, 75 (1956).
19. M. Fixman, J. Chem. Phys. 36, 1957 (1962).
20. M. I. Bagatskii, A. V. Voronel', and V. G. Gusak, Soviet Phys. JETP 16, 517 (1963). A. V. Voronel', Ya. R. Chashkin, V. A. Popov, and V. G. Simkin, Soviet Phys. JETP 18, 568 (1964). W. A. Little and M. Moldover, Proceedings of the Ninth International Conference on Low Temperature Physics (Columbus, Ohio, 1964), Plenum Press, New York, 1965, p. 653.
21. M. E. Fisher, Phys. Rev. 136, A1599 (1964).
22. M. Ya. Azbel, A. V. Voronel', and M. Sh. Giterman, Soviet Phys. JETP 19, 457 (1964). C. N. Yang and C. P. Yang, Phys. Rev. Letters 13, 303 (1964). R. B. Griffiths, Phys. Rev. Letters 14, 623 (1965).
23. C. E. Chase, R. C. Williamson, and L. Tisza, Phys. Rev. Letters 13, 467 (1964).
24. O. K. Rice, J. Chem. Phys. 22, 1535 (1954). C. Domb, J. Chem. Phys. 25, 783 (1956).
25. T. L. Hill, Statistical Mechanics, McGraw-Hill, New York, 1956, chapters 5 and 7.
26. G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353 (1953). H. S. Green and C. A. Hurst, Order-Disorder Phenomena, Interscience, New York, 1964.
27. H. B. Rosenstock, J. Chem. Phys. 35, 420 (1961).

Chapter 8

Miscellaneous Problems in Specific Heats

8.1. SPECIFIC HEAT NEAR PHASE TRANSITIONS

In the previous chapters, various aspects of specific heats of solids, liquids, and gases have been discussed. It is a common experience to find that two phases can coexist over a range of pressure and temperature. Consider, for instance, water and its vapor contained in a vessel of volume V. If the temperature is raised slightly, a small quantity of water is converted into steam, absorbing latent heat in the process, and a new equilibrium pressure is established. In a $P-T$ plane (Fig. 8.1), this will be represented as an equilibrium curve. Quantities such as the density, specific heat, and compressibility remain finite but different in the two phases. An interesting relation among the thermodynamic quantities at such an equilibrium curve is furnished by the Clausius-Clapeyron equation. To derive this, apply Maxwell's relation $(\partial P / \partial T)_{v}=(\partial S / \partial V)_{T}$ [equation (1.11)] to the

Fig. 8.1. Coexistence of two phases.
system. The latent heat L_{12} is equal to $T d S$ at the phase boundary, and so

$$
\begin{equation*}
\frac{D P}{D T}=\frac{S_{2}-S_{1}}{V_{2}-V_{1}}=\frac{L_{12}}{T\left(V_{2}-V_{1}\right)} \tag{8.1}
\end{equation*}
$$

where $D / D T$ stands for the derivative along the equilibrium curve. This simple equation, in which all the quantities can be determined experimentally, forms a rigorous practical test of the first and second laws of thermodynamics. Nowadays, it is often used to calculate or check the latent heat when the vapor pressure of the liquid is known.

It turns out that this type of equilibrium among the phases is only one of the many possible types of phase changes. ${ }^{1}$ The superconducting phase transition at zero field (Section 3.9) shows no latent heat or volume change. Then the right-hand side of equation (8.1), being of the form $0 / 0$, is indeterminate, whereas the left-hand side is found to have a definite value in practice. The Weiss model of ferromagnetism (Section 4.5) and the Bragg-Williams model of orderdisorder transition (Section 7.3) show a similar behavior. There are other phase changes where the specific heats become infinite. Magnetic transitions (Section 4.7) and the λ-transition in liquid ${ }^{4} \mathrm{He}$ (Section 5.5) show logarithmic infinities in specific heats. It is obvious that the above simple considerations of phase equilibria must be generalized to include these possibilities.

It is convenient to start from the general thermodynamic condition for phase equilibrium, namely, the equality of the Gibbs' function of the two phases:

$$
\begin{equation*}
G_{1}=G_{2} \tag{8.2}
\end{equation*}
$$

Further, $(\partial G / \partial T)_{p}=-S$ and $(\partial G / \partial P)_{T}=V$ [equation (1.10)]. In the ordinary phase change considered above, there are changes in V and S, that is, in the first derivatives of G. Ehrenfest suggested that such changes should be called transitions of the first order. The condition for equilibrium along the equilibrium line (Fig. 8.1) is

$$
\left(\frac{\partial G_{1}}{\partial P}\right)_{T} \delta P+\left(\frac{\partial G_{1}}{\partial T}\right)_{P} \delta T=\left(\frac{\partial G_{2}}{\partial P}\right)_{T} \delta P+\left(\frac{\partial G_{2}}{\partial T}\right)_{P} \delta T
$$

or, rearranging,

$$
\frac{D P}{D T}=\frac{S_{2}-S_{1}}{V_{2}-V_{1}}
$$

which is the Clausius-Clapeyron equation. In the superconducting transition, there is no volume or entropy change, but the specific heat and compressibility are different ; that is to say, the first derivatives
of G are continuous but the second derivatives are not. Therefore, they are called phase changes of the second order. For such changes, consider the equilibrium along segments of S and V curves:

$$
\begin{aligned}
& \left(\frac{\partial S_{1}}{\partial P}\right)_{T} \delta P+\left(\frac{\partial S_{1}}{\partial T}\right)_{P} \delta T=\left(\frac{\partial S_{2}}{\partial P}\right)_{T} \delta P+\left(\frac{\partial S_{2}}{\partial T}\right)_{P} \delta T \\
& \left(\frac{\partial V_{1}}{\partial P}\right)_{T} \delta P+\left(\frac{\partial V_{1}}{\partial T}\right)_{P} \delta T=\left(\frac{\partial V_{2}}{\partial P}\right)_{T} \delta P+\left(\frac{\partial V_{2}}{\partial T}\right)_{P} \delta T
\end{aligned}
$$

so

$$
\begin{equation*}
\frac{D P}{D T}=\frac{1}{T V} \frac{C_{p 2}-C_{p 1}}{\beta_{2}-\beta_{1}}=\frac{\beta_{2}-\beta_{1}}{k_{T 2}-k_{T 1}} \tag{8.3}
\end{equation*}
$$

where β is the volume expansion coefficient and k_{T} is the isothermal compressibility. Equations (8.3) are called Ehrenfest relations for second-order phase changes and can also be obtained by applying L'Hospital's rule to equation (8.1) under these conditions. The superconducting phase change at zero field is a practical example of a second-order phase change. The available evidence (Section 3.9) is in reasonable agreement with the Ehrenfest relations. Theoretically, still higher order phase changes can exist, but so far no such cases have been experimentally observed.

In some situations, quantities such as the specific heat and volume expansion become infinite, when equation (8.3) reduces to an indeterminancy of the form ∞ / ∞. A simple way of handling these i-transitions was suggested by Pippard in 1956. Since C_{p} becomes very large near T_{λ}, the entropy-temperature curve must have an almost vertical tangent at T_{λ}. On the other hand, S_{λ} will be a smooth function of P, so that we may take S as a function of T and P to be cylindrical in shape near T_{i}. Thus,

$$
S(P, T)=S_{\lambda}+f(P-\alpha T)
$$

where α is the pressure coefficient of the λ-point $(D P / D T)_{\lambda}$ and f is some function describing how the curve approaches the λ-point. Then

$$
\left(\frac{\partial^{2} S}{\partial P^{2}}\right)_{T}=f^{\prime \prime} \quad\left(\frac{\partial^{2} S}{\partial T \partial P}\right)=-\alpha f^{\prime \prime} \quad\left(\frac{\partial^{2} S}{\partial T^{2}}\right)_{p}=\alpha^{2} f^{\prime \prime}
$$

so that

$$
\alpha=\frac{D P}{D T}=-\frac{\left(\partial^{2} S / \partial T^{2}\right)_{p}}{\partial^{2} S / \partial T \partial P}=-\frac{\partial^{2} S / \partial T \partial P}{\left(\partial^{2} S / \partial P^{2}\right)_{T}}
$$

Making use of the Maxwell's relation [equation (1.11)],
and

$$
\frac{\partial}{\partial T}\left(\frac{\partial S}{\partial T}\right)_{p}=\alpha \frac{\partial}{\partial T}\left(\frac{\partial V}{\partial T}\right)_{p}
$$

$$
\frac{\partial}{\partial P}\left(\frac{\partial S}{\partial T}\right)_{p}=\alpha \frac{\partial}{\partial P}\left(\frac{\hat{\partial} V}{\partial T}\right)_{p}
$$

Physically, these equations mean that in the vicinity of the i-line $(\partial S / \partial T)_{p}$ is a linear function of $(\partial V / \partial T)_{p}$, and so

$$
\begin{equation*}
C_{p}=\left(\frac{D P}{D T}\right)_{i} T V \beta+\mathrm{constant} \tag{8.4a}
\end{equation*}
$$

If $V(P, T)$ is treated in the same manner as $S(P, T),(\partial V / \partial T)_{p}$ is seen to be a linear function of $(\partial V / \partial p)_{T}$ near the λ-point, and so

$$
\begin{equation*}
\beta=\left(\frac{D P}{D T}\right)_{i} k_{T}+\text { constant } \tag{8.4b}
\end{equation*}
$$

The relations (8.4) are called Pippard's relations for the λ-transition, and the cylindrical approximation should hold good very near the transition temperature. For several λ-type phase changes, the relations are found to be obeyed reasonably well. Figure 8.2 shows

Fig. 8.2. Pippard's relations near $\alpha \rightleftharpoons \beta$ transition of quartz ${ }^{2}$ at $574^{\circ} \mathrm{C}:\left(\right.$ a) c_{p} / T versus $V \beta$ [equation (8.4a)], (b) $V \beta$ versus $V k_{T}$ [equation (8.4b)].
how closely ordinary α-quartz follows equations (8.4) slightly below its transition temperature ($\sim 574^{\circ} \mathrm{C}$) to the β-form. ${ }^{2}$ More detailed studies on liquid ${ }^{4} \mathrm{He}$ (Section 5.5) and ammonium chloride ${ }^{3}$ show that equations (8.4) are obeyed quite well, but that its range of validity is much smaller above the transition than at lower temperatures.

In solids, other general relations are possible, ${ }^{4}$ but so far they have found little use. Simple discussions of the various models of phase transitions and their application to physical systems are available elsewhere, ${ }^{1,5}$ rendering a further analysis unnecessary here.

8.2. SPECIFIC HEAT AT SATURATED VAPOR PRESSURE

The discussion of the specific-heat behavior at coexistent phases leads naturally to an important mode of calorimetry, namely, the measurement of specific heat at constant saturation. Consider again the example of a liquid in contact with its saturated vapor in a closed vessel. C_{p} and C_{v} may easily be defined for the pure phases, but not for the total system. The heat applied at constant pressure is utilized as latent heat for evaporating the liquid without any rise of temperature, and an indeterminate infinite value of C_{p} will be calculated. Under such conditions, it is best to consider what happens if the heating is done with the assumption that the pressure on the liquid is not constant but equal to the saturated vapor pressure corresponding to the temperature of the liquid. Using once again the notation $D / D T$ for heating along the liquid-vapor equilibrium curve, as in Fig. 8.1,

$$
\begin{equation*}
C_{\mathrm{sat}}=T \frac{D S}{D T} \tag{8.5}
\end{equation*}
$$

The relation between $C_{\text {sat }}$ and C_{p} of a liquid or vapor is easily found. For any quantity x, the variations at constant P and along the $P-T$ equilibrium curve are connected by

$$
\frac{D x}{D T}=\left(\frac{\partial x}{\partial T}\right)_{p}+\left(\frac{\partial x}{\partial P}\right)_{T} \frac{D P}{D T}
$$

Using Maxwell's relation $(\partial S / \partial P)_{T}=-(\partial V / \partial T)_{p}$ [equation (1.11)], it follows that

Hence

$$
\frac{D S}{D T}=\left(\frac{\partial S}{\partial T}\right)_{p}-\left(\frac{\partial V}{\partial T}\right)_{p} \frac{D P}{D T}
$$

$$
\begin{equation*}
C_{\mathrm{sat}}=C_{p}-T V \beta \frac{D P}{D T} \tag{8.6}
\end{equation*}
$$

which was the relation mentioned in Section 5.2. For a solid in contact with its vapor, $C_{\text {sat }}$, defined as for a liquid, may be taken equal to C_{p} for most practical purposes because the expansion coefficient and vapor pressure are both very small. In a liquid, $\left(C_{p}-C_{\text {sat }}\right) / C_{p}$ is nearly zero at low temperatures and becomes about 10 to 20% near the boiling point. For a vapor, the situation is very different, because the volume expansion β is 10 to 100 times larger than that of the liquid. In fact, $C_{\text {sat }}$ becomes negative at temperatures near the boiling point. Thus, superheated steam gets hotter if expanded adiabatically, a fact which is of importance in practical engineering applications.

If $C_{s 1}$ denotes the specific heat of the liquid at constant saturation and $C_{s 2}$ that of the vapor,

$$
\begin{aligned}
\frac{D L_{12}}{D T} & =\frac{D}{D T}\left[T\left(S_{2}-S_{1}\right)\right]=S_{2}-S_{1}+T\left(\frac{D S_{2}}{D T}-\frac{D S_{1}}{D T}\right) \\
& =\frac{L_{12}}{T}+C_{s 2}-C_{s 1}
\end{aligned}
$$

or

$$
\begin{equation*}
C_{s 2}-C_{s 1}=\frac{D L_{12}}{D T}-\frac{L_{12}}{T} \tag{8.7}
\end{equation*}
$$

Equations (8.6) and (8.7) are of use in evaluating the specific heats if the liquid and its vapor are placed in a closed vessel to which heat is applied. Under these conditions, which are quite common in the calorimetry of liquids, the heat is used not only in heating the liquid and vapor but also in supplying latent heat. A full discussion of the procedures to be adopted under such conditions is given by Rowlinson. ${ }^{6}$

8.3. RELAXATION OF ROTATIONAL AND VIBRATIONAL SPECIFIC HEATS

It was mentioned in Section 4.8 that in paramagnetic salts the magnetic susceptibility shows dispersion as a function of the frequency of measurements. This paramagnetic relaxation arises basically because the magnetic dipoles require a finite time, of the order of 10^{-6} to $10^{-3} \mathrm{sec}$ at room temperature, to attain thermal equilibrium with the lattice. So the susceptibility changes gradually from its isothermal low-frequency value to the adiabatic high-frequency value when the period of the applied AC signal scans the region of the relaxation time. A very similar phenomenon occurs if the ratio of the specific heats $\gamma=C_{p} / C_{v}$ is determined from the velocity of sound,
$c=(\gamma P / \rho)^{1 / 2}$. From its normal value at low frequencies, it increases to a limiting high-frequency value as the frequency of the sound wave becomes greater than the reciprocal of some relaxation time. For example, in hydrogen at STP, the velocity of sound increases by about 9% as the frequency becomes approximately 100 Mcps , which is just what is expected if C_{p} / C_{v} increases from 1.40 to 1.67 . The obvious interpretation of this acoustic relaxation would be that the rotational degrees of freedom require a finite time, of the order of $10^{-7} \mathrm{sec}$ at STP, to come to equilibrium with the translatory motion.

Since the original observations on carbon dioxide in 1925 by Pierce, acoustical relaxation has been observed in numerous gases, liquids, solutions, and gas mixtures at frequencies from 10 to $10^{9} \mathrm{cps}$. However, the velocity does not always increase with the relaxation of all the rotational degrees of freedom as in the simple case considered above. Rotations about different axes may have different relaxation times τ. Further, each vibrational mode has its characteristic τ, and it is found that structural relaxation is possible in liquids, because the disturbances of the atomic structure caused by a sound wave take a finite time to attain the new values. Therefore, the interest in the field has been not so much concerned with the study of specific heats as with the molecular processes in liquids and gases. The rather extensive literature on the subject is adequately summarized in several places. ${ }^{7}$

8.4. DEFECTS IN SOLIDS

The solidified inert gases are often regarded as particularly simple solids. The interatomic forces are known reasonably well; therefore, a calculation of the heat capacity of the lattice, as in Chapter 2, should completely explain their specific heats. It turns out that this is not quite the case. The specific heat of solid argon, ${ }^{8}$ shown in Fig. 8.3a, reveals a peculiar feature. As the melting point is approached, the specific heat rises very much above the Dulong-Petit value of about $6.5 \mathrm{cal} /$ mole $\cdot \mathrm{deg}$. Solid krypton, ${ }^{8}$ solid ${ }^{3} \mathrm{He},{ }^{9}$ and in fact a variety of solids ${ }^{10}$ show a similar marked upward trend in specific heat below the melting point.

Such an increase above the classical value may arise from three causes: anharmonicity, the phenomenon of premelting, or generation of defects in the solid state. Detailed calculations show that in most cases anharmonic effects give an increase of C_{p} no more than about a tenth of the observed excess. Premelting of solids ${ }^{11}$ is a term applied to the phenomenon of abnormally large values of heat capacity and other properties sometimes observed very close to the melting point T_{M}. In these cases, the liquids also exhibit abnormally large values of

Fig. 8.3. (a) Heat capacity of solid argon (full line). Broken line is the value expected from the behavior below $40^{\circ} \mathrm{K}$. (b) Plot of $\ln \left(T^{2} \Delta C_{p}\right)$ against $1 / T^{8}$
the various parameters as the freezing point is approached, the phenomenon of aftermelting in liquids. ${ }^{10}$ They may arise from actual melting, at temperatures slightly different from the nominal T_{M}, in the regions of singularities such as dislocations and grain boundaries, where impurities have segregated. Then the latent heat associated with such regions may be measured as a pseudo specific heat. The subject appears to be somewhat controversial, because some authors ${ }^{12}$ have carefully looked for these anomalies but did not find any. All the same, the magnitude and range of the excess specific heat in Fig. 8.3a rule out premelting as the cause of the observed behavior; there is now growing evidence that the explanation is to be sought in the thermal excitation of defects in the solid state.

Studies of diffusion, optical properties, and other phenomena in solids indicate that at temperatures above $T \approx \theta$, the perfect lattice arrangement is disturbed by various kinds of defects. ${ }^{13}$ For example, an atom may have moved away from its lattice position, leaving a hole at its site, a vacancy defect, and an atom may occupy a nonlattice vacant space amid other atoms which are at their lattice positions, an interstitial atom. In a simple way, if ε_{d} is the energy needed to form a defect, the number of defects n_{d} at any temperature T will be given by a Boltzmann factor

$$
n_{d}=n_{0} \exp \left(-\frac{\varepsilon_{d}}{k T}\right)
$$

and the specific-heat contribution from such defects will be

$$
\begin{equation*}
\Delta C_{v}=\frac{d}{d T}\left(n_{d} \varepsilon_{d}\right)=\frac{n_{0} \varepsilon_{d}^{2}}{k T^{2}} \exp \left(-\frac{\varepsilon_{d}}{k T}\right) \tag{8.8}
\end{equation*}
$$

Thus, a plot of $\ln \left(T^{2} \Delta C_{v}\right)$ against $1 / T$ should be a straight line with a slope $-\varepsilon_{d} / k$. Similarly, a plot of $\ln \left(T^{2} \Delta C_{p}\right)$ against $1 / T$ will be a straight line with a slope $-h_{d} / k$, where h_{d} is the enthalpy of formation of a defect. Figure 8.3 b shows such a plot; the observations do fit the theoretical linear relationship with $h_{d} \sim 1250 \mathrm{cal} / \mathrm{mole}$ in solid argon. The value is uncertain to about $\pm 5 \%$, because ΔC_{p} depends slightly upon the method used to extrapolate the specific heat from below about $40^{\circ} \mathrm{K}$ in Fig. 8.3a. Similar $\Delta C_{p}=A T^{-2} \exp (-B / T)$ variations have been observed in solid ${ }^{3} \mathrm{He}$ and other substances.

Since the atomic forces and crystal structure of solidified inert gases are well known, several attempts have been made to calculate the values of h_{d} from theoretical models; the values come out to be about 30% higher than the experimental results. The discrepancy arises from the fact that in the earlier models no relaxation of the stress field was assumed. On the other hand, it is more plausible that the atoms surrounding a vacancy defect move in slightly to
reduce the void, so that the volume of the vacancy is less than that of the atom which left that site. When this is taken into account, ${ }^{14}$ there is better agreement with the experiments.

Similar specific-heat effects resulting from the presence of defects in the lattice structure are produced by heavy mechanical deformation, ${ }^{15}$ neutron irradiation, ${ }^{16}$ and self-irradiation in radioactive materials. In some cases, the specific heat is reduced, for example, by defects acting as traps for charge carriers in semiconductors and thereby reducing the number of "free" electrons or holes.

8.5. SURFACE EFFECTS

In the simple discussion of specific heats so far, it has been generally assumed that the internal energy, and hence the specific heat, is proportional to the mass of the substance; that is, they are extensive quantities (Section 1.2). As a matter of fact, statistical mechanics shows that this is a very good approximation (Section 2.5). Nevertheless, in special circumstances, as with finely divided powders, a contribution proportional to the surface area must be considered. It is qualitatively easy to visualize the nature of the effects, taking for simplicity the Debye model for an enumeration of the frequency distribution. In a finite solid, besides the longitudinal and transverse waves which propagate through the solid as if in an infinite medium, there are surface waves of the type considered by Rayleigh, Love, and others. The enumeration of the number of frequencies in a threedimensional volume V, as in Section 2.5, gives the number of frequencies below v as being proportional to $V v^{3}$, while it is evident that a similar calculation for a two-dimensional surface of area S will give a term proportional to $S v^{2}$. Thus, the addition of surface contributions to the Debye term will result in

$$
g(v) d v=\alpha_{1} V v^{2} d v+\alpha_{2} S v d v
$$

The corresponding low-temperature specific heat will be

$$
\begin{equation*}
C_{v}=\beta_{1} V T^{3}+\beta_{2} S T^{2} \tag{8.9}
\end{equation*}
$$

This behavior is indeed found in the specific heat of powdered materials. Figure 8.4 shows the specific heat, in the liquid-helium range, of MgO powder with an area of about $160 \mathrm{M}^{2} / \mathrm{g}$, which corresponds to an edge length of about $100 \AA$ if all the particles are in the form of cubes. ${ }^{17}$ The specific heat is represented well by an equation $C=0.00459 T^{3}+0.163 T^{2} \mathrm{~mJ} / \mathrm{mole} \cdot \mathrm{deg}$, in which the T^{3}-term is the usual Debye term.

Fig. 8.4. Heat capacity of powdered magnesium oxide with grains of about 100 À size. ${ }^{17}$

The full calculation of the surface contribution is a complex problem which as yet has not been solved satisfactorily. In the continuum model, it is possible to calculate with some difficulty the surface and volume modes of plates and rectangular parallelopipeds. ${ }^{18}$ Apart from the usual shortcomings of a continuum model, there is a further assumption that the elastic behavior is not affected by the size of the specimen. On the other hand, it is obvious that the atoms near the surfaces are acted upon by forces very different from those exerted upon the atoms in the interior. Therefore, there is a spatial inhomogeneity of the lattice. The calculations with models of finite lattices are so involved that only beginnings have been made. ${ }^{19}$ They show that, apart from the low-temperature effect given by equation (8.9), there should be very small differences at higher temperatures, because of the change in optical frequencies resulting from the presence of surface boundaries. The experimental observations are scanty, but it appears that the $S T^{2}$-term in equation (8.9) is two to three times larger than the theoretical estimates. ${ }^{18}$ A full comparison between theory and experiment is not easy, because under the experimental conditions, in addition to the total surface area, the shape of the individual particles may also have some influence. Further, the possibility of thermal motions of whole grains of the
substance, behaving as though they were giant macromolecules, cannot be eliminated. The experiments also suffer from the fact that attaining thermal equilibrium in a fine powder is difficult. There is a real need for further experimental and theoretical studies.

8.6. COMPILATIONS OF SPECIFIC-HEAT DATA

A knowledge of specific heat is useful in so many fields of study that the literature on heat capacities is very extensive and is reported in diverse publications. Without the abstracting services of Chemical Abstracts and Physics Abstracts, the task of searching for the data on any particular material would be inordinately laborious. Apart from these sources, perhaps the best single reference, if the heat capacity of any substance is needed, is the sixth edition of LandoltBörnstein Zahlenwerte and Funktionen, Vol. 2, Part 4 (SpringerVerlag, Berlin, 1961, 863 pages). This gives an exhaustive listing of the heat capacities of almost all materials investigated before 19581959. Special data of cryogenic interest are collected in the various publications of the National Bureau of Standards Cryogenic Engineering Laboratory, Boulder, Colorado. For example, A Compendium of the Properties of Materials at Low Temperatures (V. J. Johnson, editor, 1957) and Specific Heats and Enthalpies of Technical Solids at Low Temperatures (by R. J. Corruccini and J. J. Gniewek, 1960) contain useful information about the specific heat and other properties below $300^{\circ} \mathrm{K}$. There are, of course, other reports by several groups of workers on various aspects of specific-heat studies, such as Debye temperatures or the properties of metals and gases; the references to them may be found without difficulty from the recent reviews cited at the end of the earlier chapters.

In the construction of calorimeters and other pieces of cryogenic equipment, various low-melting solders, glues, varnishes, and technical solids are often used. Their specific heats are needed for the design of such apparatus, especially because weight-for-weight they may contribute more thermal capacity than the standard construction materials such as copper, brass, and stainless steel. Unfortunately, the heat capacity depends upon the purity, method of preparation, and composition of these substances, so that for accurate work each sample must be individually investigated. For many other purposes, it is convenient to have some approximate values. Even so, no handy tabulation of the many measurements is available, and hence Table 8.I is given here as a summary of the properties of several such auxiliary materials used in cryogenic equipment.

The specific heats of several materials are quite high compared to those of, say, copper. In particular, if the heat capacity of some

Table 8.I. Specific Heats c_{p} (in mJ / g •deg K)

T (deg K)	Cu	W.M.	So.So.	Aral.	Gly.	Bak.	G.E.	Pyr.
2	0.03	0.06	0.06	0.24	0.4	-	0.31	0.025
5	0.16	1.39	1.17	4.6	4.8	5.3	6.1	0.38
10	0.86	13.4	11.7	27.2	22	19.2	-	4.2
20	7.7	46.0	47.5	81.1	110	66.7	-	27.4
50	99	-	-	-	380	237	-	-
100	254	-	-	-	1150	-	-	-
300	386	-	-	-	-	-	-	-
T								
(deg K)	Sil.	Cons.	Man.	Mon.	St.St.	Tef.	Poly.	GR-S
2	0.02	0.23	0.15	0.22	0.03	0.3	-	-
5	0.35	0.56	0.5	0.55	0.2	2.4	1.2	4.2
10	4.0	1.69	-	1.7	0.8	18	9.6	28
20	24.4	6.8	-	7.1	6	76	67.2	113
50	111	83	-	-	74	202	330	338
100	268	238	-	240	251	386	657	612
300	738	-	-	430	490	1010	2370	1900

W.M. Wood's Metal ($12.5 \mathrm{wt}-\% \mathrm{Sn}, 12.5 \% \mathrm{Cd}, 25 \% \mathrm{~Pb}, 50 \% \mathrm{Bi} ;$ m.p. $68^{\circ} \mathrm{C}$). D. H. Parkinson and J. E. Quarrington, Brit. J. Appl. Phys. 5, 219 (1954). Superconducting below $\sim 5^{\circ} \mathrm{K}$.
So.So. Soft solder ($40 \mathrm{wt}-\% \mathrm{~Pb}, 60 \% \mathrm{Sn}$; m.p. $\sim 185^{\circ} \mathrm{C}$). J. de Nobel and F. J. du Chatenier, Physica 29, 1231 (1963). Superconducting below $\sim 7^{\circ} \mathrm{K}$. Other compositions also investigated.
Aral. Araldite Type I (baked according to instructions from manufacturers). D. H. Parkinson and J. E. Quarrington, Brit. J. Appl. Phys. 5, 219 (1954).
Gly. Glyptal varnish (air-dried at room temperature). N. Pearlman and P. H. Keesom, Phys. Rev. 88398 (1952). P. H. Keesom and G. Seidel, Phys. Rev. 113, 33 (1959).
Bak. Formite bakelite varnish V11105. R. W. Hill and P. L. Smith, Phil. Mag. 44, 636 (1953).
G.E. G.E. varnish 7031. N. E. Phillips, Phys. Rev. 114, 676 (1959).

Pyr. Pyrex glass. P. L. Smith and N. M. Wolcott, Phil. Mag. 1, 854 (1956). Between 1.5 and $4.2^{\circ} \mathrm{K}, c \approx 3.1 \times 10^{-3} T^{3} \mathrm{~mJ} / \mathrm{g} \cdot \mathrm{deg}$.

Sil. Silica glass (vitreous silica or fused quartz). F. E. Simon and F. Lange, Z. Physik 38, 227 (1926). E. F. Westrum, quoted in R. C. Lord and J. C. Morrow, J. Chem. Phys. 26, 230 (1957). P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. Stoicheff, J. Phys. Chem. Solids 12, 53 (1959).
Cons. Constantan ($60 \mathrm{wt}-\% \mathrm{Cu}, 40 \% \mathrm{Ni}$). A. Eucken and H. Werth, Z. anorg. allgem. Chem. 188, 152 (1930). W. H. Keesom and B. Kurrelmeyer, Physica 7, 1003 (1940). J. C. Ho, H. R. O'Neal, and N. E. Phillips, Rev. Sci. Instr. 34, 782 (1963), find a T^{-2} increase of specific heat below $0.3^{\circ} \mathrm{K}$.
Man. Manganin ($87 \% \mathrm{Cu}, 13 \% \mathrm{Mn}$) J. C. Ho, H. R. O'Neal, and N. E. Phillips, Rev. Sci. Instr. 34, 782 (1963). Between 0.25 and $1.5^{\circ} \mathrm{K}, c \sim 0.0580 T+$ $0.0112 T^{-2} \mathrm{~mJ} / \mathrm{g} \cdot \mathrm{deg} \mathrm{K}$.

Mon. Monel ($67 \mathrm{wt}-\% \mathrm{Ni}, 30 \% \mathrm{Cu}, 1.5 \% \mathrm{Fe}, 1 \% \mathrm{Mn}$). W. F. Hampton and J. H. Mennie, Can. J. Res. 7, 677 (1932). W. H Keesom and B. Kurrelmeyer. Physica 7, 1003 (1940).
St.St. Stainless steel. R. Kohlhass and M. Braun, Arch. Eisenhüttenw: 34, 391 (1963). F. J. du Chatenier, B. M. Boerstoel, and J. de Nobel, Physica 31, 1061 (1965). Below $\sim 300^{\circ} \mathrm{K}$, values are nearly the same for γ-iron, manganese steel, and chrome-nickel steel.
Tef. Teflon (polytetrafluoroethylene). Material has a transition around $160^{\circ} \mathrm{K}$. G. T. Furukawa, R. E. McCoskey, and G. J. King, J. Res. Nat. Bur. Std. 49, 273 (1952). Between 1.4 and 4.2° K, R. J. Noer, C. W. Dempsey, and J. E. Gordon, Bull. Am. Phys. Soc. 4, 108 (1959), give $c \sim 40 \times 10^{-3} T^{3} \mathrm{~mJ} / \mathrm{g} \cdot \mathrm{deg}$ for teflon, $c \sim 63 \times 10^{-3} T^{3}$ for polystyrene, and $c \sim 35 \times 10^{-3} T^{3}$ for lucite. W. Reese and J. E. Tucker, J. Chem. Phys. 43, 105 (1965), give values for tetion, nylon, and Kel-F (1 to $4^{\circ} \mathrm{K}$) also.
Poly. Amorphous polyethylene. Glassy transition $200^{\circ} \mathrm{K}$. B. Wunderlich, J. Chem. Phys. 37, 1203 (1962). (Material with various degrees of crystallinity also investigated.) I. V. Sochava and O. N. Trepeznikova, Soviet Phys. Doklady 2, 164 (1957). (Data for polyvinyl alcohol also given.)
GR-S. GR-S (Buna S) rubber (1,3-butadiene with $25 \mathrm{wt}-\%$ styrene). Second-order transition with hysteresis around 210° K. R. D. Rands, W. F. Ferguson, and J. L. Prather, J. Res. Nat. Bur. Std. 33, 63 (1944). Natural rubber studied by N. Bekkedahl and H. Matheson, J. Res. Nat. Bur. Std. 15, 505 (1934).
substance with low specific heat is to be measured, the thermal capacity of a small amount of glue or solder used for attaching the heater or thermometer may be comparable to that of the specimen under study. Further, constantan and manganin, widely used for winding heaters, are quite unsuitable below about $0.5^{\circ} \mathrm{K}$ because of the T^{-2} increase. At $0.1^{\circ} \mathrm{K}$, for example, the specific heat of manganin is nearly 10^{3} times that of copper.

8.7. TABULATIONS OF SPECIFIC-HEAT FUNCTIONS

The Einstein and Debye functions are widely used in calculating the thermodynamic properties of gases and solids, as discussed in detail elsewhere in this monograph. The Debye function for the internal energy is also useful in cryogenic practice for calculating the amount of refrigeration needed to cool an apparatus. For example, let us calculate the amount of liquid ${ }^{4} \mathrm{He}$ spent if its latent heat, equal to $0.62 \mathrm{cal} / \mathrm{cc}$, is used to cool 1 gram-atom of copper (1 gram -atom $=$ 63.6 g of copper, Debye temperature of copper $\approx 310^{\circ} \mathrm{K}$) from 300 , 90 , or $20^{\circ} \mathrm{K}$ to $4.2^{\circ} \mathrm{K}$. Strictly, it is the change in enthalpy $\Delta H=\int C_{p} d T$ of copper which must be used for this purpose rather than an estimate of the change in the internal energy $\Delta E=\int C_{v} d T$. However, $C_{p}-C_{v}$, which depends upon the expansion coefficient and compressibility and hence is not easily tabulated as a function of T / θ, is usually small enough to permit the calculation to be done using ΔE without any serious error. Further, copper has no specific-heat anomaly in this

Table 8.II

T	$\frac{\theta}{T}$	$\frac{E(\text { Debye })}{3 R T}$	$E($ Debye $)$ cal/mole
300	1.03	0.666	1200
90	3.44	0.233	126
20	74	0.005	0.6
4.2	0.00004	0.001	

region. So for various values of θ / T, we look up the values of the Debye energy function $E($ Debye $) / 3 R T$ in the Appendix and write out a table (Table 8.II), taking for simplicity $R \approx 2 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$.

The change in internal energy between room temperature and liquid-helium temperature is about $1200 \mathrm{cal} / \mathrm{mole}$. If the latent heat of liquid helium is used to bring about this reduction of temperature, about 2000 cc will be spent. A similar calculation shows that 200 cc is needed to cool 63.6 g of copper from 90 to $4.2^{\circ} \mathrm{K}$, and only 1 cc from 20 to $4.2^{\circ} \mathrm{K}$. The tremendous advantage of precooling any apparatus with liquid air and liquid hydrogen in order to conserve the supply of liquid helium was mentioned even in the Introduction.

Many tabulations of the Einstein and Debye functions were mentioned in Chapter 2. Some of these tables, especially the older ones, should be used with caution since the value of R different from the present accepted $8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{deg}=1.987 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$ has been used in them. The error caused by this is serious only at high temperatures, where the Debye specific heat approaches its limiting value of $3 R$. A 1% error in the specific heat at $T \sim \theta$ gives an error of nearly 10% in the calculated value of θ. One way to make the tables permanently useful is to give the values in a dimensionless form, that is, give $C_{v} / 3 R$ rather than C_{v}. Then, to find the specific heat at any given T / θ, the entries must be multiplied by $3 R$, but the tables themselves need not be changed every time an improvement in our knowledge of the value of R takes place. This is the procedure followed in the tabulations of Overton and Hancock for the Einstein functions and those of Beattie for the Debye functions, which are at present the most accurate ones available. For rough calculations, a table to three figures is often sufficient, but for a variety of refined calculations it is necessary to have more accurate tables. Unfortunately, six-figure tables are not easily accessible. Beattie's sixfigure tables were published in 1926, though they have been recently checked for accuracy, while the eight-figure tables of Overton and Hancock and the detailed tables of Hilsenrath and Ziegler are contained in laboratory reports rather than professional journals.

Therefore, six-figure tables of Einstein and Debye functions are given in a suitable form as an Appendix (with the permission of Professors Beattie and Overton).

REFERENCES

1. H. N. V. Temperley, Changes of States, Cleaver-Hume, London, 1956. A. B. Pippard, Elements of Classical Thermodynamics, Cambridge University Press, Cambridge, 1957, chapters 8 and 9.
2. A. J. Hughes and A. W. Lawson, J. Chem. Phys. 36, 2098 (1962).
3. C. W. Garland and J. S. Jones, J. Chem. Phys. 39, 2874 (1963).
4. R. Viswanathan and E. S. R. Gopal, Physica 27, 765, 981 (1961); 29, 18 (1963). C. W. Garland, J. Chem. Phys. 41, 1005 (1964). M. P. Mokhnatkin, Soviet Phys.Solid State 5, 1495 (1964).
5. D. Turnbull, Solid State Phys. 3, 225 (1956).
6. J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworth, London, 1959, p. 40.
7. J. J. Markham, R. T. Beyer, and R. B. Lindsay, Rev. Mod. Phys. 23, 353 (1951). R. O. Davies and J. Lamb, Quart. Rev. Chem. Soc. (London) 11, 134 (1957). G. S. Verma, Rev. Mod. Phys. 31, 1052 (1959). K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves, Academic, New York, 1959.
8. P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Proc. Phys. Soc. (London) 78, 1449 (1961). R. H. Beaumont, H. Chihara, and J. A. Morrison, Proc. Phys. Soc. (London) 78, 1462 (1961).
9. E. C. Heltemes and C. A. Swenson, Phys. Rev. Letters, 7, 363 (1961); Phys. Rev. 128, 1512 (62). D. O. Edwards, A. S. McWilliams, and J. G. Daunt, Phys. Letters 1, 218 (1962). F. W. de Wette, Phys. Rev. 129, 1160 (1963).
10. G. Borelius, Solid State Phys. 15, 1 (1963).
11. A. R. Ubbelohde, Quart. Rev. Chem. Soc. (London) 4, 356 (1950).
12. J. D. Hoffman and B. F. Decker, J. Phys. Chem. 57, 520 (1953). R. E. Meyer and N. H. Nachtrieb, J. Chem. Phys. 23, 405 (1955).
13. A. B. Lidiard, Handbuch der Physik, XX (II), 246 (1957).
14. A. J. E. Foreman and A. B. Lidiard, Phil. Mag. 8, 97 (1963). G. F. Nardelli and N. Terzi, J. Phys. Chem. Solids 25, 815 (1964).
15. A. Eucken and H. Werth, Z. anorg. allgem. Chem. 188, 152 (1930). C. G. Maier and C. T. Anderson, J. Chem. Phys. 2, 513 (1934). D. L. Martin, Can. J. Phys. 38, 17 (1960). F. A. Otter and D. E. Mapother, Phys. Rev. 125, 1171 (1962).
16. P. H. Keesom, K. Lark-Horovitz, and N. Pearlman, Science 116, 630 (1952). W. DeSorbo and W. W. Tyler, J. Chem. Phys. 26, 244 (1957). B. B. Goodman, L. Montpetit, and L. Weil, Compt. rend. acad, sci (Paris) 248, 956 (1959).
17. W. H. Lien and N. E. Phillips, J. Chem. Phys. 29, 1415 (1958).
18. M. Dupuis, R. Mazo, and L. Onsager, J. Chem. Phys. 33, 1452, (1960). R. Stratton, J. Chem. Phys. 37, 2972 (1962).
19. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, Academic, New York, 1963, chapter 6.

Appendix

The six-figure tables give the values of the internal energy E and heat capacity at constant volume C_{v} of solids in the Einstein and Debye models. The functions are tabulated in a dimensionless form as follows to make them permanently useful:
A. Einstein internal energy function [equation (2.9a)]:

$$
\frac{E(\text { Einstein })}{3 R T}=\frac{x}{e^{x}-1} \quad x=\frac{h v_{E}}{k T}=\frac{T_{E}}{T}
$$

B. Einstein specific-heat function [equation 2.7)]:

$$
\frac{C_{v}(\text { Einstein })}{3 R}=\frac{x^{2} e^{x}}{\left(e^{x}-1\right)^{2}} \quad x=\frac{T_{E}}{T}
$$

C. Debye internal energy function [equation (2.16a)]:

$$
\frac{E(\text { Debye })}{3 R T}=\frac{3}{x^{3}} \int_{0}^{x} \frac{x^{3} d x}{e^{x}-1} \quad x=\frac{h v_{D}}{k T}=\frac{\theta}{T}
$$

D. Debye specific-heat function [equation (2.17)]:

$$
\frac{C_{v}(\text { Debye })}{3 R}=\frac{3}{x^{3}} \int_{0}^{x} \frac{x^{4} e^{x} d x}{\left(e^{x}-1\right)^{2}} \quad x=\frac{\theta}{T}
$$

The presently accepted value of R is $1.987 \mathrm{cal} / \mathrm{mole} \cdot \mathrm{deg}$, or 8.314 J/mole $\cdot \operatorname{deg} K$.

The functions A to D are tabulated at intervals of 0.01 over the useful range, namely, $T_{E} / T<16$ in the Einstein functions and $\theta / T<24$ in the Debye functions. Over most of the range, a linear interpolation gives an accuracy of nearly three to four units in the sixth significant figure. However, interpolation with second differences is recommended for accurate work. Following the usual procedure, a reduction by one unit of the fixed "characteristic" part is indicated by an underscoring
of the varying "mantissa" part. For example,

$$
\begin{aligned}
x & =1.61 & \frac{E(\text { Einstein })}{3 R T} & =0.402217 \\
& =1.62 & & =0.399695 \\
& =3.48 & & =0.110618 \\
& =3.49 & & =0.109797
\end{aligned}
$$

Over wider ranges of x, the following approximations can be used with an error of about one unit in the sixth significant figure. At high temperatures,

$$
\begin{aligned}
\frac{E(\text { Einstein })}{3 R T} & \approx 1-\frac{x}{2}+\frac{x^{2}}{12}-\frac{x^{4}}{720} \quad x=\frac{T_{E}}{T} \approx 0.1 \\
\frac{C_{v}(\text { Einstein })}{3 R} & \approx 1-\frac{x^{2}}{12}+\frac{x^{4}}{240} \\
\frac{E(\text { Debye })}{3 R T} & \approx 1-\frac{3 x}{8}+\frac{x^{2}}{20}-\frac{x^{4}}{1680} \quad x=\theta / T \approx 0.1 \\
\frac{C_{v}(\text { Debye })}{3 R} & \approx 1-\frac{x^{2}}{20}+\frac{x^{4}}{560}
\end{aligned}
$$

while at low temperatures

$$
\begin{aligned}
& \frac{E(\text { Einstein })}{3 R T} \approx x e^{-x} \quad x=\frac{T_{E}}{T}>16 \\
& \frac{C_{v}(\text { Einstein })}{3 R} \approx x^{2} e^{-x} \\
& \frac{E(\text { Debye })}{3 R T} \approx \frac{19.481818}{x^{3}} \quad x=\theta / T>24 \\
& \frac{C_{v}(\text { Debye })}{3 R} \approx \frac{77.92727}{x^{3}}
\end{aligned}
$$

A. Einstein Internal Energy Function E (Einstein)/3RT

		0	1	2	3	4	5	6	7	8	9
0.0	1.0	00000	25008	20033	85075	8013	75208	70300	65408	60533	55675
0.1	. 9	50833	46008	41200	36408	31	26874	22132	17407	12699	8007
0.2	9	03331	28672	24030	89404	84795	80203	75627	71068	66525	61999
0.3	8	57489	52996	48519	44059	39615	35188	30777	26382	22004	17643
0.4	8	13298	08969	04657	00361	96082	21818	87571	8341	7912	74929
0.5	7	70747	66582	62432	58299	54183	50082	45998	41930	3787	33841
0.6	7	29822	25818	21830	17858	13903	09963	06039	02131	28240	24364
0.7	. 6	90504	86660	82831	79019	75222	71441	67676	63927	6019	56475
0.8	6	52773	49086	45415	41760	38120	34496	30887	27293	23715	20153
0.9	6	16606	13074	09558	06057	02571	29101	25646	22206	88781	85371
1.0	0.5	8197	78	75233	7188	68549	65230	61926	58636	55361	52102
1.1	5	48857	45627	42411	39211	3602	32853	29	265	23	20314
1.2	5	17215	14131	11062	08006	04965	01939	98927	25929	92945	75
1.3	4	87020	84078	81151	78238	75339	72453	69582	66724	63881	61051
1.4	4	58235	55433	52644	49870	47108	44361	41627	38906	3619	06
1.5	4	30825	28159	25505	22865	20238	17624	15024	12436	09862	07301
1.6	4	04753	02217	29695	97186	24689	22205	89734	87276	4831	98
1.7	. 3	79	7757	7517	72792	704	6806	6571	6338	61065	57
1.8	3	56461	54176	51904	49645	47397	45161	42937	40725	3852	37
1.9	3	34160	31996	29843	27701	2557	23453	21347	1925	8	96
2.0	0.3	13035	10986	08948	06	04905	02900	00907		96953	993
2.1	. 2	9304	9110	89178	87261	8535	83459	81575	79701	77838	75985
2	2	74143	72311	70490	68679	66879	65088	63308	61539	59779	58030
2.3	2	56291	54562	52842	51133	49434	47745	46065	44396	42736	41086
	. 2	39	3781	36193	34581	3297	31386	29803	28229	2666	25110
5	-	23564	22027	20500	18981	17472	15972	14480	12998	11525	10061
2.6	2	08605	07158	05721	04291	02871	01459	00056	28661	97275	25897
2.7	. 1	94528	93167	91815	90471	8913	87808	86488	85177	83874	82579
2.8	1	81293	80014	78743	77480	76225	74978	73738	72507	71283	70067
2.9	1	68858	67658	66464	65279	6410	62930	61767	60611	59462	321
3.	0.15	718	6060	4941	3829	2724	1626	35	2451	8374	3304
3.1	. 14	6241	5184	4135	3092	2057	1028	0005	8989	7980	6978
3.2	13	5982	4993	4010	3033	2063	1099	0142	2191	8246	7308
3.3	12	6376	5449	4530	3616	2708	1806	0910	0021	2137	8259
3.4	.11	7387	6520	5660	4805	3957	3113	2276	1444	0618	9797
3.5	10	8982	8172	7368	6569	5776	4988	4206	3429	2657	1890
3.6	10	1129	0372	26214	88756	81348	73991	66685	59429	52223	45067
3.7	. 09	37960	30902	23893	16933	10020	03156	96339	89569	82847	76171
3.8	08	69542	62959	56421	49930	43484	37083	30727	24415	18147	11924
3.9	08	05744	29608	23515	87465	81458	15493	69570	63689	57849	52051

x		0	1	2	3	4	5	6	7	8	9
4.0	0.07	46294	40578	34903	29268	23673	18111	12óvé	07126	01088	$2 \leqslant 230$
4.1	. 06	90930	85609	80326	75080	69872	64702	59569	54472	49413	44389
4.2	06	39402	34451	29535	24656	19812	15002	10228	05488	00782	96111
4.3	05	91473	86870	82299	77763	73259	68788	64349	59943	55569	51228
4.4	. 05	46918	42639	38392	34176	29991	25837	2171	17620	13557	09524
4.5	05	05521	01547	27602	23687	89801	85943	82114	78313	74541	70796
4.6	04	67079	63390	59729	56094	52487	48907	45353	41826	38325	34850
4.7	. 04	31402	27979	24582	21210	17863	14542	11246	07974	04727	01504
4.8	03	98306	95132	91981	88855	85752	82672	79616	76583	73572	70585
4.9	03	67620	64678	61758	58860	55984	53130	50298	47487	44698	41930
5.0	0.03	39183	36457	33752	31067	28403	25759	23136	20532	17949	15385
5.1	. 03	1284	10317	07812	05326	02859	00412	27983	25572	23181	0808
5.2	02	88453	86116	83797	81496	79213	76948	74700	72470	70257	68061
5.3	02	65882	63720	61574	59446	57334	55238	53159	51095	49048	47017
5.4	. 02	4500	43002	41018	39050	37097	35159	3323	3132	2943	27558
5.5	02	25695	23846	22012	20192	18387	16596	14819	13056	11306	09571
5.6	02	07849	06141	04446	02764	01096	29441	27792	26170	24554	92951
5.7	. 01	91360	89782	88217	86664	85123	83594	82078	80573	79081	77600
5.8	01	76131	74674	73229	71795	70372	68961	67561	66172	64794	63427
5.9	01	62071	60726	59392	58068	56755	55453	54160	52879	51607	50346
6.0	0.014	9095	7854	6622	5401	4190	2988	1796	0613	2440	8277
6.1	. 013	7122	5977	4842	3715	2598	1490	0390	2300	8218	7145
6.2	012	6081	5025	3978	2939	1909	0887	9873	8868	7870	6881
6.3	011	5900	4927	3962	3004	2054	1113	0178	2252	8332	7421
6.4	. 010	6517	5620	4730	3848	2973	2105	1244	0390	25436	87037
6.5	009	78707	70445	62250	54123	46062	38067	30138	22274	14474	06738
6.6	008	99066	91457	83910	76425	69002	61640	54338	47096	39914	32792
6.7	. 008	25727	18721	11773	04882	98048	21270	84548	77882	71271	64714
6.8	007	58212	51763	45367	39025	32735	26497	20311	14175	08091	02057
6.9	006	96073	90139	84254	78418	72630	66891	61199	55554	49956	44405
7.0	0.006	38900	33441	28027	22658	17334	12054	06818	01626	96477	21372
7.1	. 005	86308	81287	76308	71370	66474	61619	56804	52029	47294	42599
7.2	005	37943	33327	28748	24208	19707	15242	10816	06426	02073	27757
7.3	004	93477	89232	85024	80851	76712	72609	68540	64505	60505	56537
7.4	. 004	52604	48703	44835	41000	37197	33426	29687	25979	22303	18657
7.5	004	15043	11459	07905	04381	00887	27422	23987	20581	87203	83854
7.6	003	80534	77241	73976	70739	67530	64347	61192	58063	54961	51885
7.7	. 003	48835	45811	42813	39840	36892	33969	31071	28198	25349	22525
7.8	003	19724	16948	14194	11465	08758	06075	03414	00776	98160	25567
7.9	002	92996	90447	87919	85413	82929	80465	78023	75601	73201	70820

I		0	1	2	3	4	5	6	7	8	9
8.0	0.002	68460	66120	63800	61500	59220	56959	54717	52495	50292	48107
8.1	. 002	45941	43794	41665	39555	37462	35387	33330	31291	29269	27
8.2	002	25278	23308	21354	19418	17498	15595	13708	11837	09982	08143
8.3	002	06320	04513	02721	00945	29184	27438	25707	93991	22290	90603
8.4	. 001	88931	87273	85630	84001	82386	80785		77623	76063	7
8.5	001	72983	71463	69956	68462	66981	65513	64058	62615	61184	59766
8.6	001	58360	56966	55585	54215	52857	51511	50177	48854	47543	46243
8.7	. 001	44954	43676	42410	41154	39909	38676	37452	36240	35038	33846
8.8	001	32665	31494	30333	29183	28042	26911	25790	24688	23577	22485
8.9	001	21403	20330	19266	18211	17166	16130	15103	14084	13075	12074
9.0	0.0011	1083	0099	2125	8158	7201	6251	5310	4377	3453	$\underline{2536}$
9.1	. 0010	1627	0726	28336	89485	80711	12014	63393	24848	46377	37980
9.2	0009	29656	21406	13227	05120	97084	89118	81222	73395	65637	57946
9.3	0008	50323	42767	35277	27852	20492	13197	05966	28792	21694	84651
9.4	. 0007	77671	70751	63892	57094	50355	43675	37054	30491	23985	17537
9.5	0007	11146	04810	28530	22306	86136	80020	73959	67950	61995	56091
9.6	0006	50240	44440	38691	32993	27345	21747	16198	10698	05246	29842
9.7	. 0005	94486	89178	83915	78700	73530	68406	63327	58293	53303	48358
9.8	0005	43456	38597	33781	29008	24277	19587	14939	10332	05766	01240
9.9	0004	96754	92308	87901	83533	79204	74913	70659	66444	62266	58125
10.0	0.0004	54020	49952	45919	41923	37962	34036	30144	26287	22465	8676
10.1	. 0004	14921	11199	07510	03853	00229	26638	93078	89550	86053	82587
10.2	0003	79151	75747	72372	69028	65713	62427	59171	55944	52745	49575
10.3	0003	46433	43318	40232	37173	34141	31136	28158	25206	22281	19381
0.4	. 0003	16507	13659	10837	08039	05266				24420	91769
0.5	0002	89141	86536	83955	81397	78861	76348	73858	71390	68944	66519
0.6	0002	64116	61735	59375	57036	54717	52420	50143	47886	45650	43433
0.7	. 0002	41236	39059	36901	34763	32644	30543	28461	26398	24354	22327
0.8	0002	20319	18329	16356	14402	12464	10544	08641	06755	04886	03034
0.9	0002	01198	29379	27576	95789	24019	22264	20524	88801	87092	85400
11.0	0.0001	83722	82059	80411	78778	77160	75556	3966	7239	70830	69283
11.1	. 00016	7749	6230	4724	3231	1752	0287	8834	7395	5968	4554
11.2	00015	3153	1755	0388	2025	7673	6334	5007	3691	$\underline{2388}$	1096
11.3	00013	9816	8547	7290	6044	4809	3585	2373	1171	9980	88
11.4	. 00012	7630	6471	5322	4184	3056	1938	0830	2732	8644	7566
11.5	00011	6497	5438	4389	3349	2319	1297	0285	9282	8289	7304
11.6	00010	6328	5360	4402	3452	2511	1578	0653	27374	88296	79300
11.7	. 00009	70385	61550	52796	44120	35523	27003	18560	10194	01903	23686
11.8	00008	85544	77476	69481	61557	53706	45925	38215	30574	23002	15.499
11.9	00008	08064	00696	23394	86159	78989	71883	64842	57865	50951	44100

B. Einstein Specific Heat Function $C_{v}($ Einstein $) / 3 R$

x		0	1	2	3	4	5	6	7	8	9
0.0	1.0	00000	29922	29967	29925	29867	29792	29700	29592	29467	29325
0.1		99167	98992	98801	98593	98368	98127	97869	97595	97304	96997
0.2	9	96673	96333	95976	95603	95214	948c8	94386	93947	93492	93021
0.3	9	92534	92030	91510	90974	90422	89854	89270	88659	88053	87421
0.4	9	86773	86109	85429	84733	84022	83295	82552	81793	81019	8023
0.5	9	79425	78604	77768	76917	76050	75168	74271	73359	72432	71490
0.6	9	70532	69560	68573	67571	66555	65523	64477	63417	62341	61252
0.7	9	60148	59030	57897	56750	55589	54415	53226	52023	50806	9
0.8	9	48331	47073	45801	44516	43218	41906	40581	39242	37891	365
0.9	9	35148	33758	32354	30938	29509	28068	26614	25147	23668	22177
1.0	0.9	2067		17630		14540	12976	01	09815	08217	6607
1.1	9	04986	0335	017	0005	98390	957	25026	9332	91619	89900
1.2		88170	86430	84679	82918	81147	7936	77575	75774	73954	72144
1.3	8	70314	68474	66626	64768	62900	61024	59139	57244	55341	53429
4	. 8	51509	49580	4764	45696	43742	4178	39809	3783	35844	33850
1.5	8	31849	29839	27822	25798	23766	21728	19682	17629	15569	13502
1.6	8	11429	09349	07262	05169	03070	00964	98852	26734	24610	2481
1.7	7	90345	88204	86057	83905	81747	79584	77416	75243	7306	0881
1.8	7	68693	66500	64303	62101	59894	57684	55469	53249	51026	48799
1.9	7	46568	44333	42094	39852	37606	35356	33104	30848	285	26327
2.0	0.7	24062	21794	23	49	14973	12694	13	08130	05844	3556
1		01266	989	96680	94384	92086	89787	87486	8518	82880	
2.2	6	78269	75961	73652	71343	69032	66721	64408	62096	59782	57468
2.3	6	55154	52839	50524	48209	45893	43578	41262	38947	36632	34317
2.4	. 6	32002	29688	27374	25061	22748	20437	18125	15815	13506	11197
2.5	6	08890	06584	04279	01975	29673	97372	95072	22774	90477	88183
2.6	5	85890	83598	81309	79021	76736	74452	72171	69892	6761	65340
2.7	- 5	63068	60798	58530	56265	54003	51743	49486	47232	44980	42732
2.8	5	40486	38244	36004	33767	31534	29304	27077	24853	22633	20416
2.9	5	18203	15993				07189	04997	02810	006	28445
3.0	0.4	96269	94097	91929	8976	87	85448	83296	81149	79006	6867
3.1	. 4	74732	72602	70476	68355	66238	64125	62018	59915	57816	55722
3.2	4	53633	51549	49470	47395	45325	43260	41200	39145	37095	35050
$3 \cdot 3$	4	33010	30975	28946	26921	24901	22887	20878	18874	16876	14882
3.4	. 4	12894	10912	08935	06963	04996	03036	01080	29130	27186	25247
3.5	3	93313	91386	89463	87547	85636	83731	81831	79937	78049	76167
3.6	3	74290	72419	70554	68695	66841	64993	63152	61316	59486	57661
3.7	. 3	55843	54031	52224	50424	48629	46840	45058	43281	41510	39746
3.8		37987	36234	34488	32747	31012	29284	27562	25845	24135	22431
3.9		20733	19041	17355	15675	14001	12333	10672	09017	07367	05724

x		0	1	2	3	4	5	万	7	8	y
4.0	0.3	$0<087$	02456	COP 32	99213	97601	95995	94394	22800	$\underline{91213}$	89531
4.1	. 2	88055	86486	84923	83365	81814	80270		77198	75672	74152
$4 . ?$?	72637	71129	59627	ó8132	66642	65158	63681	62210	60744	59285
4.3	2	57832	56385	54964	53509	52081	50658	49241	47831	46426	45027
4.4	. 2	43635	42248	40868	39494	38125	36763	35406	34056		2
4.5	2	30040	28713	27392	26077	24768	23465	22168	20877	19591	18312
4.6	2	17038	15770	14508	13252	12001	10757	09518	08285	07057	05836
4.7	. 2	04520	03410	02205	01006	29813	98626	27444	96258	$\underline{92097}$	93933
4.8	1	92773	91620	90471	89329	88192	87050	85934	84814	83699	82589
4.9	1	81485	80387	79294	78205	77123	75046	74975	73909	72848	71792
5.0	0.17	074	46	865	762	65	5	4551	3537	2529	1526
5.1	. 16	0528	$\underline{9535}$	8547	7564	6587	5614	4647	3685	2727	1775
5.2	15	0827	$\underline{9885}$	8948	$\underline{8015}$	7087	6165	5247	4334	3426	$\frac{2523}{3752}$
5.3	14	1624	0731	9842	8958	$\underline{8078}$	$\underline{7204}$	6334	5469	4608	$\underline{3752}$
5.4	. 13	2901	2055	1213	0375	2543	8715	7891	7072	$\underline{827}$	5447
5.5	12	4642	3840	3044	2251	1463	0680	9901	9126	8355	7589
5.6	11	6827	5070	5317	4568	3823	3082	2346	1613	0885	0161
5.	. 10	9442	8726	8014	7307	6603	5904	5208	4517	3829	3146
5.8	10	246	1791	1119	0451	27875	91275	84713	78189	71704	65257
5.9	09	58847	52475	46140	39843	33583	27359	21173	15023	08910	02832
6.0	0.08	96791	9078	84816	78882	72984	5712	61293	5549	9741	44017
6	. 08	38327	32672	27051	21464	15910	10390	04904	29451	24031	88644
6.2	07	83289	77967	72678	67421	62196	57004	51843	46713	41615	36549
6.3	07	31513	26509	21536	16593	11681	06799	01948	27126	$\underline{92335}$	87573
6.4	. 06	82841	78139	73465	68821	64206	59620	55063	50534	46034	41561
6.5	06	37117	32701	28313	23953	19620	15314	11036	06784	02560	28363
6.6	05	94192	90048	85930	81838	77772	73733	69719	65731	61768	57831
6.7	. 05	53919	50032	46171	42334	38521	34734	30970	27231	23516	19826
6.8	05	16159	12516	08896	05300	01728	98178	94652	91149	87668	84210
6.9	04	80775	77363	73972	70604	67258	63934	60632	57351	54092	50854
7.0	0.04	47638	44443	41269	38116	34984	31873	28782	25712	22662	19632
7.1	. 04	16623	13633	10663	07714	04783	01873	98982	96110	93257	90423
7.2	03	87609	84813	82036	79277	76538	73816	71113	68428	65761	63112
7.3	03	60481	57868	55273	52695	50134	47591	45065	42556	40064	37590
7.4	. 03	35132	32690	30266	27857	25466	23090	20731	18388	16061	13750
7.5	03	11454	09175	06911	04662	02429	00212	98009	25822	23650	21493
7.6	02	89350	87223	85110	83012	80928	78858	76803	74762	72736	70723
7.7	. 02	68725	66740	64769	62812	60868	58938	57021	55118	53228	51351
7.8	02	49487	47636	45799	43974	42162	40362	38575	36801	35039	33290
7.9	02	31553	29828	28115	26414	24725	23049	21384	19730	18089	16459

x		\bigcirc	1	2	3	4					
B． 0	0.02	14840	13233	1163	10053	48	0691	0536	03827	02298	0078
8.1	．	砣	971								
8.2	01	847	83385	82002	8062		77912	755	75234		
8.3	01	7128	69992	68705	57427	661	64900	636	62408	61	59952
8.4	．	587	－	5633	55147	53967	52796	51633	50479	49333	48195
8.5	01	4706	45945	44832	43727	42630	41541	40460	393	38322	
8.6	01	3621	35173	34138	33111	32092	31080	30076	29079	28089	27106
8.7	． 01	26131	2516		2324						
8	01	16763	15864	1497	1408	13205	12332	11466	10606	9975	08904
8.9	01	08063	07228	06399		476	039	0314	02347	01554	67
9.0	0.009	99866	92116	84423	76788	69210	61688	54222	46812		
9.1	． 009	537		1582		289					2092
9.2	008	553	48700	42079	3550	2898	22513	1608	0971		
9.	007	9087	84687	78547	7245	6640	60406	5444	485		36849
9.4	． 007	31	25336				02828				
		7563	70324		59815	54621	49466	4435			
9.6	006	2427		14462	0961	04800	00024	9528	905	85915	1283
9.7	． 005	析	込	67600	63108	8	54228	977			6872
9.8	005	32616	28393	2420	20043	15916	11820	077	037		
9.9	004			8402							
10.0	0.004		50422	46831	43268	39733					
10.1	． 0	19087	1573		09120						
10.	003	86749	8365	80578	77529	7450	71501				
10.3	003	56		131	48311	551					
10	． 00	2917	2652			870	16141		1106	08561	
10.5	003	03606	01158	98729	31	392	2155	89202	8686	84549	
10	002										
10.7	． 002	58129	56038	53964	51906		4783	458	43836	185	3989
10.8	02		36018	34102	32201	303	284	26589	247	2292	21108
10.9	002										
． 0	． 02										737
11.	． 001	8620	84684	83176	8167	8019	78722	77261	75812	7315	72949
11.2	001	7153	70130	68738	6735	6598	6462	63280	61942	6061	
11.3	00	57994			5413	528	516	5037	49143		67
11.4	． 0014	500	4305	3119	1944	0777	$\frac{9620}{}$	$\frac{8473}{7}$	7334		
11.5	0013	3973	2871	1777	0693	9617	8550	7491	6441	5399	4366
11.6	0012	3341	2324	1316	0316	2323	8339	1363	6395	5434	4481
11.7	． 00	35	2598	1669	07		8924			25	
1.8	0010	449	3631	2773	1923	107		4130	70		
11.9	00	61	53635	45732	37893	30118	22407				22181

x		0	1	2	3	4	5	6	7	8	9
12.0	0.0008	84777	77434	70151	62927	55761	48654	41605	34613	27678	20800
12.1	. 0008	13977	07211	00499	23842	87240	80691	74196	67754	61364	55026
12.2	0007	48741	42506	36323	30190	24107	18074	12090	06155	00268	24430
12.3	0006	88640	82897	77201	71551	65948	60391	54879	49412	43990	38613
12.4	. 0006	33279	27990	22744	17540	12380	07262	02185	97151	92158	87205
14.5	0005	82294	77423	72592	67800	63048	58335	53661	49025	44427	39867
12.6	0005	35345	30860	26411	22000	17624	13285	08982	04713	00481	96282
12.7	. 0004	92119	87990	83895	79834	75806	71811	67850	63921	60024	56160
12.8	0004	52327	48527	44757	41019	37312	33635	29989	26373	22786	19230
12.9	0004	15703	12205	08736	05295	01883	28500	25144	21816	88516	85243
13.0	0.0003	81997	78779	75586	72421	69281	66168	63080	60018	56981	53970
13.1	. 0003	50983	48022	45085	42172	39284	36419	33579	30761	27968	25197
13.2	0003	22450	19725	17023	14344	11687	09052	06439	03847	01278	98729
13.3	0002	96202	93696	91211	88746	86302	83879	81475	79092	76728	74384
13.4	. 0002	72060	69755	67470	65203	62955	60726	58516	56324	54151	51995
13.5	0002	49858	47738	45637	43552	41486	39436	37404	35388	33390	31408
13.6	0002	29443	27494	25561	23645	2174	19860	17992	16139	14301	12479
13.7	. 0002	10672	08881	07104	05342	03596	01863	00145	98442	96753	95078
13.8	0001	93417	91770	90137	88518	86912	85320	83741	82175	80623	79083
13.9	0001	77557	76043	74542	73054	71578	70114	68663	67224	65798	64383
14.0	0.00016	2980	1589	0209	8842	7485	6141	4807	3485	2174	0874
14.1	. 00014	9585	8306	7039	5782	4536	3300	2075	0860	9655	8461
14.2	00013	7276	6102	4937	3783	2638	1502	0377	2261	8154	$\underline{7056}$
14.3	00012	5968	4889	3820	2759	1707	0664	2630	8605	7588	6580
14.4	. 00011	5581	4590	3607	2633	1666	0708	2759	8817	7883	6957
14.5	00010	6039	5129	4226	3332	2444	1564	0692	98272	$\frac{89696}{07840}$	81193
14.6	00009	72762	64403	56114	47896	39748	31669	23658	15715	07840	00032
14.7	. 00008	92290	84614	77003	69457	61975	54556	47201	39908	32677	25508
14.8	00008	18400	11352	04364	97435	90566	83755	77002	70306	63667	57085
14.9	00007	50559	44089	37674	31313	25007	18754	12554	06408	00314	24271
15.0	0.00006	88281	82341	76452	70613	64824	59085	53394	47752	42158	36612
15.1	. 00006	31113	25662	20256	14897	09584	04316	99093	93915	88781	83690
15.2	00005	78648	73640	68679	63761	58885	54050	49257	44505	39793	35122
15.3	00005	30490	25899	21346	16833	12358	07922	03523	29162	24839	20552
15.4	. 00004	86303	82089	77912	73771	69665	65594	61558	57557	53590	49657
15.5	00004	45758	41892	38060	34260	30493	26758	23055	19384	15745	12137
15.6	00004	08560	05013	01497	$\underline{9011}$	24555	21129	87732	$\underline{84365}$	81026	77716
15.7	. 00003	74435	71181	67956	64758	61588	58446	55330	52241	49178	46142
15.8	00003	43132	40148	37190	34257	31349	28467	25609	22775	19967	17182
15.9	00003	14421	11685	08971	06281	03615	00971	28350	25752	23176	90622
16.0	0.00002	88090	c_{v}	$3 \mathrm{R}=$	e^{-x}	when	n \times	16.			

C. Debye Internal Energy Function $E($ Debye $) / 3 R T$

x		0	1	2	3	4	5	6	7	8	9
0.0	1.0	00000	96255	22520	88795	85080	81375	77680	7399	70320	66655
0.1	. 9	63000	59355	55720	52095	48480	44875	41280	37695	34119	4
0.2	9	26999	23454	19919	16393	12878	09373	05877	02392	98916	25451
0.3	8	91995	88550	85114	81688	78272	74866	71470	68084	64708	341
0.4	. 8	57985	54638	51302	47975	44658	41351	38053	34766	31489	28
0.5	8	24963	21715	18477	15248	12030	08821	05622	02433	$\underline{9253}$	$\underline{96083}$
0.6	7	92923	89773	86633	83502	80381	77270	74168	076	67994	1
0.7	$\cdot 7$	61858	58805	55762	52728	49703	46689	43684	40688	37702	34726
0.8		31759	28802	25854	22916	19987	17068	14159	11259	08368	05487
0.9	7	02615	29753	96900	24057	21223	88398	85583	82777	79981	77193
1.0	0.6	7441	71647	68888	66138	63397	60666	57944	55231	52527	49833
1.1	. 6	47148	44472	41805	39147	36498	33859	31228	28607	25995	23392
1.2	6	20798	18213	15637	13070	10512	07963	05422	02891	00369	$\underline{7856}$
1.3	5	95351	92856	98369	87891	85422	82962	80511	78068	75634	73209
1.4	5	70793	68386	65987	63596	61215	58842	56478	54122	51775	49437
1.5	5	47107	44785	42472	40168	37872	35585	O6	31036	28774	26520
1.6	5	24275	22038	19809	17589	15377	13174	10979	08792	0661	442
1.7	5	02280	00126	27980	25842	23712	91590	89477	87371	85274	83184
1.8	,	81103	79030	76964	74907	72857	70816	68782	66756	64738	62728
1.9	4	60726	58731	56745	54766	52794	50831	4887	692	44987	43054
2.0	0.4	41128	39211	37301	35398	33503	31616	2973	27864	2599	24141
2.1	. 4	22291	20448	18613	16785	14965	13151	11345	09547	0775	11
2.2	4	04194	02424	00661	98906	27157	25416	23682	21955	20235	88522
2.3	3	86816	85117	83425	81740	80062	78390	76726	75068	73418	71774
2.4	$\cdot 3$	70137	68507	66883	65266	63656	62053	60456	58866	57283	55706
2.5	3	54136	52572	51015	49465	47921	46383	44852	43328	41810	40298
2.6	3	38793	37294	35801	34315	32835	31361	29893	28432	2697	25528
2.7	. 3	24086	22649	21219	19795	18377	16965	15559	14159	1276	77
2.8		09995	08619	07249	05885	04527	03174	01828	00487	99152	27823
2.9	2	96500	95182	93870	92564	91264	89969	88680	87397	86119	84847
3.0	0.28	3580	2319	1063	2813	8568	7329	6095	4867	3644	2427
3.1	. 27	1215	0008	8807	7610	6419	5234	4054	$\frac{2879}{1412}$	1709	0544
3.2	25	9385	8230	7081	5937	4798	3664	2535	1412	0293	9179
3.3	24	8070	6966	5868	4774	3684	2600	1521	0447	2377	8312
3.4	. 23	7252	6197	5146	4101	3060	2023	0991	2964	8942	7924
3.5	22	6911	5903	4899	3899	2904	1914	0928	9947	$\frac{8970}{9412}$	7998
3.6	21	7030	6066	5107	4152	3201	2255	1313	0376	2442	$\underline{8513}$
3.7	. 20	7589	6668	5752	4840	3932	3028	2128	1233	0341	2454
3.8	19	8571	7692	6817	5945	5078	4215	3356	2501	1650	0803
3.9	18	9959	9120	8284	7452	6624	5800	4980	416	3351	2542

x		0	1	2	3	4	5	6	7	8	9
4.0	0.18	1737	0935	0138	2344	8553	7767	6984	6204	5428	4656
4.1	. 17	3888	3123	2361	1603	0849	0098	2351	8607	7866	7129
4.2	16	6396	5666	4939	4216	3496	2779	2066	1356	0649	2946
4.3	15	9246	8549	7856	7166	6479	5795	5114	4437	3763	3092
4.4	. 15	2424	1759	1097	0439	9783	9131	$\frac{8482}{}$	7835	7192	6552
4.5	14	5914	5280	4649	4021	3395	2773	2153	1537	0923	0312
4.6	13	9704	9099	8497	7898	7301	6707	6116	5528	4943	4360
4.7	.13	3780	3203	2628	2057	1488	0921	0357	9796	9238	8682
4.8	12	8129	7579	7031	6485	5942	5402	4864	4329	3797	3267
4.9	12	2739	2214	1691	1171	0653	0138	9625	2114	$\underline{8606}$	8101
5.0	0.11	7598	7097	6598	6102	5608	5116	4627	4140	3656	3174
5.1	. 11	2694	2216	1740	1267	0796	0327	9861	2396	8934	8474
5.2	10	8016	7561	7107	6656	6206	5759	5314	4871	4430	3992
5.3	10	3555	3120	2688	2257	1829	1402	0978	0555	0135	27163
5.4	. 09	92997	88852	84726	80619	76531	72463	68414	64384	60373	56381
5.5	09	52408	48453	44517	40600	36701	32821	28958	25114	21288	17480
5.6	09	13690	09917	06162	02425	$\underline{9706}$	25004	21319	87652	84002	80369
5.7	. 08	76753	73155	69573	66007	62459	58927	55412	51913	48431	44965
5.8	08	41515	38082	34664	31263	27877	24508	21154	17815	14493	11186
5.9	08	07894	04618	01357	28112	24881	21666	88466	85280	82110	78954
6.0	0.07	75813	72687	69575	66478	63395	60327	57273	54233	51208	48196
6.1	. 07	45198	42215	39245	36289	33347	30419	27504	24603	21715	18841
6.2	07	15980	13132	10297	07476	04668	01873	99090	96321	93564	90821
6.3	06	88090	85371	82665	79972	77291	74623	71967	69323	66691	64072
6.4	. 06	61465	58869	56286	53715	51155	48607	46071	43547	41034	38533
6.5	06	36043	33565	31098	28643	26199	23766	21344	18934	16534	14146
6.6	06	11768	09402	07046	04701	02366	00043	27730	25428	23136	20854
6.7	. 05	88583	86323	84073	81833	79603	77384	75174	72975	70785	68606
6.8	05	66437	64277	62127	59987	57857	55737	53626	51525	49433	47351
6.9	05	45278	43214	41160	39115	37080	35053	33036	31028	29029	27039
7.0	0.05	25059	23087	21123	19169	17224	15287	13359	11440	09530	07628
7.1	. 05	05734	03849	01973	00105	98245	96394	24551	22716	20890	89071
7.2	04	87261	85459	83665	81879	80101	78331	76569	74815	73068	71329
7.3	04	69598	67875	66160	64452	62752	61059	59374	57696	56026	54363
7.4	. 04	52707	51059	49418	47785	46158	44539	42927	41322	39725	38134
7.5	04	36550	34974	33404	31841	30285	28736	27194	25658	24129	22607
7.6	04	21092	19583	18081	16586	15097	13615	12139	10669	09206	07750
7.7	. 04	06299	04855	03418	01987	00562	99143	97730	96323	94923	93529
7.8	03	92140	90758	89382	88011	86647	85289	83936	82590	81249	79914
7.9	03	78584	77261	75943	74631	73324	72023	70728	69439	68155	66876

I		0	1	2	3	4	5	6	7	8	9
8.0	0.036	5603	4335	3073	1816	0565	2319	8078	6843	5613	4388
8.1	. 035	3169	1954	0745	2541	8342	7149	5960	4776	3598	2424
8.2	034	1256	0092	8933	7780	6631	5487	4348	3213	2084	0959
8.3	032	9839	8724	7613	6507	5406	4310	3218	2130	1048	2970
8.4	. 031	8896	7827	6762	5702	4646	3594	2547	1505	0467	2433
8.5	030	8403	7378	6357	5340	4328	3319	2315	1315	0319	2328
8.6	029	8340	7357	6378	5402	4431	3464	2500	1541	0586	2634
8.7	. 028	8687	7744	6804	5868	4936	4008	3084	2163	1247	0334
8.8	027	9424	8519	7617	6719	5825	4934	4047	3163	2283	1407
8.9	027	0534	2665	8792	7937	1078	6223	5371	4523	3678	2837
9.0	0.026	1999	1164	0333	2505	8681	7859	2041	6227	5416	4608
9.1	. 025	3803	3001	2203	1408	0616	9827	2041	8259	7479	6703
9.2	024	5930	5160	4393	3629	2868	2110	1355	0603	9854	2108
9.3	023	8365	7625	6888	6154	5423	4694	3969	3246	2526	1809
9.4	. 023	1095	0384	9676	8970	8267	7567	6869	6174	5482	4793
9.5	022	4107	3423	2741	2063	1387	0714	0043	9375	8709	$\underline{8046}$
9.6	021	7386	6728	6073	5421	4771	4123	3478	2835	2195	1558
9.7	. 021	0923	0290	2659	2031	8406	7783	7162	6544	5928	5315
9.8	020	4704	4095	3488	2884	2282	1683	1085	0490	9897	2307
9.9	019	8719	8133	7549	6967	6388	5811	5236	4663	4092	3524
10.0	0.019	2958	2393	1831	1271	0714	0158	2604	2053	8503	7956
10.1	. 018	7410	6867	6326	5787	5249	4714	4181	3650	3120	2593
10.2	018	2068	1544	1023	0504	2986	2470	8957	8445	7935	7427
10.3	017	6921	6416	5914	5413	4915	4418	3923	3430	2938	2449
10.4	. 017	1961	1475	0991	0508	0027	9548	9071	8596	8122	7650
10.5	016	7180	6711	6244	5779	5316	4854	4394	3936	3479	3024
10.6	016	2570	2118	1668	1220	0773	0328	2884	2442	2001	8562
10.7	. 015	8125	7689	7255	6822	6391	5962	5534	5107	4682	4259
10.8	015	3837	3416	2997	2580	2164	1749	1336	0925	0515	0106
10.9	014	9699	9293	8889	8486	8084	7684	7286	6888	6492	6098
11.0	0.014	5705	5313	4923	4534	4146	3760	3375	2992	2610	2229
11.1	. 014	1849	1471	1094	0719	0345	2972	2600	2230	8861	8493
11.2	013	8126	7761	7397	7034	6673	6313	5954	5596	5239	4884
11.3	013	4530	4177	3826	3475	3126	2778	2431	2085	1741	1398
11.4	. 013	1056	0715	0375	0036	2699	2362	9027	8693	8360	8029
11.5	012	7698	7368	7040	6713	6387	6061	5737	5415	5093	4772
11.6	012	4452	4134	3816	3500	3184	2870	2557	2245	1934	1623
11.7	. 012	1314	1006	0699	0393	0088	9784	2481	9179	8878	8578
11.8	011	8279	7982	7685	7389	7094	6799	6506	6214	5923	5633
11.9	011	5344	5055	4768	4482	4196	3912	3628	3346	3064	2783

I		0	1	2	3	4	5	6	7	8	9
12.0	0.011	2503	2224	1946	1669	1393	1118	0843	0570	0297	0025
12.1	. 010	9754	9484	9215	8947	8679	8413	8147	7882	7618	7355
12.2	010	7093	6832	6571	6311	6052	5794	5537	5281	5025	4770
12.3	010	4516	4263	4011	3759	3509	3259	3010	2761	2514	2267
12.4	. 010	2021	1776	1531	1288	1045	0803	0561	0321	0081	28419
12.5	009	96036	93661	91293	88932	86579	84233	81895	79564	77240	74923
12.6	009	72614	70312	68017	65730	63449	61176	58909	56650	54398	52153
12.7	. 009	49915	47683	45459	43241	41031	38827	36630	34440	32257	30080
12.8	009	27910	25747	23591	21441	19298	17161	15031	12907	10790	08680
12.9	009	06576	04478	02387	00302	98224	96152	24086	92027	89974	87927
13.0	0.008	85886	838	818	798	77	7	73	71774	69782	67796
13.1	. 008	65817	63843	61875	59914	57958	56008	54064	52125	50193	48266
13.2	008	46345	44430	42521	40617	38719	36827	34941	33060	31184	29314
13.3	008	27450	25592	23739	21891	20049	18212	16381	14555	12735	10920
13.4	. 008	09111	07306	05507	03714	01926	00143	98365	96592	24825	93063
13.5	007	91306	89554	87807	86066	84330	82598	80872	79151	77435	75724
13.6	007	74017	72316	70620	68929	67242	65561	63884	62213	60546	58884
13.7	. 007	57226	55574	53927	52284	5064	49012	47384	45760	44140	42526
13.8	007	40916	39310	37710	36114	34522	32935	31353	29775	28201	26632
13.9	007	25068	23508	21953	20402	18855	17313	15775	14242	12713	11188
14.0	0.007	09668	08152	06640	05132	03629	02130	00636	99145	97659	96177
14.1	. 006	94699	93225	91755	90290	88829	87371	85918	84469	83024	81583
14.2	006	80146	78713	77285	75860	74439	73022	71609	70200	68795	67394
14.3	006	65996	64603	63213	61828	60446	59068	57694	56323	54957	53594
14.4	. 006	52235	50880	49528	48180	46836	45496	44159	4282	41497	40171
14.5	006	38849	37531	36216	34905	33597	32293	30992	29695	28402	27112
14.6	006	25826	24543	23264	21988	20716	19447	18181	16919	15661	405
14.7	. 006	13153	11905	10660	09418	08180	06945	05714	04485	03260	02039
14.8	006	00820	29605	98393	27185	95979	24777	93578	22383	91190	90001
14.9	005	88815	87632	86452	85275	84102	82932	81764	80600	79439	78281
15.0	0.0057	7126	5975	4826	3680	2537	1398	0261	9128	7997	6869
15.1	. 0056	5745	4623	3504	2388	1276	0166	9059	7955	6853	5755
15.2	0055	4660	3567	2478	1391	0307	2226	8147	7072	5999	4929
15.3	0054	3862	2798	1736	0677	2621	8568	$\underline{7518}$	6470	5425	4382
15.4	. 0053	3342	2305	1271	0239	2210	8184	7160	6139	5121	4105
15.5	0052	3092	2081	1073	0068	2065	8065	7067	6072	5080	4090
15.6	0051	3102	2117	1135	0155	2177	$\underline{8202}$	7230	6260	5292	4327
15.7	. 0050	3365	2405	1447	0492	2539	8588	7640	6694	5751	4810
15.8	0049	3872	2936	2002	1070	0141	9215	8290	7368	6448	5531
15.9	0048	4616	3703	2792	1884	0978	0074	9173	$\underline{8274}$	7377	6482

		0	1	2	3	4	5	6	7	8	9
16.0	0.0047	5589	4699	3811	2925	2042	1160	0281	2404	8529	7656
16.1	. 0046	6786	5917	5051	418	3325	2465	1607	0752	9898	2047
16.2	0045	8198	7350	6505	5662	4821	3982	3146	2311	1478	0647
16.3	0044	9819	8992	8167	7345	6524	5706	4889	4075	3262	2451
16.4	. 0044	1643	0836	0031	9229	8428	762	683	6037	5244	4453
16.5	0043	3664	2876	2091	1307	0526	9746	8968	8192	7418	6646
16.6	0042	5875	5107	4340	3575	2812	2051	1292	0534	2778	2024
16.	. 0041	8272	7522	6774	602	5282	4539	3797	305	232	1584
16.8	0041	0849	0117	2386	8656	7929	7203	6479	5757	5037	4318
16.9	0040	3601	2885	2171	1459	0749	0040	2333	8628	1924	7222
17.0	0.003	6521	582	5125	430	3736	304	2353	1664	0977	0291
17.1	. 003	960	892	8243	756	6885	620	553	4862	419	3520
17	0038	2852	2185	1519	0855	019	2532	887	8216	7560	6905
17.3	0037	6252	5600	49	4301	365	3009	2365	1722	1081	0441
17.4	. 0036	9803	9166	8531	7897	7264	6633	6004	5376	4749	4124
17.5	0036	3500	2878	2257	1637	1019	0403	2787	2173	8561	7950
17.6	0035	7340	6732	6125	5519	4915	4312	3711	3110	2512	1914
17.7	. 0035	1318	0723	0130	2538	8947	8358	7770	7183	6598	6014
17.8	0034	5431	4849	4269	3690	3113	2536	1961	1388	0815	0244
17.9	0033	9674	9106	8538	7972	7408	6844	6282	5721	5161	4602
18.0	0.003	40	3489	293	238	182	1277	072	17	2631	2084
18.1	. 0032	8539	7995	7453	6911	6371	5832	5294	4757	4221	3687
18.2	0032	3154	2622	2091	1561	1033	0505	2979	2454	8930	8407
18.3	0031	7886	7365	6846	6327	5810	5294	4779	4266	3753	3241
18.4	. 0031	2731	2222	1714	1206	0700	0196	9692	2189	8687	8187
18.5	0030	7687	7189	6692	6195	5700	5206	4713	4221	3730	3240
18.6	0030	2752	2264	1777	1291	0807	0323	2841	2359	8879	8392
18.7	. 0029	7921	7443	6967	6492	6017	5544	5072	4600	4130	3661
18.8	0029	3192	2725	2258	1793	1329	0865	0403	2942	2481	2022
18.9	0028	8563	8106	7649	7193	673	6285	5832	5381	4930	4480
19.0	0.002	4031	3583	313	26	224	1800	135	91	0473	03
19.1	. 0027	9593	9155	8717	8280	7844	7409	6975	6542	6109	5678
19.2	0027	5247	4818	4389	3961	3534	3108	2683	2259	1835	1413
19.3	002	0991	0570	0151	2732	2313	8896	8480	8064	7649	7235
19.4	. 0026	6822	6410	5999	5588	5179	4770	4362	3955	3549	3143
19.5	0026	2738	2335	1932	1530	1128	0728	0328	2929	2531	2134
19.6	0025	8738	8342	7947	7553	7160	6768	6376	5985	5595	5206
19.7	. 0025	4817	4430	4043	3657	3272	2887	2503	2120	1738	1357
19.8	0025	0976	0596	0217	9839	2461	2084	8708	8333	7958	7585
19.9	002	72	6839	6468	6097	5727	5358	4989	4621	4254	3888

I		0	1	2	3	4	5	6	7	8	9
20.0	0.0024	3522	3157	2793	2429	2067	1705	1343	0983	0623	0264
20.1	. 0023	9905	9548	9191	8834	8479	8124	7770	7416	7064	6712
20.2	0023	6360	6010	5660	5310	4962	4614	4266	3920	3574	3229
20.3	0023	2884	2540	2197	1855	1513	1172	0832	0492	0153	9814
20.4	. 0022	9476	9139	8803	8467	8132	7797	7463	7130	6798	6466
20.5	0022	6135	5804	5474	5145	4816	4488	4161	3834	3508	3182
20.6	0022	2857	2533	2210	1887	1564	1242	0921	0601	0281	2962
20.7	. 0021	9643	9325	9008	8691	8375	8059	7744	7430	7116	6803
20.8	0021	6491	6179	5867	5556	5246	4937	4628	4319	4012	3705
20.9	0021	3398	3092	2786	2481	2177	1874	1571	1268	0966	0665
21.0	0.0021	0364	0064	2764	2465	2166	8868	8571	8274	7278	7682
21.1	. 0020	7387	7092	6798	6505	6212	5920	5628	5337	5046	4756
21.2	0020	4466	4177	3889	3601	3313	3026	2740	2454	2169	1884
21.3	0020	1600	1316	1033	0750	0468	0187	2906	9625	2345	2066
21.4	. 0019	8787	8509	8231	7953	7676	7400	7124	6849	6574	6300
21.5	0019	6026	5753	5480	5208	4936	4665	4394	4124	3854	3585
21.6	0019	3316	3048	2780	2513	2246	1980	1714	1449	1184	0920
21.7	. 0019	0656	0393	0130	9867	2605	2344	2083	8823	8563	8303
21.8	0018	8044	7786	7528	7270	7013	6756	6500	6244	5989	5734
21.9	0018	5480	5226	4973	4720	4467	4215	3964	3713	3462	3212
22.0	0.0018	2962	2713	2464	2216	1968	1720	1473	1227	0981	0735
22.1	. 0018	0490	0245	0001	2757	2513	2270	9028	8786	8544	8303
22.2	0017	8062	7821	7581	7342	7103	6864	6626	6388	6150	5913
22.3	0017	5677	5441	5205	4970	4735	4501	4267	4033	3800	3567
22.4	. 0017	3335	3103	2871	2640	2409	2179	1949	1720	1491	1262
22.5	0017	1034	0806	0578	0351	0125	9899	2673	2447	9222	$\frac{8998}{6773}$
22.6	0016	8774	8550	8326	8103	7880	7658	7436	7215	6994	6773
22.7	. 0016	6553	6333	6113	5894	5675	5457	5239	5021	4804	4587
22.8	0016	4371	4155	3939	3724	3509	3294	3080	2866	2653	2440
22.9	0016	2227	2015	1803	1591	1380	1169	0958	0748	0539	0329
23.0	0.0016	0120	2911	2703	2495	2288	$\underline{9080}$	8873	8667	8461	8255
23.1	. 0015	8050	7845	7640	7435	7231	7028	6824	6621	6419	6217
23.2	0015	6015	5813	5612	5411	5210	5010	4810	4611	4412	4213
23.3	0015	4014	3816	3619	3421	3224	3027	2831	2635	2439	2243
23.4	. 0015	2048	1854	1659	1465	1271	1078	0885	0692	0499	0307
23.5	0015	0116	9924	2733	2542	2352	2162	8972	8782	$\frac{8593}{6718}$	8404
23.6	0014	8215	8027	7839	7652	7464	7277	7091	6904	6718	6533
23.7	. 0014	6347	6162	5977	5793	5609	5425	5241	5058	4875	4693
23.8	0014	4510	4328	4147	3965	3784	3603	3423	3243	3063	2883
23.9	0014	2704	2525	2346	2168	1990	1812	1634	1457	1280	1104
24.0	0.0014	0928									
	$\mathbf{E} / 3 \mathrm{RT}$				$=19.481818 / x^{3}$			when	$x>24$		

D. Debye Specific Heat Function $C_{v}($ Debye $) / 3 R$

		0	1	2	3	4	5	6	7	8	9
0.0	1.0	00000	29995	99980	29955	99920	29875	29820	9975	99680	9959
0.1	. 9	99500	99395	99280	99156	99021	98896	98721	98556	98382	981
0.2		98003	97798	97584	97360	97126	96882	96628	96364	96091	95808
0.3	9	95514	95211	94899	94576	94244	93902	93550	93188	92817	2436
0.4	9	92045	91645	91235	90816	90387	89948	89500	89042	88574	88097
0.5		87611	87115	86610	86095	85571	85037	84494	83942	83380	82809
0.6	9	82229	81639	81041	80433	79816	79190	78554	77910	77256	59
0.7		75922	7524	74552	73854	73147	72430	71705	70971	70229	69477
0.8		68717	67948	67171	66385	65590	64787	63975	63155	62326	61489
0.9	9	60643	59789	58927	58056	57177	56290	5539	54491	53580	60
1.0	0.9	51732	5079	49853	48901	47941	46	45999	45016	44025	302
1.1		42020	41006	39985	38956	37919	3687	35824	3476	3369	32626
1.2	9	31545	30457	29362	28259	27150	26033	24910	23779	22642	21498
1.3	9	20346	19188	18024	16852	15674	14489	13298	12100	10895	09684
1.4		08467	07243	06013	04777	03534	02286	01031	2271	28503	7230
1.5		95951	94666	93375	92078	90775	89467	88153	86834	85509	84178
1.6	8	82842	81500	80153	78800	77442	76079	74711	73337	7195	70575
1.7		69186	67792	66394	64990	63581	62168	60750	59327	57900	56468
1.8		55031	53590	52144	50694	49239	47780	46317	44850	43378	41902
1.9	8	40423	38939	37451		34463	32963	31460	29952	28441	26926
2.0	0.8	25	23	22361	20832	9	17763	16224	14681	13135	11586
2.1		10034	08479	06920	05359	03794	02227	00656	9908		95928
2.2		94347	92763	91176	89586	87994	86400	84803	83203	8160	9998
2.3	7	78391				71944	70327	68708	67087		63839
2.4		62212	60584	58954	57322	55688	54053	52416	50777	49137	47496
2.5		45853	44209	42563	40916	39268	37619	35968	34316	32664	31010
2.6		2935		26042		22726	21067		17746		422
2.7		12759	11095	09431	07766	06101	04436	02770	01104	99437	97770
2.8		96103	94435	92768	91100	89432	87764	86096	84428	82760	81092
2.9	6	424						69421			423
3.0	0.6	62	61093	59429	57766	56103	54440	52778	5111	49456	4779
3.		46137	44479	42821	41165	39509	37854	36200	34546	32894	31243
3.2	6	29593	27944	26296	24649	23003	21359	19715	18073	16432	14792
3.3	6	1315	11517	09881	08247	06614	83	0335	01724	00097	28472
3.4		96848	95226	93605	91986	90369	88753	87139	85526	83916	82307
3.5		80700	79095	77491	75889	74290	72692	71096	69502	67910	66320
3.6		64732	63146	61562	59980	58400	56823	55247	53674	52102	50533
3.7		48966	47401	45839	44279	42721	41165	39611	38060	36511	965
3.8		33421	31879	30340	28803	27268	25736	24207	22680	21155	19633
3.9		18113	16596	15082	13570	12061	10554	09050	075	06049	04553

x		0	1	2	3	4	5	6	7	8	9
4.0	0.5	03059	01568	00080	98595	27112	25632	24154	22679	21207	89738
4.1	. 4	88272	86808	85347	83889	82434	80982	79532	78086	76642	75201
4.2	4	73763	72328	70896	69466	68040	66616	65196	63778	62363	60952
4.3	4	59543	58137	56734	55334	53938	52544	51153	49765	48380	46999
4.4	. 4	45620	44244	42872	41502	40136	38772	37412	36055	34701	33350
4.5	4	32002	30657	29315	27976	26641	25308	23979	22653	21330	20010
4.6	4	18693	17380	16069	14762	13458	12157	10859	09565	08273	06985
4.7	. 4	05700	04418	03139	01864	00591	99322	98056	96794	95534	94278
4.8	3	93025	91775	90528	89284	88044	86807	85573	84342	83114	81890
4.9	3	80669	79451	78237	77025	75817	74612	73410	72211	71016	69824
5.0	0.36	8635	7449	6267	5087	3911	2738	1568	0402	2239	8079
5.1	. 35	6922	5768	4618	3470	2326	1186	0048	8913	7782	6654
5.2	34	5529	4408	3289	2174	1062	2953	8847	7744	$\underline{6645}$	5549
5.3	33	4456	3366	2279	1195	0115	2038	7963	6892	5825	4760
5.4	. 32	3698	2640	1585	0533	2484	8438	7395	6355	5319	4285
5.5	31	3255	2228	1203	0182	9164	$\underline{8149}$	7138	6129	$\frac{5123}{5235}$	4121
5.6	30	3121	2125	1131	0141	2154	$\underline{8169}$	7188	6210	5235	4262
5.7	. 29	3293	2327	1364	0404	2447	8493	7541	6593	5648	4706
5.8	28	3767	2830	1897	0967	0039	$\underline{9115}$	8193	7275	6359	5446
5.9	27	4536	3629	2725	1824	0926	0031	2138	8249	7362	6478
6.0	0.26	5597	471	384	2971	2101	1234	0370	2509	8651	7795
6.1	. 25	6943	6093	5246	4401	3559	2721	1885	1051	0221	2393
6.2	24	8568	7745	6926	6109	5295	4483	3674	2868	2065	1264
6.3	24	0466	2670	8878	8088	7300	6515	5733	4954	4177	3403
6.4	. 23	2631	1862	1095	0331	2570	8811	8055	7302	6551	5802
6.5	22	5056	4313	3572	2834	2098	1364	0633	$\frac{9905}{2758}$	9179	$\frac{8456}{1358}$
6.6	21	7735	7017	6301	5588	4877	4168	3462	2758	2057	1358
6.7	. 21	0662	2968	9276	8587	7900	7215	6533	5853	5176	4501
6.8	20	3828	3158	2490	$\overline{1824}$	1161	0500	9841	2185	8530	7878
6.9	19	7229	6581	5936	5294	4653	4015	3379	2745	2113	1484
7.0	0.19	0856	0231	9609	8988	8370	7753	7139	6527	5917	5310
7.1	. 18	4704	4101	3500	2901	2304	1709	1116	0526	2937	2351
7.2	17	8766	8184	7604	7025	6449	5875	5303	4733	4165	3599
7.3	17	3035	2473	1913	1355	0799	0245	2693	2143	8595	8049
7.4	. 16	7505	6963	6422	5884	5347	4813	4280	3750	3221	2694
7.5	16	2169	1646	1124	0605	0087	2572	9058	8546	8036	7527
7.6	15	7021	6516	6013	5512	5013	4515	4020	$\overline{3526}$	3034	2543
7.7	. 15	2055	1568	1083	0599	0118	9638	9160	8683	8209	7736
7.8	14	7264	6795	6327	5861	5396	4933	4472	4013	3555	3098
7.9	14	2644	2191	1740	1290	0842	0395	2951	2508	2066	8626

x		0	1	2	3	4	5	6	7	8	9
8.0	0.13	8187	7750	7315	6881	6449	6019	5590	5162	4736	4312
8.1	. 13	3889	3468	3048	2630	2213	1798	1384	0972	0561	0152
8.2	12	9744	9338	8933	8529	8127	7727	7328	6930	6534	6139
8.3	12	5746	5354	4964	4575	4187	3801	3416	3032	2650	2270
8.4	. 12	1890	1512	1136	0761	0387	0014	2643	2273	8905	8538
8.5	11	8172	7807	7444	7082	6722	6362	6004	5648	5292	4938
8.6	11	4585	4234	3883	3534	3187	2840	2495	2151	1808	1466
8.7	-11	1126	0787	0449	0113	9777	2443	2110	8778	8447	8118
8.8	10	7790	7463	7137	6812	6489	6166	5845	5525	5206	4888
8.9	10	4572	4256	3942	3628	3316	3005	2695	2387	2079	1773
9.0	0.10	1467	1163	0859	0557	0256	29562	96573	93594	90626	87669
9.1	. 09	84722	81786	78861	75946	73041	70146	67262	64389	61525	58672
9.2	09	55829	52996	50174	47361	44558	41766	38983	36210	33448	30695
9.3	09	27951	25218	22494	19780	17076	14381	11696	09021	06355	03698
9.4	. 09	01051	28414	25785	93166	9055	87956	8536	8278	8021	77646
9.5	08	75092	72546	70010	67482	64964	62454	59953	57461	54978	52504
9.6	08	50038	47581	45133	42693	40262	37840	35426	33020	30623	28235
9.7	. 08	25855	23483	21120	18765	16418	14080	11750	09428	07114	04808
9.8	08	02510	00221	27939	25666	23400	21142	88893	86651	84417	82191
9.9	07	79972	77762	75559	73364	71176	68996	66824	64659	62502	60352
10.0	0.07	58210	56075	53948	51828	49716	47611	45513	43422	41339	39263
10.1	. 07	37194	35133	33078	31031	28991	26957	24931	22912	20900	18895
10.2	07	16897	14905	12921	10943	08973	07009	05051	03101	01157	99220
10.3	06	97290	95366	93449	91539	89635	87738	85847	83962	82084	80213
10.4	. 06	78348	76489	74637	72791	70952	69118	67291	65470	63656	61848
10.5	06	60045	58249	56459	54676	52898	51126	49361	47601	45847	44100
10.6	06	42358	40622	38892	37168	35450	33738	32031	30330	28635	26946
10.7	. 06	25263	23585	21913	20246	18585	16930	15280	13636	11997	10364
10.8	06	08737	07115	05498	03887	02281	00681	29086	27495	25912	24333
10.9	05	92759	91190	89627	88069	86516	84969	83426	81889	80357	78830
11.0	0.05	77308	7579	74280	72773	71271	69774	68283	66796	65314	63837
11.1	. 05	62365	60898	59436	57978	56526	55078	53635	52197	50763	49334
11.2	05	47910	46491	45076	43666	42261	40860	39464	38073	35686	35304
11.3	05	33926	32552	31183	29819	28460	27104	25753	24407	23065	21727
11.4	. 05	20394	19065	17740	16420	15104	13792	12484	11181	09882	08587
11.5	05	07297	06011	04728	03450	02177	00907	29541	98380	27122	25869
11.6	04	94620	93374	92133	90895	89663	88433	87208	85987	84769	83556
11.7	. 04	82346	81140	79938	78740	77546	76356	75169	73987	72808	71533
11.8	04	70461	69294	68130	66969	65813	64660	63511	62365	61224	60085
11.	04	58951	57820	56693	55569	54448	53332	52219	51.109	50003	48900

		0	1	2	3	4	5	6	7	8	9
12.0	0.044	7801	6705	5633	4525	3433	2357	1279	0204	2132	8064
12.1	. 043	6999	5937	4879	3824	2772	1724	0679	9637	8599	析
12.2	042	6531	5502	4477	3454	2435	1419	0406	9397	8390	7386
12.3	041	6386	5389	4395	3404	2416	1431	0449	2470	8494	7522
12	040	6552	5585	4621	3660	270	1748	0796	2847	8901	7957
12.5	039	7017	6080	5145	4213	3285	2359	1435	0515	9598	8683
12.6	038	7771	6862	5956	5052	4151	3253	2358	1465	0575	$\underline{2688}$
12.7	-037	8803	7921	7042	6166	5292	4421	3552	2686	1823	96
12.8	037	0104	9242	8396	7545	6697	5852	5009	4169	3331	2496
12.9	036	1664	0834	0006	2181	8358	7538	6720	5904	5091	4281
13.0	0.035	347	2667	1864	1063	0264	2468	8674	7883	7094	6307
13.1	-034	5523	4741	3961	3184	2409	1639	0865	0097	2331	8567
13.2	033	7805	7046	6289	5534	4782	4031	3283	2537	1793	1051
13.3	033	0312	2575	8840	8107	7376	6647	5920	5196	4474	$\underline{3753}$
13.4	. 032	3035	2319	1605	0893	0183	2475	8770	8066	7364	6665
13.5	031	5967	5272	4578	3886	3197	2509	1824	1140	0458	9779
13.6	030	9101	8425	7751	7079	6409	5741	5075	41	78	3088
13.7	. 030	2429	177	1118	046	9814	2164	8517	7872	7228	6586
13.8	029	5946	5308	4671	4037	3404	2773	2144	1516	0890	0266
13.9	028	9644	9024	8405	7788	7173	655	5948	5338	4729	423
14.0	0.028	3518	29	2313	1713	1115	05	2924	2331	8739	8149
14.1	. 027	7561	6975	6390	5806	5225	4645	4066	3489	2914	2341
14.2	027	1769	1198	0629	0062	9496	8932	8369	7808	7249	6691
14.3	026	6134	5579	5026	4474	3924	3375	2828	2282	1737	1194
14.4	. 026	0653	0113	2575	9038	8502	7958	7436	6905	6375	5847
14.5	025	5320	4795	4271	3748	3227	2708	2190	1673	1157	0643
14.6	025	0130	2619	2109	8601	8094	7588	7083	6580	6079	5578
14.7	. 024	5079	4582	4085	3590	3097	2604	2113	1624	1135	0648
14.8	024	0162	2678	2195	8713	8232	7753	7275	6798	6322	5848
14.9	023	5375	4903	4432	3963	3495	3028	2563	2098	1635	1174
15.0	0.023	071	025	279	2338	8882	8428	7974	522	7071	6621
15.1	. 022	6172	5725	5279	4833	4389	3947	3505	3064	2625	2187
15.2	022	1750	1314	0879	0445	0013	2581	2151	8722	8294	7867
15.3	021	7441	70	6592	6170	5748	5328	4909	4490	4073	3657
15.4	. 021	3242	2828	2415	2004	1593	1183	0775	0367	2960	9555
15.5	020	9150	8747	8345	7943	7543	7144	6745	6348	5952	5557
15.6	020	5162	4769	4377	3985	3595	3206	2818	2430	2044	1659
15.7	. 020	1274	0891	0508	0127	2747	2367	8988	8611	8234	7858
15.8	019	7484	7110	6737	6365	5994	5624	5254	4886	4519	4152
15.9	019	3787	3422	3059	2696	2334	1973	1613	1254	0896	0538

x		0	1	2	3	4	5	6	7	8	9
16.0	0.019	0182	2826	2471	2118	8765	8413	8061	7711	7361	7013
16.1	. 018	6665	6318	5972	5627	5283	4939	4596	4255	3914	3574
16.2	018	3234	2896	2558	2221	1885	1550	1216	0882	0550	0218
16.3	017	9887	9556	9227	8898	8570	8243	7917	7592	7267	6943
16.4	. 017	6620	6298	5976	5655	5335	5016	4698	4380	4063	3747
16.5	017	3432	3117	2803	2490	2178	1866	1555	1245	0936	0627
16.6	017	0319	0012	2706	2400	2095	8791	8488	8185	7883	7582
16.7	- 016	7281	6981	6682	6383	6086	5789	5492	5197	4902	4608
16.8	016	4314	4021	3729	3438	3147	2857	2568	2279	1991	1704
16.9	016	1417	1131	0846	0561	0277	2994	2711	2429	2148	8867
17.0	0.015	8587	8308	8029	7751	7474	7197	6921	6646	6371	6097
17.1	-015	5823	5550	5278	5007	4736	4465	4196	3927	3658	3390
17.2	015	3123	2857	2591	2325	2060	1796	1533	1270	1008	0746
17.3	015	0485	0224	2964	2705	2446	$\underline{2188}$	8931	8674	8418	8162
17.4	- 014	7907	7652	7398	7145	6892	6640	6388	6137	5886	5636
17.5	014	5387	5138	4890	4642	4395	4148	3902	3657	3412	3168
17.6	014	2924	2681	2438	2196	1954	1713	1473	1233	0994	0755
17.7	. 014	0516	0278	0041	9804	2568	2333	2098	8863	8629	8395
17.8	013	8162	7930	7698	7467	7236	7005	6775	6546	6317	6089
17.9	013	5861	5633	5406	5180	4954	4729	4504	4280	4056	3833
18.0	0.013	3610	3387	3165	2944	2723	2503	2283	2064	1845	1626
18.1	. 013	1408	1191	0974	0757	0541	0326	0110	9896	9682	2468
18.2	012	9255	9042	8830	8618	8407	8196	7985	7775	7566	7357
18.3	012	7148	6940	6732	6525	6318	6112	5906	5700	5495	5291
18.4	. 012	5087	4883	4680	4477	4275	4073	3871	3670	3470	3270
18.5	012	3070	2871	2672	2473	2275	2078	1881	1684	1487	1291
18.6	012	1096	0901	0706	0512	0318	0125	2932	2739	2547	2355
18.7	. 011	9164	8973	8783	8593	8403	8214	8025	7836	7648	7460
18.8	011	7273	7086	6900	6714	6528	6342	6157	5973	5789	5605
18.9	011	5422	5239	5056	4874	4692	4511	4330	4149	3969	3789
19.0	0.011	3609	3430	3251	3073	2895	2717	2540	2363	2186	2010
19.1	. 011	1834	1659	1484	1309	1135	0961	0787	0614	0441	0268
19.2	011	0096	2924	2753	2582	2411	9241	9071	8901	8732	8563
19.3	010	8394	8226	8058	7890	7723	7556	7390	7223	7057	6892
19.4	. 010	6727	6562	6397	6233	6069	5906	5743	5580	5417	5255
19.5	010	5093	4932	4771	4610	4449	4289	4129	3970	3811	3652
19.6	010	3493	3335	3177	3019	2862	2705	2549	2392	2236	2081
19.7	. 010	1925	1770	1616	1461	1307	1153	1000	0845	0694	0541
19.8	010	0389	0237	0085	29341	27830	96323	94819	93318	91820	90325
19.9	009	88833	87344	85858	84375	82894	81417	79943	78472	77003	75538

I		0	1	2	3	4	5	6	7	8	9
20.0	0.009	74076	72616	71160	69706	68255	66807	65362	63920	62481	6104
20.1	. 009	59611	58180	56752	55327	53905	52485	51069	49655	48244	46836
20.2	009	45430	44028	42628	41231	39837	38445	37056	35670	34287	32906
20.3	009	31528	30153	28781	27411	26044	24679	23317	21958	20602	19248
20.4	. 009	17897	16549	15203	13860	12519	11181	09846	08513	07183	05856
20.5	009	04531	03208	01889	00572	29257	97945	9663	95328	94024	22722
20.6	008	91423	90126	88831	87539	86250	84963	8367	82387		
20.7	. 008	78566	77294	76025	74758	73493	72231	70971	69714	68459	67206
20.8	008	65956	64708	63463	62220	60980	59742	58506	57272	56041	54812
20.9	008	53586	52362	51140	49921	48704	47489	46277	45067	43859	42654
21.0	0.0084	1451	0250	2051	7855	6661	5469	4279	3092	1907	0724
21.1	. 0082	9544	8366	7190	6016	4844	3675	2507	1342	0180	2019
21.2	0081	7861	6704	5550	4399	3249	2101	0956	9813	8672	7533
21.3	0080	6396	5261	4129	2998	1870	0744	2620	8498	7378	$\underline{6260}$
21.4	. 0079	5144	4031	2919	1810	0702	2597	8494	7393	6293	5196
21.5	0078	4101	3008	1917	0828	2741	8656	7573	6492	5413	4336
21.6	0077	3262	2189	1118	0049	8982	1917	6853	5792	4733	3676
21.7	007	2621	1567	0516	2467	8419	7373	6330	5288	4248	3210
21.8	0075	2174	1140	0108	2078	8049	7022	5998	4975	3954	2935
21.9	0074	1918	0902	2889	8877	7867	6859	5853	4849	3846	2846
22.0	0.0073	1847	0850	2854	8861	7869	6879	5891	4905	3921	$\underline{2938}$
22.1	. 0072	1957	0978	0001	9025	8051	7079	6109	5140	4173	3208
22.2	0071	2245	1283	0323	2365	8409	7454	6501	5550	4600	3652
22.3	0070	2706	1762	0819	$\underline{9878}$	8939	8001	7065	6130	5198	4267
22.4	. 0069	3337	2409	1483	0559	9636	8715	7795	6878	5961	5047
22.5	0068	4134	3222	2313	1405	0498	2593	8690	7788	6888	5990
22.6	006	5093	4197	3303	2411	1521	0632	2744	8858	7974	7091
22.7	. 0066	6210	5330	4452	3576	2701	1827	0955	0085	9216	8348
22.8	0065	7483	6618	5755	4894	4034	3176	2319	1464	0610	9758
22.9	0064	8907	8058	7210	6363	5518	4675	3833	2992	2153	1316
23.0	0.0064	0480	2645	8812	1980	7150	6321	5493	4667	3843	3020
23.1	. 0063	2198	1378	0559	2741	8925	8110	7297	6485	5675	4866
23.2	0062	4058	3252	2447	1643	0841	0041	2241	8443	7647	6852
23.3	006	6058	5265	4474	3684	2896	2109	1323	0538	2755	8973
23.4	. 0060	8193	7414	6636	5860	5085	4311	3539	2768	1998	1229
23.5	0060	0462	2696	8931	8168	7406	6645	5886	5128	4371	3616
23.6	0059	2861	2108	1357	0606	2857	2109	8362	7617	6873	6130
23.7	. 0058	5388	4648	3909	3171	2434	1699	0965	0232	2500	8770
23.8	0057	8041	7313	6586	5860	5136	4413	3691	2970	2251	1532
23.9	0057	0815	0099	2385	8671	7959	7248	6538	5829	5121	4415
24.0	0.0056	3710									
				R $=$	7.927	$7 /{ }^{3}$	when $x>24$.				

Author Index

A

Abel, W. R., 133
Abraham, B. M., 133
Abrikosov, A. A., 81, 82, 133
Ahlers, G., 154, 157
Akhiezer, A. I., 111
Alers, G. A., 49, 54
Ambler, E., 111
Anderson, A. C., 133
Anderson, C. T., 196
Anderson, O. L., 54
Anderson, P. W., 169
Andrews, D. H., 16, 18
Aston, J. G., 156
Atkins, K. R., 133
Azaroff, L. V., 82
Azbel, M. Ya., 180

B

Bagatskii, M. I., 175, 180
Bantle, W., 179
Bardeen, J., 80, 83
Barrett, C. S., 180
Barron, T. H. K., 51, 54
Bar'yakhtar, V. G., 111
Beattie, J. A., 54, 195, 196
Beaumont, R. H., 196
Beck, P. A., 83
Beenakker, J. J. M., 129, 133
Bekkedahl, N., 194
Bellemans, A., 133
Belov, K. P., 111, 179
Bendt, P. J., 133
Benzie, R. J., 102, 111
Berg, W. T., 54
Bernades, N., 133
Bethe, H. A., 166
Beyer, R. T., 196
Bijl, D., 54

Black, W. C., 133
Blackman, M., 34-36, 40-42, 50, 52, 54
Blatt, J. M., 83
Bleaney, B., 108, 109
Bloch, F., 52, 87, 88
Blue, R. W., 157
Bockhoff, F. J., 157
Boerstoel, B. M., 194
Boltzmann, L., 20, 21, 136
Borelius, G., 196
Born, M., 24, 27, 35, 82
Borovik-Romanov, A. S., 111
Bragg, W. L., 164
Braun, M., 194
Brewer, D. F., 133
Brewer, L., 179
Brickwedde, F. G., 157
Brillouin, L., 38, 54
Brockhouse, B. N., 41, 54
Brodale, G., 157
Brophy, J. J., 82
Brueckner, K., 127
Bryant, C. A., 111
Buckingham, M. J., 121, 133

C

Cable, J. W., 180
Careri, G., 133
Casimir, H. B. G., 101
Chambers, R. G., 54
Chapin, D. S., 157
Chase, C. E., 180
Chashkin, Ya. R., 180
Cheng, C. H., 83
Chester, G. V., 83
Chidambaram, R., 151, 157
Chihara, H., 196
Child, H. R., 180

Clarke, J. T., 157
Clayton, J. O., 157
Clusius, K., 157, 179
Cochran, J. F., 179
Cochran, W., 54, 169, 179
Cockett, A. H., 4, 19
Cohen, M., 180
Collins, J. G., 54
Colwell, J. H., 179
Cooke, A. H., 102, 111
Cooper, L. N., 80
Corak, W. S., 83
Corruccini, R. J., 192
Coulter, L. V., 157
Courant, R. D., 54
Cowan, R. D., 133
Cowley, R. A., 54
Cunningham, C. M., 157

D

Daane, A. H., 179
Daunt, J. G., 82, 133, 196
Davies, R. O., 54, 111, 130, 134, 196
Dayal, B., 54
De Bruyn Ouboter, R., 129, 133
Debye, P., 24, 27-3 1, 34, 35
Decker, B. F., 196
De Haas, W. J., 101
Dekker, A. J., 82, 111
De Klerk, D., 111
De Launay, J., 54
Dempsey, C. W., 194
Dennison, D. M., 138, 144, 157
De Nobel, J., 193, 194
De Sorbo, W., 196
Devonshire, A. F., 179
De Vries, G., 133
De Wette, F. W., 196
Din, F., 4, 19
Dixon, A. E., 54
Dolling, G., 54
Domb, C., 54, 111, 180
Drude, P., 55
Du Chatenier, F. J., 193, 194
Duke, W. M., 3
Dulmage, W. J., 157
Dulong, P. L., 20-22
Du Pré, F. K., 101
Dupuis, M., 196
Dyson, F. J., 93

E

Edmonds, D. T., 111

Edwards, D. O., 196
Ehrenfest, P., 182
Einstein, A., 1, 20, 23-27, 50, 138
Eisenstein. J.. 83
Elcock, E. W., 179
Elliot, R. O., 180
Essam, J. W., 111
Eucken, A., 18, 26, 32, 35, 53, 137, 156, 157, 193, 196
Ewell, R. B., 53
Eyring, E. M., 111
Eyring, H., 111

F

Fairbank, H. A., 133
Fairbank, W. M., 121, 133
Feher, G., 111
Feldman, J. L., 54
Ferguson, W. F., 194
Feynman, R. P., 115
Filby, J. D., 54
Finke, H. L., 157
Fisher, M. E., 176, 180
Fixman, M., 180
Flubacher, P., 54, 193, 196
Foreman, A. J. E., 196
Forsberg, P. W., 179
Franck, J. P., 83
Frank, A., 157
Frenkel, J., 133
Friedberg, S. A., 111
Friedel, J., 71
Fritz, J. J., 156
Fröhlich, H., 64
Furukawa, G. T., 194

G

Gardner, W. E., 18
Gardner, W. R., 111
Garland, C. W., 179, 196
Garrett, C. G. B., 111
Gaumer, R. E., 82
Giauque, W. F., 111, 157
Gilat, G., 54
Gill, E. K., 179
Ginzburg, V. L., 81, 82
Giterman, M. Sh., 180
Gniewek, J. J., 192
Goldstein, L., 133
Gonzalez, O. D., 157
Goodenough, J. B., 111
Goodman, B. B., 83, 196

Gopal, E. S. R., 18, 133, 196
Gordon, J. E., 194
Gor'kov, L. P., 82
Gorter, C. J., 100, 133
Green, H. S., 180
Grenier, G., 156, 157
Griffel, M., 180
Griffiths, R. B., 180
Grilly, E. R., 133
Grindlay, J., 179
Gross, M. E., 157
Grüneisen, E., 35, 50, 52, 54
Gschneidner, K. A., 180
Guggenheim, E. A., 111, 133
Gupta, K. P., 83
Gusak, V. G., 175, 180
Guttman, L., 179

H

Hadley, W. B., 111
Hake, R. R., 83
Hammel, E. F., 133
Hampton, W. F., 194
Hancock, J. H., 53, 195
Harrison, W. A., 82
Hart, K. R., 179
Hatton, J., 157
Hearmon, R. F. S., 18, 34, 54
Hebb, M. H., 111
Heer, C. V., 82
Heisenberg, W., 86, 95
Heltemes, E. C., 196
Henderson, D., 111
Herbstein, F. H., 53, 54
Herzberg, G., 156
Herzfeld, K. F., 196
Hill, R. W., 17, 19, 133, 154, 157, 193
Hill, T. L., 180
Hilsenrath, J., 53, 195
Ho, J. C., 111, 193
Hoare, F. E., 4, 19, 83
Hoffman, J. D., 196
Hofmann, J. A., 111
Hooley, J. G., 179
Hopkins, T. E., 111
Hornung, E. W., 111
Housley, R. M., 157
Houston, W. V., 41
Howling, D. H., 19
Huang, K., 133
Hudson, R. P., 111
Hughes, A. J., 196
Huiskamp, W. J., 111

Hulthén, L., 89
Hume-Rothery, W., 83
Hund, F., 138, 144, 157
Huntington, H. B., 18
Hurst, C. A., 180

I

Ising, E., 96

J

Jackson, L. C., 3, 4, 19
Jaswon, M. A., 180
Jaynes, E. T., 179
Jennings, L. D., 179
Johnson, F. A., 54
Johnson, V. A., 83
Johnson, V. J., 192
Johnston, H. L., 154, 157
Jona, F., 179
Jones, G. O., 130, 134
Jones, J. S., 196
Jones, W. M., 157
Justi, E., 156

K

Kagano, M. I., 111
Kalinkina, I. N., 111
Kanda, E., 157
Kanda, T., 157
Kanzig, W., 179
Kaplan, H., 111
Kármán, T. von, 24, 27, 35
Karwat, E., 157
Kassel, L. S., 157
Keesom, P. H., 19, 54, 83, 111 , 193, 196
Keesom, W. H., 56, 76, 120, 193, 194
Keffer, F., 111
Kellerman, E. W., 41
Kellers, C. F., 121
Kemp, J. D., 157
Kerr, E. C., 157
Khalatnikov, I. M., 133
King, G. J., 194
Kittel, C., 18, 82
Klein, M. L., 54
Koehler, J. K., 157
Koehler, W. C., 179, 180
Koenig, S. K., 83
Kohlhaas, R., 194
Kothari, L. S., 54
Kouvel, J. S., 91
Kramers, H. C., 119, 120, 133

Kubo, R., 111
Kurrelmeyer, B., 193, 194
Kurti, N., 4, 18, 19

L

Lamb, J., 196
Lambert, M. H., 111
Landau, L. D., 81, 82, 115, 119, 120, 127, 177
Lange, F., 16, 18, 193
Langevin, P., 93
Lark-Horovitz, K., 83, 196
Lawson, A. W., 196
Leadbetter, A. J., 54, 193, 196
Ledermann, W., 54
Lee, T. D., 177
Leibfried, G., 54
Levigold, S., 179
Levitin, S., 179
Lewis, G. N., 179
Lidiard, A. B., 111, 196
Lien, W. H., 83, 196
Lifshitz, E. M., 177
Lindemann, F. A., 27, 50
Lindsay, R. B., 196
Lipscomb, W. N., 157
Lipson, H., 179
Litovitz, T. A., 196
Little, W. A., 111, 175, 180
Long, E. A., 157
Lord, R. C., 193
Lorentz, H. A., 55
Loudon, R., 54
Lounasmaa, O. V., 111, 133, 180
Love, A. E. H., 190
Ludwig, W., 54
Lundqvist, S. O., 54
Lundstrom, V., 54
Lynton, E. A., 83
Lyon, D. N., 111

M

MacDonald, D. K. C., 18
Madelung, E., 50
Maier, C. G., 196
Manchester, F. D., 83
Mapother, D. E., 196
Maradudin, A. A., 54, 196
Markham, J. J., 196
Marshall, W., 71, 83
Martin, D. L., 54, 83, 196
Masuda, Y., 157
Matheson, H., 194

Mathot, V., 133
Mayer, J. E., 156, 177, 180
Mayer, J. R., 136
Mayer, M. G., 156
Mayfield, F. D., 53
Mazo, R., 196
McClintock, M., 3
McConville, T., 83
McCoskey, R. E., 194
McCullough, J. P., 157
McDonald, R. R., 180
McHargue, C. J., 180
McWilliams, A. S., 196
Megaw, H. D., 179
Meissner, W., 74
Mendelssohn, J., 179
Mendelssohn, K., 3, 133, 154, 157, 179
Mendoza, E., 19
Mennie, J. H., 194
Merz, W. J., 179
Messerly, J. F., 157
Meyer, H., 83, 111
Meyer, R. E., 196
Meyers, E. A., 157
Miedema, A. R., 111
Miller, A. R., 18, 54
Mitra, S. S., 54
Mokhnatkin, M. P., 196
Moldover, M., 175, 180
Monpetit, L., 196
Montroll, E. W., 42, 54, 180, 196
Moon, R. M., 180
Morrison, J. A., 54, 179, 193, 196
Morrow, J. C., 193
Moser, H., 179
Mott, N. F., 66, 83
Mueller, H., 169
Musgrave, M. J. P., 54
Muto, T., 179

N

Nachtrieb, N. H., 196
Nagamiya, T., 111
Nardelli, G. F., 196
Néel, L., 86
Neighbours, J. R., 49, 54
Nernst, W., 1, 16, 26, 27, 133, 138
Newell, G. F., 54, 180
Newton, R. F., 132
Niels-Hakkenberg, C. G., 133
Nikitin, S. A., 179
Noer, R. J., 194

0

Oblad, A. G., 132
Ochsenfeld, L., 74
Olovsson, I., 157
Olsen, J. L., 82
O'Neal, H. R., 18, 111, 193
Onnes, H. K., 74
Onsager, L., 97, 178, 196
Orttung, W. H., 154, 157
Osborne, D. W., 133
Otter, F. A., 196
Overhauser, A. W., 71, 83
Overton, W. C., 53, 195, 196

\mathbf{P}

Pace, E. L., 157
Parkinson, D. H., 18, 19, 82, 179, 180, 193
Partington, J. R., 3, 54, 156
Paskin, A., 111
Pauling, L., 151, 157
Pearlman, N., 19, 83, 193, 196
Peierls, R. E., 54, 76
Perlick, A., 179
Peshkov, V. P., 128, 133
Petersen, R. G., 111
Petit, A. T., 20-22
Petrella, R. V., 157
Phillips, J. C., 45
Phillips, N. E., 83, 111, 193, 196
Pierce, G. W., 187
Pines, D., 83
Pippard, A. B., 111, 183, 196
Pitzer, K. S., 153, 156, 157, 179
Planck, M., 22
Pomeranchuk, I. Ya., 129
Popov, V. A., 180
Popp, L., 157
Prather, J. L., 194
Prigogine, I., 133
Purcell, E. M., 111, 157

Q

Quarrington, J. E., 193

R

Raimes, S., 83
Raja Gopal, E. S., 18, 133, 196
Raman, C. V., 43, 160
Ramanathan, K. G., 18
Randall, M., 179
Rands, R. D., 194
Rayleigh, Lord, 190

Rayne, J. A., 18
Reese, W., 194
Reif, F., 157
Rice, O. K., 180
Richards, T. W., 16
Richardson, R. C., 83
Ricketson, B. W. A., 154, 157
Rifkin, E. B., 157
Rikayzen, G., 83
Roberts, J. K., 18, 54
Roberts, L. M., 180
Roberts, T. R., 133
Robinson, W. K., 111
Rollin, B. V., 157
Rorer, D. C., 83
Rose-Innes, A. C., 4, 19
Rosenberg, H. M., 3, 106, 111
Rosenstein, R. D., 157
Rosenstock, H. B., 54, 180
Rowlinson, J. S., 18, 19, 133, 156, 186, 196
Ruben, H. W., 157
Ruheman, M., 154, 157
Rutgers, A. J., 53

S

Sackur, O., 140
Salinger, G. L., 133
Sato, H., 83
Satterthwaite, C. B., 83
Schottky, W., 102
Schrieffer, J. R., 80, 83
Schrödinger, E., 32, 54
Scott, R. B., 4, 157
Sears, V. F., 111
Seidel, G., 83, 193
Seitz, F., 134
Senozan, N. M., 111
Serin, B., 83
Sessler, A. M., 128
Shepherd, I., 111
Sherman, J., 53
Shilling, W. G., 156
Shirane, G., 179
Shoenberg, D., 83
Simkin, V. G., 180
Simon, F. E., 43, 152, 154, 157, 160, $167,180,193$
Singh, S. P., 54
Singwi, K., 54
Skalyo, J. S., 111
Skochdopole, R. E., 180
Slater, J. C., 53, 169

Smith, G. W., 157
Smith, P. L., 193
Smoluchowski, R., 180
Sochava, I. V., 194
Sommerfeld, A., 55, 60
Southard, J. C., 16, 18
Spedding, F. H., 179, 180
Squire, C. F., 3
Sreedhar, A. K., 133
Srinivasan, T. M., 18
Staveley, L. A. K., 179
Steenland, M. J., 111
Stephenson, C. C., 179
Stevels, J. M., 133, 134
Steyert, W. A., 133
Stoicheff, B. P., 54, 193
Stoner, E. C., 82, 111
Stout, J. W., 111, 157
Stover, B. J., 111
Stratton, R., 196
Strongin, M., 133
Strukov, B., 179
Stull, D. R., 53
Sturtevant, J. M., 19
Sugawara, T., 157
Swenson, C. A., 196
Sydoriak, S. G., 133
Sykes, C., 179
Sykes, M. F., 111

T

Taconis, K., 129, 133
Takagi, Y., 179
Tarasov, V. V., 32
Tauer, K. J., 111
Taylor, P. L., 83
Teaney, D. T., 111
Temperley, H. N. V., 179, 196
Templeton, D. H., 157
Tenerz, E., 54
ter Haar, D., 82
Terzi, N., 196
Tetrode, H., 140
Tewary, V. K., 54
Thirring, H., 42
Tisza, L., 180
Trepeznikova, O. N., 194
Tripathi, B. B., 54
Tucker, J. E., 194
Tucker, J. W., 111
Tupman, W. I., 179
Turnbull, D., 196
Tyler, W. W., 196

\mathbf{U}

Ubbelohde, A. R., 196

V

Vance, R. W., 3
Van den Berg, G. J., 83
Van den Ende, J. N., 77
Van den Handel, J. H., 111
Van der Hoeven, B. J. C., 54
Van Hove, L., 42
Van Kempen, H., 111
Van Kronendonk, J., 111
Van Vleck, J. H., 111
Verma, G. S., 196
Viswanathan, R., 18, 196
Von Arx, A., 179
Von Kármán, T.
(see Kármán)
Voronel', A. V., 175, 180

W

Waddington, G., 157
Walker, C. B., 54
Waller, I., 54
Wangsness, R. K., 111
Wannier, G. H., 38, 54, 111
Wasscher, J., 133
Webb, M. B., 82
Weil, L., 196
Weinstock, B., 133
Weiss, G. H., 54, 196
Weiss, P., 86, 93
Weiss, R. J., 111
Weissberger, A., 19
Werth, H., 193, 196
Westrum, E. F., 193
Wexler, A., 83
Weyl, H., 54
Weyl, W. A., 180
Wheatley, J. C., 133
White, D., 156, 157
White, G. K., 4, 17, 19, 54
White, W. P., 19
Wiebe, R., 157
Wiebes, J., 133
Wielinga, R. F., 111
Wilkinson, H., 179
Wilkinson, M. K., 180
Wilks, J., 133, 134, 157
Williams, E. J., 164
Williamson, R. C., 180
Wilson, E. B., 153, 157
Wolcott, N. M., 193
Author Index 233

Wolf, D., 157
Wolf, W. P., 111
Wollan, E. O., 180
Wolley, H. W., 157
Woods, A. D. B., 41, 54
Wooster, W. A., 54
Wunderlich, B., 194

Y

Yafet, Y., 111
Yakel, H. L., 180
Yang, C. N., 177, 180

Yang, C. P., 180
Yarnell, J. L., 133
Yosida, K., 111, 179

\mathbf{Z}

Zavaritskii, N. V., 19
Zeise, H., 53
Zemansky, M. W., 18
Ziegler, G. G., 53, 195
Ziman, J. M., 82
Zimmerman, G. O., 133
Zimmerman, J. E., 19, 83

Subject Index

A

Acetylene, 135
Acoustical branch, 37-40, 49
Actinium, 33
Adiabatic calorimeter, 16
Adiabatic demagnetization, 2, 11, 17, $18,85,100,105,106$
Aftermelting, 189
Allotropes, 130, 133
Alloys, 33, 68-72, 77, 82, 163
Alumina, 145
Aluminum, 20, 27, 33-35, 45, 46, 49, 52, 53, 63, 81
Alums, 33 86, 107
Ammonia, 135, 142, 149
Ammonium chloride, 152, 167, 185
Ammonium dihydrogen phosphate, 168
Angstrom method, 18
Anharmonicity, 45-47, 120, 137, 148, 187
Anomalies in specific heats, $3,13,15$, $18,149,158-180$
Antiferromagnetism, 68, 86-89, 91, 92, 98-100, 109, 162, 170-175
Antimony, 33
Araldite, 193
Argon, 9, 33, 113, 114, 135-137, $149,175,176,187-189$
Arsenic, 33
Arsenic oxides, 33

B

Bakelite, 193
Band structure, 63-70
Barium, 63
Barium titanate, 168-170
BCS theory, 80, 81
Beryllium, 18, 33, 63, 66

Bismuth, 20, 33, 34, 193
Blackman's calculation of $\mathbf{g}(\nu), 36$, 40-42
Bohr magneton, 87, 94
Boltzmann factor, 23, 25, 102, 118, 189
Boltzmann's constant, 13
Born-Von Kármán cyclic condition, 39, 139
Born-Von Kármán model, 35-40
Boron, 20, 21, 33
Boron nitiride, 32, 33
Bose condensation, $114,115,124,162$
Bose-Einstein statistics, 31, 55, 89, 114, 116, 128
Boundary conditions, 29, 37, 39, 139
Bragg-Williams model, 164, 179, 182
Brass, 68, 163-165, 192
Brillouin zone, 38, 39, 41, 45, 65, 66, 72
Bromine, 147
Buna-S-Rubber, 193, 194
Butadiene, 194

C

Cadmium, 33, 34, 63, 66, 74, 193
Calcium, 33, 63, 66
Calcium carbonate, $92,105,166$
Calcium fluoride, 21, 31, 33, 51
Calorimetry, 16-18, 149
Carbon, 20, 21, 130, 133, 149, 150
Carbon dioxide, 135-137, 149, 187
Carbon monoxide, 135-137, 142, 147, 149, 150, 157
Carbon resistance thermometer, 74
Cerium, 33, 170, 171
Cesium, 33, 63-65
Cesium chloride, 50
Chlorine, 33, 135, 137, 147-149

Chromium, 33, 63, 67
Chromium chlorides, 33
Chromium methylamine alum, $11,13,15,18$
Chromium oxide, 33
Clausius-Clapeyron equation, 181,182
Cobalt, 33, 63, 67
Cobalt carbonate, 92
Cobalt chloride, 99
Compilations of specific heats, 192-194
Compressibility, $8,10,50,51,78,85$, $127,175,177,182-184,194$
Conduction band, 58, 72, 73
Configurational disorder, 130, 149, 164, 179
Configurational specific heat, 168
Constantan, 193, 194
Cooperative phenomena, (see phase change, cooperative effects)
Cooper pairs, 80, 162
Copper, $9,12,18,20,22,25,33,34$, $49,51-53,55,60-63,65,66$, 70, 121, 163, 192-195
Copper alloys, 69-72, 163-165
Copper ammonium chloride, 98, 99
Copper potassium chloride, 98,99
Copper sulfide, 21
Correlation effects, 64
Coulomb forces, 41, 43, 64
Critical magnetic field, 74-77, 81, 82
Critical points in phonon spectra, 42, 43, 45-48
Critical temperature, liquid-gas, 162, 175-178
liquid mixtures, 175
Crystalline fields, 106, 107
Curie temperature, ferromagnetic, 86, 97, 172
ferroelectric, 168
Curie's law, 94
Curie-Weiss constant, 98
Cyclic boundary condition, 39, 139
Cylindrical approximation (see Pippard relations)

D

1-Decene, 150
Debye functions, 30, 31, 43, 47, 122, $159,160,190,194-196,197$, 198, 211-226
Debye model, 28-36, 40-43, 117, 154, 158, 190

Debye temperature, 1, 30, 32-36, 40, 43-53, 61, 63, 73, 117, 119, 189, 192, 194, 195
Debye T^{3}-law, 31, 32, 92, 117-119
Debye-Waller factor, 53
Defects in solids, 47, 187-190
Degree of freedom, 10, 21, 22, 55, 136-138, 140, 142
Demagnetization coefficients, 74, 85
Density of states, 56, 60, 65-69, 127
Deuterium, 33, 142, 145-147, 150, 156
Deuterium iodide, 152, 153
Deuterohydrogen (see hydrogen deuteride)
Deuteromethane, 150, 157
Deuterotritium, 142
Devitrification, 132
Diamagnetism, 74, 75, 81, 86, 107, 110,162
Diamond, 20, 22, 26, 27, 33, 41, 51, $53,73,97,130$
Dimethyl acetylene, 152, 153
Disorder (see order; entropy and order; frozen disorder)
Dispersion relation (see phonon dispersion; spin waves)
Dissociation, 137
Dope, 72
Dulong-Petit's law, 20-22, 26, 47, 187
Dysprosium, 33, 172-174

E

Effective mass, 62, 63, 65, 73, 125-127
Ehrenfest relations, 78, 183
Einstein functions, 26, 43, 147, 148, 160, 194-210
Einstein model, 25-27, 41, 43, $79,158,160$
Einstein temperature, 26, 27, 147
Elastic solids, 6, 29
Elastic waves, 28, 29, 34, 49, 190
Electrical conductivity, 52, 55, 66, 70, 72-75, 130
Electro-caloric effect, 106
Electron-electron interaction, 64, 65
Electron-phonon interaction, 64, 65
Electronic specific heat, $14,15,55-83$, $90,93,148,160$
Electronic transition in cerium, 171
Energy bands, 58
Energy gap, 58, 72, 80, 81, 118
Enthalpy, 7, 189, 194

Entropy, 6, 10, 11, 26, 30, 75, 76, 97-100, 104-106, 130-133, $140,164,168,169$
Entropy and disorder in solid state, 130-133, 142, 148-156
Entropy of mixing, 154
Equation of state, 6, 8, 9, 51, 135, 149
Equipartition theorem, 21, 22, 55, 60, 136, 137, 140-142
Erbium, 33, 172-174
Ethane, 135, 152, 153
Ethylene, 135, 149
Europium, 172
Exchange constant, 89, 91, 95-99
Exchange interaction, 64, 71, 86, 95, $96,106,109,166,170$

F

Fermi-Dirac statistics, 55-57, 124-128
Fermi energy, 56, 57
Fermi level, 67, 68, 127
Fermi liquid, 124, 127, 128
Fermi surface, 58-60, 63, 65, 66
Fermi temperature, 56-58, 125, 126
Ferric hydroxide, 144
Ferric methylammonium sulfate, 108, 109
Ferric oxide, 21
Ferrimagnetism, 86-91, 162
Ferrites, 86, 91
Ferroelectricity, 162, 167-170, 179
Ferroelectric Curie temperature, 168
Ferromagnetism, 68, 86-99, 109, 162, $168,170-175,177,179$
Fluorine, 151
Fluorspar (see calcium fluoride)
Force constants, 41, 45
Free-electron gas model, 55-58, 62-65
Frozen disorder, 130, 132, 149-152, 163
Fused quartz (see quartz, fused)

G

Gadolinum, 33, 172, 173
Gallium, 33, 63, 110
Gamma-rays, 52, 53
Garnets, 86, 91
Gas constant, 8, 21, 55, 94, 129, 136, 195
Gases, ratio of specific heats, 9,10 , $135,137,138,186,187$
Gases, specific heat, 135-157
Germanium, 18, 33, 72-74
G. E. varnish, 193

Gibbs' function, 7, 75, 182
Glass, 49, 129-133, 194
Glycerine, 129-132
Glyptal, 193
Gold, 20, 33, 34, 51, 52, 63, 65
Graphite, 20, 32, 33
Green's function, 178
Grüneisen constant, 51
Grüneisen equation of state, 9,51

H

Hafnium, 33, 63
Hamiltonian, 88, 96, 136, 137, 140
Heat capacity, definition, 5, 6
determination, 16-18
near $0^{\circ} \mathrm{K}, 10-13$
pressure variation, 10
ratio $C_{p} / C_{r}, 9,10$
ratio $C_{H} / C_{M}, 85$
relation between C_{p} and $C_{r}, 7-9$, 14,113
relation between $C_{\text {sat }}$ and C_{p}, $113,185,186$
units, 5
Heisenberg model, 95-99
Helium-3, 8, 17, 34, 114, 123-129. $132,163,187,189$
Helium-4, 2, 8, 9, 33, 34, 114-124, 129, 132, 135, 161-163, 175-177, $185,194,195$
Helmholtz function, 7, 13, 23, 139
Holmium, 109, 110, 172-174
Hydrogen, 2, 18, 33, 135-138, 142-147, 150-152, 154-156, 161, 167, $169,187,195$
Hydrogen bonds, 151, 152, 169, 178
Hydrogen bromide, 147
Hydrogen chloride, 135-137, 142, 147, 149
Hydrogen deuteride, 142, 147
Hydrogen disulfide, 135
Hydrogen iodide, 149, 152, 153
Hydrogen tritide, 142
Hyperfine splitting, 109
Hysteresis, 82, 86, 94, 121, 168, 170-172, 194

I

Ice, 150, 151
Impurity effects, $18,62,72,73,74$, $149,161,170$
Indium, 33, 63, 77, 81, 110

Indium antimonide, 51, 72, 73
Infrared spectra, 51, 52, 153
Internal energy, 6, 7, 22, 50, 55, 58, 97, 102, 136, 190, 194, 195, 197
Internal fields, 86, 94, 95, 109
Iodine, 33
Iridium, 33, 63
Iron, 20, 33, 34, 53, 63, 67, 70, 86, 194
Iron pyrites, 33, 51
Ising model, 95-97, 177-179
Isotope effect in superconductors, 80

K

Kohn anomaly, 64
Krypton, 33, 149, 187

L

Lambda transitions, 120-124, 152-156, 162-179, 182-184
Landau theory of liquid ${ }^{3} \mathrm{He}, 127,128$
${ }^{4} \mathrm{He}, 115-120$
Landau-Lifshitz theory of phase transitions, 177
Landé factor, 87
Landolt-Börnstein tables, 53, 192
Langevin theory, 94, 106
Lanthanum, 33, 170
Larmor frequency, 87, 88
Latent heat, $76,94,113,170,177$, $182,186,189,194,195$
Lattice heat capacity, $14,15,20-55$, $61,62,68,73,78,90,92,93$, 98, 99, 101, 102, 105, 107, $108,130,133,158-160,168$
Laws of thermodynamics (see thermodynamic laws)
Lead, 20, 33, 34, 52, 53, 63, 74, 193
Lead chloride, 21
Lead sulfide, 21
Legendre functions, 140, 143
Linear chain, 36-39, 59, 87, 88
Liquid helium (see helium)
Liquid mixtures, $113,114,129,175$
Liquids, specific heat of, 112-134, 161
Liquids, supercooled, 129-133
Lithium, 33, 34, 52, 63, 64
Lithium fluoride, 33, 49, 50, 52
Logarithmic singularity, 97, 100, 101, 121-123, 162, 168, 175-178, 182
Lucite, 194
Lutetium, 170, 172

M

Magnesium, 33, 63, 66
Magnesium oxide, 33, 190, 191
Magnetic ordering, 68, 71, 86, 87, 93-98, 162, 170-175, 178, 179, 182
Magnetic resonance, $91,105,106$, $108,109,156,158,167$
Magnetic specific heat, 84-111
Magnetic susceptibility, 70, 85, 86, $94,101,102,105,106,108$, $125,127,186$
Magnetic threshold curve of superconductors, 74-79
Magnetite, 91
Magnetomechanical ratio, 87
Magnons, 87, 89, 93
Manganese, 33, 63, 67, 70, 71, 193, 194
Manganese carbonate, 92, 105
Manganin, 193, 194
Many-body problem, 64, 128, 177, 178
Martensitic transformation, 47, 171
Maxwell's relations, 7, 10, 181, 184
Maxwell-Boltzmann statistics, 25, 31, 56, 118
Mayer theory of condensation, 177
Mechanical equivalent of heat, 5, 9
Meissner effect, 74, 75, 81
Melting point, 50, 112, 113, 130, 187
Mercury, 18, 33, 63, 74, 81, 110, 140
Metals, 55-68
Methane, 135, 147, 149, 166, 167
Methanol, 154
Methyl chloroform, 154
Modes of thermal energy, 14-16
Molybdenum, 33, 63
Molybdenum disulfide, 33
Monel, 193, 194

\mathbf{N}

Néel temperature, 86, 99, 100, 172
Neodymium, 33, 171, 174, 175
Neon, 33
Nernst-Lindemann formula, 9
Nernst-Lindemann phonon spectrum, 27, 43
Neumann-Kopp law, 21
Neutron scattering, 39, 41, 43, 47, 52, $53,91,115,120,151,160$, $163,167,170,172$
Nickel, 33, 34, 63, 67, 93, 193, 194
Nickel chloride, 99-101
Nickel sulfate, 107, 159

Niobium, 33. 63
Nitric oxide, 109, 135, 136, 148, 150, 151, 157
Nitrogen, 9, 33, 113, 114, 135-137, $142,147,149,151$
Nitrous oxide, 135, 136, 150, 157
Noncooperative systems, 161
Normal modes, 21, 23, 89
Nuclear specific heat effects, 106, 109, $110,142-147,154,162$
Nylon, 194

0

Olefins, 150
Onsager solution, 97, 100, 178
Optical branch, 36-40, 169, 170, 179, 191
Order parameters, 112, 164-166, 177
Order-disorder transitions, 68, 162-166, 178, 179
Ordering, hydrogen bonds, 151, 152, 169, 178
in coordinate and momentum space, 162
magnetic (see magnetic ordering)
Ortho-para conversion, 144-147, 154
Osmium, 33, 63
Oxygen, 33, 86, 109, 113, 114, 135-137, $142,147,149,151,175,176$

P

Palladium, 33, 63, 68, 69
Palladium alloys, 68
Paraelectricity, 168
Paramagnetic relaxation, $18,100-102$, 105, 186
Paramagnetism, 11, 15, 68, 85, 86, 93, 94, 98-102, 105-109, 162, 172, 177
Partition function, 13-15, 23, 24, 96, 139-145, 147
Pauli exclusion principle, 56, 95
Penetration depth, 74
Perchloryl fluoride, 150, 151, 157
Periodic boundary condition, 39, 139
Phase change, first order, 182
second order, $76,94,183,194$
cooperative effects, $14,93,96$, $100,109,120,123,162-179$
glass, 129-133, 194
Phonon, 30, 31, 55, 80, 89, 90, 107, 115-120, 128, 161

Phonon dispersion, solids, 35-41, 45, $47,49,53,64$
Phonon spectrum, liquid helium-4, $115,116,119,120$
solids, $24,30,39-49,160$
Phonons in liquid helium-3, 128
Photon, 23, 31
Pippard relations, 122-124, 183-185
Planck's constant, 22, 140
Plasma modes, 64
Platinum, 20, 33, 34, 51, 63
Polyethylene, 193, 194
Polymers, 32
Polystyrene, 194
Polytetrafluorethylene, 193, 194
Polyvinyl alcohol, 194
Potassium, 33, 63-65, 140
Potassium bromide, 12, 21, 33, 49, 50, 52
Potassium chloride, 31, 33, 50, 52
Potassium dihydrogen phosphate, 168, 169
Potassium iodide, 33, 50, 52
Power law singularity, 97, 162, 176-178
Praseodymium, 33, 171. 172, 174, 175
Precooling, 2, 195
Premelting, 187, 189
Promethium, 172
Protoactinium, 33
Pseudo T3-region, 45
Pyrex, 193
Pyroelectricity, 168

Q

Quantum statistics, 22-24, 30, 55, 56. 60, 129. 138-143
Quartz, crystalline, 33, 184, 185
fused, 49, 193
Quasi-harmonic theory, 49
Quasi-particles, 127

\mathbf{R}

Radon, 33
Raman spectra, 52
Rare-earth metals, 68, 109, 162, 170-175
Refrigeration, calculation, 1, 194, 195
Relaxation, magnetic (see paramagnetic relaxation)
rotation-vibration, 186, 187
stress, 112, 130, 189, 190
Residual rays, 51
Rhenium, 33, 63, 110

Rhodium, 33, 63, 68, 69
Rigid band model, 68-70
Rochelle salt, 168
Rock salt (see sodium chloride)
Rotation of molecules in solids, 150 , $154,156,162,166,167$
Rotation, hindered, 152-154, 167
Rotational characteristic temperature of gases, $142,145,146$
Rotational specific heat, 136, 138, 140-147, 161, 186, 187
Roton, 115, 118-120
Roton specific heat, 79, 116-120
Rubber, 193, 194
Rubidium, 33, 63-65
Rubidium bromide, 33, 50, 52
Rubidium iodide, 33, 50, 52
Rutger's relation, 76
Ruthenium, 63
Rutile, 33

S

Sackur-Tetrode equation, 140, 142
Samarium, 172
Saturated vapor, specific heat of, 185, 186
Schottky specific heat, $43,79,100$, 102-110, 128, 148, 159-162
Schrödinger equation, 138, 140
Selenium, 33
Semiconductors, 72-74, 190
Shear waves, 29, 112
Silica, 49, 193
Silicon, 20, 21, 33, 51, 53, 72, 73
Silver, 20, 33, 34, 49, 52, 63, 65, 68, 69
Silver bromide, 33
Silver chloride, 21, 33
Silver iodide, 51
Silver sulfide, 21
Sodium, 18, 33, 41, 45, 47, 48, 62-65, 140, 171
Sodium chloride, 21, 31, 33, 41, 43-45, $49,50,52,166$
Sodium chromate, 152
Sodium iodide, 35, 36
Sodium sulfate, 152
Soft solder, 163, 193
Specific-heat anomaly, peak and singularity, 158
Specific-heat compilations, 192, 194
definition, 5
use of the study of, 1,2
(see also heat capacity, or desired materials and conditions)

Spin density waves, 71
Spin-lattice and spin-spin relaxation, 101, 102
Spin temperature, 102
Spin waves, 87-89, 96
Spin wave specific heat, 89-92, 98
Spiral magnetic structure, 87, 172-175
Stainless steel, 192-194
Stark effect, 106, 170
Steam, 137, 151, 186
Stefan-Boltzmann law, 31
Stirling approximation, 140
Strontium, 33, 63
Strontium titanate, 170
Styrene, 194
Sulfur, 32, 133
Sulfur dioxide, 135, 137
Sulfuryl fluoride, 150, 151, 157
Superconductivity, 64, 74-82, 128, 162, $163,170,178,182,183$
specific heat effects, 76-81, 128, 129, 158
types I and II, 81, 82
Supercooled liquids, 129-133
Superfluidity of liquid ${ }^{4} \mathrm{He}, 114,116$, 162, 163
${ }^{3} \mathrm{He}, 128,129,163$
Surface effects, general absence, 29, 37, 139, 190
Surface specific heat, 190-192
Sylvine (see potassium chloride)

T

T^{3}-law, 31, 32, 35, 61, 73, 78, 79, 90, $92,99,105,116,118,119$
Tabulation of specific heats, 192-194
of specific-heat functions 194-226
Tail of specific-heat curves, $95,97,163$, 164
Tantalum, 33, 63, 74, 77, 81
Technical materials, specific heat of, 193, 194
Teflon, 193, 194
Tellurium, 33
Terbium, 33, 172, 173
Thallium, 33, 63, 81, 140
Thermal energy, $14-16,149,170$
Thermal expansion, $8,9,24,50,51$, $78,122-124,130,176,183$, 184, 186, 194
Thermodynamic laws, $1,6,10,11,76$, $132,148,149,163$

Thermodynamics of fluids and solids, 6-11
of magnetic materials, 84-85
Thorium, 33, 63
Thulium, 172
Tin, 20, 33, 34, 63, 73, 74, 77, 81, 133, 193
Titanium, 33, 63, 67
Transition metals, 66-70
Triglycine sulfate, 168
Tritium, 142, 147
Tungsten, 33, 52, 63
Tutton salts, 107

\mathbf{U}

Uranium, 63

V

Vacuum calorimeter, 16-19
Valence band, 58, 65, 72, 73
Vanadium, 33, 63, 67, 74, 77, 79, 81
Velocity of sound, 18, 28, 34, 115, 119, $122,129,177,186,187$
Vibrational characteristic temperature of gases, 147,148

Vibrational specific heat of gases, 137, $138,147,148,186,187$
of solids (see lattice heat capacity)

W

Water, 8, 114, 137, 150, 151, 157
Water, heavy, $150,151,157$
Weiss model, 93-96, 179, 182
Wood's metal, 193

\mathbf{x}

X-ray scattering, 43, 45, 52, 53, 130, $151,152,163$

Y

Yttrium, 33, 172
Yttrium iron garnet, 91

Z

Zero-point energy, 23, 24, 115, 156
Zinc, 20, 33, 63, 66, 81, 163
Zinc sulfide, 33, 51
Zirconium, 33, 63

[^0]: 1. C. F. Squire, Low Temperature Physics, McGraw-Hill, New York, 1953. K. Mendelssohn, Cryophysics, Interscience, New York, 1960. L. C. Jackson, Low Temperature Physics, Methuen, London, 1962. R. W. Vance and W. M. Duke, Applied Cryogenic Engineering, Wiley, New York, 1962. H. M. Rosenberg, Low Temperature Solid State Physics, Clarendon, Oxford, 1963. M. McClintock, Cryogenics, Reinhold, New York, 1964.
 2. J. R. Partington, Advanced Treatise on Physical Chemistry, Longmans-Green, London; Vol. I, Properties of Gases (1949); Vol. II, Properties of Liquids (1951); Vol. III, Properties of Solids (1952).
[^1]: 1. A. Eucken, Handbuch der experimental Physik, VIII (I) (1929), chapter 5.
 2. A. J. Rutgers, Physical Chemistry, Interscience, New York, 1954, chapters 11 and 33 .
 3. J. C. Slater, Introduction to Chemical Physics, McGraw-Hill, New York, 1939, chapters 3 and 4.
 4. Landolt-Börnstein physikalish chemische Tabellen, Springer-Verlag, Berlin, ed. 5, suppl. 1, p. 702 (1927); ed. 6, Vol. 2, Part 4, p. 736 (1961).
 5. J. Sherman and R. B. Ewell, J. Phys. Chem. 46, 641 (1942). D. R. Stull and F. D. Mayfield, Ind. Eng. Chem. 35, 639 (1943). H. Zeise, Thermodynamik, Vol. 3, Hirzel, Leipzig, 1954. W. C. Overton and J. H. Hancock, Tables of Einstein Functions, U.S. Naval Res. Lab. Rept. No. 5502 (1960). J. Hilsenrath and G. G. Ziegler, Tables of Einstein Functions, Nat. Bur. Std. Monograph No. 49 (1962).
