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Preface 

This work was begun quite some time ago at the University of 
Oxford during the tenure of an Overseas Scholarship of the Royal 
Commission for the Exhibition of 1851 and was completed at Banga­
lore when the author was being supported by a maintenance allowance 
from the CSIR Pool for unemployed scientists. It is hoped that 
significant developments taking place as late as the beginning of 1965 
have been incorporated. 

The initial impetus and inspiration for the work came from 
Dr. K. Mendelssohn. To him and to Drs. R. W. Hill and N. E. 
Phillips, who went through the whole of the text, the author is 
obliged in more ways than one. For permission to use figures and 
other materials, grateful thanks are tendered to the concerned workers 
and institutions. 

The author is not so sanguine as to imagine that all technical 
and literary flaws have been weeded out. If others come across them, 
they may be charitably brought to the author's notice as proof that 
physics has become too vast to be comprehended by a single onlooker. 

Department of Physics 
Indian Institute of Science 
Bangalore 12, India 
November 1965 
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Introduction 

Investigations at temperatures below room temperature have 
advanced our knowledge in many ways. Toward the beginning of the 
present century, physical chemists evolved their reference state for 
chemical equilibria and thermodynamic properties on the basis of 
such studies. Later, physicists realized that a clear manifestation of 
quantum effects was possible at low temperatures. In recent times, 
superconductors, rocket fuels, cryopumping and a multitude of other 
developments have lifted low-temperature studies out of academic 
cloisters and into the realm of technology. 

In any practical attempt to study low-temperature phenomena, 
the question of specific heats crops up immediately, in connection with 
the refrigeration needed to take care of the thermal capacity of the 
apparatus. Apart from its significance in this perennial problem of 
cooling equipments to desired low temperatures, knowledge of 
specific heats forms a powerful tool in many other areas, such as 
lattice vibrations, electronic distributions, energy levels in magnetic 
materials, and order-disorder phenomena in molecules. No better 
evidence for the usefulness of specific-heat studies is needed than the 
presence of the Debye characteristic temperature (j in so many 
branches of solid state studies. This monograph is basically a des­
criptive introduction to the different aspects of specific-heat studies. 

Historically, the need for measuring specific heats at low tempera­
tures arose in conjunction with the formulation of the third law of 
thermodynamics. Nernst realized that the specific heat of all sub­
stances should vanish as the absolute zero of temperature is 
approached. Einstein demonstrated the quantum effects that come 
into play in specific heats at low temperatures. This opened up the 
prospect of checking the energy states of all substances with the help 
of calorimetric measurements. Whatever theory of solid, liquid, and 
gaseous states is developed, it leads in the first place to a set of 
energy levels which the particles can occupy. By using suitable 
statistical methods, it is possible to compute the mean energy of the 
system and from it the specific heat Any such calculation requires 
a minimum of extra theoretical assumptions. This is both a strength 
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and a weakness of specific-heat studies. The heat capacity provides 
a direct and immediate test of the theoretical model of the system, 
but because it is a measure of a mean quantity it cannot shed light on 
the finer details of the model. It is wise not to lose sight of this 
limitation-which, incidentally, holds true to some extent for the 
study of any phenomenological property of substances. 

The reduction of specific heats at low temperatures is of tremen­
dous significance in the practice of cryogenic techniques. For the 
ordinary materials used in the construction of apparatus, the specific 
heat is about 6 cal/gram-atom'degK at room temperature (300 OK), 
approximately 4 units at liquid-air temperature (80 OK), and only 
10- 2 units at liquid-helium temperature (4 OK). The rapid fall in 
specific heats in the liquid hydrogen-helium temperature range 
makes itself felt in several ways. Once a large apparatus has been 
cooled to liquid-air temperature, relatively small amounts of refrigera­
tion (measured in terms of, say, the latent heat of the liquid helium 
that is boiled away) are sufficient to cool it to about 4°K. It is, in 
fact, a standard practice to conserve liquid helium by precooling the 
cryostats with liquid air, and if possible liquid hydrogen, so that little 
helium is boiled away in reducing the temperature to the vicinity of 
4 oK. Secondly, if a part of the cold apparatus is thermally insulated 
from the main heat sink, its temperature may rise considerably 
because of small amounts of heat influx. Such situations commonly 
arise in the measurement of specific heats. For the same reason, 
when very low temperatures « 1 OK) are achieved by adiabatic 
demagnetization, it is of utmost importance to cut out as much 
stray heat input as possible. Thirdly, because of the small heat 
capacity at low temperatures, thermal equilibrium among the various 
parts of an apparatus is established very quickly. Typically, a system 
which takes about an hour to come to internal equilibrium at room 
temperature will do so in about a minute at 4 oK. 

It was mentioned above that the energy levels of the particles 
specify the mean energy of the system, which in turn determines the 
specific heat of the system. These energy levels may be in the form of 
translational, rotational, or vibrational motions of molecules in gases, 
vibrations of atoms about their lattice sites in solids, the wandering 
of electrons free to move in metals, and so on. The enumeration of the 
possible modes of energy can be continued further, and it is obvious 
that a discussion of the specific heats of substances must inevitably 
cover a very wide field, since any temperature-dependent phenomenon 
can contribute to specific heats. In a monograph such as this, it 
is both unnecessary and impossible to be comprehensive in the 
description of all phenomena which bear some slight relationship to 
specific heats. The solution attempted here is to provide a reasonably 
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comprehensive description of the various aspects of specific-heat 
studies at low temperatures, leaving the discussion of allied pheno­
mena to various other texts. 1 It has been a difficult task to steer 
between the Scylla of encyclopedic completeness and the Charybdis 
of shallow banality. 

This compromise has been chosen to serve two purposes. For 
the interested neophyte, the monograph should be a simple survey 
and a stepping-stone to an understanding of the problems of specific 
heats. Thus, in discussing the basic principles, no attempt at rigor is 
made. In citing references, preference is given, if possible, to elemen­
tary texts rather than to advanced treatises. If in this process several 
authors feel themselves overlooked, it is because the choice is not 
meant to be a judgment of the scientific value of such works, but is 
only a didactic device for elucidating the basic questions. Further, 
the normal behavior of solids, liquids, and gases is treated first before 
taking up, in Chapter 7, abnormalities in the specific heat of some 
substances. No doubt, the reader will find that some instances of 
specific-heat anomalies are introduced surreptitiously in Chapters 3 
to 6, but the present arrangement has the added advantage that by 
Chapter 7 enough anomalies have been mentioned to focus attention 
on classification of such behavior. For those actively engaged with 
cryogenic problems, a description of the many facets of specific-heat 
studies, with adequate references to the sources of more detailed 
analyses of any single aspect, should make the book useful. 

The task of listing all the references, especially to the early 
literature on the subject, has been rendered superfluous by the monu­
mental work of Partington.2 Therefore, references to early papers 
are seldom given, and anyone interested can trace such papers from 
either the above treatise2 or the recent reviews and books cited at the 
end of each chapter. Moreover, the description of cryogenic tech­
niques has been limited to a minimum because of the availability 
of excellent books on the subject. 3 

REFERENCES 
I. C. F. Squire, Low Temperature Physics, McGraw-Hill, New York, 1953. K. 

Mendelssohn, Cryophysics, Interscience, New York, 1960. L. C. Jackson, Low Tem­
perature Physics, Methuen, London, 1962. R. W. Vance and W. M. Duke, Applied 
Cryogenic Engineering, Wiley, New York, 1962. H. M. Rosenberg, Low Tempera­
ture Solid State Physics, Clarendon, Oxford, 1963. M. McClintock, Cryogenics, 
Reinhold, New York, 1964. 

2. J. R. Partington, Advanced Treatise on Physical Chemistry, Longmans-Green, 
London; Vol. I, Properties of Gases (1949); Vol. II, Properties of Liquids (195\); 
Vol. Ill, Properties of Solids (1952). 
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3. G. K. White, Experimental Techniques in Low Temperature Physics, Clarendon, 
Oxford, 1959. R. B. Scott, Cryogenic Engineering, Van Nostrand, New York, 1959. 
F. Din and A. H. Cockett, Low Temperature Techniques, Newnes, London, 1960. 
F. E. Hoare, L. C. Jackson, and N. Kurti, Experimental Cryophysics, Butterworth, 
London, 1961. A. C. Rose-Innes, Low Temperature Techniques, English University 
Press, London, 1964. 



Chapter 1 

Elementary Concepts of 
Specific Heats 

1.1. DEFINITIONS 

The specific heat of a substance is defined as the quantity of heat 
required to raise the temperature of a unit mass of the substance by 
a unit degree of temperature. To some extent, the specific heat 
depends upon the temperature at which it is measured and upon the 
changes that are allowed to take place during the rise of temperature. 
If the properties x, y, ... , are held constant when a heat input dQ 
raises the temperature of unit mass of the substance by dT, then 

c , = lim (dQ) x.}.... dT 
dT~O x.y .... 

(1.1) 

The specific heat, sometimes called the heat capacity, is in general a 
positive quantity. In the absence of any rigid convention, it seems 
best to use the term specific heat when referring to 1 g of the material 
and the term heat capacity when a more general amount of the 
material, i.e., a gram-atom or a gram-molecule, is involved. 

In expressing the numerical values of specific heats, the MKS 
system, based on kilogram units of the substance, is not yet widely 
used in current literature, and so cgs units will be used throughout 
the book. By convention, cx •y .... refers to the specific heat per gram 
and ex.}, ... to the heat capacity per gram-molecule of the substance. 
The Cx ... value is usually expressed in caljg·degK or in J/g'deg, the 
present conversion factor being 1 thermochemical calorie = 4.1840 J. 
In engineering literature, it is still not uncommon to find specific 
heats in BTU /lb'degF, which luckily has almost the same value in 
caljg·degK. 

5 
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1.2. THERMODYNAMICS OF SIMPLE SYSTEMS 

All processes in which quantities of heat and work come into 
play are governed by the fundamental laws of thermodynamics. 
Some properties of specific heats follow immediately from these 
laws, and it is therefore appropriate to consider them first. A dis­
cussion of the principles of thermodynamics is given in several well­
known texts.! If a quantity of heat dQ is supplied to a substance, a 
part of it goes to increase the internal energy E of the system and a 
part is utilized in performing external work W In accordance with 
the first law, 

dQ = dE + dW (1.2) 

If the heat exchange is reversible, the second law of thermodynamics 
permits calculation of the entropy S of the system from the relation 

dQ = T dS (1.3) 

Apart from the special conditions to be discussed in Section 8.5, E 
and S are proportional to the mass of the substance; that is, they are 
extensive variables. 

It is instructive to start with a simple substance, namely, the 
ideal fluid. In gases and liquids, the pressure P at a point is the same 
in all directions, and any work done by the system dW is an expansion 
against the pressure. Then dW must be of the form 

dW = PdV (1.4) 

Moreover, fluids obey an equation of state 

f(P, V, T) = 0 (1.5) 

This means that anyone of P, V, T can be expressed in terms of the 
other two and that only two of the three quantities can be arbitrarily 
varied at the same time. Hence, during the change of temperature, 
either P or V can be kept constant, and correspondingly there are 
two principal heat capacities: 

Cp = (:~)p = T(:~)p 

Cv = (:~l = T(:~)v (1.6) 

The case for solids is somewhat more complicated. Unlike 
ordinary fluids, which require forces only for changing their volume, 
solids require forces both to change their linear dimensions and to 
alter their shape. It is shown in the texts on elasticity2 that dW is of 
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the form 

dW= Itjdej 
j 

7 

(i = 1,2, ... ,6) 

where tj are the stresses and ej are the strains. Obviously, it is possible 
in principle to define a large number of specific heats, allowing only 
one stress or strain component to change during the heating. In 
practice, however, such experiments are hardly feasible, and only 
Cp , Cv are of importance. It can be shown3 that they obey the same 
thermodynamic relations as the C P' CV of liquids and gases, so there 
is no significant loss of generality in restricting the discussion to the 
simple case of fluids. 

Combining (1.2) and 0.3), one can write the change in internal 
energy as 

dE = TdS - PdV (1.7) 

Often it is convenient to handle the other principal thermodynamic 
functions of the system, namely, enthalpy H, Helmholtz function A 
and Gibbs' function G, whose variations are 

dH = d(E + P V) = T dS + V dP 

dA = d(E - TS) = - S dT - P dV 

dG = d(E - TS + PV) = - S dT + V dP 

(1.8) 

(1.9) 

(1.10) 

These four functions are nothing but measures of the energy content 
of the substance under various conditions, and the changes in these 
must depend only upon the initial and final states. Mathematically 
equivalent is the statement that the differentials (1.7) to (1.10) are 
perfect differentials; this condition leads to the four Maxwell's relations 

(1.11) 

The four relations are useful in expressing thermodynamic formulas 
in terms of quantities which are experimentally measured. 

1.3. DIFFERENCE BETWEEN Cp and Cv 

As an illustration of the use of equation (1.11), the important 
expressions for Cp - Cv may be calculated. Take T and V as the 
independent variables in describing the entropy of a mole of substance 
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and write 

or 

Replacing (ClS/ClVh by (ClP/ClT)v and using equations (1.6) yields 

C p - C v = T(:~)p - T(:~)v = T(!~)J:~)p (1.12) 

This relation is convenient if the equation of state is known explicitly. 
For example, a mole of a gas obeys the relation PV = RT under 
ideal conditions, and so equation (1.12) gives the difference between 
the molar heat capacities: 

C p - C v = R (1.13) 

The gas constant R has a value 8·314 J/mole'deg, or 1.987 caljmole·deg. 
For liquids and solids, (ClP/ClT)v is not easy to measure and is best 
eliminated from the equations. To do this, consider P as a function 
of Tand V: 

dP = G~)T dV + G~), dT 

At constant pressure, dP = 0, and 

Now the coefficient of cubical expansion [3 = V-1(ClV/ClT)p and 
the isothermal compressibility kT = - V-1(ClV/ClPh are amenable 
to experimental measurements. In terms of [3, kT , and the molar 
volume V, 

TV[32 
C p - C v =-,;:;- (1.14) 

The mechanical stability of a substance requires kT > O. There­
fore, C p is always greater than C v' They are equal when [3 = 0, as in 
the case of water near 4°e, liquid 4He near 1.1 oK, and liquid 3He 
near 0.6°K. The reason for C p ~ C v is easy to see. Heating the sub­
stance at constant pressure causes an increase in the internal energy 
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and also forces the substance to do external work in expanding against 
the pressure of the system. On the other hand, in heating at constant 
volume there is no work done against the pressure and all the heat 
goes to raise the internal energy. Hence, in the latter case the tempera­
ture rise is larger for a given dQ. In other words, C v is less than C p. 

The difference between C p and C v is about 5 % in most solids 
at room temperature. It decreases rapidly as the temperature is 
lowered. Table 1.1 gives the values for copper, and the behavior of 
other solids is very similar. However, to calculate C p - C v exactly, a 
tremendous amount of data is needed. The complete temperature 
dependence of molar volume, volume expansion, and isothermal 
compressibility, besides C P' should be known, and this knowledge is 
not always available. Under such conditions, approximate relations 
are used. The most successful one is the Nernst-Lindemann relation 
based on Grtineisen's equation of state: 

(1.15) 

The parameter A is nearly constant over a wide range of temperature. 
For example, in copper A = 1.54 X 10- 5 mole/cal at 10000K and 
1.53 x 10- 5 at 100oK, if the mechanical equivalent of heat is taken as 
4.184 x 107 ergs/cal. If A is calculated at anyone temperature from 
the values of V, p, and kT' it may be used to calculate C p - Cv over a 
wide range of T without serious error. 

In gases at low pressures, C p - Cv is equal to R [equation (1.13)], 
but at high pressures small corrections for nonideality are needed. 1 

The values of Cp or Cv are not dramatically changed at low tempera­
tures. The behavior of nitrogen is typical: Cp is about 6.95 caIjmole.deg 
at 300 0 K and about 6.96 at 100 OK. 

The ratio of specific heats C JCv is nearly unity for solids and 
liquids, but not for gases. The value C p '" 1R for nitrogen shows that 
Cv '" iR, and so CJCv '" 1.4. It is 1.67 for monatomic gases such as 
helium or argon, and becomes approximately 1.3 for polyatomic 

Table 1.1. Cp and Cv for Copper 

T c p V P kT c p - c. c. cp/c. 

1000 7.04 7.35 65.2 0.976 0.778 6.27 1.12 
300 5.87 7.06 49.2 0.776 0.157 5.71 1.03 
100 3.88 7.01 31.5 0.721 0.023 3.86 1.00 

4 0.0015 7.00 0.0 0.710 0.0 0.0015 1.00 

Tin degK; cp , C. in caljmole·deg; Yin cm3/mole; pin W- 6/deg; kT in 10- 12 cm 2/dyne. 
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gases. In general, the ratio C riC v depends upon the state of the sub­
stance and is useful in converting adiabatic elastic data to isothermal 
data. For example, it is a simple exercise to show that 

kT Cp 

ks Cv 
0.16) 

where kT is the isothermal compressibility and ks is the adiabatic 
value. The ratio has greater significance for gases, where, besides 
being involved in the adiabatic equation PVcp/cv = constant, it also 
gives information about the number of degrees of freedom of the 
molecules constituting the gas. 

1.4. V ARIA nON OF SPECIFIC HEATS WITH 
TEMPERATURE AND PRESSURE 

It was mentioned in Section 1.1 that the specific heats depend 
to some extent upon the state of the substance, and Table 1.1 shows 
how C p' C v in a solid are affected by temperature. The full details of 
such temperature dependences are very complicated, and their 
elucidation is the major task of the whole book. Here, only some 
simple consequences of general thermodynamic considerations are 
pointed out. 

The use of Maxwell's relations (1.11) shows that 

(~~)T = T(!~)v 
(aa~ \ = - TG~)p (1.17) 

The prime use of these relations is in reducing the measured specific 
heats of gases to the ideal values at zero pressure with the help of the 
equation of state. For a perfect gas, C p and Cv are independent of 
pressure. 

The third law of thermodynamics specifies the behavior of 
specific heats at very low temperature. According to it, the entropy of 
any system in thermodynamic equilibrium tends to zero at the absolute 
zero. Since S = 0 at T = 0 and S is finite at higher temperatures, the 
difference in entropy at constant volume between T = 0 and T = To 
may be obtained from equation (1.6) as 
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For the integral to converge, i.e., remain finite definite, at the lower 
limit T = 0, Cv/T must be a finite number (including zero) as T ..... O. 
In other words, when absolute zero is approached, the specific heat 
must tend to zero at least as the first power of T. 

The vanishing of specific heats at T = 0 is of great importance 
because it permits the use ofooK as a reference for all thermodynamic 
calculations. For instance, the entropy at any temperature T may be 
uniquely expressed as 

S(T) = J: Cv T- 1 dT ( 1.18) 

without any undetermined additive constants. Since C v is known to 
vanish at OOK, it is enough to measure it to a sufficiently low tempera­
ture from where it may be safely extrapolated to zero. Unfortunately, 
the laws of thermodynamics do not give any indication of how low 
this temperature should be. For many solids, measurements down to 
liquid-helium temperature are adequate, whereas for some para­
magnetic salts measurements well below 10 K are needed before a safe 
extrapolation is possible. 

Figure 1.1 shows the specific heats of some materials near 
absolute zero. Dielectric solids (Figure l.la) have a low-temperature 
specific heat proportional to T 3, while metals (Fig. 1.1 b) obey a 
relation c = A 1 T3 + A 2 T. These variations are simple enough to 
permit a ready extrapolation of the observations to O°K. However, if 
the material contains paramagnetic ions-and such materials are 
important in adiabatic demagnetization techniques-the behavior is 
often quite anomalous. The specific heat of chromium methylamine 
alum, 6 shown in Fig. 1.2, is not falling off to zero even at O.l OK. 
Instead it appears to be increasing as the temperature is lowered! No 
doubt the specific heat will eventually tend to zero as T ..... 0, but it is 
quite impossible to guess its behaviour from, say, 0.5°K. It is also 
noteworthy that because of the low temperatures the entropy associ­
ated with these anomalous variations is often large (of the order of R 
per mole). 

1.5. STATISTICAL CALCULATION OF SPECIFIC HEATS 

The examples of Fig. 1.1 and 1.2 serve to illustrate the fact that 
while thermodynamics is powerful in specifying the general laws 
governing a phenomenon it does not give any clue about the detailed 
behavior. This belongs to the realm of statistical mechanics, and in 
the following chapters it will become abundantly clear that a variety of 
effects observed in the behavior of specific heats may indeed be 
satisfactorily explained. In statistical thermodynamics, the general 
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scheme for deducing the thermal properties is quite simple, although 
its derivation should be left to the texts on statistical mechanics. 7 

The systems that are of interest in practical problems consist of a 
very large number of basic constituents, for convenience called 
particles even if they are identified as atoms, molecules, or quanta 
of energy. The interaction among the particles can be analyzed on the 
basis of theoretical models to yield the energies Ei of the various 
possible levels of, say, a mole of the system. Once this is done-and 
it is in this process that the complex physical systems have to be 
judiciously represented by simple mathematical models-the thermo­
dynamic quantities are contained in the partition function of the 
system 

(-E.) z = ~exp kT' I over all levels of the system (1.19) 
i 

which is related to the Helmholtz free energy per mole by the relation 

A = -kTln Z (1.20) 

Here, k is Boltzmann's constant, equal to 1.3805 x 10~ 16 erg/degK. 



14 Chapter 1 

It is now a simple matter to get from A 

S = _(aA) E = kT2(a In Z) 
aT v aT I' 

(a2(k TIn Z)) 
C" = T aT2 " (1.21) 

These are the thermodynamic quantities of interest, and they are 
easily calculated if the partition function is set up in a convenient form. 

Clearly, the specific heat at constant volume is the quantity that 
arises naturally in the theoretical analysis. The experimental measure­
ment of Cv is possible in gases under favorable conditions because the 
pressures encountered, of the order of atmospheres, can be balanced 
by the walls of the container. For liquids and solids, on the other 
hand, the pressures needed to keep the volume constant run into 
thousands of atmospheres, and normally balancing such pressures is 
not practicable. Therefore, measurements are ordinarily done at 
constant pressure and C v is calculated from equation (1.14). The 
difference C p - C v is usually less than a few percent at low tempera­
tures, unless the substance is near a phase transition. 

1.6. DIFFERENT MODES OF THERMAL ENERGY 

The above discussion underlines the fact that the heat capacity 
of a substance is governed by the manner in which the internal 
energy is distributed among its constituents. The molecules in a 
gas can have translational, rotational, vibrational, and electronic 
energy levels, and each type of thermal motion contributes its share 
to the specific heat of a gas. The atoms in a solid are usually held 
fixed at their lattice sites and can at most vibrate about their mean 
positions. This motion is called the lattice mode of thermal excitation. 
If the lattice consists of molecules, there are motions of atoms within 
the molecules besides the vibrations involving molecules as units. 
These internal vibrations may be described as molecular modes. There 
may be free electrons wandering through the lattice, as in metals, and 
the electronic contribution to C v arises from the thermal excitation 
of these electrons. In some cases, the energy levels of bound electrons 
may be split into discrete levels. The transitions among the levels 
are known as excitation modes. Yet another complication is that in 
some cases the probability of exciting some mode of thermal agitation 
depends strongly upon the number of particles already excited. 
Excitations of the particles therefore increase extremely rapidly, as 
though by positive feedback, once the first of such modes are excited; 
these snow-balling processes are called cooperative phenomena. 

The contributions from all these modes have to be added together 
to get the total heat capacity. This may be easily seen, since to a 
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first approximation the energy of a system is the sum of the energies 
due to the various modes of motion. An inspection of equation (1.19) 
shows that the partition function is the product of factors associated 
with each mode. For example, the partition function Z of a gas is the 
product 

Z = ZtZrZvZe (1.22) 

of the translational, rotational, vibrational, and electronic functions. 
A involves In Z, which is the sum of In Z" In Zr' etc., and it is clear 
that the thermodynamic quantities are the sums of the contributions 
from the various modes. 

While all these possible types of thermal agitation give their 
share to the heat capacity of the substance, the observed specific heat 
depends also upon their variation with temperature. Some of the 
modes are excited over the entire temperature range and so con­
tribute observable specific heat at all temperatures. The atoms in a 
lattice can vibrate at all temperatures, and the lattice contribution 
to heat capacity is significant at all temperatures. It falls off as T3 
when OOK is approached, as shown in Fig. l.1a. The free electrons in 
a metal have very high heat content, but this varies so little with 
temperature that its contribution to specific heats is overshadowed 
by the lattice term at room temperature. However, the electronic 
specific heat, varying as the first power of T, becomes important at 
liquid-helium temperature, as was seen in Fig. Lib. 

In contrast to these types of thermal excitation, there are some 
modes which are excited over a restricted range of temperatures and 
so contribute an appreciable specific heat over that small range only. 
Typical is the excitation of energy in a system with two levels approx­
imately kTo apart. At temperatures much below To, the thermal 
energy is insufficient to cause many excitations, as T", To transitions 
can occur freely, while at much higher temperature the levels are 
equally populated and little change in energy is possible. Hence, the 
specific heat is significant only in the region T '" 10 and is usually 
detected as a sharp bump superimposed on the other specific-heat 
contributions. Such behavior is called a specific-heat anomaly; 
Fig. 1.2 shows a good example. The hump at about 0.1 OK is due to 
the transitions among the energy levels of the paramagnetic ions. 
The substance chrome methylamine alum, Cr(NH3CH3) (S04h·12H2 0, 
is peculiar in showing another nearby anomaly. The sharp peak at 
O.02°K is caused by a cooperative transition from a paramagnetic 
state to an ordered antiferromagnetic state. 

Any theory of solids, liquids, or gases must take into account the 
different types of thermal agitation, and so must lead in the first 
place to the energy levels of the system. The calculation of heat 
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capacities involves no further assumptions. It is thus a special feature 
of the specific-heat studies that they provide a first ready test of the 
theory. However, the specific heat is only an averaged quantity; 
consequently, the full details of the energy levels are not usually 
elucidated unless the measurements are supplemented by the investiga­
tions of other properties of the substance. This interplay among the 
different properties of the systems will become evident in the later 
chapters, where the heat capacity due to the various modes of thermal 
agitation will be analyzed with the help of suitable simple models. 
Before proceeding to this, it is convenient to indicate how the specific 
heats are experimentally determined. Only an outline of the experi­
mental methods will be given here, since the matter is taken up 
comprehensively in a forthcoming monograph in this series. 

1.7. CALORIMETRY 

At the turn of the present century, the vacuum calorimeter was 
introduced by Nernst for the determination of specific heats at low 
temperatures; subject to minor modifications, it is still the method 
widely used. In its simple form, Fig. 1.3a, it consists of the block B, 
over which an insulated coil W of platinum wire is wound. The block 
B may be either a piece of the solid to be studied or merely a container 
for some solid, liquid, or gas. B is suspended by the leads LL in a 
vacuum-tight container C, which is cooled in a dewar 0 containing 
liquid air, hydrogen, or helium, as the case may be. Initially, C is 
filled with helium gas at a low pressure of about 1 mm of mercury, 
and the block B is cooled to the temperature of the bath by the heat 
transfer through the gas. After B has been cooled, the gas is pumped 
away. Thereafter, B is thermally isolated. Known quantities of heat 
are applied to the coil W by passing known currents for definite 
intervals of time, and the resulting rise of temperature is measured 
by the change in resistance of the platinum wire. It is now common 
to have separate heaters and sensitive thermometers. It is sometimes 
advantageous to supply heat continuously and to derive the specific 
heats from a continuous record of the temperatures. 

The vacuum space C avoids any heat transfer by gas conduction 
or convection. At temperatures above 20°K., heat transfer by radia­
tion, varying as T\ becomes significant. This difficulty is avoided in 
adiabatic calorimetry, introduced at low temperatures by Lange, 
Southard, and Andrews,8 although at room temperature it has been 
brought to a high degree of refinement by Richards and many other 
earlier workers. The adiabatic shield S (Fig. 1.3b) contains a separate 
heater, and is made to follow the temperature of B accurately. This 
can be done either manually or by suitable electronic devices making 
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Fig. 1.3. Vacuum calorimeter and its modifications. 

use of differential thermocouples between Band e to observe any 
temperature difference between them. In the liquid-helium range, a 
different problem arises because the helium gas used for precooling B 
is strongly absorbed on the surfaces of Band C. The vacuum is 
thereby spoiled, and even with fast pumps it may take a few hours to 
dislodge all the helium gas. So it is preferable to avoid the helium 
exchange gas altogether, though this necessitates alternative provi­
sions for cooling the block B to low temperatures. In a simple form, 
a polished metal plate J (Fig. l.3c), which can be operated from outside 
the cryostat and which is in good thermal contact with e, is made to 
press firmly against a similar polished metal disk attached to B. 
e remains evacuated throughout the operation. The drawback in 
this technique is that when the difference in temperature between 
Band e is small, especially at low temperatures, heat transfer across 
the mechanical contact becomes very inefficient. Several cryostats, 
ingeniously designed to minimize these and other difficulties, are 
described by White9 and Hill. lO These and other books 11 .12 contain 
a full account of the general cryogenic techniques. 

The above method is useful for measuring the specific heat above 
about 10 K. Below this temperature, one has to use the 3He isotope 
as a coolant (up to about O.3°K), or use adiabatic demagnetization 
to attain low temperatures. The details of these refrigeration tech­
niques are described in several texts.9.10.12 Mention need be made 
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here only of some special methods of finding specific heats in particular 
cases. Below 10 K, the heat capacity of the demagnetization pill used 
to cool the specimen becomes large compared to the heat capacity 
of the specimens. One way of avoiding this interference is to pass a 
p'eriodic heat-wave through the specimen and to derive Cp as in the 
Angstrom method of finding diffusivity at room temperatures. 13 For 
magnetic materials, specific heats may be obtained from studies of 
paramagnetic relaxation or demagnetization from various magnetic 
fields (Chapter 4). 

In the case of gases, measurements made by having the gas in a 
closed container, as originally done by Eucken and others for hydro­
gen, yield Cv directly, because the volume change under such condi­
tions is very small. The specific heat at constant pressure can be 
determined by continuous-flow methods as at room temperatures. 
Information about Cv in gases may be obtained from the heat conduc­
tion when the mean free path becomes comparable to the dimensions 
of the measuring apparatus. Moreover, the ratio of specific heats 
Cp/Cv may be determined from the velocity of sound in gases (Sec­
tion 8.3). A good survey of the measurement of specific heat in gases 
is given by Rowlinson. 14 

There are many problems associated with thermometry and heat 
leakages, the details of which are discussed in several reviews. 1 5.16,17 

A point often overlooked is the need for pure specimens. Parkinson16 

has listed a number of anomalous results originally reported in such 
common materials as sodium, mercury, beryllium, germanium, etc., 
which had been puzzling and which have now proved to be not 
characteristic of the pure materials. When it is realized that at 0.1 OK 
chrome methylamine alum has a molar heat capacity nearly 40,000 
times that of copper, it is obvious that even traces of impurities may 
sometimes vitiate calorimetric measurements. 
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Chapter 2 

Lattice Heat Capacity 

2.1. DULONG AND PETIT'S LAW 

One of the earliest empirical generalizations concerning the 
specific heat of solids was enunciated by Dulong and Petit in 1819. 
Its theoretical justification was advanced by Boltzmann in 1871, and 
in 1907 Einstein showed why it failed at low temperatures. These 
dates are among the principal landmarks in the study of specific 
heats. To appreciate the significance of these developments, consider 
the specific heats of several common elements at room temperatures, 
as collected in Table 2.I. The specific heat per gram of the element 
varies considerably, being small for the elements of high atomic weight 
and large for those of low atomic weight. However, the heat capacity 
per gram-atom of all of them is nearly equal to 6.2 caI/mole'deg, 

Table 2.1. Specific Heat of Solid Elements at Room Temperature! 

Element 

Bi Pb Au Pt Sn Ag Zn 

cp 0.0299 0.0310 0.0309 O.03IS 0.0556 0.0559 0.0939 
Atomic 

weight 209.0 207.2 197.0 195.1 IIS.7 107.9 65.4 
Cp 6.22 6.43 6.10 6.21 6.60 6.03 6.14 

Cu Fe AI Si B C(gr) C(di) 

cp 0.0930 0.110 0.21S 0.177 0.26 0.216 0.12 
Atomic 

weight 63.6 55.9 27.0 2S.1 IO.S 12.0 12.0 
Cp 5.92 6.14 5.S3 5.00 2.S4 2.60 1.44 

Cp in caljmoie'deg, Sn = grey tin, C(gr) = graphite, C(di) = diamond. 

20 
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NaCl 

Table 2.11. Molar Heat Capacity of Compounds 1 

(in caljmole·deg) 

Compound 

KBr AgCl PbS 

C p 11.93 12.25 12.15 12.01 12.33 17.83 18.05 16.56 27.2 

21 

which is the rule found by Dulong and Petit in 1819. A closer inspec­
tion shows that for "light and hard" elements (silicon, boron, and 
carbon) the atomic heat capacity falls much below the Dulong-Petit 
value. 

Subsequent experiments by several workers during the period 1840 
to 1860 revealed an important extension of the Dulong-Petit rule. 
The molar heat capacity of a compound is equal to the sum of the 
atomic heat capacities of the constituent elements. Table 2.11 illus­
trates this rule, which is sometimes called the law of Neumann and 
Kopp. Diatomic solids have a molar specific heat of approximately 
12caljmole'deg, while triatomic solids have C p ~ 18 units. As in 
Table 2.1, there are many substances that deviate greatly from this 
simple behavior, but on the whole there is enough evidence for taking 
the atomic specific heat to be about 6 cal, irrespective of the chemical 
structure of the substance. Since the gas constant R = Nk has a 
value of approximately 2 caljmole'deg, this statement implies that 
each atom in a solid contributes about 3k to the specific heat. 

2.2. EQUIP ARTITION LAW 

The empirical results of the previous section can be readily 
interpreted on the basis of the theorem of equipartition of energy 
developed by Boltzmann. A derivation of this theorem may be found 
in the texts on statistical mechanics or in other places. 2 ,3 In classical 
mechanics, a system executing small oscillations may be described in 
terms of normal coordinates; its energy is then expressed as the sum 
of several squared terms. For example, the energy of a linear har­
monic oscillator is made up of kinetic and potential energies 
(2m)-lp2 + imw2q2, where p is the momentum and q the coordinate. 
For a three-dimensional oscillator there are three p;, p;, p; terms 
and three q;, q;, q; terms. Each such square term in the energy 
expression is said to arise from a degree of freedom of the system, 
which is nothing more than an enumeration of the independent 
variables needed to describe the system. The equipartition law states 
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that in thermal equilibrium each degree of freedom contributes !kT 
to the energy of the particle. Thus, a three-dimensional oscillator 
has an internal energy 3kT when a system of such oscillators is in 
thermal equilibrium. 

The atoms in a solid are arranged in a regular lattice and held 
in their lattice sites by interatomic forces acting on them. A simple 
model of a lattice would be a set of mass points connected to one 
another by elastic springs. The atoms can vibrate about their mean 
positions under the influence of the forces acting on them, and if the 
amplitude of oscillation is small, the atoms may be considered as 
harmonic oscillators. Each (three-dimensional) oscillator has six 
degrees of freedom, and by the equipartition theorem has an internal 
energy 3kT. In a gram-atom of the element there are N atoms and 
the internal energy is 3NkT. Therefore, the heat capacity is 
Cv = iJE/iJT = 3R ~ 5.96 caljmole·deg. For a compound with r 
atoms per molecule, the molar heat capacity is 3rR. 

Classical statistical mechanics is thus able to justify the empirical 
observation of Dulong and Petit and others. The successful theoreti­
cal explanation of the heat capacity of solids (and of gases, which will 
be discussed in Chapter 6) was, at that time, partly instrumental in 
the acceptance of molecular mechanisms not only for mechanical 
properties but also for thermal properties of matter, a fact which is 
taken for granted nowadays. 

A perusal of Table 2.1 shows, however, that for some substances 
the heat capacity is much less than the equipartition value. Experi­
ments performed above room temperature revealed that at high 
temperatures the heat capacity of even these substances increases to 
3R. For example, diamond, which had Cp '" 1.4 caljmole'deg at 
300oK, had C p '" 5.5 units at 1200°K. On the other hand, when 
cryogenic experiments were performed, it was found that the specific 
heat of all materials decreased at low temperatures. Illustrative is the 
behavior of copper with C p '" 5.9 caljdeg at 3000 K and '" 3.9 units 
at 100°K. At 4 oK, its value is only 1/4000 of the equipartition value! 
Classical statistical mechanics could offer no cogent explanation 
whatsoever for such large temperature variations of specific heats. 
The clarification had to await the development of quantum theory. 

2.3. QUANTUM THEORY OF SPECIFIC HEATS 

In 1901, Planck was forced to conclude from his studies on the 
spectral distribution of blackbody radiation that the energy of an oscil­
lator of frequency v must change in discrete steps of hv, and not con­
tinuously, as had been assumed in classical mechanics. The constant 
h, called Planck's constant, has a value of 6.626 x 10- 27 erg-sec. 
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Einstein soon realized that electromagnetic radiation travels in packets 
of energy hv and momentum h/A; these wave packets have come to 
be called photons. Finally, in 1907, Einstein took the bold step of 
applying quantum theory outside the field of electromagnetic radia­
tion to the thermal vibrations of atoms in solids. The floodgates had 
been opened for quantum concepts to pervade the whole of our 
physical knowledge. 

Before going into the details of the theory, it is best to grasp the 
simple implications of the quantization of energy. It was known 
even in 1907 that the atomic vibrations in a solid have frequencies of 
the order of 1013 cps. The energy hv needed to excite such a vibra­
tion is approximately 6.6 x 10- 14 erg. In a naIve way, if this is 
equated to the classical energy of an oscillator 3kTo, then To comes 
out to be 150°K. At high temperatures, the atomic vibrations will 
be excited fully, but below about 1500 K the vibrations cannot be 
excited because the minimum energy needed for this process is not 
available. Hence, the specific heat should drop from its classical 
equipartition value to zero below about 150°K. In practice, the reduc­
tion will not be so abrupt as in this naIve picture, because at any 
temperature above OaK there is a statistical probability of exciting 
some vibrations, given by the Boltzmann factor exp (- hv/kT). The 
effect of lowering the temperature is to reduce the number of excita­
tions, and in this manner the quantization of energy levels brings 
about a reduction of specific heats at low temperatures. 

The formal way of handling the problem, as outlined in Section 
1.5, is to calculate the partition function Z and the Helmholtz free 
energy A: 

A = -kTlnZ Z = ~ exp ( ~:i) (2.1) 

An atom in a lattice vibrates under the influence of the forces exerted 
on it by all the other atoms of the system. If the amplitude of the 
vibrations is small, classical mechanics shows that the vibrations can 
be resolved into normal modes, i.e., into a set of independent one­
dimensional harmonic oscillations. In a mole of the substance, the 
molecules of which contain r atoms, there are 3rN such independent 
modes. The total energy is the sum of their energies, and the total 
partition function is the product of the 3rN modes: 

Zsystem = IIzmode 

Detailed quantum-mechanical considerations show that the 
energy levels of a linear oscillator are given by Sn = (n + !)hv, the 
!hv being the zero-point energy. Then, summing up the geometrical 
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series, 

Lx (-en) exp( -thv/kT) 1 h(thV) z = exp -- = = "2 esc -
kT 1 - exp( - hv/kT) kT 

n= 0 

(2.2) 

Now the number of modes in a crystal is so large, of the order of 
1023/cm3 , that it is advantageous to write 

NUMBER OF MODES BETWEEN FREQUENCIES V AND V + dv = 3rNg(v) dv 
(2.3) 

Obviously, the total number of modes is 3rN, so that 

( g(v)dv = 1 (2.4) 

With the distribution of frequencies g(v), equation (2.1) becomes 

A = 3rNkT fin [2 sinh(t~)Jg(V) dv 

= Eo + 3rNkT J: In [1 - exp( ~;v)Jg(V) dv (2.5) 

where 

Eo = t3rN J~ hvg(v) dv 

is the zero-point energy of the solid. The calculation of the specific 
heat is now straightforward, and it may be verified that 

C v = - TG~~) v = 3rNk J: (t~ Y CSCh2( t~) g(v) dv (2.6) 

This general introduction serves several purposes. For the sake 
of simplicity, the later calculations of specific heats will start from a 
discussion of the mean energy of the particles. In satisfying the 
didactic exigencies, it should not be forgotten that a pedestrian 
derivation from first principles is possible. Secondly, in some of the 
discussions it will not be obvious whether P or V is held constant, 
that is, whether Cp or Cv is calculated, mainly because there is no 
thermal expansion if harmonic vibrations are assumed. The above 
derivation makes it clear that only Cv is calculated. Thirdly, the 
thermodynamics of crystals has been reduced to the evaluation of the 
distribution of frequencies g(v). The determination of g(v) is a dyna­
mical problem of great complexity, and it is best to introduce the 
subject with the simple models proposed by Einstein (1907), Debye 
(1912), and Born and Von Karman (1912). 
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2.4. EINSTEIN'S MODEL 

Einstein, in his fundamental paper, considered a very simple 
model of lattice vibrations, in which all the atoms vibrate inde­
pendently of one another with the same frequency VE. In a substance 
such as copper, for instance, an atom has the same environment as 
any other atom, and it is plausible to suppose as a first approxima­
tion that all atoms vibrate with the same frequency VE • If that were 
so, g(v) would be zero for v #- V E and nonzero for v = VE • Then 
equation (2.6) immediately gives 

C = 3rNk(thVE)2 CSCh2(thVE) 
v kT kT 

(2.7) 

which is Einstein's well-known relation. 
It is, however, instructive to derive the same relation by a dif­

ferent method. The atoms in a solid vibrate about their mean posi­
tions, and for such localized particles Maxwell-Boltzmann statistics 
is applicable. This means that the probability of exciting an energy e 
at an equilibrium temperature T is proportional to exp( - e/kT). 
According to quantum theory, the energy levels of an oscillator v 
are given by en = (n + t)hv. In thermal equilibrium, the probability 
that a given oscillator will be in the energy state en is proportional to 
the Boltzmann factor exp( -ejkT), and so the average energy of the 
oscillator is 

L. en exp( -ejkT) L. ne- nx 

£ = n = thv + hv---
L. exp( -ejkT) L. e- nx 

where x = hv/kT. Now 

L. ne- nx d d 1 1 
L. e nx = - dx In I e - nx = - -In dx 1 - e- x eX - 1 

Therefore, at a temperature T, the mean energy of the oscillator is 

hv 
£ = thv + -----­

exp(hv/kT) - 1 
(2.8a) 

On differentiating this, the specific-heat contribution from the oscillator 
is seen to be 

ae kx 2ex 

aT (ex -1)2 
(2.8b) 
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In the Einstein model, all the 3rN independent vibrations have 
the same frequency V E• Hence, the total internal energy is 

E = 3rRT[-tXE + _X-'E'--] 
eXE - 1 

( _ hVE) X E -
kT 

and the molar heat capacity is 

The molar entropy is 

S = 3rK - In(1 - e- XE ) [ XE ~ 
eXE - 1 

(2.9a) 

(2.7) 

(2.7a) 

The quantity hVE/k plays the role of a scaling factor for temperature 
and is called the Einstein temperature TE• The Einstein functions 
E(TE/T) and C,.(TE/T) are tabulated in several places4 ,5 (see also the 
appendices at the end of Chapter 8). A consideration of the values of 
exponentials in equation (2.7) at very high and very low temperatures 
shows that 

(high temperature, T ~ TE) 

(2.10) 

(low temperature, T ~ TE) 

The Einstein theory leads to the Dulong~Petit value at high 
temperatures, and shows how at low temperatures the quantization 
of lattice vibrations results in a reduction of heat capacity. The 
theory contains one unknown parameter TE, which may be approxi­
mately related to the compressibility and density of the solid. For 
many materials, TE ~ 200oK, which accounts for the success of the 
Dulong~Petit law at room temperature. For diamond, with a value 
TE ~ 1326°K, Einstein was able to explain quantitatively the varia­
tion of Cv then available over a range of 200 to 12000K (Fig. 2.1). 
The simplicity of the theoretical analysis and the qualitative correct­
ness of the conclusions left no doubt that the decrease of specific 
heats of low temperature was indeed a quantum phenomenon. 

In order to check Einstein's theory in some detail, systematic 
calorimetric measurements were undertaken at low temperatures by 
Nernst, Eucken, and others. The qualitative features of Einstein's 
theory were confirmed very well, but the quantitative agreement was 
not satisfactory. In particular, equation (2.10) shows that below 
T /TE ~ 0.1, the specific heat should become extremely small, of the 
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Fig. 2.1. Temperature variation of heat capacity in Einstein and Debye models. 
Original comparison of Einstein for diamond (TE = 1326°K) and of Debye for 

aluminum (OD = 396°K) are shown. 

order of mJ/mole' deg, whereas experimentally the decrease was 
much slower (Fig. 2.1). Several workers, including Einstein himself, 
recognized that the model was oversimplified.6 In a tightly coupled 
system, such as a lattice, the motion of one atom affects the vibrations 
of the others and the atoms can vibrate with several frequencies. 
Experimentally, Nernst and Lindemann pointed out that the observa­
tions could be fitted better if two frequencies VE and tVE were used 
instead of VE alone. In the simple model, there is no provision for 
vibrations of low frequencies, which alone can be fully excited in the 
region of small energies, i.e., at low temperatures. These ideas 
culminated in the calculations (1912) of Debye and Born and Von 
Karman, who used a better description of lattice vibrational fre­
quencies. Debye's model is the simpler and will be taken up in the 
following section. 

Despite the cursory dismissal usually accorded to Einstein's 
oversimplified model, the calculation was a fundamental step in 
enlarging the field of application of quantum ideas. A great deal of 
experimental and theoretical work on the specific heats of solids and 
gases was inspired by it. Indeed, even today Einstein's calculation 
remains useful as a very simple approximation in many problems of 
the solid state and in discussion of molecular vibrations. 
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2.5. DEBYE'S MODEL 

The quantization of vibrational energy implies that at low 
temperatures only the low-frequency modes of lattice vibrations will 
be appreciably excited. Now the usual very-low-frequency vibrations 
of a solid are its acoustic oscillations. They have wavelengths much 
larger than atomic dimensions, and so in discussing their behavior 
the ideas of an elastic continuum may be borrowed. Debye calculated 
the distribution of frequencies which result from the propagation of 
acoustic waves of permitted wavelengths in a continuous isotropic 
solid and assumed the same distribution to hold good in a crystal, 
also. The use of such a g(v) turned out to be so extraordinarily success­
ful in explaining the thermal behavior of solids that it merits dis­
cussion in some detail. 

A plane wave propagating with velocity c in an isotropic medium 
satisfies the equation 

c2 '\1 Z¢ = a2¢ 
iJtZ 

For convenience, take a rectangular parallelopiped of sides L1, Lz, L3, 

on the faces of which the displacement amplitude is zero. Then the 
wave equation has a standing-wave solution of the form 

¢ = A sin q1x sin qzy sin q3Z sin 2nvt 

where the orders of the overtones ni are related to the wave vectors 
qi = 2n/}..i by 

An enumeration of the values of ni which give a frequency between 
v and v + dv solves the problem of finding K(v)dv. In a practical case, 
the number of modes, approximately 1023 /cm3, is so large that the 
ni may well be treated as continuous variables. The number of 
allowed values of ni in the range ni to ni + dni is then equal to 

L1LzL3 V 
,1n l,1nz,1n3 = ~-3--,1ql,1qZ,1q3 = ~3,1ql,1qZ,1q3 

n" n 

where V is the volume of the solid. Now the frequency of the wave is 

2 (qi + q~ + qncZ qZcZ 
v = -=-:'------=-~--"-=----

4n z 4n z 

Since the ni are all positive, this is nothing but the equation for the 
first octant of a sphere in the q 1 q zq 3-space. The volume of the shell 
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between q and q + dq, equal to k4nq2 dq, corresponds to (V/2n2) q2 dq 
allowed values of ni . In terms of frequencies, the number of allowed 
modes between v and v + dv is 

4nV 
n(v) dv = -3-V2 dv 

C 
(2.11) 

In an elastic solid, three types of waves are possible. 7 •s One is 
the longitudinal wave with velocity CL> for which 4h may be taken as 
the dilatation of a volume element. The other two are transverse 
shear weaves, and for them ¢ TJ, ¢T2 are the components of the rotation 
of a volume element. In an isotropic solid, which is being considered 
at first, the transverse waves have the same velocity CT. Adding the 
three contributions, the number of frequencies between v and v + dv 
in an elastic solid is 

(2.12) 

Considerations of simplicity necessitated a derivation of equation 
(2.12) for a rectangular parallelepiped, but the result is not significantly 
altered by considering a large body with any shape. The same remark 
holds good for several other distributions of energy levels considered 
in this book (Sections 2.8 and 6.3). Mathematical proofs of this 
assertion have been given in various cases. 9 

Oebye suggested that the collective low-frequency oscillations of 
the solid given by equation (2.12) should be applied even at high 
frequencies and that the discrete nature of the atomic lattice should 
be taken into account by setting a minimum to the allowed wave­
lengths. The corresponding upper limit VD to the frequency is to be 
obtained from the normalizing condition, equation (2.4), that the 
total number of modes is equal to 3rN per mole. Thus, taking the 
molar volume to be V, 

4nV _ 3 - 3 3 
-3-(CL + 2cT )vD = 3rN 

or (2.13) 
v = (9rN)I/3(C_ 3 + 2C- 3)-1/3 

D 4nV L T 

For the cut-off procedure to be meaningful, the limiting wavelength 
should have atomic dimensions. In a typical solid, the minimum 
possible wavelength is 

~ (4nV)I/3 ~ ( 4n x 10 ) 1/3 ~ 3A 
9N 9 x 6 X 1023 

which is indeed of the same order as the lattice spacing. 
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The distribution of frequencies may therefore be taken as 

3v 2 

g(v) =-3 
VD 

for v :S; VD 

= 0 for V> VD 

(2.14) 

Each wave of frequency v has an energy hv and momentum hi) .. 
In the quantum formulation, the lattice waves are called phonons; 
equation (2.14) represents the Debye approximation to the phonon 
spectrum of a crystal lattice (Fig. 2.5b). The characteristic temperature 

is known as the Debye temperature. 
It is now a simple matter to check that 

E = 3rN !hv + h Ik/ ---;- dv fVD [ h J 3 2 

o e V_I VD 

_ 9rNk(J 9rNkT4 foiT x 3 dx 
- 8 + (J3 eX - 1 

o 

9rNk(J3folT [x I (1 -X)] 2 d s= ----n -e x x 
T3 eX - 1 

o 

[4T 3JOIT X3 dx l 
= 3rNk 7f3 0 eX _ 1 - In(1 - e-OIT)J 

fVD (hV) 2 ehvlkT 3v 2 

Cv = 3rNk 0 kT (ehvlkT _ If vt dv 

= 9rNkT 3JOIT x 4 ex dx 
(J3 (eX - If 

o 

_ [4T 3 fOIT x 3 dx _ (J/T ] 
- 9rNk (J3 X OIT 1 

o e - 1 e -

These are the famous relations derived by Debye. 

(2.15) 

(2.l6a) 

(2.16b) 

(2.17) 

Two general remarks are appropriate here before discussing the 
theory in detail. According to quantum statistics2 ,3, the smallest 
possible cell in the p,q-phase space (momenta Px, Py, Pz, coordinates 
qxqyqz) is of volume h3. In a gas of free particles contained in an 
enclosure of volume V, the number of allowed cells n(p) dp between 
momenta p and p + dp is h- 3 IH HI dpx dpy dpz dqx dqy dqz. The 
integration over dq is equal to V. Next, converting the integral over 
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dp into spherical polar coordinates, 

4nV 
n(p) dp = yp2 dp 

31 

(2.18) 

Considering phonons as free particles with p = hi)., this immediately 
gives equation (2.11). Secondly, in the preceding derivation, Maxwell­
Boltzmann statistics was applied to the vibrations of localized atoms 
in deriving equation (2.7). Instead, one may consider a set of phonons 
obeying Bose-Einstein statistics and derive Debye's results. This 
point of view is adopted in Section 5.4 in treating a closely related 
problem. 

2.6. COMPARISON OF DEBYE'S THEORY WITH 
EXPERIMENTS 

The Debye model has been extremely successful in correlating 
the specific heats of solids. The temperature variation of Cv given 
by equation (2.17) is obeyed very well by a variety of substances, a 
typical example being given in Fig. 2.1. At high temperatures, the 
integrand in equation (2.17) approaches x 2 , so that 

(T ~ 0) (2.19) 

At very low temperatures, the upper limit of the integral may be 
taken as infinity, when the integral has a value 12n4/45. Thus, for 
T < OliO, 

Cv = ? rRn4(;Y = 464.3(;Y cal/mole' deg (2.20) 

= 1944(~y J/mole . deg 

At intermediate temperatures, the Debye function must be evaluated 
numerically/o and several tables exist. 4 • 11 A comprehensive 
numerical tabulation is reproduced at the end of Chapter 8. 

The T 3-variation at low temperatures was one of the first pre­
dictions of the theory. The T 4 -variation of the internal energy is the 
acoustic analog of the well-known Stefan-Boltzmann law that the 
energy density of a photon gas is proportional to T4. Debye's pre­
diction was soon verified, and the specific heat of many dielectric 
solids, such as rocksaIt, sylvine, fluorspar, etc., show excellent agree­
ment with the theoretical law. In Fig. 1.1a, an example was given to 
illustrate the T 3-behavior at sufficiently low temperatures. As a 
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matter of fact, the T 3-law is so universal at very low temperatures 
that it has found a permanent place in the theory of specific heats, 
although the range of validity has now been restricted to T < 8/50 
on account of more recent theoretical work to be described later. 

Apparent deviations are found in some cases for rather obvious 
reasons. Graphite, boron nitride, and other layered materials, which 
behave like two-dimensional crystals, show a T 2-variation at some 
temperatures. Similarly, long-chain molecules such as sulfur and 
some organic polymers exhibit a variation linear in T at some tem­
peratures, as pointed out by Tarasov and coworkers. Even in these 
cases, detailed calculations show that at sufficiently low temperatures 
a T 3-law should be present, and such measurements have been 
carried out recently. 12 

Over wide ranges of temperature, the Debye theory has the note­
worthy and attractive feature of making the specific heat depend 
upon a single parameter 8. Therefore, with a suitable choice of the 
temperature scales, the heat capacities of all substances should fall 
on the same curve. Schrodinger 13 and later Eucken 1 reviewed the 
specific-heat data available prior to 1928 and found extraordinarily 
good agreement with Debye's theory. Figure 2.2, adapted from 
Schrodinger's review, makes the excellence of the agreement self­
evident. Striking agreements such as this have resulted in a wide­
spread application of Debye's theory to a variety of solid state 
problems, some of which will be mentioned in Section 2.11. 

___ T. 
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Fig. 2.2. Heat capacities of several substances (in cal/mole'deg) compared with Debye's 
theory. For the sake of clarity, portions I and III are shown shifted. 
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It will be seen later that small deviations from the theory are 
found and that if at each temperature the specific heat is fitted to a 
Debye term then the resulting values of e vary slightly with tempera­
ture. 14 In a good many cases, the variation of e from its mean value 
is less than about 10 %, though a few exceptions, for instance, zinc 
and cadmium, show variations of more than 20 %. For a preliminary 
calculation of specific heats, a list of Debye characteristic tempera­
tures, as given in Table 2.111, can be used with complete confidence. 
The values given in Table 2.111 have been taken at T - e12, which 
gives a reasonable fit over most of the specific-heat curve. 10 In 
Chapter 3, e values of some metals are given, but there e refers to 
eo, the value at very low temperatures, since the specific-heat data 
at very low temperatures are involved. 

Table 2.111. Debye Characteristic Temperatures of Some 
Representative Elements and Compounds (in deg K at T - e 12) 

Element (J Element 0 Element (J Element 

A 90 Dy 155 Mg 330 Sb 
Ac 100 Er 165 Mn 420 Se 
Ag 220 Fe 460 Mo 375 Si 
AI 385 Ga(rhom) 240 N 70 Sn (fcc) 
As 275 Ga (tetra) 125 Na 150 Sn (tetra) 
Au 180 Gd 160 Nb 265 Sr 
B 1220 Ge 370 Nd 150 Ta 
Be 940 H (para) 115 Ne 60 Tb 
Bi 120 H (ortho) 105 Ni 440 Te 
C(diamond) 2050 H (n-D 2 ) 95 0 90 Th 
C (graphite) 760 He 30 Os 250 Ti 
Ca 230 Hf 195 Pa 150 TI 
Cd (hep) 280 Hg 100 Pb 85 V 
Cd (bee) 170 I 105 Pd 275 W 
Ce 110 In 140 Pr 120 Y 
CI 115 Ir 290 Pt 225 Zn 
Co 440 K 100 Rb 60 Zr 
Cr 430 Kr 60 Re 300 
Cs 45 La 130 Rh 350 
Cu 310 Li 420 Rn 400 

Compound (J Compound (J Compound () Compound 

AgBr 140 BN 600 KCI 230 Rbi 
AgCI 180 CaF2 470 KI 195 Si02 (quartz) 
Alums 80 CrCI 2 80 LiF 680 Ti02 (rutile) 
As2O) 140 CrCI) 100 MgO 800 ZnS 
As2O, 240 Cr2O) 360 MoS 2 290 
AuCu) (ord) 200 FeS2 630 NaCI 280 
AuCu) (disord) 180 KBr 180 RbBr 130 

() 

140 
150 
630 
240 
140 
170 
230 
175 
130 
140 
355 
90 

280 
315 
230 
250 
240 

() 

115 
255 
450 
260 
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A fundamental feature of Debye's theory is the connection 
between elastic and thermal properties of substances. The charac­
teristic temperature () may be determined from the velocities of 
longitudinal and transverse sound waves, using equations (2.13) and 
(2.15). In crystals, a complication arises because the velocity of 
elastic waves depends upon the direction of propagation in the aniso­
tropic medium. In general, the three modes have different velocities 
and are not separable into pure longitudinal and pure shear modes. 7,8 

It is then convenient to define a mean velocity 

3(2)~ 1 = cZ 3 + 2c y3 = (4n)~ 1 f L Ci~3 dO 
i= 1,2,3 

where dO is an element of solid angle in which the velocities are 
c1, c2 , C3 . Various approximate procedures for calculating the mean 
velocity in terms of the elastic constants are reviewed by Blackman 1 0 

and Hearmon. 7 Table 2.IV gives some values of () originally calcu­
lated by Debye from the elastic constants of polycrystalline materials. 
A comparison with the calorimetric results at moderate temperatures 
reveals a surprisingly good agreement in spite of the uncertainty in 
the elastic constants. Equation (2.13) gives a dependence of () upon 
the density of the substance; in the case of solid helium-four and solid 
helium-three, which are highly compressible, () can be changed by as 
much as 30 % with a moderate pressure of about 150 atm. Another 
good example is the dependence of () upon the isotopic mass of the 
atom, which is easily observable in lithium isotopes of masses 6 
and 7. The experimental difference 15 of 9 ± 2 % is in quantitative 
agreement with the theoretical estimate of 8 %. Such a correlation 
of the thermal and mechanical properties of solids must be considered 
a great triumph of the theory. 

In view of these remarkable successes, the Debye theory has 
found a permanent niche in solid state physics. It is based on a 
simple and understandable model. Cv is expressed in terms of a 
single parameter () and is in reasonably good agreement with experi­
mental values. The predicted T 3-behavior is verified at low tempera-

Table 2.IV. Comparison of ()-Values from Calorimetric and 
Elastic Data at Room Temperature 

Substance 

£I-value Al Cu Ag Au Cd Sn Pb Bi Pt Ni Fe 

Elastic 399 329 212 166 168 185 72 111 226 435 467 
Calorimetric 396 313 220 186 164 165 86 111 220 441 460 
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tures. Further, the theory allows a satisfactory correlation of the 
calorimetric measurements with elastic and other properties of the 
substance. 

2.7. SHORTCOMINGS OF THE DEBYE MODEL 

The great popularity of Debye's theory of specific heats should 
not blind us to its defects. The first hint that all was not well with 
the theory came from the early observations of Eucken, Griineisen, 
and others that if 0 was calculated from the low-temperature elastic 
constants, the agreement with the thermal values became worse 
instead of better. For instance, in aluminum, O(elastic) is 399°K at 
room temperature and 426° at OOK (Tables 2.1V and 2.V), while 
O(thermal) is 396°. Further, 0 as deduced from the T3-law [equation 
(2.20)] did not always agree with the value needed to fit the whole 
of the specific-heat curve. This dilemma was resolved only after the 
development of the lattice theory. 

When accurate values of specific heats at low temperatures 
became available with improved calorimetric techniques, it was found 
that equation (2.17) for Cv did not fit the experimental results exactly. 
This is usually demonstrated by calculating the effective values of 0 
necessary to fit the experimental data with equation (2.17) at each 
temperature. Of course, if Debye's model is really correct, a constant 
value of 0 should be obtained, but in practice this is not SO.14 Often, 
as the temperature is lowered the effective value of 0 begins to 
decrease slightly around 0/2, has a minimum, and then rises to attain 
a constant value below 0/50. Thus, at temperatures well below 0/50 
and above 0/2, the theory works well, with a different O-value in 
each range. Figure 2.3 shows a recent study of the 0-T dependence 
in sodium iodide. 16 At one time, such deviations were attributed to 
experimental errors, impure specimens, and other extraneous causes, 
but since the theoretical work of Blackman in 1937, to be discussed 
below, it has been known that these deviations are genuine. 

The fundamental deficiency in the Debye model is the inade­
quate treatment of the effects arising from the discreteness of atomic 
arrangements in the crystal. The periodicity of the lattice causes the 
medium to be dispersive; that is, the velocity of propagation of the 
lattice wave is a function of the frequency. This phonon dispersion 
was correctly taken into account in the model proposed by Born and 
Von Karman in the same year (1912) as Debye's work. However, 
the lattice model resulted in cumbersome mathematics, and Born and 
Von Karman's original calculation did not give as good a fit with 
experiments as Debye's simpler analysis. Hence, the application of 
lattice dynamics (which Born continued to develop in connection 
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Fig. 2.3. Variation of effective Debye temperature () with T for 
sodium iodide. 16 

with other problems in solid state) to the question of specific heats 
lay dormant until Blackman's analysis showed its fundamental 
significance. 17 

2.S. THE BORN-VON KARMAN MODEL 

A complete enumeration of the vibrational modes of a three­
dimensional lattice involves formidable computations, as will become 
obvious later. In an elementary text, it is not practicable to go into 
these details, and so only the simplified case of a one-dimensional 
lattice will be considered. It turns out that a linear monatomic lattice 
does not exhibit one of the characteristic features of a three-dimen­
sional crystal, namely, the presence of optical modes. Therefore, the 
simplest illustrative case is that of a linear diatomic lattice. 
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To visualize the effects caused by the atomic structure of crystals, 
consider a one-dimensional chain with two kinds of atoms, spaced a 
apart. Atoms of mass m are placed at even lattice points ... 2na, 
(2n + 2)a, ... , while masses M are at odd sites ... (2n - l)a, (2n + l)a, .... 
For simplicity, assume further that each atom interacts only with its 
two neighbors so that a relative displacement Un+! - Un causes a 
force f3(un+! - un) to act on atom n. Then the equations of motion 
for the 2n and 2n + 1 particles are 

mU1n = f3(u1n + 1 - U1n + Uln-! - U1n) 

Mu1n +! = f3(U1n +1 + U1n - 2u1n + d 
The boundary conditions do not significantly alter the distribution 
of frequencies,9 and so the solutions may be taken in the simple form 

Uln = ~ exp i(wt + 2nqa) 

U1n +! = IJ exp i[wt + (2n + l)qa] 

Substituting in the equations of motion, 

-wlm~ = I3IJ(e iqa + e- iqa) - 2f3~ 

-w1MIJ = f3~(eiqa + e- iqa) - 2f3IJ 

(2.21 ) 

(2.22) 

The condition that there are nonzero solutions ~,IJ describing a wave 
is that the determinant of the coefficients must vanish: 

or 

-213 cos qa 
=0 (2.23a) 

-213 cos qa 

w1 = f3(M-! + m-!) ± f3[(M-! + m-!)l - 4M-!m-! sinlqa]1/1 
(2.23b) 

The two roots correspond to two different branches of the 
frequency-wave vector relationship, which is shown in Fig. 2.4a. 
For small q, the roots are (i) w1 = 2f3a1ql/(M + m) and (ii) w2 = 
2f3(M-! + m-!). If the root (i) is used, equation (2.22) gives ~ ~ IJ; 
that is, the atoms move together as in ordinary sound vibrations 
with velocity [2f3a 2/(M + m)F/2. This branch is called the acoustical 
branch. If the root (ii) is used, equation (2.22) gives ~ ~ - (m/M)IJ; 
that is, the atoms vibrate against each other. If m and M have op­
posite charges, such a motion may be excited with electric waves, as, 
for example, by light waves. For this reason, the branch (ii) is called 
the optical branch. The w-q curve may be stopped at q = n/2a, 



38 

M m 

~I 

I , I 
I , , 

\ I 
\ I , , I I , , 
" '~' 

, 
I I , I 
' I 
" 

\ 2~1 ml'l, , 
I 

[1J MI' , 

- 2. 

" , , , 
I 

Chapter 2 

UD - - - - - - - - - - - - ... - -

I 

I 
I 

i' 
I 

I', , , \ 
, \ 

: \ 

Fig. 2.4. Phonon dispersion: (a) linear diatomic lattic showing dispersion of acoustical 
and optical branches, (b) elastic continuum, (c) atomic displacements for a wavelength 

~a (broken line) indistinguishable from those for a wavelength 7a (full line). 

because a continuation beyond this gives no new frequency, and it 
may be shown l8 from the solutions U2mU2n+I"" (see also Fig. 2.4c) 
that the atomic displacements are indistinguishable from those cor­
responding to Iql :s; n/2a. In three dimensions, the lattice constant a 
varies with direction in the crystal, and all the frequencies are in­
cluded in a volume of q-space called the first Brillouin zone. Elemen­
tary discussions of wave propagation in crystals, together with several 
electrical and mechanical analogies, have been given by Brillouin 18 

and W annier 19. 

Compared to the dispersion relation w = cq in an elastic con­
tinuum (Fig. 2.4b), the lattice case has two special features. Firstly, 
the diatomic or polyatomic lattice has additional types of vibration 
in the form of optical modes, and secondly the phase velocity w/q 
varies with q even in the acoustical vibrations. In recent years, 
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experiments using neutrons as probes have strikingly confirmed these 
predictions. 2o,21 It may be noted in passing that for a monatomic 
chain (M = m) the determinant (2.23a) has only the acoustical branch 
as a solution. 

Next, it is necessary to find out which values of q are allowed. 
For this purpose, consider first a chain of N + 1 atoms with the 
atoms 0 and N fixed. Standing waves ofthe type Un = A sin wt sin nqa 
are the solutions appropriate to this case. The condition that the 
end atoms are fixed gives sin Nqa = 0 or q = (n/Na)r, where 
r = 1,2, ... , N - 1. The condition r = 0 is excluded because this 
gives Un = 0; that is, all the particles are at rest. The number of 
allowed modes is the same as the number of vibrating atoms. The 
w-q relationship consists of N - 1 discrete points, but when N is 
large (of the order of 1023 , as in practical cases) it may be taken as a 
continuous curve. While a finite chain has standing-wave solutions, 
it is often convenient to work with traveling waves, which are easily 
introduced by the Bom-Von Karman cyclic boundary condition. 
On account of the macroscopic homogeneity of a crystal, a segment 
containing a large number N of atoms may be assumed to have the 
same microstructure as a nearby piece. In other words, it is assumed 
that Un + N = Un' This gives exp(iNqa) = 1 or q = (2n/Na)r, where 
r = ± 1, ± 2, ... , ± N /2. Again, r = 0 is omitted because there is no 
motion in this case. There are N allowed values of q describing 
progressive waves traveling in either direction. The number of 
allowed modes is equal to the number of particles in the segment. 
The q-values are uniformly distributed in the fundamental interval, 
and when N is large the discrete distribution may be replaced by a 
continuous distribution. By a similar argument, it may be shown 
that in three dimensions the allowed values of q are uniformly distri­
buted within the first Brillouin zone and that their number is thrice 
the number of atoms in the crystal. 

Qualitatively, it is easy to see how the dispersion of acoustical 
and optical phonons affects the distribution of frequencies and the 
specific heat of a crystal. Suppose the dispersion relations have been 
found for all the directions in the lattice, each involving, of course, 
different limiting frequencies. Now, over a solid angle dO (instead 
of over 4n), equation (2.11) may be written as 

n(v) dv dO = V q2(dq/dw) d(2nv) dO (2.24) 

so that g(v) is proportional to q2(dq/dw). In a continuum, this term is 
c- 3 V 2 [equation (2.11)]. In the lattice case, n(v) starts as v2 near zero 
on account of the low-frequency phonons. As the frequency is in­
creased toward the limiting value of the acoustic mode, dq/dw and 
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hence n(v) become very large. With further increase of v, there is a 
gap, followed by another peak due to the limiting value of the optical 
modes at q = nj2a, and finally the contribution from the optical 
modes. 

When n(v) is summed over all directions, g(v) has a characteristic 
presence of two peaks from the various limiting frequencies at 
q = nj2a (Fig. 2.5c). Instead of a gap between the two peaks, there 
is only a smeared-out shallow minimum, because the limiting fre­
quencies depend upon the direction of wave propagation. The 
frequencies of the optical modes in Fig. 2.4a do not vary very much, 
and since their contributions cover a narrow range of v, the second 
peak in Fig. 2.5c is very much higher than the broad acoustic peak. 
[In ionic crystals, the optical modes cover a wide range of frequencies, 
and correspondingly the optical peak is weak in comparison to the 
first peak (Fig. 2.6a).] Further, g(v) is proportional to 1'2 at l' -- 0, 
being the result of low-frequency acoustic modes averaged over all 
directions. These features were pointed out first by Blackman in 
1937 in the calculation of g(v) for a simple cubic lattice. 

The lattice heat capacity C g (g from German Gitter = lattice) 
given by such a frequency distribution is easily estimated, if it is 
recalled that at low temperatures only the low-frequency modes with 
small values of hI' will be excited. Near V = 0, g(v) varies in the 
Debye fashion, which means that at very low temperatures () will be 
a constant. As the temperature is raised, more modes are excited 
than given by the Debye model; that is, the specific heat is greater. 
Therefore, the effective Debye temperature decreases. The presence 
of the maximum followed by a minimum ensures that the effective (} 
goes through a minimum and then levels off. Thus, (} varies in a 
manner very similar to that shown in Fig. 2.3. The lattice theory 
explains at one stroke why the Debye model is broadly successful 
and why the effective Debye temperature is slightly temperature­
dependent. In Section 2.10, some examples will be given to show 
how the lattice calculations are successful in quantitatively explain­
ing the observed variation of (} with T. 

2.9. CALCULATION OF g(v) 

In the elementary calculation of phonon-dispersion relations 
given above, drastic simplifications were made in assuming a one­
dimensional lattice with nearest-neighbor interactions. In an actual 
case, not only is the solid a three-dimensional lattice but also the 
atomic interactions extend over several neighbors. Thus the computa­
tion of g(v) for any lattice involves two main hurdles: knowledge of the 
interatomic forces and solution of the equations of motion for a 



Lattice Heat Capacity 41 

large number of wave vectors along a large number of crystal direc­
tions. Since the logical necessity of knowing g(v) to calculate Cv and 
many other properties of solids is hardly in doubt nowadays, much 
effort has been put into the problem of evaluating g(V).10.21,22 

Regarding the nature of interatomic forces, we know that 
Coulomb forces are present between charged ions, but apart from 
this little else can be said ab initio. The practice has been to assume 
simple models of forces, for example, bond-stretching and bond­
bending forces, volume forces for electronic clouds in metals, etc., 
and to calculate their magnitude from the experimental values of 
elastic constants and optical frequencies at q = O. The early calcula­
tions of g(v) were made in this way with two or three force constants. 
More recently, inelastic neutron-scattering experiments have given 
the w-q relations along several directions in many crystals. By fitting 
the theoretical dispersion curves with the experimental ones, numeri­
cal values of a number of force constants may be obtained. In this 
manner, a reasonable, though by no means completely satisfactory, 
amount of information about interatomic forces may be gathered. 

Getting enough frequencies to have a good picture of g(v) is 
purely a question of the labor and tedium involved in such computa­
tions. The original sampling method pioneered by Blackman was to 
take a set of q-values along different directions and calculate the 
corresponding v. Use was made of the symmetry properties of the 
lattice. Of late, the exploitation of electronic computers for such 
work has eased the formidable computational task, and the resulting 
g(v) is limited in accuracy only by the knowledge of the force constants. 
A measure of the progress made in the computational problem may 
be inferred from the fact that in 1964 Brockhouse, Woods, and co­
workers, using phonon-dispersion curves of sodium obtained from 
neutron-scattering experiments, determined g(v) from 35 million points 
inside the Brillouin zone,23 whereas in 1940 Kellerman's monumental 
work on sodium chloride was based on 6000 points. Actual fre­
quencies were calculated for about one-twentieth of the total number 
of points, and the others were obtained by making use of the sym­
metry of the crystal. In the early calculations on sodium chloride 
and diamond lattices, symmetry considerations were not properly 
applied,21,24 so that the results, quoted widely in many reviews, are 
somewhat doubtful. 

Since the calculation of g(v) is laborious, several approximate 
methods have been used in the past. In effect, the Einstein and Debye 
models may be considered very crude approximations to g(v). A 
somewhat better approximation, first used by Houston, is to calculate 
w-q relations for a few symmetric (say, [100], [111], [110]) directions 
in a cubic crystal and use interpolation techniques to estimate g(v). 
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Another method, developed by Thirring, Montroll, and others, is to 
approximate g(v) from a knowledge of its moments J g(v)v2n dv, which 
can be calculated from the dynamical equations of motion. Although 
these approximations are sometimes convenient for calculating 
thermodynamic quantities, they are falling into disfavor with regard 
to mapping g(v). 

Besides these numerical estimates, analytical methods have also 
had some success. Some one- and two-dimensional lattices are 
amenable to detailed discussions, and exact expressions for g(v) 
have been obtained,21 but so far no realistic three-dimensional lat­
tice has yielded its secrets. However, an important advance was made 
by Van Hove in 1953. Using topological arguments (for which 
simple explanations have been attempted 19.21), he showed that the 
periodicity of the lattice implies the existence of various kinds of 

o 

o~--------~----­VE 

101 

o 

Ibl 

lei (d) 

Fig. 2.5. Frequency spectra of lattice vibrations: (a) Einstein model, 
(b) Debye model, (c) Blackman's approximation of lattice model, 

(d) schematic exact spectrum with singularities. 
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singularities in g(v). Thus, in a three-dimensional lattice, infinite dis­
continuities in the derivative og/ov must appear at certain critical 
points and the curve must have certain well-defined shapes near the 
singularities. In the more recent calculations of g(v), a knowledge of 
these critical points has been fruitfully exploited; Fig. 2.5d shows a 
typical g(v) with the location of the various singularities. 

If enough information on the interatomic forces is available and 
if g(v) is carefully delineated, the lattice theory gives a very good 
account of the experimental variation of () with temperature. Often, 
the theoretical situation is not so fortunate, and several authors have 
tried somewhat ad hoc combinations of Einstein and Debye terms 
to represent specific-heat variations. Mention was already made of 
the Nernst-Lindemann equation using two Einstein functions with 
frequencies VE and tvE . Simon attempted the combination of a 
Debye term with a Schottky term (Sections 4.9 and 7.1). Raman and 
coworkers have used a Debye term together with Einstein terms cor­
responding to optical frequencies, a practice common in representing 
the specific heats of organic solids. By a suitable choice of the fre­
quencies, any type of ()-T curve may be obtained.25 All these refine­
ments of the Einstein and Debye models may yield a reasonable 
variation of () with T, but they have neither the simplicity of Debye's 
theory nor the theoretical justification of lattice dynamics. Since 
the specific heat is the average over the entire g(v), agreement with 
the observed Cv should not be taken as a criterion for the correctness 
of a calculation of g(v~ It is also clear that any method to find g(v) 
from the experimental values of Cv is not likely to be accurate. In 
the past, several attempts at the inversion of specific heats to get g(v) 
have been made, which amply demonstrated how insensitive Cv is 
to the details of the frequency spectrum. 10.26 At present, experi­
mental information on phonon spectra is most conveniently obtained 
from neutron scattering, and to a lesser extent from diffuse X-ray 
scattering. 

2.10. COMPARISON OF LATTICE THEORY WITH 
EXPERIMENTS 

The literature on the theoretical calculation of g(v), both as an 
exercise in mathematical physics and in relation to specific heats cg 

of the lattice, is extensive.l0.21.22 The purpose of the present work 
is best satisfied by a few examples illustrating the problems involved. 

The first example is sodium chloride,27 which is a simple lattice 
investigated several times. The Na + and Cl- ions exert Coulomb 
forces on one another in addition to the short-range repUlsive forces 
arising from the overlap of electron clouds. Dielectric studies reveal 
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that the effective charge on the ions is about ±0.8e rather than ± ie, 
on account of the partial shielding of the charges by the electronic 
clouds. Further, the polarizability of the ions means that small 
virtual dipoles will be induced during the lattice vibrations. These 
factors were taken into account using elastic and optical data at 
q = 0, but the distribution was calculated from only about 500 points 
in the Brillouin zone. A smooth line drawn through the histogram 
is shown in Fig. 2.6a; such g(v) are typical of many early calculations. 
The temperature variation of 0 shown in Fig. 2.6b follows the experi­
mental results closely. Considering the uncertainties in estimating 
the interatomic forces and the approximate calculation of g(v), we 
should hardly expect an exact fit with the experiments. The fact that 
theory and experiment follow the same trend and differ only in a 
normalizing factor must be considered satisfactory. It is also to be 
noticed that the minimum in {} is very shallow and may easily be mis­
taken for the true T3-region reached at very much lower temperatures. 
For this reason, such shallow minima are called pseudo T3_ regions. 

The second example to be considered is aluminum,28 for which 
a model of interatomic forces was fitted to the experimental phonon 
dispersions along simple directions obtained from diffuse scattering 
of X-rays at about 3000 K The g(v) was deduced from a total (includ­
ing those obtained by symmetry) of 150,000 points, and is illustrated 
in Fig. 2.7a The singularities were located by Phillips, and the full 
line shows the theoretical curve, taking into account the infinite 
changes in slope at, for example, v = 4.1, 5.9, 7.8, 8.1, 8.3, 9.0, and 
9.4 x 1012 cps. This has transformed g(v) from a dull-looking affair 
into an interesting curve. Only after such detailed calculations can 
it be said that for the given force constants the curve of Fig. 2.7b 
is representative of g(v). The calculated values of {}(curve A) do not at 
first agree well with the experimental values for the simple reason that 
no account has been taken of the anharmonic effects present. (For 
the sake of simplicity, we have preferred to leave the complicated 
effects of anharmonicity in lattice dynamics to the specialized 
reviews 29 on the subject.) When they are approximately included 
(curve B of Fig. 2. 7b), the agreement with the experiments is noticeably 
improved. At OOK, the {}-values calculated from elastic data must 
agree with the calorimetric values (Table 2. V); the fact that they do 
not in Fig. 2.7b shows that the model of force constants used in the 
calculations is not very accurate, as later studies have also revealed. 
Nevertheless, there is little doubt that if better force constants are 
used, the theory will accurately describe the experimental variation 
of 0 with T. 

Our final example is sodium,23 subjected to one of the most 
detailed studies so far. Information about the interatomic forces was 
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v( 10"cp.) 
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200 300 

Fig. 2.7. Aluminum 28 : (a) frequency distribution (full line calculated using singularities 
in phonon spectra~ (b) effective /I-values obtained from g(v). Curve A is with no 

allowance for anharmonicity, and B is with partial allowance for anharmonicity. 
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derived from the complete phonon-dispersion relations along several 
directions obtained by inelastic scattering of neutrons. The g(v), 
given in Fig. 2.8a, was based on 35 million frequencies. Critical 
points are located at v = 0.93, 1.67, 2.56, 2.88, 3.47, 3.58, and 3.82 
(units 1012 cps). The calculated specific heats are in good agreement 
with the experimental values. Unfortunately, a martensitic trans­
formation at low temperatures makes an interpretation of the experi­
ments below about 300K very difficult, and the values given refer to 
a slightly different crystal structure. Nevertheless, the calculated 
e-T curve fits reasonably well with the experimental curve. Sodium 
melts at 370o K, and even at about 2000K the lattice vibrations are no 
longer harmonic. The specific heat usually rises above the classical 
Dulong-Petit value of 3R, although detailed measurements are not 
available in many cases. At T ~ e, anharmonic effects are appreciable, 
and the consequent increase in specific heats is reflected as a reduc­
tion of the effective e, as in Fig. 2.8b. Theoretically, the change in 
g(v) caused by the presence of anharmonicity has to be taken into 
consideration Moreover, near the melting point, the generation of 
vacancies makes an additional contribution to the specific heat 
(Section 8.4). 

There are numerous calculations of g(v) and its relation to specific 
heats and other properties. The net impression is that the lattice 
theory is logically correct and esthetically satisfying. It correlates 
thermal, elastic, dielectric, and other properties not only with each 
other but also with the fundamental interactions among the atoms. 
In practice, it requires formidable calculations involving several para­
meters. Where detailed information on the interatomic forces and 
facilities for computation are available, the experimental variation of 
e with T is explained to satisfaction, an example of the saying, "No 
pains, no gains." If the Debye theory is sufficient as a rule of thumb, 
the lattice calculation repays the labor involved in it with a significant 
improvement. 

2.11. DEBYE e IN OTHER PROPERTIES OF SOLIDS 

From the above discussion, it is obvious that the Debye charac­
teristic temperature e has lost its original significance as a measure 
of the limiting frequency of lattice vibrations and has become an 
effective parameter describing the thermal behavior of the solid. 
Many phenomena in solids involve lattice vibrations, and their 
theories become far too complicated to be of practical use unless 
they descend to mundane levels by approximating g(v) with a simple 
Debye function Thus, the Debye e is commonly encountered in solid 
state studies. In view of the approximations made in the theories, 



t 

IS
O

 

17
0 

.. 
. 

"0
 ~ ,.. ~ :ii 

J 

) \ 
16

0 
~
 

>i
 

-;:
 

Z' 
a;

 
:'!

 

f\.
. 

<
c 

2 
IS

O
 

~
 

0
0

 
,.

.,
00

 
0

0
 ...
...

...
...

 -
0 

5
~
 

0 

I ~ 
14

0 

13
0 

0
.5

 
1

.0
 

1
.5

 
2

.0
 

2
.5

 
3

.0
 

3
.5

 
4

.0
 

ii 
40

 
SO

 
12

0 
16

0 
20

0 

F'
~u
en
cy
 (

x
 1

0
" 

cp
.)

 
T

(d
"9

 K
) 

Q
 

(a
l 

F
ig

. 
2.

8.
 

S
od

iu
m

2
3

: 
(a

) 
g(

v)
, 

(b
) 

(J
-T

 p
lo

t.
 

(b
) 

.. l .. N
 



Lattice Heat Capacity 49 

there is no reason to expect the numerical values of () derived from 
the calorimetric measurements (denoted for clarity by (}D) to be 
exactly equal to those obtained from various other properties. All 
the same, specific heats may be roughly estimated from them if 
calorimetric data do not exist; conversely, a knowledge of specific 
heats is of use in other fields of study. In order to illustrate this inter­
relationship, a brief discussion is given here, leaving the details to 
suitable reviews.l0.30.31 

2.11.1. (}-Values from Elastic Properties 
In Debye's theory, the correlation between thermal and elastic 

properties is very simple and has been mentioned earlier. In the 
detailed lattice calculations, g(v) oc v2 dependence holds good only 
near v = 0 and is the result of averaging low-frequency acoustic 
phonons over all directions. Near OaK, only these waves will be 
excited to any degree. The propagation of phonons whose wave­
length is very much longer than the atomic spacings is not influenced 
by the details of atomic structure or interatomic forces. Thus, accord­
ing to lattice theories, (}-values calculated from elastic and thermal 
measurements should be identical as T - O. Table 2. V, taken from a 
careful survey by Alers and Neighbours,32 shows how closely this 
relation is obeyed 

At higher temperatures, specific heats depend upon the full g(v), 
whereas elastic constants measure g(v) only at v - O. Thus, (}D is in 
general different from (}(elastic~ This was the anomaly noted earlier 
in connection with Debye's theory (Section 2.7), and it is now obvious 
that the difference is not really "anomalous." A calculation of the 
difference using a quasi-harmonic theory, where the temperature 
variation of lattice spacings and interatomic forces are included, is 
obviously very involved. Even at low temperatures, small dis­
crepancies between (}(El.) and (}(thermal) are sometimes observed 
in glasses, fused quartz, and other glassy materials. They are attri­
buted to nonelastic low-frequency modes present in such amorphous 
media. 33 

Table 2.V. Comparison32 of (}D and (}(El.) at T -+ 0 

Ag 

226.4 
226.2 

Cu 

344.4 
345.1 

Substance 

AI 

428.2 
426 

NaCI 

321.9 
320 

KBr 

172.8 
174 

LiF 

734.1 
737 
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2.11.2. O-Values from Compressibility and Melting Point 

It was originally noted by Madelung and Einstein that a relation 
between the compressibility and the characteristic temperature can 
be derived using simple models of a solid. More recently, Blackman 
showed that for ionic crystals of NaG or esG structure, the Debye 
temperature at high temperatures is related to the compressibility x 
by means of the relation 

Ox = ~(5ro)1/2 
k mx 

(2.25) 

where 2ro is the lattice spacing and m is the reduced mass of the ions. 
Table 2.VI compares such values of O(denoted as Ox) with the thermal 
values at high temperatures 10 and a reasonable correlation is found. 

Another simple relation, due to Lindemann, connects the charac­
teristic temperature with the melting point Tm of the solid, assuming 
again a very crude model of the melting process. If M is the mean 
atomic weight and V the mean atomic volume, then 

em = B(M~2/3) 1/2 (2.26) 

The quantity B(:::::; 115) varies slightly with the type of crystal; some 
values with B = 115 are given in Table 2.VI, where approximate 
agreement is evident. 

Table 2.VI. Comparison of ex and Om with High-Temperature eD 

Substance 

LiF NaCl KCl KBr KI RbBr RbI 

ex 686 292 233 185 162 136 119 
em 1020 294 229 171 119 123 109 
eD 607-750 275-300 218-235 152-183 115-200 120-135 100-118 

The chief merit of these relations is that they give an estimate of 
the Debye temperature if calorimetric data are completely lacking. 
Such instances have occurred in the past 

2.11.3. O-Values from Thermal Expansion 

The Einstein and Debye theories give a simple expression for 
the internal energy of a solid Griineisen34 showed that if the vibra­
tional frequency is taken to depend upon the interatomic distances, a 
reasonable account of the equation of state is obtained In particular, 
the coefficient of thermal expansion P is connected to the heat capacity 
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Cv and the compressibility x by 

p = yxCv 

V 

51 

(2.27) 

with y = - a In v/a In V called Griineisen's constant. Thus, a plot of 
p versus T should essentially be of the Debye form D(T/()); Table 
2.VII shows some values of the characteristic temperature (){J obtained 
from such curves. The correlation with ()D is quite good at high 
temperatures. 

Table 2.VII. Comparison of (){J with ()D 

Pt 

236 
225 

Cu 

325 
310 

Substance 

Au 

180 
185 

Diamond 

1860 
1940 

CaF2 

474 
479 

FeS2 

645 
620 

Recent studies by Barron and others, based on lattice dynamics, 
have shown that the Griineisen constant y does vary with tempera­
ture and that different acoustical and optical branches have dif­
ferent y values. Further, the linear expansion along some directions 
becomes negative for a few crystals such as Si, ZnS, AgI, and InSb at 
low temperatures. This can be qualitatively explained by lattice 
models, but cannot be understood easily from the Debye-Griineisen 
equation of state. 35 

2.11.4. ()-Values from Infrared Data 
In ionic crystals, there are strong absorption bands in the infra­

red, associated with the "residual rays." It was one of the early 
suggestions to use these frequencies to calculate the characteristic 
temperature, and, indeed, reasonable agreement was found The 
situation is somewhat complicated by the fact that the frequency of 
the reflection maximum is somewhat higher than that of the absorp­
tion maximum, the difference being related to the refractive index of 
the crystaL Thus, the Debye temperature calculated from the reflec­
tion maximum (denoted by ()R) will be larger than () A calculated from 
the absorption maximum Table 2.VIIIlo shows that ()R agrees well 
with the calorimetric ()D values at high temperatures. The frequency 
of the absorption maximum is the same as that of the main maximum 
in the vibrational spectrum, and, since g(v) extends beyond the maxi­
mum (Fig. 2.6a), it is not surprising that () A < ()D. The ratio () A/()R 

may be calculated from the lattice models, and fair agreement is 
found for some ionic crystals. 
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Table 2. VOl. Debye Temperatures from Infrared Data 

Substance 

LiF NaG KCI KBr KI RbBr RbI 

845 276 226 176 153 143 122 
440 235 203 162 141 126 122 

607-750 275-300 218-235 152-183 115-200 120-135 100-118 

Actual infrared spectra show complicated structure, and some 
progress has been made in getting information about phonon­
dispersion frequencies from the details of infrared and second-order 
Raman spectra. 36 

2.11.5. O-Values from Electrical Resistivity 

The temperature variation of the electrical resistivity of metals 
has been studied extensively, and a calculation of 0, denoted here as 
O(E.R.), on the basis of Bloch's theory of electrical conductivity was 
suggested by Grlineisen He showed that the ratio of the specific 
resistance (T to its value (Too at high temperatures is of the form 

(2.28) 

However, as pointed out by Blackman,lO O(E.R.) involves only longi­
tudinal phonons in the theory, hence, it should differ considerably 
from 0D. In practice, there is a very surprising correlation between 
O(E.R.) and OD for many metals, as shown by Table 2.1X. At present, 
there is no satisfactory explanation of the agreement! 

Table 2.IX. Correlation of 0 (E.R.) with OD 

8(E.R.) 

°D 

Li Cu Ag 

363 333 203 
340-430 310-330 212 

Metal 

Au Pb 

175 86 
168-186 82-88 

2.11.6. Scattering of X-Rays, y-Rays, and Neutrons 

AI 

395 
385 

w 

333 
305-357 

The vibrations of atoms in a solid affect the reflection of X-rays 
and other radiations of similar wavelength A. from the crystal lattices. 
There are two principal effects--a reduction of the intensity of Bragg 
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Table 2.X. Values of () (X.R.), () (EI.), and ()D at 3000 K 

8(X.R.) 
8D 
8(El.) 

Al 

379 
396 
406 

Cu 

307 
310 
331 

Pb 

80 
93 
91 

Substance 

Fe 

393 
425 
464 

Diamond 

1491 
1850 
2242 

Si 

593 
640 
647 
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reflections (by the so-called Debye-Waller factor) and a diffuse 
scattering of radiation in the non-Bragg directions. The intensity of 
the Bragg reflection at an angle ¢ from a monatomic solid depends 
upon the temperature T in the form I = 10 exp( - 2M), where 
M = 8n2 u2 ~sirt~d?12:2. The mean square amplitude u2 perpendicular 
to---ulefeflecting plane may be calculated if a model of the lattice 
vibration is assumed. For a Debye solid at high temperatures, 

M = (2kT sin ¢)2 3h2 

mI. k 2 ()2 

and thus from the Debye-Waller factor, the characteristic tempera­
ture, denoted as ()(X.R.) in Table 2.X, may be calculated. In the lattice 
case, the term 3h 2/k 2 ()2 is replaced by S g(v)v- 2 dv/S g(v) dv, so that 
()(X.R.) is in general different from ()D' Some representative values30 

of ()(X.R.), ()(EL), and ()D at 3()()OK are given in Table 2X In general, 
()(X.R.) is less than ()(El.) or ()D; this is roughly what is expected 
from the lattice theory. Herbstein30 has given a detailed discussion 
of the thermal effects in X-ray, Mossbauer, and neutron scattering, 
which may be referred to for further details. 

The use of diffuse X-ray reflections and inelastic neutron­
scattering in providing information about phonon-dispersion rela­
tions has already been mentioned. 20-22,37 
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Chapter 3 

Electronic Specific Heat 

3.1. SPECIFIC HEAT OF METALS 

Metals are characterized by their high electrical and thermal 
conductivities at ordinary temperatures. When the discrete nature of 
electric charges became clear, by about 1900, it was also realized 
that freely moving electrons were the charge carriers in metals. Drude, 
Lorentz, and others applied the methods used in the kinetic theory of 
gases to explain how these electrons were responsible for the observed 
high thermal and electrical conductivities. 1 

In spite of the success of the free-electron gas model, the classical 
theory had a fundamental inconsistency. If the electrons are con­
sidered as small particles freely moving through the crystal lattice, 
the equipartition law attributes to each electron an internal energy 
-ikT, associated with the three translational degrees of freedom. 
Therefore, the electrons should contribute -iR per mole to the specific 
heat. A monovalent metal such as copper should thus have C v ~ 9 
caljmole·degK, 3R from the lattice and -iR from the conduction elec­
trons. The experimental value of 6 caljmole·degK is entirely accounted 
for by the lattice contribution. The same is true for almost all metals 
at room temperature, as can be seen from the values given in Table 
2.1. The model of an electron gas in a metal explained the transport 
properties reasonably well, but the caloric behavior was in complete 
disagreement with the equipartition theorem. 

It was only in 1928, after Sommerfeld's application of quantum 
statistics to free electrons in a metal, that the reason for the small 
electronic specific heat became evident. Even as Bose-Einstein 
statistics applied to phonons brings about a reduction of lattice heat 
capacity at low temperatures, the Fermi-Dirac statistics obeyed by 
electrons makes the electronic specific heat comparatively small at 
room temperatures. It became clear that the electronic contribu­
tion could be observed only at very low temperatures, in the liquid-
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helium range, and the first experiments to study electronic specific 
heats in detail were performed by Keesom and coworkers in the early 
1930's. 

3.2. QUANTUM STATISTICS OF AN ELECTRON GAS 

It is a fundamental feature of quantum statistics, as explained in 
several texts,1.2 that because of the Pauli exclusion principle and 
because the various electrons are indistinguishable from one another, 
Fermi-Dirac statistics should be applied to electronic systems. Ac­
cording to F-D statistics, the probable number Nk of particles in 
energy state ek is 

N - gk 

k - exp[(ek - eF)/kT] + (3.1) 

where gk is the number of levels with energy ek and the parameter eF 

(the Fermi energy) is so chosen that the total number of particles is 
equal to N. The energy levels are often so closely spaced that it is 
convenient to define the density of states 91(e) de as the number of 
energy states per unit volume between e and e + de. 

For a F-D system, marked deviations from classical Maxwell­
Boltzmann behavior occur when the temperatures are lower than the 
Fermi temperature TF = eF/k, which in ordinary metals is of the order 
of 105 °K. The shape of the F-D function 

1 
f(f,) = --~-----=-== 
. 1 + exp[(e - f,F)/kT] 

(3.2) 

is shown in Fig. 3.1 for various temperatures. As T ---> 0, !(t.) equals 
unity for any energy less than eF and then abruptly drops to zero for 
t. > t.F' In other words, all the energy states below eF are fully 
occupied, while all states above t.F are empty. At a finite temperature 
T, some of the particles within a distance of approximately kT of t.F 
have enough thermal energy to become excited to higher energy states, 
as shown in Fig. 3.1. However, at T/TF ~ 0.01, the distribution has 
changed little from the behavior at T ~ 0; it is only for T ~ TF that 
the familiar Boltzmann tail of the distribution makes its appearance. 

The magnitude of the Fermi temperature TF , which is obviously 
fundamental to an understanding of the behavior of an electron gas, 
can be easily calculated as follows. In Chapter 2, it was shown that 
for free particles in a volume V, the number of allowed energy states 
between momenta p and p + dp is 

4nV 
n(p) dp = IJ3 p2 dp (2.18) 
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If m is the mass of an electron, the number of allowed states can be 
written in terms of the energy S = p2 j2m as 

V 
V 91(s) ds = 2re(2m)3 /2 h3 s1/2 ds (3.3) 

At OaK, all states below EF are occupied, and, further, each state can be 
filled by two electrons of opposite spins. So the total number of 
states is 

N V _ = !re(2m)3/2 _ S3/2 
2 3 h3 F 

or 

EF = _1_(iNh3 )2/3 
2m reV 

(3.4) 

This formula is valid for a gas of free electrons; nevertheless, suppose 
a value typical of a metal N jV :::::: 1023 jcm 3 is substituted. Then 

The Fermi energy SF of a gas of electrons with metallic densities is 
two or three orders of magnitude greater than the thermal energy of 
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approximately kT at room temperatures. The electron gas is said 
to be highly degenerate under such conditions. 

It is very surprising that in spite of such high energy content the 
specific heat of the electron gas is quite small. This comes about 
because the internal energy changes very little at ordinary tempera­
tures. To a first approximation, a fraction ( '" kT /f-F) of the number of 
electrons is excited at a temperature T into higher energy states (see 
Fig. 3.5). Each electron gains an energy of about kT, and so the 
increase in energy per mole is bE '" RT(kT/CF)' The heat capacity 
is therefore approximately 2R(T /TF) per mole. Since TF ~ 104 to 
lOsoK, the electronic heat capacity is about 1O- 2R at room tempera­
ture. This is only 1 % of the lattice heat capacity at ordinary tempera­
tures. However, at very low temperatures, the lattice heat capacity, 
falling off as T 3, decreases much faster and becomes comparable to 
the electronic term, which decreases only linearly with T. These 
qualitative conclusions are in excellent agreement with experimental 
results. 

3.3. SPECIFIC HEAT OF ELECTRONS IN METALS 

The model of a free-electron gas, although forming an elementary 
introduction to the behavior of electronic systems, is unnecessarily 
crude when applied to actual metals. The electrons in the inner shells 
of an atom are tightly bound to the nucleus; only the electrons in the 
outer unfilled shells have any chance to wander through the metal. 
Their movement is subject to the three-dimensional periodic potential 
field associated with the atoms of the lattice. Under these conditions, 
the energy levels, instead of being a continuous function p2/2m of the 
momentum, become grouped into energy bands. 3 In each band, the 
energy is a continuous function of momentum, but the bands them­
selves are separated by gaps in which there are no energy levels 
(Fig. 3.2). Ordinarily, the first band is completely filled (valence band), 
while the second band is only partially filled (conduction band). 
Electrons in any unfilled band can move under applied electric fields 
and thereby transport quantities of electricity or heat. In an ordinary 
dielectric, the valence band is just full; in the absence of any free 
carriers, the material behaves as an insulator. In three momentum 
dimensions, the surfaces of constant energy have complicated shapes 
because the energy-momentum relationship depends upon the 
crystallographic directions. The shape of the Fermi surface, i.e., the 
surface in the momentum space enclosing the occupied states of 
electrons in a metal, can in some cases be determined from other 
electronic properties of the meta1.4 •S 
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A complete knowledge of the energy levels is luckily not required 
for calculation of the specific heat of electrons in a metal. The dis­
cussions of the previous section show that only electrons within 
approximately kT of the Fermi surface are excited at room tempera­
ture; consequently, knowledge of the number of energy states in the 
vicinity of the Fermi surface is sufficient to evaluate the electronic 
specific heat Ce . 

Quantitatively, the discussion is fairly straightforward. The 
energy per mole of the electronic system is 

Jw f ro 91(kTx)x dx 
E = 2 V Ef(E)91(E) dE = 2 V(kT)2 -x--~~ --

o 0 e + 1 

where x = E/kT and ~ = EF/kT. The integral may be split into two 
ranges, (0, ~) and (~, (0), so that 

E f~ f~ 91x dx f ro 91x dx 
2(k T)2 V = 0 91x dx - 0 1 + e~ x + ~ eX ~ + 1 

where the first range has itself been decomposed into two terms. On 
substituting u = x - ~ in the third term, it becomes the integral 0 to 00 

of (u + ~)91/(eU + 1). If we set u = ~ - x in the second term, it 
becomes the integral ~ to 0 of (~ - u)91/(eU + 1), but extending its 
range of integration from 00 to 0 causes a negligible error of only 
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e-~. Therefore, to the lowest-order terms, 

E = 2VJ~ 91(t:}t:dt: + 4V(kT)291(t:Fl
Xl ~ dU. 

o Joe + 
The first term on the right is the internal energy at OaK, while the 
integral 0 to 00 of u/(e" + 1} may be transformed into the series 

which has the value n2 /12. So the energy per mole is 

E = Eo + jn:2V(kT)291(t:F) 

The molar heat capacity of the electronic system is 

Ce = tn:2k2V91(t:F)T = 1'T 

(3.5) 

(3.6) 

The electronic specific heat is determined only by the density of 
states at the Fermi surface 91(t:F}, as was expected earlier. To make a 
numerical estimate of Ce , assume the metallic electrons to be free. 
From equations (3.3) and (3.4), the molar density of states is 

(3.7) 

Consequently, 

_ 4n3mP(3NV2)1/3 
Ce - 3h2 -n- T 

= 3.26 x 10- 5V2/3n~/3T cal/mole·deg (3.8) 

= 1.36 x 1O-4V2j3n~/3T l/mole·deg 

where n~ is the number of free electrons per atom. For a typical metal, 
say, copper at room temperature, V - 7 cm3 /mole, n~ = 1, T - 300oK, 
and so Ce ~ 0.04 caljmole·deg. This is less than 1 % of the lattice 
heat capacity of 6 caljmole·deg at the same temperature. Therefore, 
the electronic specific heat is not normally detected in room-tempera­
ture measurements. This explanation was indeed one of the great 
triumphs of Sommerfeld's application of quantum statistics to the 
theory of metals. 

The above linear variation of electronic specific heat is valid only 
at low temperatures (T ~ TF). At higher temperatures, the calculations 
are involved6 ; the full variation is shown in Fig. 3.3. For T ~ TF , 

the limiting value is iR, which is the classical equipartition value 
for a gas of structureless mass points (Section 6.2). 
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3.4. ELECTRONIC SPECIFIC HEAT AT LOW 
TEMPERATURES 
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Although at room temperature the electronic contribution to 
the heat capacity of a metal is insignificant compared to the lattice 
contribution, the situation is quite different at low temperatures. 
Ce decreases linearly with T, whereas C g , as seen in the previous 
chapter, is proportional to T3 at low temperatures. Therefore, at 
some temperature, the two terms become equal; at still lower tem­
peratures, C e is larger than Cg (Fig. 3.4). For instance, copper at 
about 4°K has Cv '" 6 x 1O- 3J/mole'degK, which is equally shared 
between electronic and lattice contributions. Above about 4°K, the 
lattice part rapidly dominates the specific heat, while below that 
temperature the electronic part remains significant. In general, at 
liquid-helium temperature, both terms are of comparable magnitude 
and the observed specific heat is of the form 

C = Cg + Ce = f3T 3 + yT (3.9) 

A plot of CIT against T2 should therefore be a straight line, and, 
indeed, a typical example was given in Fig. 1.1 b to illustrate how well 
the relation (3.9) is obeyed, if the T3-region of the lattice specific heat 
has been reached. Such a plot permits determination of both f3 and 
y. From equation (2.20) it is evident that f3 = 12n4RISlJ3 • The value 
of the Oebye temperature at very low temperatures (lJo) and the 
coefficient y of the electronic specific heat for a number of metals are 
given in Table 3.1. The values refer to materials of the highest-
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available purity. Impurities in the metal affect the specific heat 
slightly, and in some cases anomalous values have been obtained.s 
Besides the possible changes in 91(cF) due to the impurities, dilute 
magnetic contaminations may in some cases give a term linear in T; 
careful analysis is needed to unravel the various effects (Section 3.6). 

The free-electron gas model is obviously oversimplified. Never­
theless, equation (3.8) gives a value ofy of the right order of magnitude. 
For example, in sodium, there is one electron in the outer unfilled 
shell, which is almost free to move; according to (3.8), y should have a 
value of 11 x 10- 4 J/mole·deg2 . Similarly, copper, which also has 
one outer electron, should have y = 5.4 in the same units. The 
experimental values are Na = 13.7 and eu = 7.0. A simple way of 
illustrating the difference between theory and experiment is to intro­
duce an "effective mass" m* which takes into account the partial 
binding, namely, the fact that the electrons are not completely free 
but are only loosely bound to the metallic ions. The electron mass m 
in equation (3.8) is now replaced by m*, so that 

Yexp m* 
(3.10) 

Ytheor m 
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Table 3.1. Representative Values of 80 (in deg K) and y 
(in 10- 4 J jmole·deg2) 

Metal 80 }' Metal 80 y 

Ag 225 6.09 Na 158 13.7 
Al 426 13.6 Nb 250 88.2 
Au 164 7.0 Ni 440 72.8 
Ba 110 27.0 Os 500 23.5 
Be 1160 2.22 Pb 108 33.6 
Ca 229 27.3 Pd 299 99 
Cd 209 6.9 Pt 221 66.3 
Co 443 47.5 Rb 55 24.1 
Cr 585 15.5 Re 450 24.5 
Cs 39 32.0 Rh 478 48.9 
Cu 348 7.0 Ru 600 33.5 
Fe 464 50.2 Sn (white) 195 17.5 
Ga 324 6.0 Sr 147 36.5 
Hf 261 26.4 Ta 245 58.5 
Hg 72 18.6 Th 170 46.8 
In 109 18.4 Ti 430 35.5 
Ir 420 31.4 TI 90 15.2 
K 91 20.8 U 200 109 
Li 369 17.5 V 380 92 
Mg 342 13.7 W 405 12.1 
Mn 450 180 Zn 310 6.27 
Mo 470 21.1 Zr 310 30.3 

Thus, m*jm has a value of about 1.2 for sodium and about 1.3 for 
copper. For other metals, the appropriate valence of the atom is 
used to represent n., the number of electrons per atom. In this manner, 
m*jm-values have been calculated and tabulated in several reviews. 8 - 10 

Although the value of m* jm suggests the degree of departure from 
the electron gas model, the quantity has only a limited significance. 
In metals, the bands usually overlap, and the details of the band 
structure are quite complicated.4 ,5 The idea of an effective mass, 
which can be easily introduced in the case of a single band, is not 
appropriate under such conditions. Moreover, in cyclotron resonance, 
the de Haas-van Alphen effect, and other phenomena which reveal 
the properties of Fermi surfaces more directly, different "effective 
masses" are introduced, leading to some confusion in comparing the 
values of m* jm for any particular substance. The situation corres­
ponds to the confusion concerning the indiscriminate use of the 
Debye 8 to characterize different physical properties, as mentioned in 
Chapter 2. Therefore, it appears best to express the experimental 
results in terms of y, as done in Table 3.1. 
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Electrons, because of their electric charge, exert Coulomb forces 
upon one another; these forces are of long range, falling off as 
1jr2. It would appear that the use of a perfect-gas model is inconsistent 
with the existence of such long-range interactions. In fact, early 
approximate calculations showed that the specific heat would be 
about ten times smaller than the Sommerfeld value and would also 
have a different temperature dependence, thereby destroying even 
the qualitative agreement between equation (3.8) and experiments. 
More recently, the exchange and correlation effects of the Coulomb 
interaction have been analyzed in detail, using the mathematical 
techniques developed for handling many-body problems. It turns 
out that each electron is shielded, as it were, by the nearby polarization 
cloud of the electron gas. The interaction potential V(r) becomes 
screened, V(r) - e2r- 1 exp( - ;.r), so that it becomes a short-range 
force, which is compatible with the perfect-gas model of the electrons. 
The collective motion of the electron clouds is then described in 
terms of what are called plasma modes, which have too high a frequ­
ency to be involved in specific-heat studies. The details of these 
calculations are left to suitable reviews. 11 

Another aspect of the electronic specific heats of metals, which 
cannot be treated here, is the interaction between electrons and 
phonons. In writing equation (3.9), it is implictly assumed that 
electronic motions are independent of lattice vibrations, so that the 
two terms are simply added together. It is, however, obvious that the 
vibrations of an atom will influence the motion of electrons in its 
neighborhood; conversely, the presence of the electron cloud will 
affect the lattice vibrations. For many metals, the effect is very small, 12 

but two exceptional situations occur. In some cases, the electron­
phonon interaction results in the phenomenon of superconductivity, as 
originally suggested by Frohlich in 1950. The properties of super­
conductors are so striking that they are discussed separately in 
Sections 3.8 to 3.10. In a few special cases, electron-phonon inter­
actions result in small anomalies, known as Kohn anomalies, in the 
lattice w-q dispersion relations. 13 

3.5. SPECIFIC HEAT AND BAND STRUCTURE OF METALS 

A discussion of the values of y for all metals is clearly to be left 
to special reviews on the subject. 8 ,9,lO,14 Only a few typical metals 
are considered here, in order to illustrate the special factors involved 
in a study of electronic specific heats. 

The alkali metals lithium, sodium, potassium, rubidium, and 
cesium, have one "free" electron in the outer shells. The inner closed 
shells are tightly bound to the nucleus, and consequently we may 
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assume that there are N electrons per gram-atom. The number of 
states in the valence band is N, which can be filled by 2N electrons. 
The first Brillouin zone is thus only half-filled, and the free-electron 
model may be expected to be useful. This model gives 

V91(E)dE = 2n(2m)3/2Vh- 3E1/2dE 

as shown in Fig. 3.5. Nevertheless, the observed values of yare not in 
good agreement with equation (3.8). Apart from sodium, mentioned 
earlier, m*/m has a value 15 of 1.25 (K), 1.26 (Rb), and 1.43 (Cs), showing 
that even in such simple cases the free-electron model is not adequate. 
Calculations using details of the band structure, electron-phonon 
and electron-electron couplings, account reasonably well for the 
experimental values of m* /m. 

The noble metals, copper, silver, and gold, are also monovalent 
and have their first Brillouin zones half-empty. The values of m*/m, 
1.36 (Cu), 1.05 (A g), and 1.16 (Au), differ appreciably from unity, which 
at this stage is not surprising. The Fermi surface of copper has been 
investigated by several methods; its shape is shown in Fig. 3.6. In a 
free-electron gas model, it will be a sphere, whereas in copper it is 
actually pulled out and touches the zone boundaries along the 
< III > directions. Detailed calculations based on such Fermi sur­
faces do fit in well with the experiments. The specific-heat data are 
not very useful for finding the shape of the Fermi surface, because the 
electronic term measures merely an averaged density of states at 

-kT 

Energy f 

Fig. 3.5. Energy distribution in an 
electron gas. Full line is the number of 
electrons at a finite temperature, broken 

line is that at absolute zero. 



66 Chapter 3 

Fig. 3.6. Fermi surface of copper. 

the Fermi surface. If the shape of the Fermi surface is known from 
other studies,4.5 }' can be used as a final check. 

The divalent metals, beryllium, magnesium, calcium, zinc, 
cadmium, etc., have hexagonal crystal structure. With two "free" 
electrons per atom, the Brillouin zones should be exactly filled and 
the substances should be insulators. As a matter of fact, the first and 
second bands overlap to some extent, which accounts for the electrical 
conductivity of the metals. The Fermi surface intersects the zone 
boundary and has a complex shape. The theoretical calculation of 
9l(8F ) is a matter of considerable labor. The only simple statement 
that can be made 16 is that 9l(8F ) varies rapidly when the axial ratio 
cia of the hexagonal lattice is small and is nearly constant when the 
ratio is large. Beryllium (cia = 1.57, )' = 2.22 X 10- 4 J/mole'deg2) 

and magnesium (cia = 1.62, )' = 13.7) belong to the first set, while 
zinc (ci a = 1.86, )' = 6.3) and cadmium (cia = 1.89, )' = 6.3) are 
examples of the second case. 

The transition metals form another interesting example of the 
effect of electronic structure, as was first pointed out by Mott. An 
inspection of the values of}' for the first group of metals (Table 3.11) 
shows that the electronic specific heats are unusually large. In 
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Table 3.D. Values of y for the First Group of Transition Metals 

Metal 

Ti v Cr Mn Fe Co Ni 

y X 104 J/mole'deg2 35.5 92 15.5 180 50.2 47.5 72.8 

isolated atoms of these metals, the filled 4s-subshell, containing two 
electrons, has as usual a lower energy than the partially filled 3d­
states (chromium has only one electron in the 4s-level, and the value 
of y is also exceptional). When the atoms are brought together to 
form a metal, the wave functions of the states overlap, which produces 
a characteristic broadening of the energy levels. The wa ve functions 
for the 4s-states are more extended than those of the 3d-states. 
Consequently, the 4s-band is broader and covers a much wider range 
than does the 3d-band. This occurs to such an extent that some 
states in the 4s-band have higher energies in the metal than those of 
the 3d-band, as schematically represented in Fig. 3.7a. Moreover, 
the 4s-band contains only two states per atom, or 2N states per mole 
of the metal. It has a large energy spread, and so its density of states 
is low. The 3d-band contributes 10 N states to the metal; since its 
energy spread is small, the density of states is large. The resultant 
density of states as shown in Fig. 3.7b, has a sharp maximum. The 
Fermi levels lie in this region, and hence Ce is unusually large for 

t' ... 
\ 

4Sr-_~ 

Melol 

10 1 (b ) 

Fig. 3.7. (a) Broadening of 4s- and 3d-bands in a metal due to overlap. (b) Density 
of states for 4s- and 3d-bands. Dotted line is the resultant density of states. 
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these metals. For a quantitative analysis, the details of the band 
structure must be worked out. 14 

The metals of the second and third transition groups also have 
large values of y, for similar reasons. Furthermore, the unfilled shells 
give rise to magnetic interactions among the atoms. The resulting 
para-, ferro-, and antiferromagnetic behavior produces interesting 
effects in specific heats which will be discussed in the next chapter. 
The ions of rare-earth metals also have unfilled shells. But the coupling 
among the ions is weak, and various magnetic and other transitions 
occur below room temperature. Rare-earth specific heats are dis­
cussed in Chapter 7, Section 6. 

3.6. SPECIFIC HEAT OF ALLOYS 

When two metals are alloyed, there is in general a change in the 
lattice structure. A structural change alters not only the lattice 
specific heat directly, as is clear from Chapter 2, but also the electronic 
term, through the influence of the lattice structure upon the energy­
band scheme. In such general cases, no simple rule can be given. 
It is only in special circumstances that simple correlations exist. 
One such instance is that of a binary alloy, for instance, f3-brass 
(CuZn), which exhibits an order-disorder transition, but this is more 
appropriately taken up in Chapter 7. 

In several dilute alloys, especially of elements of near atomic 
number and similar atomic radii, the elements go into solid solution 
without any appreciable change of crystal structure. The observed 
variation of specific heats may then be attributed to variation in 91(£), 
and some information may be obtained about the shape of the den­
sity-of-states curve. The simplest hypothesis, the rigid-band model, 
is to assume that in the process of alloying, the band structure re­
mains unchanged and only the number of available electrons is altered. 
The value of 91(£F) at the new Fermi level determines the electronic 
specific heat of the alloy [equation (3.6)]; depending upon the slope 
of the 91(£) curve at the band edge, the y of the alloy will be larger or 
smaller than that of the pure metal. In this manner, the electronic 
specific heat may be correlated with the shape of the energy-band 
scheme. 

As an instance, palladium can be freely alloyed with its neighbor­
ing elements silver and rhodium. The y-values of these alloys17 are 
shown in Fig. 3.8a. In the rigid-band model, the addition of silver to 
palladium gives an extra electron per atom of silver; these extra 
electrons fill the band to a higher energy level. The alloying with 
rhodium gives one hole per Rh atom, and so the Fermi level occurs 
at a lower value of energy. Thus, the density-of-states curve (Fig. 3.8b) 
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may be drawn at once. For reasons set forth in the previous section, 
the 4d-band in a metal of the second transition group should be 
sharply peaked, while the 5s-band should be comparatively flat. There 
is indeed a striking similarity between Figs. 3.7b and 3.8b. Theo­
retical calculations of the band structures are in good agreement with 
Fig. 3.8b, but the details of such studies 14.17 cannot be included here. 

Dilute alloys of transition elements show several peculiarities 
which have not yet been clarified. ls As an example, if small amounts 
of manganese are added to copper, the specific heat in the liquid­
helium range is abnormally increased. 19 The heat capacity is linear 
in T at very low temperatures and is roughly independent of the 
manganese concentration c. At higher temperatures, it falls rapidly 
to the pure-metal value. The temperature at which this decrease occurs 
is proportional to c, so that the entropy associated with the extra 
heat capacity ~C is proportional to the number of manganese ions. 
Figure 3.9 shows how at low concentrations of manganese, the y­
values are abnormally high and independent of c, while at high 
concentrations normal behavior is approached. Similar results are 
obtained in dilute alloys of iron in copper, also. In some alloy systems, 
the specific heat shows a definite maximum before the ~C rx T 
region is reached. These deviations are accompanied by corresponding 
anomalies in other properties such as magnetic susceptibility and 
electrical conductivity. 

The theoretical picture of dilute alloys of transition elements is 
15 

12 ..., 

""\ 
\ 

6 " ~ ~ ~ 
... ... 

~ ... ... --"'oC 

20 40 60 80 100 

Weight "~o of (.opper in manganese 

Fig. 3.9. Electronic specific-heat coefficients of copper-manganese alloys.!O The 
broken line shows the expected behavior of dilute manganese in copper. 
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still under debate, although considerable progress has been made by 
Friedel and others 18 regarding the formation of localized moments. 
It was Overhauser2o who suggested an explanation for the observed 
specific-heat behavior; subsequent developments have been due to 
Marshall and others.20 They all involve some form of magnetic 
ordering and the extra specific heat L\C arises when a number of 
spins are located in regions of near-zero magnetic field. The near-zero 
field regions may arise from the stationary spin-density waves, from 
the large separation between the magnetic ions, or from the approxi­
mate cancellation of the exchange interactions of opposite sign. 
Although magnetic interactions are taken up in Chapter 4 only, the 
effects may be calculated in a crude manner as follows. At a tempera­
ture T and in a field H, a magnetic dipole J1 has an average energy 
[see equation (4.15)] -J1H tanh (J1H/kT). In an alloy, the local 
magnetic field varies from site to site, and, if f(H) is the probability 
of having a field H at the site of J1, the internal energy is 

E ~ -tNc f:", f(H)J1H tanh (~~) dH 

where c is the concentration of manganese ions and Nc their total 
number. Most of the ions will be rigidly aligned because they are 
in effective fields much larger than kT/J1 at low temperatures. So 
they do not contribute to the heat capacity. Only the ions situated 
in near-zero fields J1IHI ;S kT will be able to change their orientations 
and hence give an excess specific heat L\C. Thus 

L\C - tNCf(O)f~oo (~2~2) sech2 (~~)dH 
In a fully aligned perfect lattice, the magnetic field at an ion has a 
definite value, though thermal fluctuations smear out the field to 
some extent. In an alloy, the field is completely smeared out and has 
a wide range of values. Under these conditions, the probability of 
finding zero field at a site is proportional to l/<H), where <H) is 
the mean field at an ion. Since the interactions are mainly dipolar, 
(H) will be proportional to R - 3 (R is the mean distance between 
Mn ions) and hence to c, the concentration of Mn ions. Therefore, 
with suitable constants A, Af, 

L\C ~ AT roo x2 sech2x dx = AfT 

At low temperatures, the specific heat is proportional to T and 
independent of the manganese concentration; these are the two 
important experimental observations. Detailed calculations20 show 
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that at higher temperatures LlC falls off as T- 2 ; the temperature at 
which this occurs is proportional to c, which again agrees with the 
observations. The subject is of current interest, and the overall 
picture is just emerging. 

3.7. SPECIFIC HEAT OF SEMICONDUCTORS 

A pure semiconductor differs from a metal in that, at absolute 
zero, the first Brillouin zone is completely filled by electrons and the 
next zone is completely empty. There is no overlap between the bands 
(Fig. 3.10a). The energy gap is small, however, and at ordinary 
temperatures some electrons are excited from the valence band to 
the conduction band (Fig. 3.1Ob.) The material is now electrically 
conducting and becomes more so when the temperature is raised, 
unlike pure metals, which become less conducting when T is increased. 
In practical applications, materials with controlled amounts of suitable 
impurities (dope) are of tremendous importance. The impurity atoms 
introduce extra energy levels into what was earlier the forbidden 
energy gap. The presence of such levels alters the electrical properties 
profoundly, because electrical conduction can take place without 
thermal activation of electrons across the energy gap. The special 
properties of semiconductors are far too numerous to chronicle here; 
for an introduction, one may refer to the elementary texts mentioned 
earlier. 3 

In all types of semiconductors, whether pure or slightly doped, 
the density of excited current carriers decreases rapidly as the tempera­
ture is reduced. Therefore, at low temperatures only the lattice 
specific heat is observed for most semiconductors.21 Germanium, 
silicon, and indium antimonide are among the most intensely studied 

Conduction bond , , " 
Free electrons 

Gap 

I __ Holes 

••••••••••••• c •• dbb •••• 
••• Valence ••• • •••••••••• 
••• band •••• •••••••••• 

ToO T>O 

Conduction bond 

Impurity 
levels 

/ 

---------
Valence band 

(a) (b) (c) 

Fig. 3.10. Simplified energy-level diagram of semiconductors. (a) Pure semiconductor 
at OOK. The valence band is full, the conduction band is empty, and there is no electrical 
conduction. (b) At T> O°K, some excitation of electrons across the gap takes place, 
permitting electrical conduction. (c) Doped semiconductor, with impurity levels 

depending upon the dope. 
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semiconductors. They all have the diamond-type of crystal structure, 
and the lattice vibrational spectra may be expected to be of a similar 
form for all of them. This is supported by the fact that the Debye V 
has the same type of temperature dependence for these substances, as 
shown in Fig. 3.11. The true T3-region is observed below 0/100. At 
higher temperatures, 0 drops considerably and passes through a 
minimum at about 0/20. The actual V-values form a regular sequence, 
as shown in Table 3.111. 

In heavily doped silicon and germanium (containing approxi­
mately 10 19 carriers/cm3 ), the specific heat of free carriers has been 
observed.22 In these specimens, the impurity states overlap the con­
duction or valence band, so that free carriers are present even without 
thermal activation. The specific heat at low temperatures is of the 
form C = f3T 3 + yT [equation (3.9)], as in a metal. The value of the 

Table 3.In. Values of V for Semiconductors with 
Diamond-Type Crystal Structure 

Material 

Diamond Si Ge Sn(grey) InSb 

O(degK) 2200 636 360 212 200 
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effective mass m* calculated from the values of y agrees well with the 
effective mass derived from measurements of cyclotron resonance. 

While on the subject of semiconductors, it is appropriate to 
point out that the use of semiconductors (in particular, commercial 
carbon radio resistors and suitably doped germanium crystals) as 
thermometers has greatly facilitated calorimetric measurements at 
low temperatures. Nowadays, almost all workers dealing with the 
liquid-helium range use such semiconducting thermometers for ease 
of operation and accuracy of thermometry. 

3.8. PHENOMENON OF SUPERCONDUCTIVITY 

In 1911, Kamerlingh Onnes discovered superconductivity in 
mercury. The electrical resistance of the substance, which was 
gradually decreasing as the temperature was lowered from room 
temperature (Fig. 3.l2a), abruptly became immeasurably small at 
4.rK. Experiments showed that in the superconductive state below 
7;, the resistance is for all practical purposes equal to zero. Another 
fundamental property of superconductors, namely, perfect diamag­
netism, was discovered by Meissner and Ochsenfeld in 1933. If placed 
in a small magnetic field, the superconductor completely expels the 
magnetic flux from its inside (Fig. 3.l2b). This perfect diamagnetism 
as well as the perfect conductivity are destroyed if the magnetic field 
H is increased beyond a critical value He. For many common super­
conductors, mercury, lead, tin, vanadium, cadmium, tantalum, etc., 
the dependence of He upon temperature is approximately of the form 

(3.11 ) 

Detailed studies show, however, that the magnetic field penetrates 
the surface layers to a depth of about 10- 4 cm. Further, the critical 
field He and the critical temperature 7;, depend upon the purity and 
perfection of the specimen. If a suitable magnetic field is applied to a 
spherical specimen, some layers of the specimen become normal, 
while some remain superconductive, resulting in what is known as 
the intermediate state. Superconductors exhibit other special electro­
dynamic and transport properties. These matters belong to the special 
texts on the subject.23 For the present simple discussion of specific 
heats, an idealized sharp transition at (He> T) may be assumed and 
demagnetization effects dependent upon the shape of the specimen 
may be neglected. 

In the following chapter it will be shown that in many magnetic 
problems H behaves in the same way as P in ordinary thermodynamic 
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Fig. 3.12. (a) Temperature variation of resistance, showing sudden infinite conductivity 
at superconducting transition 7;. (b) Meissner effect. Magnetic flux is expelled by a 

superconductor. (c) H~T phase diagram of a superconductor. 

considerations. It is therefore natural to represent the equilibrium 
between the normal and superconductive states as a curve in the 
H-T plane (Fig. 3.12c) which separates the two phases. If Gs is the 
Gibbs' free energy of the superconductive phase at zero field, its 
value at a field H is Gs - !M H (see Chapter 4), where because of 
perfect diamagnetism the moment induced per unit volume is 
M/V = - H/4n. On the equilibrium curve, the free energies of both 
phases must be equal, and so 

H2 
G -G =_cV 

n s 8n 

Since S = -aG/aT, the entropy difference is 

HcVaHc 
-----

4n aT 

(3.12) 

(3.13) 
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The temperature vanatIon of He> given by equation (3.11), shows 
that oHe/oT is always negative, and hence Ss ~ Sn; that is, the super­
conductive state is more ordered than the normal state. The entropy 
difference vanishes at T" (He = 0 at T = T,,) and at OaK (oHe/oT = 0 
at T ~ 0). At an intermediate temperature, about 0.3 T", Sn - Ss 
reaches a maximum. S = 0 at T ~O, it will be recalled, is in con­
sonance with the third law of thermodynamics. S = 0 at T = T" 
implies that in the transition at zero field, no latent heat is involved. 
(This is an example of a phase change of the second order to be 
discussed in Section 8.1.) At intermediate temperatures, the liberated 
latent heat L is equal to 

L = _ T He V oHe (3.14) 
4n oT 

which agrees well with the experiments. 
The entropy difference (3.13) shows that there is a difference 

between the heat capacities ofthe superconductive and normal phases: 

Cn - Cs = T OOT(Sn - Ss) = - :: [He ~2~e + ( ~~e YJ (3.15) 

At the transition temperature, there is an abrupt jump in the specific 
heats 

(3.16) 

a relation often called Rutger's relation. Near T", the superconductive 
phase has a higher specific heat than the normal state, whereas at 
very low temperatures the normal phase has a higher heat capacity. 
At a temperature where the magnitude of I1S is maximum, Cn and Cs 

are equal. 
The above formulas are strictly valid only when the magnetic 

field destroying the superconductivity is along the axis of a long 
cylindrical specimen. For other orientations and shapes, an inter­
mediate state must be considered. It was shown by Peierls that the 
specific heat then exhibits two discontinuities, a sharp rise and a 
sharp fall, marking the beginning and the end of the intermediate 
state.24 For the sake of simplicity, these calculations are not worked 
out here. 

3.9. SPECIFIC HEAT OF SUPERCONDUCTORS 

The measurements of specific heat made immediately after the 
discovery of superconductivity showed no striking difference between 
Cn and c.. With improvements in thermometry, Keesom and Van 
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Fig. 3.13. Typical variation of heat capacities in the superconductive and normal 
states (vanadium 25 ). 

den Ende discovered the discontinuity [equation (3.16)] in the specific 
heat of tin at the superconducting transition. A typical variation of 
specific heat, shown in Fig. 3.13, brings out the characteristic features: 
C. is greater than es at very low temperatures, Cs overtakes en as 
the transition is approached, and a sharp discontinuity occurs at 1;,. 

If the Hc-T threshold curve is known completely, equation (3.15) 
enables en - es to be calculated. In general, the calculation involves 
a double differentiation of the H c- T curve and is therefore not very 
accurate. At 1;" however, only the first derivative is needed, and a test 
of the thermodynamic relation (3.16) is possible. The measured values 
of (e s - enk in the carefully studied cases of indium, tin, and 
tantalum are In = 9.75, Sn = 10.6, Ta = 41.5 mJ/mole-deg, while the 
values calculated from the threshold curves are In = 9.62, Sn = 10.56, 
Ta = 41.6, showing excellent agreement. In some cases, especially 
with alloys, discrepancies arising from a different cause are found 
(Section 3.1 0). In most cases, the experimental confirmation of the 
thermodynamic relations is good . 
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Besides the simple relation given in Section 3.8, a somewhat more 
involved relation connecting the coefficients of thermal expansion and 
the compressibility of the two phases may be derived by taking the 
higher derivatives of equation (3.12) with respect to p and T (see 
Ehren/est relations in Section 8.1). There are many experimental 
difficulties in confirming these relations, but, on the whole, reasonable 
agreement is found. 23 

Thermodynamics by itself does not give any further information 
on the variation of C"Cn with T. In general, the observed specific 
heat may be separated into lattice and electronic contributions 
Cn = C gn + Cen,Cs = C gs + C es . In the normal state, equation (3.9) 
shows that C gn = fJT 3, C en = yT at low temperatures. Now, in the 
superconducting transition, no structural changes are observed in the 
lattice, and the elastic properties are changed only minutely. There­
fore, it is reasonable to assume that the lattice part of Cs and Cn are 
equal, so that 

(3.17) 

By such an analysis, Ces may be calculated; in many cases, It IS 
approximately proportional to T3. This variation is indeed compat­
ible with equations (3.11) and (3.15). From them, it follows that 

H 2V [ (T)2] Cn - Cs = Cen - Ces = 2n~; T 1 - 3 T" 

and therefore 

(3.18) 

(3.19) 

(3.20) 

(3.21 ) 

These relations [equations (3.18 to 3.21)] suggest several methods 
of finding y, the coefficient of electronic specific heat in the normal 
state, from the magnetic threshold curves. Actual computations26 

show that y calculated in this manner from magnetic measurements 
agrees well with the calorimetric determinations. Such a comparison 
depends upon the assumed T 3-variation of Ces or the equivalent 
parabolic variation of H c. Without invoking this, but assuming that 
Ces contains no term linear in T, it follows from equation (3.17) that 

I. Cn - Cs 
1m = y 

1'-+0 T 
(3.22) 
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The advantage of this procedure in not assuming the parabolic 
temperature dependence of He is to some extent countered by the 
need for making magnetic measurements down to very low tempera­
tures. Where this has been done, the relation (3.22) is found to be 
obeyed very well. 

While all these results show the internal consistency in the applica­
tion of thermodynamic relations to superconductors, they do not 
throw much light on the microscopic mechanism of superconductivity. 
Very accurate measurements of Ces made since 1954 have revealed 
that at low temperatures it varies as 

(3.23) 

A typical result based on one of the early measurements is shown in 
Fig. 3.14. Departures from a T 3-law occur at very low temperatures, 
and thus probably escaped notice in the experiments made earlier. 
Similar small deviations of the Hc-T curve from the parabolic law 
were also observed. By analogy to the studies of Einstein's model of 
lattice vibrations (Section 2.4), the Schottky peak in paramagnetic 
salts (Section 4.9), and the roton specific heat in liquid helium II 
(Section 5.4), it may be inferred that such an exponential variation 
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of the specific heat is characteristic of the presence of an energy gap 
separating the normal and superconducting electrons. 

In 1950, it was also found that the transition temperature 7;, 
depended on the isotopic mass M of the atom, 7;, '" IXM-I/2, which 
suggested that the interaction of the electrons with the lattice was 
somehow responsible for superconductivity. These ideas culminated 
in a satisfactory theory of simple superconductors by Bardeen, Cooper, 
and Schrieffer in 1957. 

3.10. RECENT STUDIES 

It is hardly possible here to do justice to the theoretical concepts 
underlying the Bardeen-Cooper-Schrieffer (BCS) theory, which has 
successfully correlated several effects discovered earlier and predicted 
new phenomena as well. The task is ameliorated by the existence of 
several texts.2 7 The theory shows that owing to the presence of 
virtual phonons, there is a tendency for the electrons to be correlated 
in pairs, called Cooper pairs. It requires an energy of approximately 
k7;, to break up this correlation, and the presence of such pairs allows 
a dissipationless flow of electric current. We shall content ourselves 
with a brief exposition of how the specific-heat studies fit into the 
theory. 

The fact that an exponential variation of Ces [equation (3.23)] 
indicates the presence of an energy gap is easily visualized from Sec­
tion 4.9, where it is proved that if two energy levels are separated by 
a gap e, the specific heat at low temperatures has a dominant term 
of the form exp( -e/kT). The detailed calculations of the BCS theory 
yield 

C es - 1.44 7;, 
-T = 8.5 exp --­
YeT 

- 1.627;, 
= 26 exp --T---

~ 7;, or 2.5 < T < 6 

for 
T 

7 < ~ < 12 

where the gap 2eo is related to 7;, by means of the relation 

(3.24) 

2eo = 3.52 k7;, (3.25) 

The form of the specific-heat curves resemble equation (3.24) closely, 
and some values of 2eo/k7;, determined by fitting this equation are 
given in Table 3.1V. For widely different metals, the values do cluster 
around the idealized 3.52 of the BCS model, which incidentally 
assumes the metal to be isotropic. 

Another simple prediction of the theory is that 

C e.(7;,) = 2.43y7;, (3.26) 
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Table 3.IV. Values of 2eo/kY:: Obtained from Ces-T Curves 

Metal 

In Ta 11 Sn v 

3.9 3.6 3.2 3.6 3.6 

analogous to equation (3.21). A few values shown in Table 3.V show 
that many metals do not deviate much from this equation. Con­
sidering the simplicity of the model chosen for analysis and the wide 
variety of phenomena explained by it, the BCS theory must surely be 
considered as a significant advance toward the elucidation of a very 
complicated physical phenomenon. 

Earlier, it was mentioned that the thermodynamic relations (3.12) 
to (3.16) are not very well satisfied for many alloys. Recent studies 
have shown that superconductors must be broadly divided into two 
categories. The superconductors of the first kind exhibit complete 
Meissner diamagnetism and seem to obey the thermodynamic rela­
tions derived for them. The BCS model explains their behavior 
reasonably well. Superconductors of the second kind do not exhibit 
the full Meissner effect. As shown in Fig. 3.15b, the magnetic field 
begins to penetrate the specimen at a lower critical field Hcl , but the 
last traces of superconductivity are destroyed only at a much higher 
field H e2 . Thus, type II superconductors show even in longitudinal 
magnetic fields the characteristics similar to the intermediate state 
of an ordinary type I superconductor. Following some earlier sugges­
tions by Ginzburg and Landau, Abrikosov showed that the mixed 
state between He! and He2 of a type II superconductor may be con­
sidered as a bundle of normal filaments in a superconductive medium. 
The filaments, or fluxoids, which are the magnetic analogs of hydro­
dynamic vortices, have special quantum properties and may also be 
pinned down by dislocations and other defects in the solid. Therefore, 

Table 3.V. Values of Ces at Te 

Metal 

Hg Sn Al Ta Zn TI 

Ce,(7;) 
3.18 2.60 

yI; 
2.60 2.58 2.25 2.15 
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Fig. 3.15. (a) Expulsion of flux in a superconductor of the first kind up to a critical 
field H,. (b) Incomplete Meissner effect in a superconductor of the second kind. 

Flux penetration begins at H" and is complete at H,2' 

the model allows the irreversibility of magnetization observed in 
type II superconductors. Further, the magnetization measurements 
do not have the same simple relationship to the measurement of 
electrical resistivity, as in type I superconductors. Many alloys are 
type II superconductors, and obviously the simple relations derived 
in Section 3.8 have to be generalized suitably.28 Indeed, careful 
measurements on ideal type II superconductors, clearly exhibiting 
the specific-heat singularities at the transitions, are only now avail­
able. 29 The theory of Ginzburg and Landau, developed by Abrikosov 
and Gor'kov, explains many features of the behavior of type II 
superconductors, which are gaining technical importance in the 
generation of high magnetic fields. These matters are taken up at 
length in some recent reviews of the field. 27 ,30 
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Chapter 4 

Magnetic Contribution to 
Specific Heats 

4.1. THERMODYNAMICS OF MAGNETIC MATERIALS 

The behavior of magnetic materials at low temperatures is of 
widespread interest, be it in demagnetization techniques to produce 
very low temperatures or in the use of superconducting magnets. 
Therefore, it is worthwhile to consider the specific heats of magnetic 
materials separately. It is well known that the magnetic energy 
depends upon the operative magnetic field H, and so it is first necessary 
to inquire how the specific heat is defined for a system capable of 
magnetization. 

For a simple fluid, the basic thermodynamic relation used in 
Chapter 1 was 

T dS = dE + dW = dE + P dV (4.1) 

If the fluid is magnetizable, a term M·dH must be added to dW as 
the work done in changing the magnetic field. For simplicity, the 
scalar product M ·dH may be replaced by M dH where M, the mag­
netic moment of the substance, is interpreted as the component of M 
in the direction of H. Then 

T dS = dE + P dV + M dH = dE' + P dV - H dM 

where E' = E + M H. It is somewhat arbitrary whether E or E' is 
considered as the internal energy of the substance. This depends 
on whether the energy M H arising from the simultaneous presence 
of the field and the body is included in the energy content of the field 
or of the body. In several cases, it is advantageous and logical 1 to 
use E' as the internal energy. Further, in the problems of interest here, 
the mechanical work P dV may be neglected in comparison with the 
magnetic part - H dM. So the fundamental relation may be written as 

T dS = dE' - H dM 
84 

(4.2) 
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A comparison of equations (4.1) and (4.2) shows immediately that all 
the relations derived in Chapter 1 may be taken over to the magnetic 
case simply by replacing P and V by Hand - M, respectively. The 
principal magnetic heat capacities, CH at constant field and CM at 
constant magnetization, are 

CM = (dQ) = T(as) (4.3) 
dT M aT M 

The equations (1.12) and (1.14) between Cp and Cv are transformed 
into 

T(aMjaT)~ 

(aMjaHh 
(4.4) 

while the relation (1.16) giving the ratio of isothermal to adiabatic 
compressibility becomes 

(aMjaHh CH 

(i3MjaHh CM 
(4.5) 

In general, (aMjaH) depends upon the shape of the body. For a 
long rod set parallel to H, the field Hi inside the body is the same as the 
outside field H, whereas for other orientations and shapes, appropriate 
coefficients of demagnetization have to be introduced. Assuming 
this to be done, the differential molar susceptibility X may be intro­
duced by the relation 

aM 
aH = X (4.6) 

where M refers to the moment per mole. 
The correspondence C p +-+ CHand C" +-+ C M suggests that C M 

is the quantity of greater theoretical interest. This is true to some 
extent because in an "ideal" paramagnetic materiaL which obeys 
the relation M = f(HjT), CM is independent of the external field. A 
simple way of showing this is to write the magnetic analogs of equation 
(1.17), namely, 

(4.7) 

For an "ideal" paramagnet, M = f(HjT) or H = Tf-l(M). There­
fore, (iJCMjiJMh = 0, whereas CH depends upon H. 

These relations concerning the magnetic contributions to the heat 
capacity and hence to the entropy of a substance are of importance 
in the process of adiabatic demagnetization. A full discussion of the 
question may be found in the many reviews on the subject. 2 
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4.2. TYPES OF MAGNETIC BEHAVIOR 3 

The molecules of most materials have no permanent magnetic 
moments. Under such conditions, an applied field H induces a 
magnetic moment in the electronic system of the molecules which is 
in a direction opposite to that of H; this behavior is said to be dia­
magnetic. Diamagnetism is independent of temperature, and so it is of 
little interest in specific-heat studies. Some molecules, oxygen, for 
example, have elementary magnetic moments f1; at high temperatures, 
they are ordinarily oriented at random. On applying a magnetic 
field, there is a preferential orientation of the moments along H, 
resulting in a magnetization parallel to H (paramagnetic behavior). 
At low temperatures, an ordered arrangement of the elementary 
magnets is possible. This ordering process was attributed pheno­
menologically to internal magnetic fields by Weiss in 1907, but in 
1928 Heisenberg showed that it is due to the quantum-mechanical 
exchange interaction between neighboring electrons. An ordered 
state with parallel spins and therefore parallel magnetic moments 
(Fig. 4.1b) produces a large spontaneous magnetization even in the 
absence of H. In this ferromagnetic state, M becomes a nonlinear 
function of H and hysteresis effects are also present. 

The exchange interaction is able to overcome the thermal 
randomization of the spins at a sufficiently low temperature. The 
Curie temperature 7;" below which the spins become ordered, is as 
high as 1080 0 K for iron and less than 10 K for some alums. However, 
the ordered state need not always be ferromagnetic, as was shown by 
Neel. In some cases, the adjacent spins may be aligned anti parallel 
(Fig.4.1c). In this antiferromagnetic state there is no net spontaneous 
magnetization, but hysteresis is present and the susceptibility shows 
a sharp maximum at the transition temperature (Neel point). In a 
few cases, alternate magnetic moments are unequal and become 
arranged with adjacent spins antiparallel (Fig. 4.1d). This ferri­
magnetic state is macroscopically similar to a ferromagnetic state, 
but the substances-ferrites and garnets find important practical 

11111111 11111111 11111111 11111111 
(a) (b) (e) (d) 

Fig. 4.1. Schematic order-disorder state in a lattice of elementary magnets: (a) para­
magnetism-disordered spins; (b) ferromagnetism-parallel spins; (c) antiferro­
magnetism-adjacent spins antiparallel; (d) ferrimagnetism-adjacent unequal spins 

antiparallel. 
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applications-are poor conductors of electricity. Other types of 
ordering in which the spins are arranged along spirals are also possible 
(Section 7.6), and simple surveys of para-,4 ferro-, 5 antiferro-,6 and 
ferrimagnetic 7 states are available. 

It is clear that, if the atoms or molecules of a substance possess 
permanent magnetic moments, the magnetic state depends very much 
upon the temperature, which means that interesting effects may be 
expected in the specific heats. In discussing them, it is convenient to 
start from the ordered state at low temperatures and then to pass on 
to the behavior as the temperature is raised. 

4.3. SPIN WA VES-MAGNONS 

The ideal ordered state described above exists only in the absence 
of thermal agitation. Taking first the case of ferromagnets, the spins 
at the lattice sites are aligned at OaK along, say, Z so that the angular 
momentum hs is along Z. At a finite temperature, the spins at some 
sites j may be excited to higher energy states, i.e., point in other 
directions. Such distributions may be Fourier-analyzed into a set of 
waves. A spin wave may then be described as a sinusoidal disturbance 
of the spin system. The usefulness of describing a ferromagnet at 
finite temperatures as a superposition of spin waves was pointed out 
by Bloch in 1930. It permits a correlation of the various magnetic 
and other properties. A full description of the subjectS is outside the 
scope of the present work, and only a qualitative derivation9 of the 
spin wave spectrum in a ferromagnet can be given here. Unfortun­
ately, this conceals some of the difficulties involved in the concept of 
spin waves, which are treated at length elsewhere.s 

For simplicity, consider a linear ferromagnetic chain with a small 
field H 0 along - Z. Then the spins will all be pointing up with 
angular momenta hSi about Z. Further, Si = JlJgfJ = JlJhy where 
fJ = he/4nmc is the Bohr magneton, y = ge/2mc is the magneto­
mechanical ratio, and g is the Lande factor equal to approximately 2 
in ferromagnets. Classically, at OaK all the spins will precess in phase 
about Z at the Larmor frequency (00 = yH o. If now a spin wave is 
excited, the situation will be as shown in Fig. 4.2a. The spins are no 
longer in phase, and the phase angle between successive spins is 
equal to qa, where a is the lattice constant and 2n/q is the wave­
length. 

In an effective field H eff' each spin, because of its magnetic 
moment, will experience a torque ELi X Heff = yhs i X H eff . This 
torque is equal to the time rate of change of angular momentum 

d(hsi) 
~ = yhsi X Heff 
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Fig. 4.2. Classical picture of a spin wave q in a linear ferromagnetic chain. 

The effective field is calculated from the Hamiltonian [compare 
equation (4.18)] 

Yfi = -gf3Si· (Ho + ~~~Sj) = -gf3si·Herr 

where the sum :r.j is over the two near neighbors and J is the quantum­
mechanical exchange constant. Using this value of Herr, 

d(hs i) (2J) -- = yhs· x H 0 + - L s· 
dt ' gf3 j J 

(4.8) 

If R is the amplitude of precession, Si x Ho = sHo sines, Ho) = RHo. 
Figures 4.2 (a and b) shows that the resultant of OP 1 and OP3 is 20Q 
where P2Q = tRq2a2, and from Fig. 4.2c cjJ = LP20Q = tRq2a2s- 1• 

Therefore, the right-hand side of equation (4.8) is equal to 
yh[RH 0 + (2J jgf3)sRq2a2]. The left-hand side is hw'R, where w' is 
the angular velocity of precession, and so 

w' = yHo + 2J sq2a2 
gf3 

The Larmor frequency of the spin system is yH 0, and the frequency 
of the spin wave itself is 

(4.9) 

In a three-dimensional crystal, the same dispersion law wex:. q2, 
first found by Bloch, is obeyed, and the general ferromagnetic spin 
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wave frequency may be taken as 
2Jsa2 2 

Wq = rtf - h- q 

89 

(4.10) 

The constant rtf depends upon the details of the crystal structure and 
has been calculated in several practical cases. B The same W ex q2 

is also obeyed by the spin waves in a ferrimagnet. However, in anti­
ferromagnets, special considerations come into play in defining the 
normal modes of disturbances. It was first shown by Hulthen that 
the spin-wave spectrum is given as 

2J'sa2 

Wq = rta - h- q (4.11) 

where J' is the magnitude of the exchange constant. The antiferro­
magnetic spectrum is linear in q, unlike the quadratic dependence in 
ferro- and ferrimagnets. To establish equation (4.11) would require a 
longer discussion than is warranted here, and so it suffices to mention 
the references to elementary9 and rigorousB derivations. 

It is interesting to compare the spin waves with the lattice waves 
analyzed in Chapter 2. At low frequencies, the normal modes of a 
lattice have a dispersion relation W ex q, whereas the allowed modes 
in the spin system may be either W ex q2 as in ferromagnets or W ex q 

as in antiferromagnets. A set of mass points connected by elastic 
springs will form a model for lattice vibrations. A model for spin 
waves will be a set of arrows, each connected to its two neighbors 
by torsional springs. The angular displacement of a spin out of the 
line with its neighbors gives rise to a torque proportional to the excess 
displacement and tending to restore equilibrium. The analogy with 
lattice waves is actually very deep. The spin waves may be quantized 
into magnons, which play the same role in magnetic phenomena as 
phonons do in lattice dynamics. Magnons and phonons obey Bose­
Einstein statistics. These similarities have been very fruitful in the 
study of magnetic systems. 

4.4. SPIN WAVE SPECIFIC HEATS 

The fact that magnons obey Bose statistics allows easy calculation 
of the low-temperature thermal properties of magnetic materials. It 
was seen in Chapter 2 that at a temperature T the mean energy of a 
Bose oscillator of angular frequency W is hw/[exp(hw/kT) - 1] 
[equation (2.8a)] and that the number of energy states between 
momenta p and p + dp is (4nV/h3)p2 dp [equation (2.18)]. Using 
the dispersion relations (4.1 0) and (4.11), the specific-heat contributions 
at low temperatures can be easily derived. 
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(4.12) 

The upper limit of integration over q cannot be specified without 
detailed analysis, but at low temperatures the upper limit for x may 
be taken as infinity without serious error and the integral may be 
evaluated suitably. The specific heat now follows as 

dE (kT)312 
CM = dT = cfNk 2Js (4.13) 

where the constant C f has been calculated for several crystal struc­
tures.8 For example, C f '" 0.113 in a simple cubic arrangement of 
spins. Equation (4.13) is an important result, that at low temperatures 
the ferromagnetic contribution to specific heats is proportional to 
T312. A similar T312-variation is obeyed by the saturation magnetiza­
tion of ferromagnets, for which the T312 behavior had been observed 
for a long time. In specific heats, the measurement of spin wave contri­
butions has been only recently successful. 

In metals (Chapter 3), the conduction electrons give a specific 
heat proportional to T, the phonons give a T 3 -term, and, if the above 
magnetic term is added, the low-temperature specific heat will be of 
the form 

Cv = yT + f3T 3 + bT312 

The temperature variation of the heat capacity will be dominated by 
the term with the lowest power of T, namely, the electronic term. With 
a few exceptions discovered recently, most ferromagnets are metallic; 
therefore, a clear resolution of the magnetic T 312-term is a matter of 
considerable experimental difficulty. Not surprisingly, the spin wave 
effects were not easily observed in the specific heats of ferromagnets, 
although the magnetic measurements had borne out the theoretical 
predictions. The situation is quite different in ferrimagnets. They are 
electrical insulators, and in the absence of free electrons the specific 
heat is of the form 

Cv = f3T3 + bT312 

At low temperatures, the spin wave is dominant, and a plot of CT- 312 
against T312 should be a straight line. The first such experiments 
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Fig. 4.3. Low-temperature specific heat of YIG showing the spin wave T3/2_ 

contribution. 10 
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were made on magnetite Fe304 by Kouvel in 1956; since then, 
similar measurements have been made on several garnets, ferrites, 
and very recently on some ferromagnetic insulators. Figure 4.3 shows 
a typical result for yttrium iron garnet (YIG), with clear evidence for 
the T 3 /2 _term. 10 The exchange constant J may also be obtained 
from various other experiments, such as magnetic resonance and 
neutron scattering. The agreement among the values of J is fair, when 
the large corrections for demagnetizing effects and anisotropy are 
taken into account. 

Going now to the case of antiferromagnets, the dispersion 
relation OJ = lY.a(2J'sa 2/h)q means that 

E = 4nV f 21Y.J'sa2q3 dq 

o exp(2IY.Jsa2q/kT) - 1 
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Fig. 4.4. Heat capacity of MnC03 (circles and thick lines) and CaC03 (thin lines) 
showing antiferromagnetic contribution. I I 

At low temperatures, the upper limit for x may again be taken as 
infinity, and the specific heat becomes 

eM = CaNk(~;sY (4.14) 

The constant Ca has been calculated for several types of lattices. The 
T3 spin wave specific heat in antiferromagnets is strikingly different 
from the T3/2-dependence in ferromagnets. The temperature depen­
dence is of the same form as the lattice contribution in the Debye 
T3-region. This makes an experimental separation of the spin wave 
and lattice specific heats almost impossible in metals and very difficult 
in nonmetallic antiferromagnets. In the carbonates of manganese 
and cobalt, the antiferromagnetic T 3-contribution is about ten to 
twenty times larger than the lattice term, as may be seen in Fig. 4.4, 
where the specific heat of MnC03 is compared with that of CaC03, 
which has no magnetic contribution.!! The experimental values 
agree very well with those calculated from magnetic measurements. 

It must be added that the spin wave specific-heat relations (4.13) 
and (4.14) hold good at moderate temperatures only. At very low 
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temperatures, some of the approximations made above are not valid 
and the specific heat may decrease exponentially. At high tempera­
tures, interactions among magnons give rise to other terms, as shown in 
detail by Dyson, and the simple spin wave picture is no longer very 
useful. For the sake of simplicity, these details8 are left out here. 

4.5. THE WEISS MODEL FOR MAGNETIC ORDERING 

As mentioned earlier, the ordered ferro-, ferri-, or antiferro­
magnetic states go over into the paramagnetic state at sufficiently 
high temperatures. The change in the magnetic properties is accom­
panied by a sharp peak in the specific-heat curve at 7;,. Figure 4.5 
shows the typical example of nickel. The magnetic contribution eM 
is obtained by subtracting the lattice and electronic terms from the 
total Cv ' The behavior near 7;, is typical of a general class of coopera­
tive transitions, which will be discussed at length in Chapter 7. 

Historically, it was Weiss who in 1907 gave a simple explanation 
of ferromagnetism. A few years earlier, Langevin had shown that the 
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Fig. 4.5. Heat capacity of nickel (in calfg-atom'deg) showing the magnetic 
contribution eM besides lattice and electronic terms. 
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competition between the magnetic field H tending to align the elemen­
tary magnets fJ. and the thermal agitation causing a random arrange­
ment results in a net magnetization of the form 

M = N /1 tanh (~~) (4.15) 

Langevin's theory explained many aspects of paramagnetic behavior­
in particular, Curie's law, that the susceptibility varies as 1fT, arises 
because for ordinary fields and temperatures flH/kT ~ 1. Weiss 
suggested that because of the magnetization of the other parts of a 
solid there is an internal magnetic field aM (a a constant) and that the 
effective field acting on the elementary dipoles is 

Herr = H ext + aM 

Substitution of H eff in place of H in equation (4.15) shows that even in 
the absence of an external field H ext there is a spontaneous magnetiza­
tion given by the implicit equation 

Ms = N/1 tanh --(Ms~) 
N/1 T 

(4.16) 

where ~ = aN /1 2 /k. This is the ferromagnetic state. Weiss's theory 
also explained hysteresis and other features of M-H ext curves. For 
many metals, equation (4.16) satisfactorily describes the variation of 
M s with T, except very near the transition temperature ~. The 
moment /1 comes out to be equal to the Bohr magnet on he/4nmc, 
showing that ferromagnetism is due to the magnetic moment of 
electrons. [As a matter of fact, equation (4.15) is the quantum­
mechanical expression for particles of spin th.] 

The energy of magnetization in the absence of H ext is 

and so the magnetic contribution to specific heat is 

1 dM 2 

C M = -2"a dT (4.17) 

The magnetic specific heat given by the Weiss model is shown in 
Fig. 4.6. eM steadily increases from zero at T = 0 to a maximum 
~R at T = ~. This maximum is followed by a discontinuous drop to 
eM = 0 in the paramagnetic state T > ~. No latent heat is liberated 
at ~, and the transition in the Weiss model is a phase change of the 
second order (see Section 8.1). 



Magnetic Contribution to Specific Heats 

I 

2R 
, , 

I 

/ 1 
/ 

~ / 
\ 

/ \ 

/ ",'/ \ , 
/' .... 

/ - -o 
o 0.2 0 .4 0.6 0.8 1.0 1.2 1.4 

Fig. 4.6. Schematic variation of magnetic heat capacity near 7; in 
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The experimental values of CM, as seen in Figs. 4.4 and 4.5, 
follow the general trend in being small at low temperatures and 
beginning to rise as 7;, is approached. Near 7;" there is not even qualita­
tive agreement with the above theory. C M often rises to a value much 
higher than the predicted maximum; furthermore, the specific-heat 
curve has a "tail" above the transition. CM decreases sharply, no 
doubt, but instead of falling abruptly to zero it lingers on for a con­
siderable range of temperatures before becoming immeasurably small. 

The phenomenological theory may be suitably modified to give a 
small "tail" to the specific-heat curve,12 but the agreement is not very 
much improved. It is generally believed that an explanation of the 
behavior of ferro- and antiferromagnets near 7;, belongs to the realm 
of proper statistical theories. 

4.6. THE HEISENBERG AND ISING MODELS 

Very soon after the development of quantum mechanics, Heisen­
berg (in 1928) gave an explanation of the origin of Weiss's internal 
magnetic fields, whose large magnitudes of around 105 Oe remained 
puzzling. On account of the Pauli exclusion principle, two electrons 
with spins SI, S2 have an interaction energy of the form - 2Js I . S2, 

where the exchange integral J is a function of distance. For large 
separations of the electrons, J is very small, but for spacings of the 
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order of a few Angstroms the exchange energy becomes large enough 
to be comparable to chemical binding energies. Thus, if the energy 
were written in terms of the electronic magnetic moments /L, it would 
be of the same form and magnitude as the internal magnetic energy 
in the Weiss model, even though it is basically electrostatic in origin. 
If 1 were positive, a parallel (ferromagnetic) alignment of spins would 
be favored, while a negative 1 results in anti parallel alignment. 

The statistical theory of magnetic systems thus involves the 
calculation of the partition function L exp( - Er/kT) of the system. 
With the general form of the exchange interaction, the calculations are 
so prohibitively complicated that it is normal to make two stages of 
approximations. The Heisenberg model assumes that, since 1 falls 
off rapidly with increasing distance, it is enough to take the interactions 
as extending only to the nearest neighbors. Thus the energy of the 
system in this model is 

E(Heisenberg) = -21 I Si' Sj - flU' I Si (4.18) 
i.j 

where L is over all pairs of direct neighbors. This model has been 
quite successful in explaining, for example, the spin waves at low 
temperatures (Section 4.3). However, even this approximation in­
volves formidable difficulties, so that in many statistical problems a 
further simplification is commonly used, though the model was intro­
duced slightly earlier by Ising. In the Ising model, the scalar product 
Si . Sj is replaced by SizSjz on the basis that if Z is the direction of 
alignment, the expectation value of S in X, Y directions is zero. Then 

E(Ising) = - 21 L SizS jz - flH L Siz (4.19) 
i,j i 

where L is again over pairs of adjacent neighbors. 
The Ising model is a scalar problem in that it deprives magnetism 

of its intimate connection with the angular momentum of electrons. 
Further, it does not admit a spin wave picture at low temperatures. 
Hence, it may be considered a poor model for magnetic studies. 
However, near or above 7;" the statistical enumeration of the states, 
which is correctly taken into account, assumes dominant importance 
in the thermodynamic and other properties of the system. Therefore, 
a large amount of theoretical work has been done on the behavior of 
the simple Ising model near 7;" where its deficiencies are unimportant. 
There are two reasons for the great interest in the field: In the first 
place, the Ising and Heisenberg models furnish instructive theoretical 
schemes not only for magnetic transitions but also for other coopera­
tive transformations, which will be discussed in Chapter 7. The Ising 
model is the simplest one which appears to reproduce many of the 
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features observed experimentally. Secondly, the general problem for a 
three-dimensional solid has remained so far an unsolved challenge. 
The exact solution for a two-dimensional Ising model was given by 
On sager in 1944, but even this is a remarkable tour de force to be 
savored only by professional theoreticians. 13 

It is now superfluous to add that the solutions of the Heisenberg 
and Ising models, even in their approximate form, are far too sophis­
ticated to be reproduced here. As regards the specific heat, which is 
the prime concern in this text, the two-dimensional Ising lattice 
exhibits a logarithmic singularity: 

eM ~ A log (T - TJ .. . 
~ B log (~ - T) .. . 

(4.20) 

where the constants A, B have been calculated for several lattices. 
In a three-dimensional case, such exact relations are not yet available, 
and various approximate calculations have been made. The nature 
of the singularity, whether an inverse power of IT - 7;,1 or logarithmic 
in IT - ~I, cannot be described with certainty, although for a diamond­
type Ising lattice the approximations have been carried sufficiently 
far to suggest a logarithmic infinity in specific heat below the ferro­
magnetic transition. 14 To be fair, it must be mentioned that a 
logarithmic singularity at the cooperative transition had been re­
vealed by calorimetric measurements performed somewhat earlier 
(Figs. 4.9 and 5.5). Above 7;, the experiments can be fitted to a loga­
rithmic term in some cases and to a power law singularity in others.14a 

It is also possible to estimate the ferromagnetic transition tem­
perature 7;" as well as the magnetic part of the entropy S and internal 
energy E that are removed at the transition. For a fcc lattice, the 
values are 

2k7;,/zJ 0.68 0.82 

(S~ - SJ/k 0.27 0.10 (4.21) 

0.44 0.15 

Here z is the number of nearest neighbors and J is the exchange 
constant. The values are for spin !, and the first column refers to the 
Heisenberg model and the second to the Ising model. The entropy 
values show that the Heisenberg model has a larger tail on the high­
temperature side than the Ising model. For bcc or other types of 
lattices, the constants in (4.21) are slightly different. Similar small 
variations arise for spins greater than !. In particular, the specific 
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heat on the high-temperature side rises more rapidly for larger spins. 
Antiferromagnetic transitions may be studied similarly, but calcula­
tions are scanty. A schematIc variation of tilt: s{JC\.:iu\" ~-,.oaL "cur I;, 
is shown in Fig. 4.6. 

In contrast to these approximate values, which depend upon the 
model chosen for calculations, a very general result may be given for 
the total magnetic entropy SM. It is well known that a particle with 
spin sh has 2s + 1 quantized orientations. In a field H, the levels 
have slightly different energies, but in the absence of H the energies 
are all equal and there is a 2s + 1 degeneracy in the state of the system. 
The entropy corresponding to this is kIn (2s + 1) per particle, which 
is the entropy that comes into play here. The rule 

SM = R In (2s + 1) per mole (4.22) 

has been verified in many cases. 15 Only a small part of this entropy 
is removed as the substance is cooled to T" from a high temperature. 
This percentage is slightly larger in a Heisenberg model with its larger 
tail above T". Most of the ordering takes place below the transition. 

4.7. SPECIFIC HEATS NEAR THE TRANSITION 
TEMPERATURE 

It is only recently that careful experimental studies have been 
made to check the various predictions of the statistical theories; on 
the whole, reasonable agreement is found. 16 As an example of 
ferromagnets, the complete magnetic and calorimetric studies 1 ? on 
copper ammonium and copper potassium chlorides, Cu(NH4 hCI4 · 

2H 2 0(T" = O.70 0 K) and CuK 2CI4 ·2H2 0(T" = 0.88°K), may be con­
sidered. Below about O.5T", the specific heat follows the variation 
given by this spin wave theory (Section 4.3). For the ammonium salt, 
the exchange constant Jlk given by the spin wave variation is about 
0.28 oK, compared to the values of approximately 0.30oK calculated 
from the Curie-Weiss constant and approximately 0.29°K derived 
from the behavior of the specific heat in the paramagnetic state 
T> T". Near T", the statistical theory suggests that the specific heat 
is a function of TIT" only; Fig. 4.7 shows how closely this is verified. 
(The lattice contribution is negligible at these low temperatures.) The 
entropy calculated from the full line has a value of 5.81Imole·degK, 
whereas the theoretical value for s = t of Cu 2 + ion is R In 2 = 
5.761Imole·degK. Further, the authors obtain 2kT"lzJ = 0.75, 
(Soo - SJlk = 0.22, (Eoo - Ec)/kT" = 0.38. These values are in 
between the numbers given in (4.21), although the Heisenberg model 
gives a good explanation of the other properties of the substance. A 
part of the discrepancy may be due to the bcc structure of these salts, 
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Fig. 4.7. Heat capacity of CuK2CL,'2H20 (7;, = O.882°K, circles) and Cu(NH4hCI4 '2H20 
(7;, = O.704°K, triangles) plotted as a function of T/7;,.16 

whereas equation (4.21) refers to a fcc lattice. Support for this view 
is given by the fact that a Heisenberg model for a bcc lattice gives 
2kTclzJ = 0.72, in much better agreement with the experiments. 

Antiferromagnetic transitions are exemplified by the study18 of 
nickel and cobalt chlorides, NiCI2·6H20(TN = 5.34°K), CoCI2·6H20 
(TN = 2.29°K). The specific heat of the nickel salt is shown in Fig. 4.8, 
while that of the cobalt salt is similar except for the change in the Neel 
temperature. The lattice term, which is nearly the same in both 
saits, was found from the T 3-behavior of the lattice specific heat and 
the T- 2-variation of the paramagnetic specific heat at T~ TN (com­
pare Section 4.9). The magnetic specific heat is obtained by subtract­
ing the lattice contribution from the total specific heat. Because of 
the influence of the crystalline electric field upon the electronic levels 
of the transition metal ions, one should expect s = ! for the cobaltous 
ion and s = 1 for the nickelous ion. The magnetic entropy was 
equal to 9.131/mole·degK for the nickel sait, which is within 1 % 
of R In 3. That of cobaltous chloride was 5.80 l/mole·degK ~ R In 2. 
The exchange constant IJI/k has a value of approximately 1.6°K for 
COC!2·6H20 if calculated from the total ordering energy and about 
1.5°K if calculated from the Neel temperature. Of more interest is 
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Fig. 4.8. Heat capacity of NiCl2 ·6H20 .18 

the behavior of eM found near TN (Fig. 4.9). The data appear to 
suggest that the specific heat becomes logarithmically infinite at the 
Neel temperature. This singularity and the similar behavior found 
in liquid 4He (Fig. 5.6) are of special interest because Onsager's solu­
tion for a two-dimensional cooperative transition shows a logarithmic 
infinity, while no firm predictions are as yet available for a three­
dimensional case. 

4.8. PARAMAGNETIC RELAXATION 

Specific-heat studies in paramagnetic salts are important in two 
respects. In the first place, the attainment of temperatures much 
lower than 10 K by adiabatic demagnetization techniques involves a 
thorough knowledge of the magnetic entropy which can be extracted 
from the system. Secondly, paramagnetic saIts furnish an interesting 
class of specific-heat anomalies, namely, the Schottky peak. Before 
these matters are taken up in detail, it is convenient to discuss a 
special method of measuring specific heats which is very useful when 
they are not easily separated from the lattice contributions. 

The method is based on paramagnetic relaxation,3.4 discovered 
by Gorter. If a magnetic field is applied to a paramagnetic salt, the 
internal energy of the system is changed. It is found that the time 
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taken for the transfer of the heat of magnetization from the dipoles to 
the crystal lattice (spin-lattice relaxation time) is much longer than 
the time needed for the establishment of thermal equilibrium among 
the dipoles themselves (spin-spin relaxation time). On suddenly 
changing H, the dipoles very quickly (in about 10- 10 sec) follow the 
field, but the magnetic energy is given to the lattice only in a leisurely 
(of the order of 10 - 6 sec) fashion. Therefore, for any variation of H 
over a time long compared to the spin-spin relaxation time but short 
compared to the spin-lattice relaxation time, the dipoles are in 
equilibrium among themselves but do not exchange heat with the 
lattice. A measurement of the variation of M under such conditions 
gives the adiabatic susceptibility Xs. The normal DC measurement 
yields the isothermal susceptibility XI" Equations (4.4) to (4.6) now 
show that 

or (4.23) 

As pointed out first by Casimir, du Pre, and de Haas in 1938-1939, 
the lattice temperature is not changed during the measurement, and 
so the lattice specific heat does not enter the calculation. 



102 Chapter 4 

By this technique it is possible to measure magnetic contributions 
to specific heats at liquid-nitrogen temperatures, where they may 
amount to only 10- 6 of the total heat capacity of the salt. Since the 
spin-lattice relaxation time is about 10- 6 sec at these temperatures, 
the adiabatic susceptibility must be determined at radio frequencies. 
At liquid-helium temperatures the spin-lattice relaxation time is 
usually of the order of 10- 3 sec and audiofrequency measurements 
suffice. The details of the experimental techniques are thoroughly 
discussed by Benzie and Cooke. 19 At very low temperatures ( ~ 10 K), 
the heating produced in AC measurements is considerable, and direct 
calorimetry is preferred. At these temperatures, the lattice specific 
heat is so small that the entire specific heat measured calorimetrically 
may be taken as arising from magnetic effects. At higher temperatures, 
the paramagnetic relaxation technique is very useful, because the 
lattice and magnetic terms are nearly comparable and not easily 
separated out. 

At very low temperatures, since the spin system can exist for an 
appreciable time without interacting with the lattice, it is advantageous 
in magnetic studies to attribute a separate (spin) temperature and 
specific heat to the spin system. Discussions of such nonequilibrium 
concepts can be found in the treatises on magnetic resonance and are 
not appropriate here. 

4.9. SCHOTTKY EFFECT 

It is well known that a particle with spin sh has 2s + 1 possible 
orientations of the spin; in a magnetic field, the particle has a number 
of discrete energy levels. This spacing of the quantized energy levels 
is reflected in the specific heat in an interesting way. Consider for a 
moment a system with two levels, L1 apart. At T ~ L1/k, the upper 
level will scarcely be populated, whereas at T ~ L1/k both levels will 
be nearly equally populated. Only at temperatures comparable to 
L1jk will transitions from one level to another take place in appreciable 
amounts. This rapid change in the internal energy corresponds to a 
large specific heat which becomes zero at both high and low tempera­
tures. Thus there is the intriguing possibility of a hump in Cv, which 
will in general be superimposed on the lattice and other contributions. 

A general problem of this kind was considered by Schottky in 
1922. Suppose there is a system in which the particles can exist in a 
group of m levels, separated from the ground state by energies 
C1' cz, ... , Cm and with degeneracies g1' g2' ... , gm' Using the Boltzmann 
factor exp( - c/kT), the probability of a particle occupying the rth 
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level is 
gr exp( - erik T) 

L gr exp( - er/kT) 
n 

103 

With N independent particles in the system, the mean energy at a 
temperature Tis 

m 

N L ergr exp( - er/kT) 
E = r=O 

m 

L gr exp( - er/kT) 
r=O 

(4.24) 

The specific heat is obtained by calculating dE/dT. The simple case 
of two levels illustrates all the features of such calculations. For a 
two-level system, equation (4.24) becomes 

E = Ng1el exp( -edkT) 
go + gl exp( -edkT) 

and the Schottky specific heat is 

Nd go exp(edkT) 
C Sch = - - c:-c--.,---:-=--=':'-,.-::-=:::-= 

kT2 gl [1 + (gO/gl) exp(edkT)]Z 

( b)2 go exp(b/T) 
= R T gl [1 + (gO/gl) exp(b/T)jZ 

(4.25) 

where b = edk is the energy separation measured in degK. CSch is 
plotted in Fig. 4.10 for a few values of g dgo. 

The qualitative remarks made earlier about the behavior at low 
and high temperatures may now be made quantitative. From equa­
tion (4.25) it is easy to see that 

(4.26) 

(4.27) 

The specific heat attains a maximum value at an intermediate tempera­
ture Tm given by 

( go) exp(~) = (b/Tm) + 2 
g 1 Tm (b/Tm) - 2 

(4.28) 

and the maximum itself is equal to 

CSch(max) = ~ ~m[(:J2 -4J (4.29) 
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Fig. 4.10. Schottky heat capacity of a two-level system for several values of f,,/f,o' 

Thus if go/g 1 = I, the maximum occurs at Tm = 0.42<5 and has a 
value CSch(max) = 3.61/mole·deg. Table 4.I gives Tm/<5 and CSch(max) 
for several values of g J!go. When these values are compared with the 
typical lattice and electronic contributions of 10- 2 l/mole·deg at 4 OK, 
it is evident that a Schottky peak occurring at liquid-helium tempera­
tures will dominate the variation of specific heat (see Fig. 4.11). 

If CSch is isolated from the observed total specific heat, by the 
methods to be discussed below, there are several ways of finding <5 
and g J!go. The position and magnitude of the peak, the behavior 
at high temperatures (CSch'T 2 = constant) or at low temperatures 
(log (CSch'T 2 ) linear in I/T) may all be used. This, of course, assumes 
that there are only two energy levels to be considered. If more levels 
are involved, the full equation (4.24) has to be used, or, alternatively, 

d2(RTlnz) -2 d2 lnz 
CSch = T dT2 = RT d(1/T)2 

TABLE 4.1 

C Sch (max) 
g,/go l/mole'deg Tm/o Total entropy 

0.5 2.00 0.448 R Ini 
1.0 3.64 0.417 R In 2 
1.5 5.06 0.394 R In! 
2.0 6.31 0.377 R In 3 
5.0 12.0 0.320 R In6 
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where 

z = Lg.exp(-:~) 
Apart from the behavior CSch oc T - 2 at high temperatures, no simple 
results can be given. In such cases it is necessary to start with some 
schemes of energy levels derived either theoretically or from suscepti­
bility, paramagnetic resonance, and other data. The specific-heat 
curve then serves as a check on the correctness of the assumed model. 

The entropy associated with the Schottky peak may be obtained 
by integrating CSch • T- 1 ; the values for the two-level case are given 
in Table 4.I. These results may also be obtained by enumerating the 
possible configurations of the system, as was done with equation 
(4.21). For example, if there are m levels of equal degeneracy, the 
extra entropy is R In m per mole. In the two-level case, S = R In [1 
+ (gdgoH Usually, a comparison of the theoretical and experimental 
values of the excess entropy serves to verify the correctness of separ­
ating out CSch from the observed total specific heat. 

The problem of getting CSch from the observed specific heat by 
subtracting the lattice and other contributions is one of consider­
able difficulty. If the Schottky peak occurs at low temperatures, the 
lattice term may be taken as f3T 3 . At temperatures well above the 
peak, CSch oc T- 2, and the total specific heat will be of the form 
C = f3T 3 + BT- 2• Thus a plot of CT2 versus T 5 should be a straight 
line, which permits the desired resolution to be carried out. The 
magnetic contribution in Fig. 4.9 was obtained from Fig. 4.8 in this 
manner. For this separation to work, the lattice term must be propor­
tional to T3 and the two terms must be of similar magnitude. If this 
restriction cannot be satisfied, it is usual to take for Clatlice the specific 
heat of a salt of similar composition and same crystal structure, but 
which does not have an anomaly. The case of MnC03 and CaC03 

(Fig. 4.4) is an example of this type of analysis. In some cases, the 
magnetic contribution may be evaluated separately from measure­
ments of paramagnetic relaxation or adiabatic demagnetization from 
different magnetic fields. In general, the Schottky term, if present at 
liquid-helium temperatures, is so large a fraction of the observed 
specific heat that small errors in evaluating the lattice corrections are 
not serious. 

4.10. SPECIFIC HEAT OF PARAMAGNETIC SALTS 

Paramagnetic salts, in which the magnetic dipoles have energy 
levels with spacings of approximately 1 to lOOK, form the natural 
examples of simple systems exhibiting a variety of Schottky peaks. 
That such a close relationship should exist may be inferred in the 
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following way. For the magnetic moment of a paramagnet, Langevin's 
theory gives an expression of the form 

M = NJLtanh(JLH/kT) (4.15) 

In a field H, the energy of the magnetic moment of the body is MH; 
this corresponds to a specific heat 

(4.30) 

If the energy difference between two levels 2JLH of a particle is put 
equal to 810 this is nothing but equation (4.25) with go = g I. Figure 
4.10 with kT/2JLH instead of T/{) and gl/go = 1 will represent equation 
4.30 equally well. In a paramagnetic gas, the position of the specific­
heat maximum may be shifted at will by applying a magnetic field. 
For the fields normally used, this is practicable only at low tempera­
tures.20 The entropy of the spin system can be increased merely by 
demagnetizing a magnetically saturated specimen. If the process is 
done adiabatically, a compensating decrease of temperature is en­
forced to keep the entropy constant. This forms the basis of the adia­
batic demagnetization technique to reach temperatures below 10 K 
and to measure the magnetic specific heats in that region. 2 

A similar electrocaloric effect is also possible, in which excitations 
occur between the different levels of electric dipoles.20a 

In a solid, the magnetic ions have energy levels about 10 K apart 
even in the absence of external fields. These closely spaced levels arise 
in several ways. In any solid, there are crystalline electric fields which 
remove the spin degeneracy of some atomic energy levels through 
the familiar Stark effect. There are magnetic dipole and exchange 
interactions among neighboring ions, which also split the energy 
levels, though Stark-splitting accounts for the major share in the level 
splitting. Besides these causes attributed to the electronic spin, 
nuclear effects may also arise from the energy levels of the nuclear 
dipoles and quadrupoles. The specific-heat studies, being integrated 
measurements, give no clue to the origin of the energy splittings. This 
must come from other theoretical and experimental studies, especially 
those on magnetic susceptibility and paramagnetic resonance. The 
resonance studies are particularly fruitful in directly giving the separa­
tion and degeneracy of the various levels. A good account of the 
interrelations among the various measurements is given by Rosen­
berg.21 

A prerequisite for applying the simple Schottky theory is that the 
various ions should be independent of one another. Since the mag­
netic interactions do not fall off very rapidly with increasing distance, 
the ions will not respond independently, except as a first approxima­
tion, to the applied magnetic fields. An approximate correction for the 
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lack of statistical independence may be applied, but it is more usual 
to dilute the specimen with isomorphous diamagnetic salts so that the 
various ions are far removed from one another. In some salts, such as 
alums and Tutton salts, the water molecules in the crystal provide the 
necessary dilution, but where nature does not perform the decoupling 
well enough, artificial measures have to be employed. Even when a 
complete picture of the energy levels is available, small discrepancies 
between the calculated and theoretical specific heats are often present. 
They are usually attributed to the lack of statistical independence 
caused by coupling among the ions themselves and among the ions 
and the lattice phonons.22 

An example of the good agreement between theory and experi­
ment is the Schottky effect in (J. - NiS04 · 6H20.23 The Ni2+ ion 
can have in general three energy levels on account of the removal of 
spin degeneracy by the crystalline electric and magnetic fields, 
although approximate calculations suggested two levels with gl = 2 
and go = 1. The experimental curve does resemble Fig. 4.10, with 
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Fig. 4.11. Heat capacity of IX-NiS04 ·6H20 .2J Full line is the calculated magnetic 
term. Dot-dashed line is the lattice heat capacity. 
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gdgo = 2 as regards CSch (max). Detailed comparisons showed three 
levels with spacings 6.44 and 7.26°K above the lowest spin state. 
The agreement with the experimental values, after taking into account 
the lattice contribution (which is about 7% of the total Cv at 6°K and 
about 1 % at 4 OK), is seen to be very good. The total entropy of the 
magnetic system is R In 3. With this knowledge of the energy levels, 
other properties, such as susceptibility and magnetization, have been 
calculated in reasonable agreement with the observed values. 

An illustration of the great utility of calorimetric data in supple­
menting the information from paramagnetic resonance and suscepti­
bility measurements is furnished by the case of ferric methylammonium 
sulfate Fe(NH3CH3 ) (S04h' 12H20.24 Paramagnetic resonance 
studies by Bleaney and coworkers showed that Fe3+ ion has three 
doublet states. The middle Sz = ±~ level is separated from the other 
two by energies of 1.05 and 0.58°K, but it was not known which of the 
levels ±t, ±i was the lowest spin level. Therefore two schemes, shown 
in Fig. 4.12, are possible, and the corresponding CSch are compared 
with the experimental specific heats. There is no doubt that scheme 2, 
with Sz = ±t as the lowest level, is the correct one. The addition of 

.1.-----, T 
0.;8· ._,I -+-I O.b 

1.0;'° . 

1 
~ ; --Sc-hA.m-. - I -

0.4 

v 

t 1---r--
1.03°K I 0.2 

:T--T"-
0.58·~ 

,, : _ .... 1 ...... _ 
Sd tome- '} 

a 
a 

,,- , 
J 

~ 
rT' OBJ,.. 

§ I ~ I 

/ 
I 

J 
I 

I 
I 

a.' 

\. 

" , 
\. S,'ome \ 

\ 
~ , , 
~. 

I' , 
\C"'t.*mt: 2 \. 

""'" ~ 
\. 

-0 

0.8 1.2 

Fig. 4.12. Heat capacity of Fe(NH,CH,)(S04)z'12H zO compared with two possible 
level schemes. Obviously. scheme 2 with ± i level lowest gives a better fit. 



Magnetic Contribution to Specific Heats 109 

the magnetic dipolar contribution removes the small discrepancy 
found in Fig. 4.12. In this salt, measurements of susceptibility could 
not throw much light on the energy level schemes, and the calorimetric 
data gave an elegant solution to the problem. 

Although the spin disorder in the paramagnetic state, which 
gives a T- 2 specific heat at high temperatures, should eventually be 
removed at OaK, it is not easy to say whether the removal will involve 
a Schottky peak or a cooperative singularity. In general, with dilute 
systems, the spin disorder is removed with a Schottky peak. If the 
exchange interactions are strong, a cooperative transition to the ferro­
magnetic, antiferromagnetic, or other states occurs before a Schottky 
peak can be observed. 

4.11. NUCLEAR SCHOTTKY EFFECTS 

Schottky effects are widely observed in the electron paramag­
netism of crystalline salts or of some gases such as nitric oxide and 
oxygen. In the solid state, Schottky peaks may arise from a different 
source. If the atomic nucleus has a magnetic moment Ji.N' it may have 
a set of energy levels in an effective field H eff, arising from orbital and 
conduction electrons. The splitting is similar to the hyperfine struc­
ture (hfs) observed in spectroscopy. Moreover, if the nucleus has a 
quadrupole moment, its interaction with the field gradients produced 
by neighboring atoms will cause small level splittings. The change 
in population of these levels is readily observed as a Schottky effect in 
the specific heats. 

The hfs effect was first observed in ferromagnetic materials, 
where the presence of internal fields of the order of 1050e obviously 
suggests that the nuclear levels will be appreciably split. Since then, 
such effects have been observed in antiferromagnets and more 
prominently in many ferromagnetic rare-earth metals. In holmium, 
the peak occurs at a reasonable temperature of 0.3°K, and so the 
complete anomaly has been mapped out.25 The levels of a nucleus 
of spin I may be written as 

Bilk ~ ai 

where i = -I, -I + 1, ... , I and a is the hfs coupling constant For 
holmium, I = J and there are eight levels. From paramagnetic­
resonance studies, Bleaney had calculated a ~ 0.31°K. The specific­
heat studies give a ~ 0.32°K, in excellent agreement with para­
magnetic-resonance data. Actually, in holmium there is a small 
quadrupole contribution which is taken into account in the theoreti­
cal curve of Fig. 4.13. The excellent fit with the experiments needs no 
further description. 
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Fig. 4.U. Heat capacity of holmium meta!.25 Full line is theoretical Schottky curve. 

If a nucleus with a quadrupole moment is situated in a non­
spherical or non cubic electronic environment, the quadrupole inter­
action with the electric field gradient gives a set of energy levels 

r.;/k ~ P'[i 2 - *1(1 + I)] 

Here P' is the quadrupole coupling constant, which may be related 
to the quadrupole moment and the field gradient. The T- 2 high­
temperature Schottky term arising from such splittings has been 
observed in substances such as rhenium, mercury, indium, and 
gallium,26 

Because of the smallness of the nuclear moments compared to the 
electronic moments, the nuclear anomalies occur in the region of 
1O- 2K, whereas the electronic peaks are present at I to lOoK. On 
the other hand, the nuclear effects may arise even in diamagnetic 
materials. 
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Chapter 5 

Heat Capacity of Liquids 

5.1. NATURE OF THE LIQUID STATE 

Among the three states of aggregation, solids;=! liquids;=! gases, 
less is known about the liquid state than about the other two. To 
some extent this is not surprising, because the limiting cases of solids 
and gases are sufficiently clear-cut and simple to allow schematic 
models to represent their behavior. In gases, the molecules are far 
apart and have no spatial correlation. In solids, the atoms are 
arranged in lattice sites. Such situations can be analyzed to a first 
approximation on the basis of idealized models, perfect gases, or 
perfect lattices, and these elementary calculations may then be refined, 
if necessary. The difficulty in developing an adequate theory of the 
liquid state is that such convenient starting points are not available. 
Near the freezing point, liquids exhibit many of the characteristics of 
solids, whereas near the boiling point the behavior of liquids is to 
some extent similar to that of gases. 1 In liquids, the atomic arrange­
ment in the immediate vicinity of any atom is partially ordered (short­
range order), but at great distances the arrangement is completely 
random (long-range disorder). The absence of long-range order 
distinguishes a liquid from a solid, while the presence of short-range 
order differentiates between a liquid and a gas. 

The phenomena that occur in a liquid may be described as 
follows. After melting, the system is no longer crystalline, but each 
atom still retains much the same relationship to its nearest neighbors 
as it did in a solid. The thermal energy of vibration of each atom is 
changed only slightly. In the liquid, rotational motion is possible; 
furthermore, the atoms can jump from one position to another. The 
fluidity of a liquid arises because such a jumping process can relax 
an applied shear stress in a very short time, of the order of 10- 10 sec; 
as a matter of fact, at frequencies higher than about lO lD cps, liquids 
do behave like solids in supporting shear waves. As the liquid is 
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warmed, the molecules acquire more freedom of motion and the 
distance up to which there is short-range order is progressively 
reduced. This continues until the boiling point is reached, when the 
molecules are liberated from the liquid lattice at the expense of con­
siderable latent heat. 

5.2. SPECIFIC HEAT OF ORDINARY LIQUIDS AND LIQUID 
MIXTURES 

On the basis of the above ideas, one would expect the specific 
heat to show a small increase on melting, and thereafter in the liquid 
state it should show a gradual increase until the boiling point is 
reached. Many liquids do behave in this way. Table 5.1 shows the 
measured specific heat under saturated vapor pressure Cs for some 
common cryogenic liquids. The gradual increase in Cs up to the 
boiling point of the liquid is in conformity with the expected behavior. 

The specific heat at saturated vapor pressure Cs is the quantity 
of practical relevance in liquids, since it is more easily measured than 
Cp or Cv • In Section 8.2 it will be proved that if P is the coefficient 
of volume expansion, then 

Cs = C p - TVP(:~)svp (5.1) 

The term TVP(oP/oT)sat increases as the liquid is warmed so that 
(Cp - C.)jC. is about 1 % near the melting point and about 25% near 
the boiling point. Thus in Table 5.1 the increase in Cp as the liquid 
is warmed is somewhat larger than the rise in Cs. The behavior of 
Cv is not so simple. The difference between Cp and Cv 

TVp2 
Cp - Cv = -k- (5.2) 

T 

where kT is the isothermal compressibility [equation (1.14)], and the 
ratio Cp/Cv both increase with rise in temperature. Cp/Cv may become 

Table 5.1. Heat Capacity of Some Cryogenic Liquids 
(in cal/mole·deg) 

Substance T Cisolid) C,(liquid) T C,(liquid) Cp(gas) 
(degK) (degK) 

N2 63.2 5.7 6.7 77.3 6.9 6.8 
O2 54.4 5.6 6.4 90.2 6.5 6.9 
A 83.8 4.2 5.0 87.3 5.1 5.0 
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as high as 1.5 in some cases. The specific heat at constant volume, as 
calculated from the measured values of C., p, and kn increases with 
temperature near the melting point, reaches a shallow maximum, and 
thcn decreases as the boiling point is approached.2 In the gaseous 
state, there are no mean positions for the atoms to vibrate, and only 
free translation and rotation are possible. Under such conditions, 
Cv becomes about t R for gases such as nitrogen and oxygen and! R 
for gases such as argon, as will be seen in the next chapter. 

There are some exceptions to the above general behavior. Water, 
for instance, is an exception to many of the above statements. This 
most common of all liquids is in many ways the most exceptional one 
as well. 

Although the behavior of liquids is understood qualitatively, 
there is no satisfactory theory to explain the details. Several approxi­
mate models have been proposed with varying degrees of success. 
Space does not permit an elaboration of these attempts to calculate 
the properties of liquids. 1,2 Only in the case of quantum liquids, 4He 
and 3He, has any reasonable theory accounted for the mass of avail­
able observations. Since these two unique liquids are almost 
ubiquitous in cryogenic laboratories, they are treated separately in 
detail. 

Curiously, the special properties of liquid mixtures are somewhat 
better understood. When two liquids are mixed, the specific heat, 
density, and other properties of the mixture are slightly different from 
what may be expected from a mere addition of the contribution due 
to the parent liquids. Simple thermodynamic and statistical con­
siderations permit correlation of the various excess quantities with 
one another. There is a considerable physicochemical literature on 
this subject, and it appears best to consult some of the introductory 
texts. 2 ,3 

5.3. LIQUID 4He AT LOW TEMPERATURES 

The helium isotope of mass 4 exhibits several bizarre properties 
in the condensed state. The atoms obey Bose-Einstein statistics, and 
the liquid becomes a degenerate Bose system below 2. 17 oK. Helium­
four exists as a liquid even at OaK and becomes a solid only under a 
pressure of about 25 atm or more. Below 2.17°K, it flows through 
narrow channels with practically zero viscosity; it can sustain un­
damped temperature waves; sometimes it creeps in the form of thin 
films even against gravitational potential; in fact, its unusual behavior 
has formed a fascinating field of study in its own merit. Rather than 
do injustice to the subject by trying to summarize the field,4 we must 
content ourselves with an account of the caloric properties. 
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A fundamental step toward an understanding of the behavior 
of liquid 4He was taken by Landau in 1941. The zero-point energy 
of the atoms is so large that the substance remains a liquid even at 
OaK. In such a quantum region, one cannot identify any single 
particle and follow its motion. Instead, we should look at the 
collective behavior of the system as a whole and enumerate the 
quantum states. This amounts to the formulation of a theory assum­
ing solid-like behavior rather than gas-like, on the grounds that the 
determining feature of the entire situation is the interaction among 
all the atoms. 

As seen in Chapter 2, the simplest type of thermal excitation 
possible in a condensed system is a sound wave or a phonon. In a 
solid, it can be either longitudinal or transverse, but a liquid can 
support only longitudinal oscillations. The energy G = hw and the 
momentum P = hq of a phonon are related by 

G = cp (5.3a) 

where c is the velocity of sound. A molecule in a liquid is capable 
of much more complicated motions than mere back-and-forth 
oscillations. Rotational or vortex motions are simple examples of 
the more general motions. On the basis of some plausible arguments, 
Landau assumed for such motions (called rotons) the energy­
momentum dispersion relation of the form 

G = ~ + (p - Po)2 
2J1 

(5.3b) 

This equation has turned out to be so useful in interpreting the 
behavior of liquid helium that the uncertain foundations on which 
it was based were rather glossed over for a long time. Recent 
theoretical work by Feynman and several others has shown that in 
a Bose system the dispersion relation has the phonon form (5.3a) 
at low momenta and the roton form (5.3b) at high momenta, so that 
the complete spectrum has the (orm shown in Fig. 5.1. Neutron­
scattering experiments carried out since 1958 have strikingly con­
firmed the details of Landau's energy-momentum relationship. 5 

At thermal equilibrium, the excitations in the liquid are distri­
buted mainly in the regions of energy minima, that is, near G = 0 
and G = G(Po) =~. Thus it is convenient to speak of long-wave 
excitations (phonons, p - 0) and short-wave excitations (rotons, 
P - Po) separately, even though the spectrum of Fig. 5.1 is continuous. 
The thermodynamic properties may then be calculated as phonon 
and roton contributions. In the following section, this is carried out 
in a simple manner. 
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Fig. 5.1. Energy-momentum spectrum in liquid 4He. 

Chapter 5 

The specific heat of liquid 4He has been measured by several 
investigators,6 and is shown in Fig. 5.2. This plot immediately 
exhibits the interesting features of the specific-heat variation. At 
very low temperatures (T < 0.6°K)" the specific heat is given by 
Cs = (0.0205 ± 0.OOO4)T3 J/g. deg. The T 3-proportionality is reminis­
cent of the low-temperature behavior of the lattice specific heat and 
indeed arises from the same reasons, as will be explained in the follow­
ing section. Above 0.6°K, the specific heat rises faster, somewhat as 
T6 or exp (- 10/T), culminating in a high narrow peak at the trans­
ition temperature 2.17°K. The specific heat drops sharply above this 
temperature and reaches a value of about 3J/g· deg, which is typical 
of an ordinary liquid at low temperatures. Much above 2. 17°K, 
liquid 4He behaves like an ordinary liquid. It is the curious transition 
at 2.17°K and the exotic properties below the transition that are 
responsible for the great interest in the subject. 

5.4. PHONON AND ROTON SPECIFIC HEATS 

An instructive way of calculating the specific-heat contributions 
from phonons and rotons is to evaluate first the number of thermal 
excitations. The number of energy states per mole between momenta 
p and p + dp is (4n V /h3)p2 dp [equation (2.18)] and the number of 
Bose excitations in this range is (4nV/h3)p2 dp/[exp(e/kT) - It 
Therefore, the total number of excitations N and the total energy 
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Fig. 5.2. Specific heat of liquid 4He under its saturated vapor pressure. 6 

E per mole are 

41tVf p2 dp 
N = JI3 exp(B/kT) - 1 

(5.4a) 

41tVJ Bp2 dp 
E = JI3 exp(B/kT) - 1 

(5.4b) 

Consider first the case of phonons B = cpo The situation is the 
same as that occurring in the Debye theory of lattice heat capacity 
except that only longitudinal phonons are possible in the liquid 
state. The Debye temperature in the helium problem, obtained as 
usual by terminating g(v) at vD, is 

() = he (181t2p)1/3 
21tk mHe 

(5.5) 

and has a value of about 30°K. Therefore, regions up to 2°K may be 
considered as the Debye T3-region. In this low-temperature region 
no serious error is made in extending to infinity the integration in 
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equation (5.4) over p/kT, and hence per mole 

N_,,"" = 4nV(kTV foo x 2 dx = 4nV(kT)3 x 2.404 
y •• v.. n' 3 ., "x 1 ,,3 r (5.6) 

\C:/Jo" •.. ,-, 

Ephon = 4~~C(k:J f~ e~3 ~x1 = 4~~C(k:y x ;; 

The corresponding specific heat per gram is 

16n5k4 

cphm = 15h3c3p T3 

(5.7) 

(5.8) 

For rotons, e = A + (p - Po)2/2/l. In practice, A/k is found to 
have a value of about lOoK; therefore, nothing is lost by using the 
simpler Maxwell-Boltzmann statistics, so that 

N - 4nV r 2 d {- [A + (p - PO)2/2/l]} 
rol - YJP pexp kT 

Further, the parameter Po in the helium problem is found to be much 
greater than /lkT, so that in the integration over dp the quantity p2 
may be replaced by p~. Moreover, because of the rapid reduction of 
the exponential factor for large values of p - Po, the integration may 
be performed over p - Po from - 00 to 00. Thus per mole 

4n V f"" 4n Vp2 Nrol = Yp~ e-l'1fkT _ qo e- x2 / 2I'kTdx = T(2n/lkT)1/2 e-fj,/kT (5.9) 

A similar calculation gives the specific heat per gram as 

Crol = ::3(~~y/2 p~A2 [1 + U; + i(U;J}-l'1fkT (5.10) 

The temperature dependence of the roton part of the thermo­
dynamic quantities is basically of the form exp( - A/kT~ This is a 
consequence of the finite energy gap A and the need for the Boltzmann­
type excitation across the gap [compare equations (2.10) and (4.26H 
The number of phonons is proportional to T3, and a numerical esti­
mate shows that below 0.6°K, practically all the excitations are of 
the phonon type. Around 0.7°K, the number of rotons overtakes the 
number of phonons; at temperatures above about 10 K, most of the 
excitations are of the roton type. Figures 5.2 and 5.3 show how the 
specific heat follows the gradual transition in the nature of the thermal 
excitations. 

The phonon-type behavior at low temperatures is similar to the 
Debye T 3-region discussed in Chapter 2. As a matter of fact, if only 
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Fig. 5.3. Specific heat of liquid 4He showing phonon and roton contributions.7 

longitudinal phonons are present, equations (2.13) and (2.20) become 

_ hC(~)1!3 
() - k 4nV 

16n5k4V 3 

Cv=TI~T 

and they are similar to equations (5.5) and (5.8). The velocity of 
sound in liquid 4He at low temperatures is 239 ± 2 M/sec. Equation 
(5.8) now gives C phon = (0.0204 ± 0.0005)T 3 Jig· deg, which is to be 
compared with the experimental value Cv = (0.0205 ± 0.OO(4)T 3 

mentioned earlier. The excellent agreement provides strong support 
for the above picture of thermal excitations in liquid 4He at low 
temperatures. 

Above 0.6°K, the roton contribution becomes significant; up to 
about 1.6°K, the specific heat can be accurately fitted by the addition 
of phonon and roton contributions. In 1947, Landau calculated the 
values of L1, Po, and f1 from such an analysis of specific-heat data 
(which at that time were not known with any great accuracy). A 
similar analysis was performed by Kramers and coworkers in 1956, 
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Table 5.11. Comparison of the Values of ~, Po, and 11 

~ 
f1<J(A-I) J1 I(degK) 
h m4He 

Calorimetry 
Landau (1947) 9.6 2.0 0.77 
Kramers (1956) 8.8 ± 0.1 1.96 ± 0.05 0.23 ± 0.1 

Neutron scattering 
1.1 oK 8.65 ± 0.04 1.92 ± 0.01 0.16 ± 0.01 

using carefully determined values of specific heats. In Table 5.11 the 
numerical values of ~, Po, and J1 are compared with the results of 
neutron-scattering experiments in which the energy-momentum 
dispersion relation 5 was studied directly. The close agreement 
between the values must be taken as a striking vindication of Landau's 
calculation of the properties of liquid 4He on the basis of the special 
E-P relation (5.3). 

Above 1.6°K, the number of rotons becomes so large that it is 
no longer possible to neglect the interactions among the excitations. 
(The analogy in the case of solids is the anharmonicity of lattice 
vibrations.) The neutron-scattering experiments show that the para­
meter ~ changes slightly because of the interactions among the rotons. 
Taking into account the small temperature dependence of the para­
meters and also using the full c-p curve, the Los Alamos group of 
workers8 has calculated the specific heats and find excellent agree­
ment over the whole temperature range up to 2°K. 

Finally, it must be added that the above picture of a gas of phonon 
and roton excitations accounts satisfactorily for a numbp.r of other 
properties of liquid 4He. A full account is given in the works cited 
earlier. 4.5 

5.5. TRANSITION IN LIQUID 4He 

It was the specific-heat measurement by Keesom and coworkers 
in 1932 that gave a definite indication of the special phase change in 
liquid helium at 2.1 rK. There is a sharp peak at 2.1 rK, and the 
shape of the curve (Fig. 5.2) resembles the Greek letter lambda (A). 
Phase transitions in which there is a similar sharp A-peak in the 
specific heat are now commonly called lambda-transitions; they are 
the result of cooperative effects in the system. A few other A-anomalies 
will be discussed in Chapter 7, while the thermodynamics of such 
phase changes is taken up in Chapter 8. 
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The characteristic feature of the A-transitions in liquids and solids 
is the appearance of a sharp peak in the specific heat (and hence 
calorimetric measurements are frequently used to detect such 
transitions). It is obviously of interest to know whether the peak is a 
sharp maximum or really an infinite singularity with S C dT still 
remaining finite. The question assumes fundamental importance in 
the theoretical understanding of such transitions. On the one hand, 
approximate statistical calculations on reasonable models of sub­
stances predict a finite maximum at the transition T;., the peak being 
rounded off in a temperature interval of about 10- 3°K near TJ.. in 
some calculations and there being a jump in the specific heat in other 
theories. On the other hand, exact calculations on highly simplified 
models predict that the specific heat has a logarithmic or other 
infinity, i.e., of the form C ~ constant x 10g1TJ.. - TI near T;. (see 
Section 4.6). No reliable guidance could be obtained from experi­
ments on solids, owing to the difficulty of keeping the temperature 
constant throughout the specimen to within about 10- 6°K. Fairbank, 
Buckingham, and Kellers9 realized that a temperature resolution of 
about 10- 6°K was possible in liquid helium. It was also pointed out 
in the Introduction that thermal equilibrium occurs very quickly, in a 
few seconds at temperatures below around 4°K. These workers 
placed the liquid in intimate contact with copper fins and succeeded 
in measuring the specific heat to within a microdegree of the A-point. 

In order to exhibit the nature of the specific heat very near 
TJ.. = 2.1 rK, the results are shown on successively expanded tem­
perature scales in Fig. 5.4. The very large amount of expansion of 
each successive curve is vividly demonstrated by the fact that the 
width of the small vertical line directly above the origin indicates 
the fraction of the curve which is shown enlarged in the next curve 
on the right. The specific-heat curve maintains the same geometrical 
shape on all the expanded scales, and clearly there is no indication 
of any rounded maximum within 1O- 4 °K of TJ.., as suggested by some 
approximate theories. There was also no hysteresis between the 
values measured with increasing and decreasing temperatures. 

The same data are plotted on a logarithmic scale in Fig. 5.5. 
On both sides of the A-point the data fall in two parallel straight lines 
over a factor of 104 in IT - TJ..I. The observations (in Jjg·degK) 
near the A-point are well fitted by the equation 

c = 4.55 - 3.00 10gloiT - TJ..I - 5.2015 (5.11) 

where 15 = 0 for T < Tic and b = 1 for T > T;..- The inclusion of a 
logarithmic term permits a simple representation of the specific heat 
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in joules per gram of liquid helium up to about 3SK: 

(-740) 
C = cD(T) + [130 - 90.9 log IT - TAil exp T 

(-370) = cD(T) + [23.5 - 16.4 log IT - TAil exp T 
(5.12) 

where cD(T) represents the Debye function, evaluated at each tem­
perature with the appropriate value of density and velocity of sound. 

Besides the specific heat, the thermal expansion coefficient also 
shows a logarithmic infinity as the A-point is approached, although 
measurements have been performed up to IT - TAl ~ 1O- 4°K only. 
It will be seen in Section 8.1 that the behaviors of the two quantities 
are interconnected and that 

( TA)Cp = T;.(~l~) _ T;.(pA)(~P) (J 
T aT.l. p). p aT A 

(5.13) 
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equations (5 .11) and (5.12). 

Figure 5.6 shows a parametric plot of the specific heat and the expan­
sion coefficient. 9 The straight line is the asymptotic value given by 
equation (5.13) with the experimental values of the various other 
quantities. The tendency of the observations to attain the limiting 
value is clear. Thus we must conclude that both the expansion 
coefficient and the specific heat are consistent with an infinite 
logarithmic singularity at T;.. 

At present, there is no complete theory of cooperative transitions. 
In special cases, as with magnetic transitions treated in Section 4.6, 
much progress has been made in expressing the thermodynamic 
quantities in powers of IT - T;.I. The outstanding observation of a 
logarithmic singularity in C p and f3 is an experimental property 
which must be explained by any proper statistical theory. 

5.6. SPECIFIC HEAT OF LIQUID 3He 

The ordinary liquid helium used in bulk is the isotope of mass 4. 
The isotope 3He is present to about 1 part in 107 in natural helium. 
However, since 1948, small quantities of 3He, produced by nuclear 
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Fig. 5.6. Cylindrical approximation near TJ.." Parametric plot of 
(TJT)C p versus (pJp)f3. Full line is the calculated asymptotic value. 

reactions, have been available for research, and its use in cooling 
cryostats to approximately 0.3°K was mentioned in Chapter 1. 
Helium-three exists as a liquid even at OOK and becomes a solid only 
under a pressure of about 30 atm or more. It obeys Fermi-Dirac 
statistics, and the properties of liquid 3He are quite different from 
those of 4He. The experimental and theoretical evidence unequivo­
cally points out that liquid 3He must be considered a Fermi system, 
whereas the superfluid properties of liquid 4He arise from the 
Bose-Einstein condensation. 5 Since 3He offers the possibility of 
studying a simple Fermi liquid, it has of late become the subject of 
an active field of study.ID.II 
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The equations derived in Chapter 3 for an ideal Fermi~Dirac 
gas were initially considered as a convenient framework for describ­
ing the properties of liquid 3He. For a F~D gas, the degeneracy 
temperature is 

__ 1_('J.Nh3 )2/3 
TF - 2mk 8 nV (5.14) 

which for the density of liquid 3He has a value of about 5°K. Early 
measurements of nuclear susceptibility showed that XT was constant 
down to about 1.5°K, and the deviations at lower temperatures could 
be fitted to a perfect-gas model with a degeneracy temperature of 
about O.5°K, nearly ten times smaller than the expected value. In 
a simple-minded way, this could be explained by saying that the 
effective mass m* is about ten times the mass of the 3He atom. The 
measurements 12 of specific heat above O.5°K destroyed this naive 
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Fig. 5.7. Heat capacity of liquid 3He under its saturated vapor pressure 
(curve A).12 Curve B is the specific heat of F-D gas with TF = 5.00 K 

and curve C is that with TF = O.5°K. 
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picture. The specific heat does not resemble, even qualitatively, the 
behavior of an ideal F- D gas with any value of m*. Figure 5.7 
compares the specific heats of a F- D gas having TF = 5.0 or 0.5°K 
with the experimental results. (Strictly, Cv should be compared 
instead of C.at , but this does not improve matters. In fact, the devia­
tions of Cv are equally serious. 13) 

Below 0.2°K, the specific heat of the liquid does vary propor­
tionally with T , as may be expected from the F- D gas relationship: 

(5.15) 

Any satisfaction at such simple behavior is, however, short-lived. 
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The F-D theory also shows that if Yo is the magnetic moment per 
atom, the molar susceptibility X should tend to the value 

X _ 4nmYo(3N)1/3 
V-~nV 

(5.16) 

This functional relationship is obeyed very well, but quantitatively 
the agreement is very poor. The m* /m3He calculated from the specific­
data has a value of about 2, that from susceptibility is about to, from 
compressibility data about 0.3, and so on. In other words, even 
though the F-D gas formulas give the correct temperature dependence 
at very low temperatures (~0.3°K), the observations are not con­
sistent with the quantitative interrelationships among the various 
formulas. 

5.7. LIQUID 3He AS A FERMI LIQUID 

A solution to this dilemma at very low temperatures was sug­
gested in 1956 by Landau; since then, the microscopic foundations 
of such theories have been intensely studied by Brueckner and 
others.5,ll According to Landau's theory of a Fermi liquid, the 
presence of strong interactions among the atoms renders a descrip­
tion of the behavior of single particles meaningless and the statistical 
behavior is determined by the elementary excitations of the whole 
system. These excitations or quasi particles obey Fermi-Dirac statis­
tics and may be taken as an effective description of an atom together 
with its polarization field caused by the correlated interactions. At 
low temperatures, the system may be visualized as made up of N 
quasiparticles of effective mass m*, but in calculating any physical 
property the fundamental quantity to be considered is the interaction 
function. Thus, in calculating the magnetic susceptibility, we must 
consider the dependence of the interaction function upon the nuclear 
orientations. In compressibility, the volume dependence of the inter­
actions is involved. The specific heat is determined by the density of 
states at the Fermi level, and so on. 

Detailed calculations show that the specific heat is given by 
equation (5.15) with m* instead of m. Therefore, from the experimental 
data, we can conclude that m*/m3He ~ 2. The expression for suscepti­
bility involves besides m* the constants of the spin-dependent part 
of the interaction function. Thus a calculation of m* using (5.16) 
will not give the same effective mass as that calculated from specific­
heat data. In this manner, the Fermi-liquid theory gives different 
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interrelationships among the various properties of liquid 3He, 
although the temperature dependence is in many cases the same as that 
given by the F-D gas calculations. The details of the theory are 
unfortunately very complicated, and the mathematical techniques 
used in these many-body problems are not commonly known. 
Hence, it seems best to suggest suitable reviews5.15 for those interested 
rather than give a garbled version of the theory here. On the whole, 
the Fermi-liquid theory of the behavior of liquid 3He below O.2°K 
appears to be in reasonable accord with the experiments. 

The situation at higher temperatures (T > OSK) is not very 
satisfactory. As seen from Fig. 5.7, the curve bears no resemblance to 
the variation expected for a F-D gas. A heuristic approach 13 has 
been to assume that the alignment of the nuclear spins gives a spin 
contribution (similar to the Schottky term discussed in Section 4.9) 
with a peak around O.3°K and that at high temperatures there are 
contributions from excitations not dependent upon the quantum 
statistics of the atoms. Such calculations have had quite some success 
in explaining thermal and magnetic properties. However, the concept 
of splitting the entropy into such contributions has been questioned 
by others as having no fundamental justification. Further, nothing 
is said about the origin of the assumed high-temperature contribu­
tion, which is independent of the statistics. 11 On account of these 
factors, the calculations are not here discussed in any detail. 

The electrons in a metal form another example of an interact­
ing Fermi system, which has already been considered in Chapter 3. 
Several authors have conjectured that a phenomenon analogous to 
superconductivity of the electronic system (Sections 3.8 to 3.10) 
should occur in liquid 3He, also. The transition temperature cannot 
be calculated precisely, but is estimated to be approximately 1O- 3 °K, 
if not lower. One of the characteristics of the transition, which has 
been reviewed by Sessler5 • 1O, for example, is that the specific heat 
should exhibit an anomaly (Fig. 5.9) similar to the anomaly at the 
superconducting transition (Fig. 3.11). As mentioned earlier, phase 
transitions are best detected by specific-heat measurements, and so 
calorimetric measurements are being made to as low a temperature 
as possible. At the time of writing, Peshkov 16 has reported a small 
bump at O.OO55°K. Above 8 x 1O- 3°K, the specific heat increases 
linearly with T (Fig. 5.8), the value being given by Csat ~ 20T 
J/mole·deg. The evidence is not quite conclusive,17 but Peshkov's 
observations will constitute the discovery of an eagerly sought phase 
transition in liquid 3He~of course, by specific-heat studies! 

One question which cannot be answered here is why although 
sound waves can be propagated through liquid 3He as through any 



Heat Capacity of Liquids 

° T ----
Fig. 5.9. Predicted specific heat of the 

superphase of liquid 3Hc. 

129 

other system, phonon terms are not included in the specific heat of 
liquid 3He. The answer lies deeply involved in quantum statistics. 18 

Phonon-type thermal excitations obey Bose-Einstein statistics, 
whereas the system of 3He atoms obeys Fermi-Dirac statistics. 

5.8. MIXTURES OF 4He AND 3He 

Liquid 4He and 3He are completely miscible, except at low 
temperatures, where phase separation occurs for a range of concentra­
tions. It has already been mentioned that the properties of mixtures 
are of considerable interest in chemical thermodynamics. 2,3 In the 
helium case, since the two pure liquids exhibit peculiar properties of 
their own, a study of the mixtures has special significance in quantum 
statistics. 19 

Although considerations of space prohibit a detailed account of 
the various studies/o,2o one interesting result is worth mentioning. 
Taconis, Beenakker, and de Bruyn Ouboter5 have found that for 
dilute mixtures of 3He in liquid 4He, the specific heat at low tempera­
tures « 1 OK) is nearly constant and equal to ~Rx per mole of the 
mixture where x is the mole fraction of 3He. This may be explained 
simply on the basis of an idea put forward by Pomeranchuk that in 
dilute solutions the 3He atoms do not interact with the superfluid 
4He, and so form a gas of excitations. At low concentrations, the 
3He atoms may be taken as nondegenerate and so will have a perfect­
gas specific heat Cv = ~R per mole (as will be explained in Chapter 6). 
Therefore, the excess specific heat of the solution will be ~Rx per 
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mole of the mixture. Other properties, such as the velocity of sound, 
confirm this simple picture of the role of 3He atoms. 

5.9. SUPERCOOLED LIQUIDS-GLASSES 

When a liquid is cooled ordinarily, it solidifies into a crystalline 
state at its normal freezing point; however, some substances can be 
supercooled. A classic example is glycerine, which can be easily 
cooled below its normal freezing point of about 290°K. With some 
care in avoiding nucleation, the supercooled liquid can be taken right 
down to approximately OaK without any crystallization. At about 
1'g "" l80oK, the behavior of glycerine changes from a liquid-like 
fluidity above 1'g to a solid-like rigidity below 1'g. The free energy of 
this solid is greater than that of the crystalline solid, but it represents 
a metastable thermodynamic state which can exist indefinitely under 
certain conditions. This highly supercooled liquid state is typical of 
most glasses; hence it is called the glassy state. The situation is 
thermodynamically the same with allotropes such as diamond, a 
metastable form of carbon. 

The specific heat of glycerol has been measured by several 
workers and is summarized in the review on the glassy state by Davies 
and JonesY The heat capacity of the crystalline state [curve (a) in 
Fig. 5.10] is due to the vibrations of the molecules in the lattice, as 
analyzed in Chapter 2. The specific heat of the supercooled liquid 
[curve (b)] is considerably greater because of the additional complex 
motions possible in the liquid state. However, over a narrow interval 
of temperature around 1'g "" l80oK, the specific heat falls rapidly to 
a value just above that of the crystalline solid. Only a small dif­
ference persists at lower temperatures. Similar marked decrease 
around 1'g is shown in the thermal-expansion coefficient, electrical 
conductivity, and other properties. It is an important characteristic 
of supercooled liquids that the viscosity increases by several orders 
of magnitude as the temperature is lowered through the transition 
region. In glycerine, it increases from about 106 poise at 1900 K to 
about 1013 poise at 1700K. Thus at about 170oK, the stress applied 
to maintain a strain relaxes to lie of its initial value in hours, com­
pared to 10-3 sec at about 190oK, so that for practical purposes the 
substance behaves like a solid. Above 1'g, the molecules have all the 
mobility characteristic of liquids, but below 1'g they cannot change 
their configurations in any reasonable amount of time; the only 
other modes of motion are the lattice vibrations about their mean 
positions, as in a solid. This is the reason why the specific heat 
decreases sharply in the transition region. 
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However, the glassy state is not a crystalline state. The viscosity 
increases so rapidly as the substance is cooled through 1'g that the 
spatial disorder of the liquid has been abruptly "frozen-in." X-ray 
diffraction studies22 confirm the molecular disorder in the glassy 
state. An interesting check is the calculation of the entropy dif­
ference between the supercooled glass and the crystalline state 
(Fig. 5.11). At the melting point, the entropy difference, obtained 
from the latent heat, is about 15 cal/mole'deg, but below 1'g a dif­
ference of about 5 units persists right down to OOK. This is a measure 
of the configurational entropy of glass which is "frozen-in" at 1'g. 
The persistence of such an entropy difference at OOK is not really a 
contradiction of the third law of thermodynamics,23 because the 
glassy state is not one of stable internal equilibrium. Suitable nuclea­
tion can precipitate a crystallization of the whole system (devitrifica­
tion of glass). Figure 5.11 shows that above 1'g the difference in 
entropy between the supercooled liquid and the crystal decreases 
rapidly with lowering temperature. At 1'g, however, the liquid 



132 

g, 
-0 . 
1 
:::" 
3 
a 

~ 
~ 
0> 

~ 
j! 
'" 
'0 
>-
0-

~ . 
~ 
x 

15 

10 

5 

01-------+-----~~----~ o 100 200 300 

T emperatutE' (dc') K) 

Fig. 5.11. Excess entropy of the glassy solid 
over the crystalline state (full line). Curve d 
shows the excess entropy if the liquid is cooled 

very slowly at T". 

Chapter 5 

becomes so viscous that configurational changes to lower the entropy 
do not take place in short periods of time. Oblad and Newton showed 
experimentally that if glycerine is kept undisturbed for a long time 
before the measurement is made at any temperature, the specific-heat 
curve appears as a smooth extension of the behavior above Tg [broken 
curves (d) in Figs. 5.10 and 5.11]. This shows clearly that if sufficient 
time (a whole week of undisturbed waiting just a few degrees below 
I'g) is allowed, molecular rearrangements do take place. Because of 
the experimental difficulties, measurements could be made to only a 
few degrees below I'g. Nevertheless, an inspection of Fig. 5.11 shows 
that the entropy difference will undoubtedly extrapolate to zero at 
oaK. If a liquid can exist in internal equilibrium, such as liquid 4He 
and 3He, its entropy will vanish at absolute zero. 

The entropy difference between crystalline and glassy states is 
similar to the problem of entropy differences between the various 
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allotropes of some solids. Materials such as sulfur, tin, and carbon 
exist in different crystalline states with different specific heats. An 
investigation of the entropy differences among them was originally 
used by Nernst and coworkers to check the validity of the third law 
of thermodynamics. With crystalline solids, it is, of course, possible 
to calculate the vibrational specific heats from suitable theoretical 
models. 24 

Numerical values of the specific heat of glasses are of importance 
in practice, and Stevels22 has collected the data for a variety of glasses. 
Some cases of cryogenic interest are mentioned in Table 8.1. 
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Chapter 6 

Specific Heats of Gases 

6.1. Cp AND Cv OF A GAS 

The heat capacity of a gas depends strongly upon the conditions 
under which heating is done, whether at constant pressure or at con­
stant volume. Indeed, it was pointed out in Chapter 1 that the ratio 
CJCv is as high as 1.67 for a monatomic gas. It is possible to measure 
directly both Cp and Cv in gases and vapors, and a representative 
list! of the values at 3000 K is given in Table 6.1. The specific heats 
refer to the "ideal" state of a gas at zero pressure and are calculated 
from the values at higher pressures by using a knowledge of the 
equation of state [see equation (1.17)]. Typically, at a pressure of 
1 atm, Cp and Cv are higher than the "ideal" values by less than 1 % 
in the so-called permanent gases and by about 1 to 2 % in organic 
vapors. 

The specific heat per gram is different for different gases. For 
heavy gases, the value of Cv is small, and for light gases, Cv is large. 

Table 6.1. Molar Heat Capacities (in cal/mole.deg) at JOOoK 
and P = 0 atm 

Gas 

He A H2 N2 O2 CO NO HCI CI2 

Cp 4.97 4.97 6.85 6.94 7.02 6.96 7.08 6.97 8.02 
Cv 2.98 2.98 4.86 4.96 5.03 4.97 5.10 4.98 6.02 
Cp - C,. 1.99 1.99 1.99 1.98 1.99 1.99 1.98 1.99 2.00 

CO2 N20 S02 H2S NH3 CH4 C2H2 C2H4 C2H6 

Cp 8.77 9.25 9.20 8.15 8.49 8.48 10.35 10.15 12.25 
Cv 6.78 7.27 7.20 6.15 6.50 6.49 8.35 8.15 10.25 
Cp - Cv 1.99 1.98 2.00 2.00 1.99 1.99 2.00 2.00 2.00 
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The consideration of molar heat capacities provides a great simplifica­
tion: Cv turns out to be about 3 caljmole'deg for monatomic gases 
(such as helium and argon) and about 5 cai/mole·deg for diatomic 
gases (such as H 2, N 2 , °2 , CO, NO, HCl). C p - Cv is approximately 
equal in all cases to 2 caljmole·deg. When it is recalled that the gas 
constant R has a value 1.987 in the same units, the difference between 
Cp and Cv is nothing other than equation (1.13): 

Cp - C v = R 

a relation first used by Mayer in 1842. Since the natural unit for the 
molar heat capacity is R, the striking feature of Table 6.1, demanding 
an immediate explanation, is that Ct, ~ ~R for monatomic gases and 
Cv ~ 1R for diatomic gases. 

6.2. CLASSICAL THEORY OF Ct. OF GASES 

Boltzmann's equipartition theorem is able to provide an ex­
planation for the simple coefficients ~ and 1. This theorem, as ex­
plained in Section 2.2, connects the internal energy of a system with 
its number of degrees of freedom (that is, the number of squared 
terms in the Hamiltonian function, which is the same as the number 
of independent coordinates required to describe the motion of the 
system). Each degree of freedom contributes tRT to the internal 
energy of a mole of the substance at thermal equilibrium. A mass 
point is a good model of the atoms in a monatomic gas, It has 
three translational degrees of freedom (Hamiltonian (p~ + p; + p;)/2m 
where the p are the momenta of the molecules), Therefore, the 
internal energy is E = 3 x tRT and Cv = 8E/8T = ~R, as is found 
to be the case. The molecules of a diatomic gas may be represented 
by a pair of masses rigidly connected together, i.e., a rigid dumbell. 
Then, besides having the three translatory motions, the molecules 
can rotate about any pair of directions perpendicular to its axis. 
There are altogether five degrees of freedom; consequently, E = 1RT 
and C v = 1R. Thus the specific heats of permanent gases are readily 
understood in classical statistics. 

A closer study of Table 6.1 reveals, however, that this agreement 
between the equipartition law and the observed values is only limited. 
A linear triatomic molecule, such as CO2 or N 20, should behave like 
a diatomic molecule, because it can rotate only about the directions 
perpendicular to its axis. Therefore, Cv should be 1R, whereas the 
actual values for CO2 and N 20 exceed 1R quite significantly. A 
general polyatomic molecule which can rotate about all three 
principal axes should have Cv = ~R, which is also not the case. Even 
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a diatomic molecule such as chlorine exceeds its equipartition value 
of Cv = tR. 

The discrepancy is partly due to the fact that the molecules can 
have internal vibrations. Each mode of vibration has two square 
terms in the Hamiltonian, one for kinetic and one for potential 
energy, and so counts as two degrees of freedom. A diatomic molecule 
has one vibrational frequency, and a general polyatomic molecule 
has 3n - 6 vibrational modes. If the vibrational contributions are 
added, Cv = ~R ~ 7 caljmole'deg for diatomic gases and Cv = 
3(n - l)R for polyatomic gases. (If the molecules of a polyatomic gas 
are linear, there are only 3n - 5 vibrations, and Cv is correspondingly 
less.) The specific heats in Table 6.1 are all less than this value. 
The vibrational heat capacity of polyatomic gases (and of chlorine) 
falls short of this equipartition value. Experiments made at higher 
temperatures (Table 6.11) revealed that at 2000a C H20, CO2, and S02 
attain their equipartition value of 3(n - l)R ~ 12 cal/mole·deg, 
while N 2' °2, HCI, CO, and H2 are obviously moving toward their 
value of approximately 7 caljmole·deg. (Chlorine exceeds the equi­
partition value because of anharmonicity and dissociation 1 ,2, both 
of which are not considered in this elementary account.) 

Measurements at low temperatures revealed another short­
coming of the classical theory. Eucken, as early as 1905, noticed that 
the heat capacity of hydrogen at liquid-nitrogen temperatures was 
significantly lower than the room-temperature value. Table 6.111 
shows that Cv has become equal to about ~R below about 60a K. 
Cp decreases by the same amount (recall Cp - Cv = R), and the 
ratio CplCv goes from 1.40 at room temperature to 1.67 at soaK. 
The values below 60a K are typical of a monatomic gas, for which 
only translational degrees of freedom are possible. 

The equipartition law provides no reasonable explanation for 
the observation that at low temperatures the vibrational and rotational 
degrees of freedom remain "frozen in" and begin to "thaw out" as the 
temperature is raised. The clarification came from the application 

Table 6.11. Cv at High Temperatures (in cal/mole·deg) 

Gas 
Temperature 

(deg C) A N 2, O 2, H2 Cl2 H 2O CO2, S02 
HCl,CO 

0 2.98 4.98 4.90 5.90 5.93 6.90 
500 2.98 5.35 5.29 6.30 6.95 9.43 

2000 2.99 6.22 6.10 7.4 11.9 11.5 
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Table 6.ill. Heat Capacities of Hydrogen (in cal/mole.deg) 

Temperalufe (dcgK) 

300 200 100 80 60 40 

C v 4.86 4.49 3.42 3.18 3.05 3.00 
CplCv 1.41 1.45 1.56 1.62 1.66 1.67 

of quantum concepts to the problem. Inspired by Einstein's funda­
mental resolution of the temperature variation of vibrational specific 
heat in 1907, Nernst suggested in 1911 the quantization of rotational 
and vibrational levels in gases. Hydrogen remained somewhat 
anomalous until Dennison suggested an explanation in 1927, following 
the earlier calculation of Hund. The advances made in quantum 
mechanics and spectroscopy after 1925 brought the theoretical 
calculation of thermodynamic properties of simple gases over wide 
ranges of temperatures to such a high degree of precision that it 
surpassed the accuracy of the experimental measurements. 

6.3. QUANTUM THEORY OF Cv OF GASFS 

It is qualitatively easy to see why the rotational and vibrational 
degrees of freedom are not fully excited at low temperatures. For 
the common molecules, the vibrational frequencies are in the range 
of about 1014/sec, and the associated energy levels have a spacing 
equivalent to hv/k '" lOoooK. So, at room temperature ('" 3000 K), 
only a few molecules have enough energy to excite the vibrational 
modes. The rotational frequencies are about 100 times smaller, so that 
at any temperature above lOOK the rotational modes are fully 
excited. The rotational energy levels in hydrogen are rather high 
because of the low moment of inertia of the molecule; therefore, 
hydrogen begins to contribute the rotational specific heat only above 
60°K. The translation of these ideas into quantitative results is, of 
course, a standard problem in statistical mechanics. 3 •4 The present 
discussion is limited to some simple cases, which are nevertheless 
sufficient to illustrate the principles involved. 

The simplest case to consider is a monatomic gas, schematically 
taken as a set of mass points with no interatomic forces. Let a large 
number of such atoms, each of mass m, be enclosed in a vessel of 
sides Lb L 2, L3 in which they obey the Schrodinger equation 

V 2 tfJ + 8n2~E tfJ = 0 
h 
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for free particles of energy E. The wave functions should vanish at 
the walls, but because the number of particles N is very large in any 
physical system, the boundary conditions do not affect the final result 
(see also Section 2.5). It is therefore mathematically convenient to 
impose a periodic boundary condition, as in lattice dynamics, 

t{t(x,y,z) = t{t(x ± Lt>Y,z) = .. , = t{t(x,y,z ± L 3) 

so that the solutions can be taken as progressive waves instead of 
standing waves. The wave functions satisfying these conditions are 

t{t = A exp[2ni(plx + P2Y + P3 Z)] 

where Pi = hni/Li and ni are positive or negative integers. The energy 
of a molecule is e = (pi + p~ + p~)j2m The energy of the system is 
the sum of the energies of the particles, and so the final partition 
function of the system will involve the product of N terms each equal 
to 

cO [-(Pi + d + P~)] 
Z = I exp 

~=_~ 2mkT 
(6.1) 

A simple calculation shows that the energy levels are approximately 
h2/2mkL2 ~ 1O-15°K apart, so that the summation over ni may be 
replaced by an integration over Pi: 

VfII [-(Pi + p~ + P~)] 
Z = h3 exp 2mkT dpl dP2 dP3 

Here V = LIL2L3 is the volume of the system. The integral from 
- 00 to 00 of e- x2 is well known to be n 1/2 , and so 

Z = v(2n~kTr/2 (6.2) 

The partitIOn function of the system Z would have been just the 
product of N such terms but for the fact that all the particles are 
indistinguishable. This means that 

Z = ~!(Z)N (6.3) 

because the N! ways of permuting the particles are indistinguishable 
from one another and must hence be counted as only one way. 
Therefore, 

~ (2nmkT)3 /2] A = - kTln Z = - NkTln ( -h-z - + NkT In N - NkT (6.4) 
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where Stirling's approximation In N! ~ N In N - N is used. It is now 
a simple matter to calculate 

Ct. =~R (6.5) 

The specific heat at constant volume is approximately 3 cal/mole'deg, 
as was borne out in Table 6.1. This value was also explained by the 
equipartition law, but the present calculations give the absolute 
value of the entropy at a pressure P = NkT/V as 

S = -G;).. = R{i + In[(k~5/2 g(2:~r/2J} (6.6) 

(Here a weight factor g, equal to 1 for structureless particles and 
equal to 2 for vapors of sodium, potassium, and thallium, which have 
doubly degenerate ground state, has been added for completeness.) 
This equation, first derived in a different manner by Sackur and 
Tetrode in 1912, is in excellent agreement with the experimental 
values of entropy determined calorimetrically (see Table 6.VII). As 
a matter of historic interest, Tetrode, from the calorimetric entropy 
of mercury vapor, obtained Planck's constant h to within 5 % of the 
accepted value. 

6.4. ROT A TIONAL PARTITION FUNCTION 

The power of statistical thermodynamics becomes obvious when 
the rotational degrees of freedom are considered. The simplest case 
is a heteronuclear molecule of moment of inertia I perpendicular to 
its axis. With spherical p'olar coordinates, the expression for the 
kinetic energy js !!T.= t/(l)2 + sin20cP2). The generalized momenta 
are Pe = a!!T /ae = Ie, P4> = a!!T /a cp = I sin20cp, and so the classical 
Hamiltonian is Yl' = (Pi + sin - 2 Op~)/2/. The transcription into 
quantum mechanical operators leads to the Schr6dinger equation 

a2", 1 a2", 8n21E 
a02 + sin2 0 aljJ2 + ~'" = 0 (6.7) 

The eigenfunctions of this equation are '" = p1ml(cos O)eim4>, with 
m = -j, -j + 1, ... ,j - l,j, where p1ml(cosO) are the associated 
Legendre functions. The energy levels are ej = j(j + 1)h2/8n 21, where 
j = 0, 1, .... Each energy level j possesses 2j + 1 independent wave 
functions and so must be assigned a weight 2j -+- 1. Proceeding as 
before, the partition function is 

1 
Z ='_(Z)N 

N 
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Fig. 6.1. Rotational heat capacity of a gas of heteronuclear diatomic molecules. 

where the partition function z for a single molecule is 

00 [ V+ 1)eJ z = L (2j + 1) exp _ } r 

j=O T 
(6.8) 

where er = h2 18n2 Ik. Over the entire range of temperatures, the 
summation has to be carried out by numerical methods3 .4, and the 
rotational specific heat has the values shown in Fig. 6.1. Cv(rot.) 
has a simple form at high or low temperatures: 

Cirot.) = R[1 + ls(iY + ... J (6.9) 

(6.10) 

The rotational heat capacity of diatomic molecules has the equiparti­
tion value R ~ 2 cal/mole·deg at high temperatures. As the tempera­
ture is lowered, Cv(rot.) attains a shallow maximum of about 1.1R 
at Tier ~ 0.8 and then drops down steeply. Below about Tier ~ 0.2, 
the rotational specific heat becomes too small to be resolved experi­
mentally. 
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Table 6.IV. Rotational Characteristic Temperatures Or of Gases 
(in deg K) 

Gas 

H2 HD HT D2 DT T2 HCl N2 O2 CO NH3 

e, 85.4 65.7 58.4 43.0 36.5 29.1 15.2 2.86 2.07 2.77 12.3 

Clearly, Or is the characteristic temperature governing the 
behavior of Cv(rot.). Now a study of the band spectra enables the 
moment of inertia of the molecules to be determined,5 and some 
values of Or calculated from such spectroscopic observations are 
given in Table 6.1Y. For most gases, Or is in the region where the 
substances would have become liquids or solids, and so in the gaseous 
state they have the limiting value of R, thus accounting for the success 
of the equipartition law. Only in the case of the light hydrogeneous 
molecules is there any possibility of observing the "freezing" of the 
rotational degrees of motion. Hydrogen and deuterium are specially 
treated below because of the additional interesting effects arising 
from nuclear symmetry in the molecules. The rotational heat capacity 
of hydrogen deuteride (HD), obtained by subtracting the translational 
contribution ~R from the observed heat capacity, is in good agree­
ment with the theoretical curve of Fig. 6.1 if Or is taken as 65. rK. 
However, the observations are incomplete. 

The treatment of polyatomic molecules is along similar lines, 
taking into account the possibility of rotation about all three axes 
and the molecular symmetry. For all polyatomic molecules, the 
equipartition value is reached in the gaseous state. The interest in the 
polyatomic gases is in calculating the entropy from the statistical 
partition function. The relevant formulas are analogous to the 
Sackur-Tetrode equation (6.6) and may be found in several 
treatises. 3 .4,6 A comparison of the statistical entropy with the 
experimental value often gives information about the ordered state 
of the solid. This will be taken up in Section 6.7. 

6.5. HOMONUCLEAR MOLECULES-ISOTOPES OF 
HYDROGEN 

The heat capacity of homonuclear molecules, of which H2 and 
D2 are of great interest,7 involves a consideration of the symmetry 
of the wave functions of the nuclei. Quantum mechanics shows that 
if the nuclei have an even mass number (for example, the deuteron), 
the wave function describing their motion must be symmetrical in 
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nuclear coordinates, while if the nuclei have an odd mass number 
(for example, the proton) the wave functions must be antisymmetrical. 
Since the total wave function contains the product of the rotational 
and the nuclear spin functions, it is convenient to consider the two 
separately. 

Interchanging the two nuclei of a diatomic molecule is equivalent 
to replacing fJ by IT - fJ and ¢ by IT + ¢ in the rotational eigenfunction 
pJml(cos fJ)eim<P, that is, replacing the ~unction by (-ltpJml( -cos fJ)eim<P, 
which is equal to (-1)1 pJml(cos fJ)e'm<P because pJml(cos fJ) is even or 
odd according to whether j + Iml is even or odd. Hence the molecular 
rotational function is symmetric in the nuclear coordinates for even 
values of j and anti symmetrical for odd j. It is convenient to write 

Ze = j= 0~4 •.. (2j + 1) exp [ -j(j + 1)jJ 

Zo = j= 1~5, .. (2j + 1) exp [- j(j + 1)~] 

(6.11 ) 

(6.12) 

If the nucleus has a spin I (in units of h), there will be orienta­
tional quantization in an external magnetic field, with an eigenfunction 
for each of the P = 21 + 1 states. In the absence of a magnetic field, 
the orientated states become indistinguishable, but their number 
remains unaltered. Thus there are P spin wave functions t/lr(a), 
t/ls(b), where r, s = 1,2, ... , p, for each nucleus a, b of a homonuclear 
diatomic molecule. From them, there are 1P(P - 1) combinations of 
the type t/lr(a)t/ls(b) - t/lr(b)t/ls(a) (where r # s), which are antisymmetric 
in the nuclear coordinates, and there are 1P(P - 1) combinations of 
the type t/lr(a)t/ls(b) + t/lr(b)t/ls(a) (where r # s), symmetric in the nuclei, 
as well as P products t/lr(a)t/lr(b) also symmetric in the nuclei. In all, 
there are 1P(P - 1) antisymmetric and 1P(P + 1) symmetric spin wave 
functions of the molecule. These are the spin weight factors. 

After these preliminaries, the rotational specific heat of hydrogen 
may be taken up. The hydrogen nucleus (proton spin I = 1, P = 2) 
has an odd mass, and so the total wave function must be anti­
symmetric. This means that the symmetric rotational functions Ze 

must be combined with the anti symmetric spin functions, while the 
antisymmetric rotational functions Zo are to be associated with the 
symmetric spin functions of degeneracy 1P(P + 1). If these weight 
factors 1P(P - 1) = 1, 1P(P + 1) = 3 are taken into account, the 
partition function for the equilibrium state of hydrogen becomes 
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and the specific heat will be 

d r 2 d J Cirot.) = dTLRT dT In (ze + 3zo) (6.13) 

This formula, derived by Hund,8 did not agree with the measured 
specific heats of hydrogen if the spectroscopic value of the moment 
of inertia, 4.67 x 10- 40 g-cm 2 , was used. 

The reason was very soon pointed out by Dennison. 9 The 
transitions between the states of different nuclear spins are due to 
the very small interaction of the nuclear magnetic moment with the 
magnetic field produced by the rotation. The normal hazards of 
molecular collision do not affect the nuclear spins, and so the transi­
tions between the two states are extremely rare. Therefore, hydrogen 
normally behaves as if it were a metastable mixture of two entirely 
separate species of molecules-parahydrogen and orthohydrogen. In 
parahydrogen, the nuclear spins are antiparallel (resultant spin and 
magnetic moment of the molecule are zero), and so this anti symmetric 
spin state is associated with even rotational states. Orthohydrogen 
has the spins of the nuclei parallel and corresponds to odd rotational 
states. In normal hydrogen, the relative abundance of the two types 
of molecules will be determined by the equilibrium conditions at 
room temperature. Since at high temperatures, Zo is approximately 
equal to Ze, the relative abundance of para and ortho molecules will 
be in the ratio p-H 2: 0-H z = 1: 3. The specific heat of normal hydro­
gen must be calculated by adding the contributions from the two 
species in this ratio, because during the course of an ordinary 
calorimetric measurement the ratio does not change appreciably. 
Thus 

(6.14) 

This formula is in excellent agreement with the observations on 
ordinary hydrogen (for which the usual abbreviation is n-H2)' 

Although the transitions between the ortho and para forms of 
hydrogen are so infrequent that the mixture retains its room-tempera­
ture composition of o-H2 :P-H2 = 3: 1 during normal measurements 
of the specific heat, it is possible to catalyze the transitions by bringing 
the gas into contact with activated charcoal or paramagnetic salts. 
Substances such as ferric hydroxide are commonly used as catalysts. 
The lowest energy state of the ortho molecule is the j = 1 state, 
unlike the para molecule with a zero-energy j = 0 state. So, at low 
temperatures the equilibrium gas contains mostly para molecules. 
Typically, equilibrium hydrogen contains 25 % P-H2 at 3()()OK and 
over 99 % p-Hz at 20°K. This almost pure para hydrogen, or any 
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Fig. 6.2. Rotational heat capacity of ortho, para, normal, and equilibrium hydrogen 
(8, = 85.4°K). 

other mixture, will remain in metastable equilibrium if the temperature 
is changed in the absence of catalysts. Therefore, the specific heats 
of various ortho- para mixtures have been studied; the results are in 
excellent agreement with the theoretical calculations if Or is taken as 
85.4°K. By selective adsorption of the ortho molecules on alumina, 
99 % pure orthohydrogen has been prepared recentlylO and its 
properties studied. 

The rotational specific heat of the various forms (ortho, para, 
normal, and equilibrium states) of hydrogen are shown in Fig. 6.2. 

For deuterium, the nuclear spin I is 1, and so p = 3. Since the 
deuteron contains two particles (proton and neutron), the total wave 
function must be symmetrical. The even rotational functions Ze are 
to be coupled to even nuclear spin functions of weight tp(p + 1) = 6, 
while the antisymmetrical rotational functions Zo are to be associated 
with the antisymmetrical spin functions of weight tp(p - 1) = 3. So 
for a metastable mixture of deuterium (n-D 2 ), 

6 d ( 2d ) 3 d ( 2d ) Cv(rot.) = 9 dT RT dT In ze + 9 dT RT dT In Zo (6.15) 
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The measurements on ordinary deuterium are in good agreement with 
th is rela ti on. 

The para molecules have antiparallel nuclear spins. Therefore, 
paradeuterium is associated with odd rotational states, unlike para­
hydrogen, which is associated with even j-states because of the 
difference in nuclear mass and hence symmetry. The temperature 
variation of CJrot.) for paradeuterium is thus similar to that of 
orthohydrogen. The specific heat of orthodeuterium resembles the 
behavior of parahydrogen in having a maximum in Cv(rot.), but 
because of the increased moment of inertia, the peak occurs at about 
85°K in orthodeuterium as compared to about 1700K in para­
hydrogen. Further, because of the higher percentage of even 
rotational states, normal deuterium shows a weak maximum in the 
specific heat at about lOO°K. The theoretical variation of CJrot.) 
shown in Fig. 6.3 is in good agreement with experiments if Or is taken 
as 43.0o K. At low temperatures, orthodeuterium is the more favored 
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Fig. 6.3. Rotational heat capacity of para, ortho. normal , and equilibrium deuterium 
(0, = 43.00 K). 



Specific Heats of Gases 147 

state, and so almost pure metastable orthodeuterium can be prepared 
for experimental studies. Enrichment of paradeuterium requires a 
special process. 1 0 

Similar considerations apply to other cases such as that of CH4 , 

where the four hydrogen atoms are indistinguishable. However, these 
substances are no longer in the gaseous state when the deviations 
from the equipartition value are expected to arise. The study of 
tritium and its hydrides is barely possible. 11 

6.6. VmRATIONAL AND ELECTRONIC SPECIFIC HEATS 

The vibrational levels of molecules are 100 to 1000 times higher 
than the rotational levels; consequently, for many "permanent" 
gases the vibrational contribution becomes appreciable only at high 
temperatures. There are some substances, especially the organic 
vapors, which have rather low vibrational frequencies; for them, 
the vibrations are excited at room temperatures, as shown in Table 6.I. 

The vibrational specific heat has been already calculated, in a 
different context. In Chapter 2, it was pointed out that a harmonic 
vibrator of frequency v has energy levels en = (n + !)hv, and so 

z = I exp [_ (n + !)hV] = exp(!hv/kT) 
n=O kT 1 - exp(hv/kT) 

Thus 

. (ev)2 exp(ev/T) 
CiVlb.) = R T [exp(8v1T) - IF (6.16) 

where 8v = hv/k. This is the well-known Einstein function [equation 
(2.9)], and the temperature variation of C v was represented in Fig. 2.1. 
(There is a small difference in that three-dimensional oscillators were 
considered in Chapter 2, whereas the present Cv(vib.) for the one­
dimensional case is one-third the Cv considered in Section 2.4.) 
From spectroscopic studies of the vibrational frequencies, the values 
of 8v may be calculated, some of which are given in Table 6.V. For 
simple molecules, the vibrational specific heat is barely excited at 

Table 6.V. Vibrational Characteristic Temperatures 8v (in 103 "1() 

Gas 

8v 6.0 5.3 4.3 4.1 3.7 3.1 3.4 2.2 0.80 0.46 
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Table 6.VI. Vibrational Heat Capacity of Chlorine (in caljmole.deg) 

Calculated 
Experimental 

243 

0.848 
0.840 

Temperature (deg K) 

270 

0.985 
0.977 

"" J17 

1.188 
1.148 

391 

1.407 
1.459 

452 

1.530 
1.557 

3000 K, i.e., at about one-tenth ev ' Chlorine is an exception; the 
values, calculated from a band-spectrum value ofv = 16.95 x lOI2/sec, 
are compared with the experimental results! in Table 6.VI. There is 
indeed good agreement. 

In polyatomic molecules, there are several vibrational frequencies, 
and the corresponding Einstein terms must be summed up. In many 
cases, to get full agreement with experiments, corrections have to be 
applied for the coupling between vibrational and rotational levels 
of the molecule and for the anharmonicity of the vibrations at higher 
temperatures. These problems are treated in several texts. 3 ,4 

Electronic energy levels, being of the order of lO4°K apart, are 
not excited at room temperatures, In nitric oxide (NO) and a few 
free radicals, there are exceptionally low-lying levels with spacings 
of about 100oK, The excitations between such levels give rise to the 
Schottky type of specific heat (Section 4,9), Measurements in the 
gaseous state, which exists only at temperatures well above the 
specific-heat peak, are in reasonable accord with the calculations.4 

6.7. CALORIMETRIC AND STATISTICAL ENTROPIES­
DISORDER IN SOLID STATE 

The study of the entropy of gases offers some interesting informa­
tion about possible disorder in the solid state, which is of fundamental 
interest in connection with the third law of thermodynamics.!2 
Statistical thermodynamics allows calculation of the absolute entropy 
of gases,1> as was outlined for the case of translational degrees of 
freedom. The expressions involve, besides the fundamental constants 
h, k, m, etc., the frequencies of rotational and vibrational modes and 
the possible degeneracy of the states of the gas. These quantities 
can be determined from spectroscopic observations, and the entropy 
can be calculated. 5 On the other hand, from the measured specific 
heats of the solid and liquid phases as well as the latent heats of the 
phase changes, it is easy to calculate the entropy of the gas at, say, 
the normal boiling point. The calorimetrically determined values 
must agree with the statistically calculated values, if the conceptions 
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Table 6.VII. Statistical and Calorimetric Entropies (in cal/mole·deg) 

Gas and boiling point (degK) 

A Kr N2 CI 2 HCI HI CH4 C2H4 CO2 NH3 
87.3 120.2 77.4 238.6 188.2 237.5 111.5 169.3 194.7 239.7 

Statistical 30.87 34.65 36.42 51.55 41.45 47.8 36.61 47.35 47.55 44.10 
Calorimetric 30.85 34.63 36.53 51.56 41.3 47.8 36.53 47.26 47.59 44.13 

of the third law and the statistical mechanics of the substances are 
correct. Table 6.Vll, giving the relevant data at the boiling point of 
several simple substances, shows that the agreement is very good in 
most cases. This is indeed gratifying. 

In some cases, calorimetric and statistical entropies do not agree 
so well as in Table 6. VII. Among the possible reasons for the dis­
crepancy are (i) errors of calorimetry in the form of impure specimens, 
etc. ; (ii) anomalous variations of specific heat below the temperatures 
up to which measurements have been made, resulting in an incorrect 
extrapolation to OaK (compare Section 1.4); and (iii) inadequate 
knowledge of the molecular parameters or the equation of state. 
Even when these reasons are ruled out, differences between the 
statistical and calorimetric values persist in some cases. 13 Table 6.VIII 
shows that they are significantly greater than the limits of experi­
mental error, which is of the order of ±O.l caljmole·deg in the 
unfavorable cases involving specific-heat anomalies in the solid 
state. Although at one time there was considerable discussion about 
these discrepancies, it is now settled that in these substances the solid 
phases are not in internal equilibrium. As in the case of glassy 
materials discussed in Section 5.9, the solid state contains "frozen-in" 
configurational disorder not revealed in the calorimetric measure­
ments of specific heats and hence in the evaluation of the entropy. 
Whereas the statistical calculations give the entropy difference 
between the gas at its boiling point and a perfectly ordered state at 
OaK, calorimetry gives the entropy difference between the gas at its 
boiling point and a slightly disordered state at OaK. Therefore, the 
calorimetric values must be smaller than the statistically calculated 
results, which is in fact one of the salient features of Table 6.VIII. 

Carbon monoxide is a molecule with quite similar atoms; in 
an ideal solid state, the atoms should be arranged in the perfect 
order ... CO CO CO CO .... A disordered state ... CO CO OC CO ... 
will have a slightly higher energy A, dependent upon the difference 
between C and 0 atoms. If the temperature T is much larger than 
A/k, fluctuations in thermal energy of the order of A/k are possible, 
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Table 6. vm. Discrepancies Between Statistical and Calorimetric 
Entropies 13 

Gas and boiling point (deg K) 

CO N 20 CH 3 0 FCI03 S02F2 NO H 2O 0 20 
83 184.6 99.7 226.5 217.8 121.4 298* 298* 

Statistical 38.32 48.50 39.49 62.59 64.14 43.75 45.10 46.66 
Calorimetric 37.2 47.36 36.72 60.17 62.66 43.03 44.28 45.89 
Statistical-

Calorimetric 1.1 1.1 2.8 2.4 1.5 0.7 0.8 0.8 

* H 2 0 and 0 20 at room temperature. 

and the molecule rotates freely from the CO to OC configuration 
and back. At very low temperatures (T ~ !!.Ik), the solid will become 
completely ordered if allowed to do so. However, in any solid there 
are always intermolecular potential barriers b opposing the molecular 
motions. If these barriers are small compared to !!., an ordered state 
sets in at T ~ !!./k. If, however, the potential barriers are much 
larger than !!., then the high-temperature disordered state becomes 
frozen at T ~ blk. The ordering at lower temperatures is not possible, 
because the mismatch energy !!. is not sufficient to overcome the 
potential barrier b. If a molecule can take up one of two possible 
sites, the entropy of the frozen disorder is R In 2 per mole. The 
discrepancy in Table 6.VIII is 1.1 caJjmole·deg, which is slightly 
smaller than R In 2 ~ 1.38 units, suggesting that a part of the disorder 
had been removed before the potential barriers in the solid prevented 
any trend toward a perfect arrangement. Similar arguments apply 
to nitrous oxide. This is a linear molecule with the atoms nearly 
alike, so that its orientation in the solid state may be either NNO or 
ONN. The discrepancy, 1.1 units, is again a little smaller than 
R In 2. The same end-for-end disorder occurs in the long-chain 
l-olefins with more than eleven carbon atoms,14 while I-decene and 
smaller molecules are fully ordered in the solid state. 

The magnitude of the difference in CH3D is about 2.7 call 
mole·deg, which immediately gives a clue to the nature of the dis­
order. In a completely ordered state, the CH3D molecules may be 
expected to take up a position with the deuterium atoms in one 
particular site among the four tetrahedral carbon-hydrogen bonds. 
If the rotational motion has been frozen at relatively high tempera­
tures, there will be a residual entropy of R In 4 ~ 2.75 units, which is 
very close to the experimental value. The same is the situation with 
the perchloryl fluoride FCI03, where the crystal fails to distinguish 
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between the oxygen and the fluorine atoms in orienting the molecule 
in the solid state. There are four possible positions for the fluorine 
atoms, giving a disorder entropy R In 4 '" 2.75 units, which is close 
to the observed value of 2.42 units. In sulfuryl fluoride (S02F 2), the 
slightly asymmetric top molecules have two possible orientations in 
the solid state, resulting in an entropy difference of about 1.5 units. 

The statistical entropy of nitric oxide is only 0.7 units higher 
than the calorimetric values. X-ray studies 15 show that nitric oxide 
is present as a dimer 

~ .. Q 
O .. N 

with nitrogen-oxygen bonds of 1.1 and 2.4 A, respectively. The 
X-ray diffraction patterns suggest that the dimer is distributed in the 
crystal without distinguishing between the corners occupied by the 
N atoms and those occupied by the 0 atoms. This randomness gives an 
entropy of R In 2 per mole of the dimer and so accounts for the ob­
served difference tR In 2 '" 0.69 units per mole of the monomer NO. 

Ice provides a celebrated example of a more complicated type 
of disorder which was first elucidated by Pauling. 16 In gaseous 
H 20, the HOH.angle is about 105°, and the two H atoms are at a 
distance of 0.95 A from the oxygen atom. In ice, the various molecules 
are bound together into a loose open structure by hydrogen bonds, 
and each 0 atom is surroun~ed by four other 0, tetrahedrally 
situated at a distance of 2.76 A. The water molecules retain their 
individuality to a large extent, but there is space only for one ~ atom 
along each tetrahedral 0-0 direction at a distance of 0.95 A from 
either oxygen. In a mole of ice there are 2N H atoms, and if there 
are two possible positions along each 0-0 bond, the possible number 
of configurations is 22N. Of these, only a few are acceptable. Consider 
any 0 atom and the available sites along the four tetrahedral direc­
tions. There is one way of putting four hydrogens close to the 0 atom, 
giving {OH4)2+ ionic arrangement; there are four ways of getting 
(OH 3)+, six ways of getting (OH2 ), and four ways of getting (OH)-; 
and there is one way of getting (0)2 - ionic arrangement. Of these 
sixteen possibilities, only six yield the desired H 20 molecule; that is, 
only three-eighths of all possible configurations are acceptable to 
that 0 atom. Thus the total number of possible arrangements of a 
mole of the solid is (2)2N . (it = {!t. Therefore, the entropy asso­
ciated with this is R In! = 0.81 caljmole·deg. This agrees very well with 
the difference of 0.8 units observed for both H 2 0 and D2 0. There is 
considerable evidence from neutron- and electron-diffraction studies 
for the essential correctness of the statistical disorder in ice, and the 
matter has been recently reviewed by Chidambaram. 1 7 
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The hydrated sodium sulfate Na2S04 ·lOH20 shows a residual 
entropy of about 1.5 units, which has been explained on the basis 
of X-ray structural work 18 A four-member hydrogen-bonded ring 
exists in the structure, with the protons unsymmetrically located III the 
hydrogen bonds. Therefore, two arrangements, 

H H H H 
"- / "- / 

O-H ° ° H-O 
I I 

H H 
other and other 
atoms atoms 

H H 
I I 

° H-O O-H 0 
/ "- / "-

H H H H 

are possible, and a random population of the two schemes gives a 
disorder entropy of R In 2. Isomorphous Na2 Cr04 ·10H 20 has the 
same structure and presumably would have the same residual entropy. 

It was mentioned earlier that if the mismatch energy A is much 
larger than the intermolecular potential barriers, an ordered state is 
achieved at a temperature T ~ A/k. Consider, for example, HI 
instead of CO. The atoms are so different that the energy difference 
A between HI and IH configurations is very large. Even at relatively 
high temperatures, there is insufficient thermal energy to permit 
such a disorder. As a matter of fact, such substances display the 
ordering process in spectacular specific-heat singularities, the typical 
example l9 of HI and DI being given in Fig. 6.4. These cooperative 
anomalies were first found in ammonium chloride by Simon in 1922 
and have since been found in a large number of substances. They are 
discussed fully in the following chapter. The configurational entropy 
in these materials is removed at relatively high temperatures. Hence 
there should be no discrepancy between statistical and calorimetric 
entropies. The examples given in Table 6. VII confirm this. 

6.S. HINDERED ROTATION 

A molecule does not always rotate as a rigid body, as was implied 
in the calculations of Section 6.4. In many organic molecules, groups 
of atoms can rotate freely or partially about the bond directions. 
A classic example is the difference between ethane H3C-CH3 and 
dimethyl acetylene H3C-C=:C-CH3. In ethane, the influence of the 
hydrogen atoms of one methyl group can be felt by the other CH3 
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group, and so a rotation of one group about the C-C axis may be 
expected to have a potential of the form V = Vo (1 - cos 3¢). In 
dimethylacetylene, the CH3 groups are far away, and so the methyl 
groups experience little, if any, potential barrier for rotation about the 
C==C bond. In fact, the entropy calculated by assuming a free 
rotation of the methyl group agrees well with the calorimetric value 
in the case of this substance. On the other hand, the measured 
entropy of ethane falls between the entropies calculated by assuming 
free or no rotation about the C-C bond. It is clear that from such 
entropy differences a knowledge of the potential barriers may be 
obtained. 

The hindered rotation of the radicals in a molecule can also be 
studied from infrared and microwave spectra of the substance. 
Wilson20 has recently reviewed the various methods of determining 
Vo. The thermodynamic method, though used first to obtain this 
information (mainly by Pitzer and his coworkers), is rather inaccurate 
because it depends upon the small difference between two large 
quantities, namely, the calorimetric entropy and the statistical con­
tribution from translational, vibrational, and other modes. The 
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spectroscopic determination is more accurate; Vo thus determined 
can be used to interpret the calorimetric data. Methyl chloroform 
is one of the early substances for which spectroscopic data made 
possible the satisfactory interpretation of specific-heat measurements. 
Methanol has been studied extensively by various methods, and the 
results are in very good agreement with one another. 4 

6.9. ENTROPY OF HYDROGEN 
The entropy of hydrogen depends upon its composition. Johnston 

and coworkers21 calculated the entropy of parahydrogen by using the 
measured specific heats up to 12°K and then making a Debye-type 
extrapolation of the heat capacity of the solid down to absolute 
zero. At the boiling point (20.76°K), the entropy comes out to be 
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14.8 ± 0.1 cal/mole·deg. The statistical entropy is easily calculated 
from the translational and rotational functions and a small vibrational 
partition function. The value 14.76 agrees very well with the calori­
metric evaluation. 

A similar statistical calculation of the entropy of normal hydrogen 
shows that it exceeds that of para hydrogen by 4.29 cal/mole·deg. 
This excess arises from three sources. Normal hydrogen is a mixture 
of orthohydrogen and parahydrogen in the ratio 0: p = 3: 1, and the 
entropy of mixing is equal to - R(t In t + i In i) - 1.14 units. A 
second source is the nuclear-spin entropy of orthohydrogen. The 
ortho molecules, with a resultant nuclear spin I = 1, have three 
possible orientations, and the degeneracy will not be revealed until 
the specific heats are measured down to about 1O- 6 °K. The excess 
entropy is R In 3 per mole of orthohydrogen, and so it contributes 
iR In 3 - 1.64 to the ordinary 3: 1 mixture. 

A third contribution comes from the ordering of the rotational 
axes of the molecules at low temperatures. As mentioned earlier, 
ortho-para transitions take place only slowly in liquid and solid 
states, which makes it possible to measure the thermal properties 
of the condensed phases with various ortho-para concentrations. 
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Such measurements were first performed by Simon, Mendelssohn, 
O':J,..,rl Dllha.."....r.Jn 22 ~n.rl 't"n" ... ., "'''(",~T'\tl'lT h'lT U~l1 ..... ""rl D;~1.r.a.t",_ ..... 23 .......... ..-l 
...... 1.1.'-& .I.'\o.U.l.l'-'.l.U.UJ.J. U.l.lU lU.VI..'" J.v,",v.1.tli] LlJ .l..l.1.11 «..1.1U 1.'-1'"'1\.."'\'~Vl1 c:.L.11U 

by Ahlers and Orttung.24 Measurements above helium temperatures 
(Fig. 6.5a) show that the specific heats of solid solutions of ortho­
hydrogen considerably exceed those of pure parahydrogen. With 
ortho concentrations in excess of about 60%, the specific heat 
exhibits a pronounced i.-peak at about 2°K (Fig. 6.5b). The additional 
specific heat increases with increasing ortho concentration, and the 
entropy associated with the anomaly is only a little lower than R In 3 
per mole of orthohydrogen. 

The excess entropy is in fact what is expected. The ground state 
of the ortho-molecule is the j = 1 rotational state, which, because of 
the low moment of inertia, has considerable energy. Solid hydrogen 
has a very open structure, largely on account of the high zero-point 
energy; therefore, the potential barriers opposing rotation of the 
molecules are small. The ortho molecules may be rotating right 
down to O°K. The rotational level j = 1 is threefold degenerate, 
but since the molecular field in the solid is cubic and not spherical, 
different relative orientations have slightly differing energies of 
interaction. The lowest energy of the system occurs for an ordered 
arrangement of the axis of rotation; indeed, NMR experiments25 
show that the ortho molecules become ordered in this way. The 
specific-heat anomaly is due to this cooperative ordering process, 
though recent investigations24 show that the details of the ordering 
process are more complicated than was originally supposed. It is 
evident that the removal of the threefold degeneracy gives an extra 
entropy R In 3 per mole of orthohydrogen, or ~R In 3 ~ 1.64 per 
mole of normal hydrogen. The sum of the three contributions 
(1.14 + 1.64 + 1.64 ~ 4.4 cal/mole·deg) is in satisfactory agreement 
with the calculated difference of 4.3 units. 

A similar entropy contribution due to the removal of the three­
fold degeneracy of para molecules is present in deuterium. Following 
the earlier experiments,26 which revealed anomalous specific heats 
similar to those shown in 6.5a, Grenier and White27 detected A-peaks 
(as in Fig. 6.5b) at about 3°K in the specific heat of solid deuterium, 
with para concentrations of more than approximately 65 %. They used 
a special enrichment procedure 1o to get para concentrations greater 
than the normal 33j %. Taking into account the various contributions, 
there is satisfactory agreement between calorimetric and statistical 
entropies. 
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Chapter 7 

Specific-Heat Anomalies 

7.1. SPURIOUS AND GENUINE ANOMALIES 

The idea that the specific heats of some materials show abnormal 
variations at certain temperatures was introduced as early as Chap­
ter 1, and several examples of such uncommon behavior were men­
tioned in Chapters 3 to 6. Before embarking upon a systematic 
classification of such unusual specific-heat variations, it is worthwhile 
to digress a little upon what constitutes anomalous behavior. Any 
definition of an anomaly is to some extent negative in that it invokes 
the standards for normal behavior, which obviously depend upon the 
progress of our knowledge concerning the thermal properties of 
physical systems. Thus, deviations from Einstein and Debye models 
of specific heats, at one time considered to be anomalous variations 
of specific heats, are now taken as normal in the light of detailed 
lattice calculations. Similarly, the unexpected behavior of the specific 
heat of a superconductor is now viewed as a simple consequence of 
the onset of superconductivity in the electronic system. The possi­
bility always exists that the puzzles of one era may become clarified 
in the succeeding years. Consequently, it is best to adopt as a prag­
matic simplification that, in most substances and in many simple 
theoretical models of solids, the specific heat decreases continuously 
as the temperature is lowered. If there is an increase associated with 
reduction of temperatures, giving in effect a maximum in the heat 
capacity, the behavior is generally called a specific-heat anomaly. 
Although at one time such events were rarely observed, they are now 
known to occur in numerous substances. In general, if the origin of 
the effect is known, we shall call a finite small maximum a peak in the 
heat capacity and a large, nearly infinite, maximum a singularity. It 
appears best to reserve the term anomaly for the cases where the 
explanation is unknown. 

158 
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It is useful to illustrate the above statements with some examples. 
For the majority of common solids, the typical low-temperature 
specific heat is that shown by the thick line in Fig. 7.1a, decreasing 
continuously to zero as OaK is approached. A few substances exhibit 
a definite maximum as shown in Fig. 7.1b, a specific-heat peak. A 
practical case, that of nickel sulfate at low temperatures, was shown 
in Fig. 4.11. Here, on the basis of theoretical and experimental studies 
of thermal and other properties, it was possible to resolve the 
observations into a lattice contribution and a Schottky term, as 
shown schematically in Fig. 7.1b. Much effort has gone into the 
resolution of experimentally determined total specific heats into simple 
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Fig. 7.1. (a) Typical specific-heat variation of many common solids (thick lines). Broken 
lines show a possible resolution into Debye and Schottky contributions. (b) Schematic 
picture of a specific heat peak. Broken lines show decomposition into lattice and 
Schottky contributions. (c) Frequency distribution for a combination of Debye and 
Schottky terms. The Schottky term is equivalent to removing frequencies at 2VE and 

adding them at v" shown as shaded portions. 
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lattice, electronic, and other contributions so that the anomalous 
part can be discussed independently. Unfortunately, this sort of 
decomposition game, played with numerical data, can be carried to 
extremes. It was noticed by Simon in 1930 that the specific heats of 
many solids could be fitted very well by a combination of a Debye 
and a Schottky term, somewhat as shown by the broken lines in 
Fig. 7.1a. It was then postulated that the lattice follows the Debye 
variation, while the electronic system follows the Schottky relation 
as a result of excitation between the ground state and a higher energy 
state. With several adjustable constants, the agreement in such cases 
is, as expected, very good. 

The underlying physical reason for this kind of agreement is as 
follows. I A comparison of the Schottky equation (4.25) for the case 
go = gl with the Einstein equation (2.9) reveals that the Schottky 
term is the same as the difference Cv(TE/T) - Cv(2TdT) between two 
Einstein models with frequencies VE and 2vE. Thus, the above de­
composition is equivalent to adding a number of frequencies at VE 

and removing the same number at 2VE in the Debye spectrum. The 
resulting g(v) (thick line in Fig. 7.1c) has a slightly better resemblance 
to the actual frequency spectra of solids-compare Figs. 2.5 to 2.8-
than a single Debye spectrum, and the better representation of the 
specific heats by such a frequency spectrum is not surprising. With 
other approximate representations of g(v), such as those attempted 
by Raman and coworkers, the situation is similar. 

It is now natural to ask whether a Schottky term obtained by 
such a decomposition justifies considering the specific-heat variation 
to be anomalous. At present, such specific-heat contributions are 
not called anomalous. The Debye spectrum is now known beyond 
all doubts to be nothing more than a good approximation to the 
g(v) of solids; a judicious combination of Debye and other terms is at 
best a better approximation. Hence, any peak separated out from 
the observations is artificial and without proper theoretical justifica­
tion; the actual specific heat can be represented equally well by an 
appropriate g(v), which can be studied and confirmed by other inde­
pendent methods such as neutron-diffraction studies. It is only 
when there is an actual maximum in the observed total specific heat 
that the lattice and electronic modes are insufficient for an explana­
tion. Therefore, a practical criterion for a specific-heat anomaly is 
the presence of a maximum in the temperature variation of specific 
heat. 

It is thus clear that what could have been considered a specific­
heat anomaly in, say, 1930 is now taken to be normal behavior of the 
lattice. Another way in which later studies establish the presence of 
normal behavior is in bringing to light insidious experimental errors. 
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In particular, three sources of error in many early observations have 
been revealed. Where hydrogen or helium exchange gas is used to 
cool the specimen to low temperatures, the desorption of the gas at 
low temperatures vitiates calorimetric studies by preventing the easy 
attainment of good vacuum insulation and by causing liberation of 
the heat of desorption. Secondly, small amounts of impurities, 
especially of materials which have pronounced specific-heat peaks, 
often result in apparent anomalies. Magnetic materials showing 
transitions at low temperatures should be scrupulously avoided. 
Thirdly, uncertainties in temperature scales may cause errors in the 
evaluation of heat capacities. Several anomalies reported earlier in 
many common materials! have now proved to be results of these 
experimental shortcomings. 

7.2. COOPERATIVE AND NONCOOPERATIVE ANOMALIES 

In discussing the model systems which show specific-heat peaks 
it is convenient to start with a system of independent particles or 
modes. Indeed, the simple models of solids and gases in Chapters 2, 
3, and 6 invoked only such independent modes of excitation, namely, 
independent phonons, electrons, and molecules. The simplicity of 
such a system is that the total energy is just the sum of the energies 
of the various independent modes. Since there is no mutual inter­
dependence among the modes, the system is called a noncooperative 
one. Under these conditions, a rather complete theoretical analysis 
of the system is possible. The examples of Schottky effect (Section 
4.9), rotational specific heat of gases (Section 4.5), and the heat 
capacity of some liquids and solutions2 show that even in these non­
cooperative processes specific-heat maxima can occur. The practical 
examples of such peaks and their theoretical interpretation have been 
fully discussed elsewhere, and there is no need for further analysis in 
this chapter. As a matter of fact, the rotational specific heat of gases 
is so well understood that many authors do not classify its maximum 
as a specific-heat anomaly. 

In some physical systems, the interactions among the constituents 
are so strong that the energy state of one constituent depends upon 
the energy states of its neighbors. For example, in a ferromagnet the 
probability of a given spin pointing along + Z is large if the nearby 
spins also point along + Z and small if they are aligned along - Z. 
Thus, the spin states are not mutually independent. The probability 
of transferring a particle to an excited state depends upon the degree 
to which the excited state is occupied. Under such conditions, the 
excited states are often too few until some critical mean energy, that 
is, some critical temperature, is approached. Then the process of 



162 Chapter 7 

excitation by mutual cooperative action takes over and the particles 
of the system are very rapidly transfered to the excited states in the 
vicinity of the transition temperature. Thus. the energy of the system 
is changed in a small interval of temperature. In consequence, the 
cooperative transition is revealed in the specific heat as a pronounced 
singularity at the transition temperature 7;,. 

Several categories of cooperative phenomena are now known. 
The alignment of magnetic dipoles (spins), superconductivity of elec­
tronic systems, superfluidity in liquid helium, order-disorder transi­
tions, and the onset of molecular rotation are some topics mentioned 
earlier. The phenomenon of ferroelectricity is analogous to ferro­
magnetism. There are other specific-heat singularities in rare-earth 
metals and at liquid-gas critical points. The present chapter will be 
concerned with these cooperative effects. 

Specific-heat singularities due to magnetic interactions are by 
far the most frequent peaks observed at low temperatures. There 
are many ions which are paramagnetic; the presence of anyone of 
them in a substance gives rise to either noncooperative Schottky 
peaks or cooperative ordering singularities. In the latter case, the 
ordered state at low temperatures may be ferro-, ferri-, or antiferro­
magnetic. Even in diamagnetic solids, the nuclear moments, if any, 
become ordered at sufficiently low temperatures. The experimental 
and theoretical aspects of these phenomena were discussed at some 
length in Chapter 4. Here it suffices to remark that if the spins become 
noncooperatively ordered, there is a smooth Schottky maximum, 
whereas in cooperative ordering the specific heat is probably infinite 
at the transition temperature 7;,. Where sufficiently careful measure­
ments have been made, the specific heat shows a logarithmic infinity 
on the low-temperature side of 7;,. On the high-temperature side, it 
is not settled whether the singularity is logarithmic or of the power­
law type. 

Cooperative transitions in superconductors and superfluids were 
also fully discussed in earlier chapters. The two processes differ 
from the other cooperative phenomena in that the ordering takes 
place in the momentum space rather than in the coordinate space. 
F or instance, a ferromagnet becomes ordered with all spins along 
one direction in the ordinary coordinate space. On the other hand, 
the superfluid properties of liquid 4He are basically the result of Bose 
condensation of the particles into zero-momentum states. The Cooper 
pairs, which are responsible for superconductivity, behave very much 
like condensed bosons. There are, however, differences between the 
specific-heat behavior of superfluids and superconductors. Liquid 
4He exhibits the famous A.-transition at 2.17°K, with the heat capacity 
showing logarithmic infinities both below and above T .. (Section 5.5). 
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Superconductors show only a finite jump at the transition (Section 
3.9). Further, liquid 4He has a specific-heat tail on the high-tempera­
ture side of the transition, whereas at temperatures higher than 7;" 
superconductors give no clue about their dramatic properties below 
the transition. There have been suggestions that superconductors 
should also exhibit ),-type singularities, but careful experiments have 
up to now failed to reveal any such behavior. 3 The transition in 
liquid 3He, if confirmed, should prove very interesting. Several 
authors have predicted a peculiar anisotropic state of the liquid 
below 7;,. 

With a variety of known cooperative effects, obviously no general 
theory of such processes can be given, and each effect is best treated 
on its own merits. Thereafter, it will be appropriate to show how co­
operative phenomena can be interpreted in terms of simple models. 

7.3. ORDER-DISORDER TRANSITIONS 

In an ordinary alloy, the atoms are distributed at random over 
the available lattice sites. As the temperature is lowered, the third 
law of thermodynamics predicts that an ordered state having less 
entropy should result. However, in many cases the random arrange­
ment is forcibly preserved by the interatomic potential barriers 
preventing the free movement of atoms. An illustration would be a 
typical tin-lead solder. This freezing-in of disorder has been men­
tioned earlier (Sections 5.9 and 6.7). In other cases, the material 
lowers its entropy by precipitating individual grains of the component 
pure metals. In a few cases, the alloy (say AmBn of metals A and B) 
lowers its entropy by taking up a structure appropriate to a crystal­
line chemical compound AmBn. This last transformation is the one 
under consideration here. 

A classic example is the alloy f1-brass, CuZn. At or below room 
temperature, the substance has perfect cubic symmetry. The Zn 
atoms occupy the comers of a cubic unit cell, and the Cu atoms 
occupy the cube center. Thus, in this state f1-brass may be visualized 
as two interpenetrating simple cubic lattices of Cu and Zn. At a 
temperature of about lOOooK, the structure is disordered in the sense 
that the Cu and Zn atoms occupy sites at random. As the tempera­
ture is raised from OOK, the ordered state (schematically shown in 
Fig. 7.2a) is gradually transformed into the disordered state (shown 
in Fig. 7.2b), although the process occurs very rapidly in the vicinity 
of the transition temperature 7;, ~ 469°C. The change in lattice 
structure is most easily followed by X-ray or neutron scattering. 
Many alloys, among them AuCu, AuCu 3, CuPt, and AgZn, show 
order-disorder transformations.4 
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Fig. 7.2. Schematic view of order-disorder changes in an alloy AB: (a) ordered arrange­
ment, (b) random arrangement, (c) illustration of the difference between long-range 

and short-range order. 

The transformation is accompanied by changes in electrical, 
mechanical, and thermal properties. The specific heat of CuZn near 
its 7;,( ~ 469°C) is shown in Fig. 7.3a. 5 The A-shaped peak charac­
teristic of cooperative transitions is evident. The specific heat has a 
sharp rise below 7;, and retains a small tail above 7;,. Although we 
are not yet in a position to discuss the details of such specific-heat 
curves, a simple rule for the excess entropy is easily formulated. If 
the atoms have the possibility of choosing between r configurations, 
the associated entropy is 

AS = R In r (7.1) 

per mole. Thus in f3-brass r = 2; indeed, the excess entropy in Fig. 
7.3a is found to be very close to R In 2. Since the excess arises from 
the possibility of different configurations, AS is sometimes called the 
configurational entropy. 

So far, the idea of order has been used in a qualitative manner. 
At this stage, we can introduce a quantitative description, used by 
Bragg and Williams in 1934, of what is strictly long-range order. 
Consider the alloy AB with an interpenetrating lattice of A and B. 
We may refer to the sites corresponding to one interpenetrating lattice 
as a-sites and the sites of the other lattice as f3-sites. In a completely 
ordered state, let A atoms occupy a-sites and B atoms f3-sites. Then, 
in a slightly disordered state, some atoms will be in right positions 
(A on a, B on f3), while some will be in wrong positions (A on f3, 
B on a). If there are R right atoms and W wrong atoms, the long­
range order parameter (5/ may be defined as 

R-W 
(51=R+W (7.2) 

When W = 0, there is complete order and (5/ = 1. The case R = 0, 
(5/ = -1 also corresponds to a state of complete order, since by 
interchanging the names of a- and f3-sites it becomes physically 
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identical to the case W = O. Complete disorder exists when there are 
as many right atoms as wrong ones, that is, when R = Wand (J"/ = O. 
Therefore, only the range between (J"/ = 1 (complete order) and 
(J"/ = 0 (complete disorder) is of physical interest. At very low tem­
peratures, (J"/ is unity, and it drops rapidly to zero when T.: is reached, 
as represented in Fig. 7.3b. 

The short-range order parameter (J"s may also be easily intro­
duced, following the work of Bethe in 1935. In many systems, the 
interaction among the atoms is significant only for the nearest neigh­
bors. For instance, the spin exchange integrals of Section 4.6 are 
nearest-neighbor interactions. Therefore, as a criterion of order we 
may compare the number of right pairs (AB type) and the number of 
wrong (AA or BB) pairs of near neighbors. An illustration will 
clarify this concept. From the point of view of long-range order 
defined by equation (7.2), the lattice of Fig. 7.2c is highly disordered. 
Yet nearly all atoms have unlike atoms as nearest neighbors. So if 
the relative number of right and wrong neighbors is taken as a 
measure of the ordering in the vicinity of any atom, the lattice is only 
slightly disordered. Consider an A atom. Let the probability that a 
given neighbor is a B atom be (l + (J"s)/2 and the probability that it is 
an A atom be (1 - (J"s)/2. For complete order (J"s = 1 and for complete 
disorder (J"s = O. Therefore, (J"s is called the short-range order para­
meter. The temperature variation of (J"s is shown schematically in 
Fig. 7.3b. As T.: is approached, (J"s decreases rapidly from unity, but 
even above T.: short-range order persists for some temperatures. 

7.4. ONSET OF MOLECULAR ROTATION 

The nature of atomic motions in solids is obviously controlled 
by the interatomic forces. In rocksaIt, the Na + ions are equally 
strongly bound to the six surrounding CI- atoms, and it is hard to 
identify a single NaCI molecule or the molecular frequencies. If 
the intramolecular forces are comparable to the intermolecular 
forces, it is sometimes possible to identify distorted motions of parts 
of the molecules, for example, the C03 vibrations in solid CaC03. 

In the extreme case of loosely bonded molecules, the molecular 
motions are practically unaffected at high temperatures; it was men­
tioned in Section 6.7 that under such circumstances the molecules or 
radicals may be freely rotating. Consider as an example solid methane, 
in which the spherical CH4 molecules are loosely held together by 
Van der Waals forces. The methane molecules are freely rotating at 
"high" temperatures. On reducing the energy content of the solid 
by cooling it to "low" temperatures, the rotational motion is found 
to die down in a cooperative way. The specific heat of methane,6 
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given in Fig. 7.4, shows the familiar A-peak. Structural studies,7 in 
particular those in which magnetic resonance and neutron diffrac­
tion were used, reveal that the CH4 molecules are freely rotating 
above ~ = 200K. At lower temperatures, they perform hindered 
rotations or torsional oscillations backward and forward about a 
mean position. 

The transition in solid hydrogen, treated in Section 6.9, is 
another well-known example of a cooperative onset of molecular 
rotation. In orthohydrogen, the axis of rotation, which is not unique 
above ~, becomes ordered below the transition. Similar specific­
heat singularities in hydrogen halides and in various ammonium 
salts were mentioned in Section 6.7. As a matter of fact, the specific­
heat singularity in solid NH4 Cl, observed by Simon in 1922, was the 
first true A-anomaly to be discovered. In many cases, the precise 
nature of molecular rotations is not yet clear, and the available 
evidence suggests that they differ from substance to substance. 
However, a discussion of the various individual cases 7 is not appro­
priate here. 

7.5. FERROELECTRICITY 

Solids belonging to ten of the thirty-two crystallographic classes 
lack inversion symmetry. They can exhibit electric polarization in 
the absence of an electric field, owing to the spontaneous alignment 
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of electric dipoles. In contrast to the magnetic case, this electric 
polarization cannot be observed under ordinary static conditions, 
because it is compensated by free charges on the surfaces. However, 
the polarization is temperature-dependent, and so changes in it can 
be deduced from the current flowing in a closed circuit when the 
temperature of the crystal is changed. For this reason, substances 
belonging to the ten noncentrosymmetric classes are called pyro­
electric. 

Some pyroelectrics have the additional property that the spon­
taneous polarization can be reversed in sense by an applied electric 
field. The material is then said to be ferroelectric. Thus, in ferro­
electrics the polarization can be measured simply by reversing the 
applied electric field. In nonferroelectric pyroelectrics, dielectric 
breakdown occurs well before a field large enough to reverse the 
polarization can be applied. The dielectric behavior of a ferroelectric 
is complex. Not only is the relation between the polarization P and 
the applied field E nonlinear, but there is also a hysteresis loop, 
analogous to the ferromagnetic case. The alignment of the dipoles 
is opposed by thermal agitation. On increasing the temperature, the 
ordering is disturbed, and at a critical temperature, the ferroelectric 
Curie point, it breaks up. The crystal loses its ferroelectricity and 
becomes an ordinary dielectric (paraelectric state). Rochelle salt, 
ammonium dihydrogen phosphate, barium titanate, and triglycine 
sulfate are among the well-known ferroelectrics. There are several 
excellent reviews of this field. 8 

The onset of ferroelectric ordering gives rise to A-type peaks in 
the heat capacity. The behavior of potassium dihydrogen phosphate 
(KDP), which is ferroelectric below 123°K, is typical of the specific­
heat studies. 9 Superimposed on the usual lattice contribution is the 
configurational specific heat associated with ferroelectric ordering 
at 123°K (Fig. 7.5). The detailed behavior near the Curie point is 
slightly uncertain in most ferroelectrics because of the existence of 
thermal hysteresis; that is, the specific heat on cooling is slightly 
different from that on warming. The entropy associated with the 
excess specific heat is about 0.7 cal/mole·deg, which is close to the 
value t R In 2. The spontaneous polarization p. decreases slowly as 
the temperature is raised from OaK, but drops rapidly as 1'.: is 
approached. Just as in the magnetic case [equation (4.17)], the excess 
specific heat should be proportional to dP;/dT. This relationship is 
approximately obeyed in KDP. 10 Further, there is evidence10a that 
the specific heat near T.: may be fitted to logarithmic singularities, 
of the type discussed in Sections 4.6 and 4.7. 

The similarity between ferroelectricity and ferromagnetism 
extends to other forms of ordering as well. Ferroelectricity and 
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antiferroelectricity are also known; these topics are discussed in the 
many reviews on the subject.8 In spite of these similarities, the molec­
ular basis of the electric phenomenon is apparently very different. Tak­
ing the example of KH 2P04 , the deuterated KD2 P04 has a transition 
temperature ('" 213°K) nearly double that of KDP. Yet the entropy 
associated with the transition is nearly the same in the two salts. 
The entropy excess suggests some form of order-disorder process, 
while the dependence on the mass of hydrogen shows that the hydro­
gen atoms are involved in the ordering. Indeed, the theoretical ex­
planations of ferroelectricity, originally advanced by Mueller, Slater, 
and others, invoke an ordering of the hydrogen bonds. For a large 
number of compounds, order-disorder structures of the hydrogen 
bonds are possible. 8 In ionic ferroelectrics such as BaTi03 , another 
mechanism has been suggested by Anderson, Cochran, and others. 11 

This is based on the idea that in an optical mode (Section 2.8) the 
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adjacent charges vibrate out of phase. If the restoring forces and 
hence the frequency tend to zero, a spontaneous separation of charges, 
which is nothing but the spontaneous polarization under considera­
tion here, is possible. Thus, it is suggested that as the temperature is 
lowered the frequency of some optical mode decreases rapidly and 
becomes zero at~. Such a mechanism, which is supported by neutron­
diffraction studies on SrTi03, explains many observations on BaTi03-
type ferroelectrics. These questions are treated at length in the reviews 
already cited. 

7.6. TRANSITIONS IN RARE-EARTH METALS 

The rare-earth metals, lanthanum (atomic number Z = 57) to 
lutetium (Z = 71), can be isolated and purified only with some special 
techniques developed in the last twenty years. Much of the work 
done before 1950 was on impure metals; as seen earlier, the impurities 
often have very disturbing effects on specific heats. Recent studies12 
on relatively pure metals have shown very complicated thermal and 
magnetic properties. The rare-earth metals show unusual types of 
ferro- and antiferromagnetic orderings13 which give rise to these 
complicated phenomena. Thus, a discussion of the heat capacity of 
rare-earth metals should belong to Chapter 4. However, on account 
of the variety of abnormal effects observed and the very large gaps 
in our knowledge, these matters are considered here. 

The electronic structure of the rare-earth metals may be written 
as Xe core-4fn; 5s2 , 5p6; 6s2 , 5d1-although some exchange between 
the 4 f; and 5d-shells takes place. As the atomic number Z increases 
from 57 to 71, n increases from 0 to 14. The 4fshells are largely 
screened by the closed 5s- and 5p-shells, so that magnetic and Stark 
interactions are weak. As a result of the subtle balance between these 
interactions and the normal thermal energy, the metals show very 
complicated thermal, magnetic, and other properties. A brief account 
of the specific-heat behavior will highlight the challenging problems 
in the study of these metals. 

Lanthanum (Z = 57, n = 0) has no 4 f-electron, is a super­
conductor, and behaves in a normal way. 

Cerium has one 4f-electron and exhibits the complex specific-heat 
behavior shown in Fig. 7.6. As the specimen is cooled from room 
temperature, the specific heat follows the curve A in the region 
200 > T > 120°K. On warming from a low temperature, the specific 
heat follows the curve B, exhibiting a pronounced thermal hysteresis. 
Some latent heat is also evolved in the region L around 100°K. At 
13°K, there is a large peak in the specific heat, which is due to the 
onset of antiferromagnetism at lower temperatures. At about 200oK, 
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the fcc lattice of cerium starts to undergo a transition into a com­
pressed fcc' lattice of about 15 % less volume. Besides the fcc' phase, 
there is another hcp phase at low temperatures. 1 5 Apparently the 
fcc;: fcc' transition is an electronic one in which the magnetic 
4 [electron goes over into the 5d conduction band. These phase 
changes involve very little rearrangement of atoms and show a pro­
nounced dependence upon the stresses and strains in the crystal, past 
thermal history, and the state of crystalline imperfections. Thus, on 
repeated cooling to 200K and warming to 300oK, the hysteresis loop 
at 1600 K collapses and the peak at 13°K is enhanced. Such a sluggish 
dependence upon thermal history is characteristic of martensitic 
transformations,16 of which another example, namely, that of sodium, 
was mentioned in Section 2.10. At the present time, however, there is 
no quantitative explanation of the hysteresis effects. 

Praseodymium has a large specific-heat bump distributed around 
400 K. Neodymium (Z = 60) has two peaks, one at gOK and another 
at 19°K (Fig. 7.6). Below gOK, there is an ordering into the ordinary 
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antiferromagnetic state discussed in Section 4.2. The peak at 19°K is 
due to the onset of a special type of antiferromagnetism, which will 
be mentioned later (Fig. 7.8e). The peak in praseodymium also arises 
from a similar special type of antiferromagnetic ordering. 1 7 

The heat capacity of promethium, an element which has to be 
produced artificially, has not been studied so far. Samarium (Z = 62) 
has a sharp singularity at 15°K due to antiferromagnetic ordering. 
There is a second peak at 106°K, but as yet no corresponding anomaly 
in the magnetic behavior has been found. Europium is antiferro­
magnetic below about 90 0 K. 

The ferromagnetism of gadolinium below 289°K is very well 
known. The specific heat has a large A-singularity at that temperature 
(Fig. 7.7). The next five metals, in which n runs from 8 to 12, show 
complex ferro- and antiferromagnetic states. Terbium is paramagnetic 
down to 230oK, where it becomes ferromagnetic. Dysprosium 
(Fig. 7.7) is paramagnetic down to 175°K, when it becomes antiferro­
magnetic, and then at 85°K it becomes ferromagnetic. There is a 
large A-peak at 175°K and a symmetrical peak at 85°K. Holmium 
behaves in a similar manner, with a A-peak at the Neel point (132°K) 
and a symmetrical peak at the ferromagnetic Curie point of 20oK. 
In between the two temperatures, the specific heat rises rather non­
uniformly, a feature which is aggravated in erbium (Fig. 7.7). Between 
its Neel point of 80 0 K and its Curie point of 19°K, there is a rounded 
maximum at 54°K, just discernible in the scale of Fig. 7.7. This arises 
from complications in magnetic ordering, which are discussed below. 
Thulium becomes antiferromagnetic on cooling to 15°K. With these 
metals, the specific heat at the ferromagnetic transition shows con­
siderable hysteresis. 

In yttrium (Z = 70), the 5d-electron goes into the 4fshell, which 
otherwise should have n = 13, and completes it. Therefore, the metal 
does not exhibit any striking magnetic or thermal phenomena. Like­
wise, lutetium, which has a closed shell (n = 14) of 4felectrons, 
behaves normally. 

Even this sketchy summary is enough to show that nearly every 
type of specific-heat abnormality' is present in these metals. This 
complex behavior corresponds to the complicated magnetic structure, 
which is being slowly unravelled as a result of careful neutron­
diffraction and magnetic measurements. Although the details of such 
studies 13 go beyond the scope of the present discussion, an indication 
of the complexity of the problem is appropriate here. 

Simple cases of magnetic ordering were outlined in Section 4.2. 
Ferromagnetism corresponds to parallel alignment of adjacent spins 
and antiferromagnetism to antiparallel alignment. This simple 
arrangement holds good, for example, in ferromagnetic dysprosium, 
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T < 85°K, when the magnetic moments lie parallel in the basal 
plane (Fig. 7.8a). In the antiferromagnetic phase (85° < T < 175°K), 
the resultant moment in each plane is rotated by an angle !X with 
respect to the moment in the next plane (Fig. 7.8b), the angle !X 

changing with T. It is evident that the magnetic moments in the 
hexagonal lattice lie on a spiral, the characteristic helicoidal structure, 
and that this ordering has no net moment on a bulk scale. The same 
helicoidal arrangement is found in terbium, also. 

Holmium is more complex. In the ferromagnetic state, the mag­
netic moment has a common component normal to the hexagonal 
planes and a helicoidally ordered component in the basal plane 
(Fig. 7.8c). Thus, the ferromagnetic moment of holmium below 200K 
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Fig. 7.8. Complex magnetic ordering in rare-earth metals: (a) collinear ferro­
magnetism-dysprosium, (b) helicoidal antiferromagnetism-dysprosium, (c) 
helicoidal ferromagnetism-holmium and erbium, (d) cycioidal antiferro­
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being shown. In (c), the arrow rotates uniformly in the ellipse so that its pro­
jection in the plane (broken line) rotates uniformly in the plane while the 
projection perpendicular to the plane is constant. In (d), the projection in the 
plane rotates uniformly while the ellipses move up and down. In (e), the vector 
is always in the plane and lies on either side of the main diagonal in the second 

and fourth rows. 

is due only to the component parallel to the hexagonal c-axis. This 
component decreases with the increase of T, and in the antiferro­
magnetic state (20 < T < 132°K), only the helical structure remains. 

Ferromagnetic erbium has a structure similar to that shown in 
Fig. 7.8c, a constant component along the c-axis and helicoidally 
arranged components in the basal plane. In the antiferromagnetic 
region (19 < T < 800 K), the magnitude and sign of the moment along 
c vary periodically from layer to layer in accordance with a sine law 
(Fig. 7.8d). Below about 52°K, the moments in the basal plane are 
helicoidally ordered, but at higher temperatures they become dis­
ordered. This change of the basal components makes itself felt in 
specific heats as a small bump at approximately 54°K, which was 
mentioned earlier. 

There remains one more type of magnetic ordering, which in the 
absence of any better name may be called transverse oscillatory anti-
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parallel ordering. Neodymium below 7°K has the usual type of 
collinear antiparallel ordering of the moments, which lie on the basal 
plane. Between 7 and 19°K, there is a superimposed sinusoidal modu­
lation of the basal moments in a direction perpendicular to the usual 
ordering direction (Fig. 7.8e). This ordering disappears above 19°K 
and gives rise to a specific-heat bump at 19°K. A similar situation 
exists in praseodymium, also. 

Any theoretical discussion of such types of magnetic ordering is 
bound to be complicated,13 though considerable progress has been 
made recently. With a very delicate balance between thermal and 
magnetic forces, the situation offers a challenge to theoreticians and 
experimenters alike to improve the existing knowledge of the 
phenomenon. 

7.7. LIQUID-GAS CRITICAL POINTS 

A perusal of the specific-heat singularities mentioned earlier 
brings out the fact that they are associated with some change in the 
ordered state or a phase change. The close relation of the thermal 
properties to molecular ordering has been the aim of the discussions, 
while the relation of phase changes to phenomenological considera­
tions has been left to Section 8.1. The liquid-gas phase equilibrium 
is historically important for having been the source of the idea of the 
equation of state. At the liquid-gas critical point (for convenience 
simply called critical point in this section), the isothermal bulk modulus 
vanishes, differences between liquid and gaseous states disappear, 
and the region is dominated by molecular fluctuations. Obviously, 
unusual effects in thermal properties should be expected. Early 
experiments showed a large peak as the critical point was approached. 
In the related case of critical liquid-liquid mixtures, the existence of 
singular behavior in specific heat 19 and other properties has also 
been known for some time. Nevertheless, it is only recently that 
specific heats have been measured near enough to the critical point 
to reveal the unusual behavior. Since the compressibility of the 
system is high in the critical region, a direct measurement of the 
specific heat at constant volume Cv is possible using containers strong 
enough to withstand the critical pressure. 

The first experiments of this kind were completed by Bagatskii, 
Voronel', and Gusak 20 on argon near its critical point; they showed 
that Cv had a tendency to become infinite at 7;. Subsequent work20 

by Voronel' and coworkers on oxygen and by Little and Muldover 
on 4He has abundantly verified that Cv tends to an infinite value 
at 7;. In the helium case, experiments to within 1O-4°K of I;, show 
that the approach to infinity is logarithmic in IT - 7;1 both below 
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and above ~. The situation is very similar to the A.-transition at 
2.1 rK in liquid 4He (Section 5.5), and the coefficient of the logarithmic 
term is of the same order in both cases. The behavior of argon and 
oxygen appears to be more complicated. The original discussion 
indicated a logarithmic approach both below and above ~ with the 
same slope (Fig. 7.9). Fisher21 has analyzed the data again to show 
that although below ~ the approach is certainly logarithmic, above 
~ it may be a power law of the form coc(T - ~)-1/5. Figure 7.9 
shows the situation in the case of argon. Obviously, only further 
work can settle the exact nature of the approach to infinity on the 
high-temperature side. 

The singularity in the specific heat at constant volume is of 
special interest. The experiments quoted earlier to show the possi­
bility of infinite specific heats at some transitions all refer to the heat 
capacity at constant pressure or at constant saturation. Other 
parameters such as the coefficient of thermal expansion also show 
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singularities, and it was believed that though C p is infinite, Cv remains 
finite. The phenomenological theories of phase transitions based on 
an expansion of some order parameters in powers of 1 T - 7;1, as 
originally done by Landau and Lifshitz, are based on such ideas. 
The experiments at the critical point show that, in some cases at 
least, such assumptions are not valid. The thermodynamic conse­
quences of infinite singularities in Cv have been considered by several 
authors.22 It is found, for instance, that the adiabatic compressibility 
should tend to zero at 7;; experiments on sound propagation in 4He 
near the critical region verify this prediction. 23 It is somewhat 
amusing that while the theoretical two-dimensional Ising model gives 
a logarithmic infinity in Cv , it is only for an ideal incompressible 
lattice. The introduction of lattice compressibility results in a finite 
specific heat together with a latent heat at the transition. 24 

One might at first expect that the properties of gases are so well 
known that a satisfactory theory of the condensation into a liquid 
could easily be formulated. Unfortunately, it is not so. The inter­
atomic forces in a gas normally play only a secondary role and may 
therefore be treated as small corrections to ideal gases. On the other 
hand, the phenomenon of condensation arises solely from the cohesive 
forces; in this limiting case, the usual methods of calculation do not 
work well. The principal theoretical contribution of sufficient 
generality is Mayer's demonstration of the existence of a condensa­
tion in the theory of nonideal gases. 7 Calculations based on simple 
models have been rather more successful. Mention should be made 
of Lee and Yang's analysis showing that the properties of a weakly 
interacting gas have some similarity to those of an Ising lattice 
(Section 4.6). The ferromagnetic ordering and the random para­
magnetic arrangement are the respective formal analogs of the con­
densed and gaseous phases. 25 Near the transition temperature, the 
specific heats of ferromagnets and liquids show similar singularities, 
which lends some credence to this view, although it is not possible 
here to go into the details of the calculations. 

7.8. MODELS OF COOPERATIVE TRANSITIONS 

Having seen the variety of possible cooperative effects, it is 
obvious that no general theory of such phenomena is possible. The 
main difficulty in developing a theory of strongly interacting systems 
is that the total energy of the system can no longer be calculated 
from the simple sum of the energies of the individual particles, as was 
done earlier with systems of noninteracting particles. A natural way 
under such circumstances is to ask how the system is altered when 
a new particle is added to the existing N particles-in other words, 
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to determine the response of the system to small perturbations. 
This approach is usualiy calied the method of Green's functions; it is 
along these lines that much recent progress has been made. The 
mathematical techniques involved in such computations are quite 
esoteric. Even so, except for the case of superconductivity of electronic 
systems, no complete theory, applicable right up to the transition 
temperature, has been worked out for the phenomena of interest. 
Therefore, in an elementary text it is instructive to mention how the 
cooperative effect may be incorporated in simple models. 

It turns out that the Ising lattice, introduced in connection with 
magnetic ordering (Section 4.6), is a reasonable model of many types 
of cooperative phenomena. In this model, spins are placed at lattice 
sites, and each spin can point along + Z or - Z. The interactions, 
which extend to nearest neighbors only, have two possible values, 
corresponding to parallel or antiparallel alignment of a pair of 
adjacent spins. It is not hard to see that the same model can be applied 
to order-disorder transformations, also. In such case, the atoms are 
at lattice sites and the atomic interactions have two possible values, 
corresponding to right or wrong pairing of nearest neighbors. Further, 
it was mentioned in the preceding section that the liquid-gas trans­
formation can also be brought into the general scheme of Ising models. 
Other association problems, such as the ordering of hydrogen bonds, 
lead to similar mathematical calculations. Indeed, cooperative 
phenomena in quite different fields, such as traffic flow or melting of 
polymers, can be viewed against the same framework. Because of 
such varied applications, the Ising model has received considerable 
attention from theoreticians. 26 

It was mentioned in Section 4.6 that the exact solution of the 
three-dimensional Ising lattice has not been obtained so far. For two 
dimensions, Onsager showed in 1944 that the specific heat exhibits a 
logarithmic approach to infinity both above and below 7;,. In three 
dimensions, approximate calculations show that the specific heat has 
the form 

c '" A In (7;, - T) + .. . 
'" B (T - 7;,)-0: + .. . 

although the behavior on the high-temperature side is not quite 
settled. The mathematical details of even these calculations are too 
specialized to be proper here. 

The experimental evidence for a variety of transitions is con­
sistent with the predicted variation in the lower temperature (T < 7;,) 
region. For T > 7;" the data can be fitted well by a power law in some 
cases and by a logarithmic term in some others. This remains a 
challenging unsolved problem. 
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Although the Ising lattice gives a workable model of configura­
tional ordering, the complexity of the mathematical calculations has 
led to several further approximate models. The Weiss model of 
ferromagnetism and the Bragg-Williams model of order-disorder 
transitions and its extensions are some of the well-known simplifica­
tions of the Ising problem. All these calculations are still not quanti­
tatively applicable to real physical systems, because of the restriction 
to nearest-neighbor interactions. Any consideration of more realistic 
interatomic forces appears to be too formidable a problem to be 
attempted at present. 

So far, most A-type specific-heat singularities have been ascribed 
to configurational ordering. The possibility exists, however, that the 
singularities may arise from the vibrational modes of the lattice. If 
some optical branch of the vibration spectrum approaches zero 
frequency, a )Aype of specific-heat singularity can result.27 As 
mentioned in Section 7.5, if the frequency of an optical mode vanishes 
in an ionic crystal, it can give rise to ferroelectric polarization. 
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Chapter 8 

Miscellaneous Problems in 
Specific Heats 

8.1. SPECIFIC HEAT NEAR PHASE TRANSITIONS 

In the previous chapters, various aspects of specific heats of 
solids, liquids, and gases have been discussed. It is a common ex­
perience to find that two phases can coexist over a range of pressure 
and temperature. Consider, for instance, water and its vapor con­
tained in a vessel of volume V. If the temperature is raised slightly, a 
small quantity of water is converted into steam, absorbing latent heat 
in the process, and a new equilibrium pressure is established. In a 
P-T plane (Fig. 8.1), this will be represented as an equilibrium curve. 
Quantities such as the density, specific heat, and compressibility 
remain finite but different in the two phases. An interesting relation 
among the thermodynamic quantities at such an equilibrium curve 
is furnished by the Clausius-Clapeyron equation. To derive this, 
apply Maxwell's relation (8P/8T)v = (8S/8Vh [equation (1.11)] to the 

Temperature --

Fig. 8.1. Coexistence of two phases. 
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system. The latent heat L12 is equal to T dS at the phase boundary, 
and so 

DP Sz - SI L12 
---

DT Vz - VI T(Vl - VI) 
(8.1 ) 

where D/DT stands for the derivative along the equilibrium curve. 
This simple equation, in which all the quantities can be determined 
experimentally, forms a rigorous practical test of the first and second 
laws of thermodynamics. Nowadays, it is often used to calculate or 
check the latent heat when the vapor pressure of the liquid is known. 

It turns out that this type of equilibrium among the phases is 
only one of the many possible types of phase changes. I The super­
conducting phase transition at zero field (Section 3.9) shows no latent 
heat or volume change. Then the right-hand side of equation (8.1), 
being of the form 0/0, is indeterminate, whereas the left-hand side is 
found to have a definite value in practice. The Weiss model of ferro­
magnetism (Section 4.5) and the Bragg-Williams model of order­
disorder transition (Section 7.3) show a similar behavior. There are 
other phase changes where the specific heats become infinite. Mag­
netic transitions (Section 4.7) and the }.-transition in liquid 4He 
(Section 5.5) show logarithmic infinities in specific heats. It is obvious 
that the above simple considerations of phase equilibria must be 
generalized to include these possibilities. 

It is convenient to start from the general thermodynamic con­
dition for phase equilibrium, namely, the equality of the Gibbs' 
function of the two phases: 

(8.2) 

Further, (iJG/iJT)p = - Sand (iJG/iJPh = V [equation (1.10)). In 
the ordinary phase change considered above, there are changes in 
Vand S, that is, in the first derivatives of G. Ehrenfest suggested that 
such changes should be called transitions of the first order. The con­
dition for equilibrium along the equilibrium line (Fig. 8.1) is 

(iJG~) bP + (iJG I ) bT = (iJGz) bP + (~Gz) bT 
iJP T iJT p iJP T iJT p 

or, rearranging, 

DT Vz - VI 

which is the Clausius-Clapeyron equation. In the superconducting 
transition, there is no volume or entropy change, but the specific heat 
and compressibility are different; that is to say, the first derivatives 
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of G are continuous but the second derivatives are not. Therefore, 
they are called phase changes of the second order. For such changes, 
consider the equilibrium along segments of S and V curves: 

(~~ )/P + Gi )pbT = (~;)/P + (~i )}T 

(~.VI) bP + (~VI) bT = (CV2) bP + (?V2) bT 
cP T cT p cP T cT p 

so 

DP _1_C p2 - Cpl /32 - /31 
DT TV /32 - /31 kT2 - kTi 

(8.3) 

where /3 is the volume expansion coefficient and kT is the isothermal 
compressibility. Equations (8.3) are called Ehrenfest relations for 
second-order phase changes and can also be obtained by applying 
L'Hospital's rule to equation (8.1) under these conditions. The super­
conducting phase change at zero field is a practical example of a 
second-order phase change. The available evidence (Section 3.9) is in 
reasonable agreement with the Ehrenfest relations. Theoretically, 
still higher order phase changes can exist, but so far no such cases 
have been experimentally observed. 

In some situations, quantities such as the specific heat and 
volume expansion become infinite, when equation (8.3) reduces to 
an indeterminancy of the form 00/00. A simple way of handling these 
ie-transitions was suggested by Pippard in 1956. Since C p becomes 
very large near T;" the entropy-temperature curve must have an 
almost vertical tangent at Tk On the other hand, S;, will be a smooth 
function of P, so that we may take S as a function of T and P to be 
cylindrical in shape near 0" Thus, 

S(P,T) = S;. + f(P - rtT) 

where rt is the pressure coefficient of the A-point (DP/DT);, and f is 
some function describing how the curve approaches the ),-point. 
Then 

(::~)T = r (~)= -rtf" 
aTap 

so that 

DP 
rt=-= 

DT 

a2S/iJTap 

WS/iJp2h 
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Making use of the Maxwell's relation [equation (1.11)], 

a (as) a (av) aT aT p = iY.aT aT p 

a (as) a (CV) ap aT p = iY. ap aT p 

and 

Physically, these equations mean that in the vicinity of the I,-line 
(as/aT)p is a linear function of (aV /aT)p, and so 

Cp = (DP) TV/3 + constant 
DT A 

(8.4a) 

If V(P, T) is treated in the same manner as S(P, T), (aV /aT)p is seen 
to be a linear function of (av/aph near the I.-point, and so 

/3 = (DP) kT + constant (8.4b) 
DT i. 

The relations (8.4) are called Pippard's relations for the I.-trans­
ition, and the cylindrical approximation should hold good very near 
the transition temperature. For several I.-type phase changes, the 
relations are found to be obeyed reasonably well. Figure 8.2 shows 
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Fig. 8.2. Pippard's relations near (X '" P transition of quartz' at 574°C: (a) cpjTversus 
Vp [equation (8.4aH (b) Vp versus Vkr [equation (8.4b)). 



MiscellaneolL'i Problems in Specific Heats 185 

how closely ordinary a-quartz follows equations (8.4) slightly below 
its transition temperature (~ 574°C) to the p-form. 2 More detailed 
studies on liquid 4He (Section 5.5) and ammonium chloride3 show 
that equations (8.4) are obeyed quite well, but that its range of validity 
is much smaller above the transition than at lower temperatures. 

In solids, other general relations are possible,4 but so far they 
have found little use. Simple discussions of the various models of 
phase transitions and their application to physical systems are avail­
able elsewhere/' s rendering a further analysis unnecessary here. 

8.2. SPECIFIC HEAT AT SATURATED VAPOR PRESSURE 

The discussion of the specific-heat behavior at coexistent phases 
leads naturally to an important mode of calorimetry, namely, the 
measurement of specific heat at constant saturation. Consider again 
the example of a liquid in contact with its saturated vapor in a closed 
vessel. C p and Cv may easily be defined for the pure phases, but not 
for the total system. The heat applied at constant pressure is utilized 
as latent heat for evaporating the liquid without any rise of tem­
perature, and an indeterminate infinite value of C p will be calculated. 
Under such conditions, it is best to consider what happens if the 
heating is done with the assumption that the pressure on the liquid 
is not constant but equal to the saturated vapor pressure correspond­
ing to the temperature of the liquid. Using once again the notation 
D/DT for heating along the liquid-vapor equilibrium curve, as in 
Fig. 8.1, 

DS 
Csat = T DT (8.5) 

The relation between Csat and Cp of a liquid or vapor is easily 
found. For any quantity x, the variations at constant P and along 
the P-T equilibrium curve are connected by 

~; = (:;)p + (:;)T ~~ 
Using Maxwell's relation (oS/oPh = - (oV/oT)p [equation (1.11)], it 
follows that 

Hence 

DS (OS) (OV) DP 
DT = oT p - oT p DT 

(8.6) 
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which was the relation mentioned in Section 5.2. For a solid in 
contact with its vapor, CSal> defined as for a liquid, may be taken 
equal to Cp for most practical purposes because the expansion co­
efficient and vapor pressure are both very small. In a liquid, 
(Cp - Csat)/Cp is nearly zero at low temperatures and becomes about 
10 to 20% near the boiling point. For a vapor, the situation is very 
different, because the volume expansion f3 is 10 to 100 times larger 
than that of the liquid. In fact, Csat becomes negative at temperatures 
near the boiling point. Thus, superheated steam gets hotter if ex­
panded adiabatically, a fact which is of importance in practical 
engineering applications. 

If Csi denotes the specific heat of the liquid at constant saturation 
and Cs2 that of the vapor, 

DL12 D (DS2 DS I) 
DT = DT[T(S2 - Sd] = S2 - SI + T DT - DT 

or 

C _ C DL12 _ L12 
s2 sl - DT T (8.7) 

Equations (8.6) and (8.7) are of use in evaluating the specific heats if 
the liquid and its vapor are placed in a closed vessel to which heat is 
applied. Under these conditions, which are quite common in the 
calorimetry of liquids, the heat is used not only in heating the liquid 
and vapor but also in supplying latent heat. A full discussion of the 
procedures to be adopted under such conditions is given by Rowlin­
son. 6 

8.3. RELAXATION OF ROTATIONAL AND 
VIBRATIONAL SPECIFIC HEATS 

It was mentioned in Section 4.8 that in paramagnetic salts the 
magnetic susceptibility shows dispersion as a function of the frequency 
of measurements. This paramagnetic relaxation arises basically 
because the magnetic dipoles require a finite time, of the order of 
10 - 6 to 10 - 3 sec at room temperature, to attain thermal equilibrium 
with the lattice. So the susceptibility changes gradually from its 
isothermal low-frequency value to the adiabatic high-frequency value 
when the period of the applied AC signal scans the region of the 
relaxation time. A very similar phenomenon occurs if the ratio of 
the specific heats y = C p/Cv is determined from the velocity of sound, 
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c = (yP/p) 1/2. From its normal value at low frequencies, it increases 
to a limiting high-frequency value as the frequency of the sound wave 
becomes greater than the reciprocal of some relaxation time. For 
example, in hydrogen at STP, the velocity of sound increases by 
about 9 % as the frequency becomes approximately 100 Mcps, which 
is just what is expected if C p/Cv increases from 1.40 to 1.67. The 
obvious interpretation of this acoustic relaxation would be that the 
rotational degrees of freedom require a finite time, of the order of 
10- 7 sec at STP, to come to equilibrium with the translatory motion. 

Since the original observations on carbon dioxide in 1925 by 
Pierce, acoustical relaxation has been observed in numerous gases, 
liquids, solutions, and gas mixtures at frequencies from 10 to 109 cps. 
However, the velocity does not always increase with the relaxation 
of all the rotational degrees of freedom as in the simple case con­
sidered above. Rotations about different axes may have different 
relaxation times -r. Further, each vibrational mode has its character­
istic -r, and it is found that structural relaxation is possible in liquids, 
because the disturbances of the atomic structure caused by a sound 
wave take a finite time to attain the new values. Therefore, the interest 
in the field has been not so much concerned with the study of specific 
heats as with the molecular processes in liquids and gases. The rather 
extensive literature on the subject is adequately summarized in 
several places. 7 

8.4. DEFECTS IN SOLIDS 

The solidified inert gases are often regarded as particularly 
simple solids. The interatomic forces are known reasonably well; 
therefore, a calculation of the heat capacity of the lattice, as in 
Chapter 2, should completely explain their specific heats. It turns 
out that this is not quite the case. The specific heat of solid argon,S 
shown in Fig. 8.3a, reveals a peculiar feature. As the melting point is 
approached, the specific heat rises very much above the Dulong-Petit 
value of about 6.5 cal/mole·deg. Solid krypton,S solid 3He,9 and in 
fact a variety of solids 10 show a similar marked upward trend in 
specific heat below the melting point. 

Such an increase above the classical value may arise from three 
causes: anharmonicity, the phenomenon of premelting, or generation 
of defects in the solid state. Detailed calculations show that in most 
cases anharmonic effects give an increase of C p no more than about 
a tenth of the observed excess. Premelting of solids 11 is a term applied 
to the phenomenon of abnormally large values of heat capacity and 
other properties sometimes observed very close to the melting point 
1M. In these cases, the liquids also exhibit abnormally large values of 
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Fig. 8.3. (a) Heat capacity of solid argon (full line). Broken line is the value expected 
from the behavior below 40oK. (b) Plot of In(T2~C p) against I/T.8 
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the various parameters as the freezing point is approached, the 
phenomenon of aftermelting in liquids. 10 They may arise from actual 
melting, at temperatures slightly different from the nominal 1M, in the 
regions of singularities such as dislocations and grain boundaries, 
where impurities have segregated. Then the latent heat associated 
with such regions may be measured as a pseudo specific heat. The 
subject appears to be somewhat controversial, because some authors 12 
have carefully looked for these anomalies but did not find any. All 
the same, the magnitude and range of the excess specific heat in Fig. 
8.3a rule out premelting as the cause of the observed behavior; there 
is now growing evidence that the explanation is to be sought in the 
thermal excitation of defects in the solid state. 

Studies of diffusion, optical properties, and other phenomena in 
solids indicate that at temperatures above T;::::: e, the perfect lattice 
arrangement is disturbed by various kinds of defects. 13 For example, 
an atom may have moved away from its lattice position, leaving a 
hole at its site, a vacancy defect, and an atom may occupy a nonlattice 
vacant space amid other atoms which are at their lattice positions, 
an interstitial atom. In a simple way, if Ed is the energy needed to form 
a defect, the number of defects nd at any temperature Twill be given 
by a Boltzmann factor 

nd = no exp (- :i) 
and the specific-heat contribution from such defects will be 

d nod (Ed \ 
LlCv = dT(nh ) = kT2 exp - kT; (8.8) 

Thus, a plot of In(T2LlCJ against liT should be a straight line with 
a slope - Edlk. Similarly, a plot of In(T2 LlCp ) against liT will be a 
straight line with a slope - hdlk, where hd is the enthalpy of formation 
of a defect. Figure 8.3b shows such a plot; the observations do fit 
the theoretical linear relationship with hd ~ 1250 cal/mole in solid 
argon. The value is uncertain to about ± 5 %, because LlC p depends 
slightly upon the method used to extrapolate the specific heat from 
below about 400K in Fig. 8.3a. Similar LlCp = AT- 2 exp (- BIT) 
variations have been observed in solid 3He and other substances. 

Since the atomic forces and crystal structure of solidified inert 
gases are well known, several attempts have been made to calculate 
the values of hd from theoretical models; the values come out to be 
about 30 % higher than the experimental results. The discrepancy 
arises from the fact that in the earlier models no relaxation of the 
stress field was assumed. On the other hand, it is more plausible 
that the atoms surrounding a vacancy defect move in slightly to 
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reduce the void, so that the volume of the vacancy is less than that 
of the atom which left that site. When this is taken into account,t4 
there is better agreement \vith the experiments. 

Similar specific-heat effects resulting from the presence of defects 
in the lattice structure are produced by heavy mechanical deforma­
tion,15 neutron irradiation, 16 and self-irradiation in radioactive 
materials. In some cases, the specific heat is reduced, for example, by 
defects acting as traps for charge carriers in semiconductors and 
thereby reducing the number of "free" electrons or holes. 

8.5. SURF ACE EFFECTS 

In the simple discussion of specific heats so far, it has been 
generally assumed that the internal energy, and hence the specific 
heat, is proportional to the mass of the substance; that is, they are 
extensive quantities (Section 1.2). As a matter of fact, statistical 
mechanics shows that this is a very good approximation (Section 2.5). 
Nevertheless, in special circumstances, as with finely divided powders, 
a contribution proportional to the surface area must be considered. 
It is qualitatively easy to visualize the nature of the effects, taking for 
simplicity the Debye model for an enumeration of the frequency 
distribution. In a finite solid, besides the longitudinal and transverse 
waves which propagate through the solid as if in an infinite medium, 
there are surface waves of the type considered by Rayleigh, Love, 
and others. The enumeration of the number of frequencies in a three­
dimensional volume V, as in Section 2.5, gives the number of fre­
quencies below v as being proportional to Vv\ while it is evident 
that a similar calculation for a two-dimensional surface of area S 
will give a term proportional to Sv 2 . Thus, the addition of surface 
contributions to the Debye term will result in 

g(v) dv = 1X1 Vv 2 dv + 1X2SV dv 

The corresponding low-temperature specific heat will be 

(8.9) 

This behavior is indeed found in the specific heat of powdered 
materials. Figure 8.4 shows the specific heat, in the liquid-helium 
range, of MgO powder with an area of about 160 M 2/g, which corres­
ponds to an edge length of about 100 A if all the particles are in the 
form of cubes. 1 7 The specific heat is represented well by an equation 
C = 0.OO459T3 + 0.163T2 mJ/mole·deg, in which the T 3 -term is the 
usual Debye term. 
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The full calculation of the surface contribution is a complex 
problem which as yet has not been solved satisfactorily. In the 
continuum model, it is possible to calculate with some difficulty the 
surface and volume modes of plates and rectangular parallelopipeds. 18 

Apart from the usual shortcomings of a continuum model, there is a 
further assumption that the elastic behavior is not affected by the 
size of the specimen. On the other hand, it is obvious that the atoms 
near the surfaces are acted upon by forces very different from those 
exerted upon the atoms in the interior. Therefore, there is a spatial 
inhomogeneity of the lattice. The calculations with models of finite 
lattices are so involved that only beginnings have been made. 19 

They show that, apart from the low-temperature effect given by 
equation (8.9), there should be very small differences at higher tem­
peratures, because of the change in optical frequencies resulting from 
the presence of surface boundaries. The experimental observations 
are scanty, but it appears that the ST 2-term in equation (8.9) is two 
to three times larger than the theoretical estimates. 18 A full com­
parison between theory and experiment is not easy, because under 
the experimental conditions, in addition to the total surface area, 
the shape of the individual particles may also have some influence. 
Further, the possibility of thermal motions of whole grains of the 
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substance, behaving as though they were giant macromolecules, 
cannot be eliminated. The experiments also suffer from the fact that 
attaining thermal equilibrium in a fine powder is difficult. There is a 
real need for further experimental and theoretical studies. 

8.6. COMPILATIONS OF SPECIFIC-HEAT DATA 

A knowledge of specific heat is useful in so many fields of study 
that the literature on heat capacities is very extensive and is reported 
in diverse publications. Without the abstracting services of Chemical 
Abstracts and Physics Abstracts, the task of searching for the data 
on any particular material would be inordinately laborious. Apart 
from these sources, perhaps the best single reference, if the heat 
capacity of any substance is needed, is the sixth edition of Lando/t­
Bornstein Zahlenwerte and Funktionen, Vol. 2, Part 4 (Springer­
Verlag, Berlin, 1961, 863 pages). This gives an exhaustive listing of 
the heat capacities of almost all materials investigated before 1958-
1959. Special data of cryogenic interest are collected in the various 
publications of the National Bureau of Standards Cryogenic Engineer­
ing Laboratory, Boulder, Colorado. For example, A Compendium of 
the Properties of Materials at Low Temperatures (V. J. Johnson, 
editor, 1957) and Specific Heats and Enthalpies of Technical Solids at 
Low Temperatures (by R. J. Corruccini and J. J. Gniewek, 1960) 
contain useful information about the specific heat and other properties 
below 3000 K. There are, of course, other reports by several groups 
of workers on various aspects of specific-heat studies, such as Debye 
temperatures or the properties of metals and gases; the references to 
them may be found without difficulty from the recent reviews cited 
at the end of the earlier chapters. 

In the construction of calorimeters and other pieces of cryogenic 
equipment, various low-melting solders, glues, varnishes, and technical 
solids are often used. Their specific heats are needed for the design 
of such apparatus, especially because weight-for-weight they may 
contribute more thermal capacity than the standard construction 
materials such as copper, brass, and stainless steel. Unfortunately, 
the heat capacity depends upon the purity, method of preparation, 
and composition of these substances, so that for accurate work each 
sample must be individually investigated. For many other purposes, 
it is convenient to have some approximate values. Even so, no handy 
tabulation of the many measurements is available, and hence Table 8.1 
is given here as a summary of the properties of several such auxiliary 
materials used in cryogenic equipment. 

The specific heats of several materials are quite high compared 
to those of, say, copper. In particular, if the heat capacity of some 
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Table 8.1. Specific Heats cp (in mJjg·deg K) 

T 
(degK) Cu W.M. So.So. Aral. Gly. Bak. G.E. Pyr. 

2 0.03 0.06 0.06 0.24 0.4 0.31 0.025 
5 0.16 1.39 1.17 4.6 4.8 5.3 6.1 0.38 

10 0.86 13.4 11.7 27.2 22 19.2 4.2 
20 7.7 46.0 47.5 81.1 110 66.7 27.4 
50 99 380 237 

100 254 1150 
300 386 

T 
(deg K) Sil. Cons. Man. Mon. St.St. Tef. Poly. GR-S 

2 0.02 0.23 0.15 0.22 0.03 0.3 
5 0.35 0.56 0.5 0.55 0.2 2.4 1.2 4.2 

10 4.0 1.69 1.7 0.8 18 9.6 28 
20 24.4 6.8 7.1 6 76 67.2 113 
50 111 83 74 202 330 338 

100 268 238 240 251 386 657 612 
300 738 430 490 1010 2370 1900 

W.M. Wood's Metal (12.5 wt-% Sn, 12.5% Cd, 25% Pb, 50% Bi; m.p. 68°C). 
D. H. Parkinson and J. E. Quarrington, Brit. J. Appl. Phys. 5, 219 (1954). 
Superconducting below ~ 5°K. 

So. So. Soft solder (40 wt- % Pb, 60 % Sn; m.p. ~ 185°C). J. de Nobel and F. J. du 
Chatenier, Physica 29, 1231 (1963). Superconducting below ~7°K. Other 
compositions also investigated. 

Aral. Araldite Type I (baked according to instructions from manufacturers). D. H. 
Parkinson and J. E. Quarrington, Brit. J. Appl. Phys. 5, 219 (1954). 

Gly. Glyptal varnish (air-dried at room temperature). N. Pearlman and P. H. 
Keesom, Phys. Rev. 88 398 (1952). P. H. Keesom and G. Seidel, Phys. Rev. 113, 
33 (1959). 

Bak. Formite bakelite varnish V11105. R. W. Hill and P. L. Smith, Phil. Mag. 44, 
636 (1953). 

G.E. G.E. varnish 7031. N. E. Phillips, Phys. Rev. 114,676 (1959). 
Pyr. Pyrex glass. P. L. Smith and N. M. Wolcott, Phil. Mag. 1,854 (1956). Between 

1.5 and 4.2°K, c "" 3.1 X 10- 3 T3 mJ/g·deg. 
Sil. Silica glass (vitreous silica or fused quartz). F. E. Simon and F. Lange, Z. 

Physik 38,227 (1926). E. F. Westrum, quoted in R. C. Lord and J. C. Morrow, 
J. Chern. Phys. 26, 230 (1957). P. Flubacher, A. J. Leadbetter, J. A. Morrison, 
and B. Stoicheff, J. Phys. Chern. Solids 12, 53 (1959). 

Cons. Constantan (60 wt-% Cu, 40% Ni). A. Eucken and H. Werth, Z. anorg. 
a/lgern. Chern. 188, 152 (1930). W. H. Keesom and B. Kurrelmeyer, Physica 7, 
1003 (1940). J. C. Ho, H. R. O'Neal, and N. E. Phillips, Rev. Sci. Instr. 34, 
782 (1963), find a T- 2 increase of specific heat below 0.3°K. 

Man. Manganin (87% Cu, 13% Mn). J. C. Ho, H. R. O'Neal, and N. E. Phillips, 
Rev. Sci. Instr. 34, 782 (1963). Between 0.25 and 1.5°K, c ~ 0.0580T + 
O.0112Y- 2 mJ/g·deg K. 
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Mon. Monel (67 wt-% Ni, 30% Cu, 1.5% Fe, 1% Mn). W. F. Hampton and 1. H. 
~1ennie, Can. J. l?es. 7, 677 (1932). W. H Keesom and B. Kurrelmeyer. 
Physica 7, 1003 (1940). 

St.St. Stainless steel. R. Kohlhass and M. Braun, Arch. Eisenhutlenw. 34, 391 (1963). 
F. 1. du Chatenier, B. M. Boerstoel, and 1. de Nobel, Physica 31, 1061 (1965). 
Below ~ 300oK, values are nearly the same for i'-iron, manganese steel, and 
chrome-nickel steel. 

Tef. Teflon (polytetrafluoroethylene). Material has a transition around 160oK. 
G. T. Furukawa, R. E. McCoskey, and G. 1. King, J. Res. Nat. Bur. Std. 49,273 
(1952). Between 1.4 and 4.2°K, R. 1. Noer, C. W. Dempsey, and 1. E. Gordon, 
Bull. Am. Phys. Soc. 4, 108 (1959), give c ~ 40 X 1O- 3 r 3 ml/g'deg for teflon, 
c - 63 x 10- 3r3 for polystyrene, and c - 35 x 10- jr' for lucite. W. Reese 
and 1. E. Tucker, J. Chern. Phys. 43, 105 (1965), give values for tetlon, nylon, and 
Kel-F (1 to 4 OK) also. 

Poly. Amorphous polyethylene. Glassy transition 200oK. B. Wunderlich, J. Chern. 
Phys. 37, 1203 (1962). (Material with various degrees of crystallinity also 
investigated.) I. V. Sochava and O. N. Trepeznikova, Soviet Phys. Doklady 2, 
164 (1957). (Data for polyvinyl alcohol also given.) 

GR-S. GR-S (Buna S) rubber (I,3-butadiene with 25 wt-~';; styrene). Second-order 
transition with hysteresis around 2100 K. R. D. Rands, W. F. Ferguson, and 
1. L. Prather, J. Res. Nat. Bur. Std. 33, 63 (1944). Natural rubber studied by 
N. Bekkedahl and H. Matheson, J. Res. Nat. Bur. Std. 15, 505 (1934). 

substance with low specific heat is to be measured, the thermal 
capacity of a small amount of glue or solder used for attaching the 
heater or thermometer may be comparable to that of the specimen 
under study. Further, constantan and manganin, widely used for 
winding heaters, are quite unsuitable below about 0.5°K because 
of the T- 2 increase. At O.l°K, for example, the specific heat of 
manganin is nearly 103 times that of copper. 

8.7. TABULATIONS OF SPECIFIC-HEAT FUNCTIONS 

The Einstein and Oebye functions are widely used in calculating 
the thermodynamic properties of gases and solids, as discussed in 
detail elsewhere in this monograph. The Oebye function for the 
internal energy is also useful in cryogenic practice for calculating the 
amount of refrigeration needed to cool an apparatus. For example, 
let us calculate the amount of liquid 4He spent if its latent heat, equal 
to 0.62 callcc, is used to cool 1 gram-atom of copper (1 gram-atom = 
63.6 g of copper, Oebye temperature of copper ~ 3100 K) from 300, 
90, or 200K to 4.2°K. Strictly, it is the change in enthalpy t1H = SCpdT 
of copper which must be used for this purpose rather than an estimate 
of the change in the internal energy t1E = SCv dT. However, Cp - Cv , 

which depends upon the expansion coefficient and compressibility 
and hence is not easily tabulated as a function of T 10, is usually small 
enough to permit the calculation to be done using t1E without any 
serious error. Further, copper has no specific-heat anomaly in this 
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Table S.I1 

e E(Debye) E(Debye) 
T T 3RT cal/mole 

300 1.03 0.666 1200 
90 3.44 0.233 126 
20 15.5 0.005 0.6 
4.2 74 0.00004 0.001 

region. So for various values of 81T, we look up the values of the 
Debye energy function E(Debye)/3R T in the Appendix and write 
out a table (Table 8.11), taking for simplicity R ~ 2 caljmole·deg. 

The change in internal energy between room temperature and 
liquid-helium temperature is about 1200 caljmole. If the latent heat 
of liquid helium is used to bring about this reduction of temperature, 
about 2000 cc will be spent. A similar calculation shows that 200 cc 
is needed to cool 63.6 g of copper from 90 to 4.2°K, and only 1 cc 
from 20 to 4.2°K. The tremendous advantage of precooling any 
apparatus with liquid air and liquid hydrogen in order to conserve 
the supply of liquid helium was mentioned even in the Introduction. 

Many tabulations of the Einstein and Debye functions were 
mentioned in Chapter 2. Some of these tables, especially the older 
ones, should be used with caution since the value of R different from 
the present accepted 8.314 J Imole·deg = 1.987 caljmole·deg has been 
used in them. The error caused by this is serious only at high tem­
peratures, where the Debye specific heat approaches its limiting 
value of 3R. A 1 % error in the specific heat at T - 8 gives an error 
of nearly 10 % in the calculated value of 8. One way to make the 
tables permanently useful is to give the values in a dimensionless 
form, that is, give Cv!3R rather than Cv . Then, to find the specific 
heat at any given T18, the entries must be multiplied by 3R, but the 
tables themselves need not be changed every time an improvement 
in our knowledge of the value of R takes place. This is the procedure 
followed in the tabulations of Overton and Hancock for the Einstein 
functions and those of Beattie for the Debye functions, which are at 
present the most accurate ones available. For rough calculations, a 
table to three figures is often sufficient, but for a variety of refined 
calculations it is necessary to have more accurate tables. Un­
fortunately, six-figure tables are not easily accessible. Beattie's six­
figure tables were published in 1926, though they have been recently 
checked for accuracy, while the eight-figure tables of Overton and 
Hancock and the detailed tables of Hilsenrath and Ziegler are 
contained in laboratory reports rather than professional journals. 
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Therefore, six-figure tables of Einstein and Debye functions are given 
in a suitable form as an Appendix (with the permission of Professors 
Beattie and Overton). 
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Appendix 

The six-figure tables give the values of the internal energy E and 
heat capacity at constant volume Cv of solids in the Einstein and 
Oebye models. The functions are tabulated in a dimensionless form 
as follows to make them permanently useful: 

A. Einstein internal energy function [equation (2.9a)]: 

E (Einstein) x hVE TE 
3RT eX - 1 

x=-=-
kT T 

B. Einstein specific-heat function [equation 2.7)]: 

C v (Einstein) x 2 ex 

3R (eX - 1)2 

C. Oebye internal energy function [equation (2.16a)]: 

E (Oebye) = ~[ x3 dx 
3RT x 3 eX - 1 o 

O. Oebye specific-heat function [equation (2.17)]: 

£) 
X=-

T 

The presently accepted value of R is 1.987 caljmole' deg, or 8.314 
J/mole·degK. 

The functions A to 0 are tabulated at intervals of 0.01 over the 
useful range, namely, TE/T < 16 in the Einstein functions and efT < 24 
in the Oebye functions. Over most of the range, a linear interpolation 
gives an accuracy of nearly three to four units in the sixth significant 
figure. However, interpolation with second differences is recommended 
for accurate work. Following the usual procedure, a reduction by one 
unit of the fixed "characteristic" part is indicated by an underscoring 
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of the varying "mantissa" part. For example, 

x = 1.61 

= 1.62 

= 3.48 

= 3.49 

= 0.399695 

= 0.11 0618 

= 0.109797 

Appendix 

Over wider ranges of x, the following approximations can be used 
with an error of about one unit in the sixth significant figure. At high 
temperatures, 

E (Einstein) x x2 X4 

3RT ~ 1 - 2" + 12 - 720 
TE '" 

X = T < 0.1 

C v (Einstein) x2 X4 

3R ~ 1 - 12 + 240 

E (Debye) 3x x2 X4 

3RT ~ 1 - 8 + 20 - 1680 x = elT <: 0.1 

C v (De bye ) x 2 X4 

3R ~ 1 - 20 + 560 

while at low temperatures 

E (Einstein) _ 
----;:;::;xe x 

3RT 
TE 

X = T > 16 

C v (Einstein) 2-
--'----- ~ x e x 

3R 

E (Debye) 19.481818 
---- ~ ------c~-

3RT x3 
x = elT > 24 

C v (Debye) 77.92727 
3R ~ x3 



A. Einstein Internal Energy Function 
E (Einstein}/3R T 



E(Einstein)/3 RT 

x 

0.0 

0.1 
0.2 
0.3 

0.4 
0.5 
0.6 

0.1 
0.8 
0.9 

1.0 

1.1 
1.2 
1.3 

1.4 
1.5 
1.6 

1.1 
1.8 
1.9 

2.0 

2.1 
2.2 
2.3 

2.4 
2.5 
2.6 

3.0 

3.1 
3.2 
3.3 

3.4 
3.5 
3.6 

3.1 
3.8 
3.9 

o 1 2 3 4 5 6 1 8 9 

1.0 00000 95008 2QQll .!!2.Q12 80133 15208 10300 65408 ~ ~ 

.9 50833 46008 41200 36408 31633 26814 22132 11401 12699 08001 
9 03331 ~ ~ ~ ~ 8020~ ~ 71068 ~ ~ 
8 51489 52996 48519 44059 396I5 3518 30111 26382 22004 I7b43 

.8 13298 08969 04651 00361 96082 91818 ~ ~ ~ ~ 
1 10141 66582 62432 58299 54183 50082 45998 41930 31811 33841 
1 29822 25818 21830 11858 13903 09963 06039 02131 98240 94364 

.6 90504 86660 82831 19019 15222 11441 61616 63921 60193 56415 
6 52113 49086 45415 41160 38120 34496 30881 21293 23115 20153 
6 16606 13014 09558 06051 02511 22lQ! ~ 92206 88181 §2lIl 

0.581911 18591 15233 11884 68549 65230 61926 58636 55361 52102 

5 48851 45621 42411 39211 36025 32853 29691 26554 23421 20314 
5 11215 14131 11062 08006 04965 01939 ~ ~ ~ ~ 
4 81020 84018 81151 18238 15339 12453 69582 66124 63881 61051 

.4 58235 55433 52644 49810 41108 44361 41621 38906 36199 33506 
4 30825 28159 25505 22865 20238 11624 15024 12436 09862 01301 
4 04153 02211 ~.21!.!!§. ~ ~.llill ~ 84831 82398 

.3 19978 77570 75175 72792 70422 68064 65719 63386 61065 58757 
3 56461 54176 51904 49645 41391 45161 42931 40725 38525 36337 
3 34160 31996 29843 27701 25572 23453 21347 19252 17168 15096 

0.3 13035 10986 08948 06921 04905 02900 00907 ~ ~ ~ 

.2 93044 91105 89178 87261 85355 83459 81515 19101 77838 75985 
2 74143 72311 70490 68679 66879 65088 63308 61539 59119 58030 
2 56291 54562 52842 51133 49434 47745 46065 44396 42736 41086 

.2 39445 37814 36193 34581 32979 31386 29803 28229 26665 25110 
2 23564 22027 20500 18981 17472 15972 14480 12998 11525 10061 
2 08605 07158 05721 04291 02871 01459 00056 98661 ~ ~ 

.1 94528 93161 91815 90471 89135 87808 86488 85177 83874 82519 
1 81293 80014 78743 77480 16225 74978 13738 12507 11283 10061 
1 68858 61658 66464 65219 64101 62930 61161 60611 59462 58321 

0.15 1187 6060 4941 3829 2124 1626 0535 ~ mA. :wM 

.14 6241 5184 4135 3092 2051 1028 0005 ~ 1W ~ 
13 5982 4993 4010 3033 2063 1099 0142 .2lli. 8246 ~ 12 6316 5449 4530 3616 2708 1806 0910 0021 illl !!!.22. 

.11 7387 6520 5660 4805 3951 3113 2216 1444 0618 mb 10 8982 8112 1368 6569 5116 4988 4206 3429 2651 
10 1129 0312 ~ ~ 81348 1l22l 66685 ~ 2m ~ 

.09 31960 30902 23893 16933 10020 03156 ~ ~ 82841 16111 
08 69542 62959 56421 49930 43484 31083 30121 24415 18141 11924 
08 05144 ~ llID. ~ 81458 1.2ill. illl.Q. ~ ~ 2!.Q2l 

201 



202 E(Emein)/3 RT 

o 2 4 5 6 8 9 

4.0 0.07 46294 40578 34903 2926B 23673 1811( 12602 07126 olGBB L612Q 

4.1 
4.2 
4.3 

4.4 
4.5 
4.6 

4.7 
4.8 
4.9 

5.0 

5·1 
5.2 
5.3 

5.4 
5.5 
5.6 

5.7 
5.8 
5.9 

.06 ~0930 85609 80326 75080 69872 64702 59569 54472 49413 44389 
06 39402 34451 29536 24656 19812 15002 10228 05488 00782 96111 
O~ 91473 86870 82299 77763 73259 68788 64349 59943 55569 512?8 

.05 46918 42639 38392 34176 29991 25837 21714 17620 13557 09524 
05 05521 01547 21.§.9.£ lli.§l 89801 §22.U 82114 illlllllli ~ 
04 67079 63390 59729 56094 52487 48907 45353 41826 38325 34850 

.04 31402 27979 24582 21210 17863 14542 11246 07974 04727 01504 
03 98306 95132 91981 88855 85752 82672 79616 76583 73572 70585 
03 67620 64678 61758 58860 55984 53130 50298 47487 44698 41930 

0.03 39183 36457 33752 31067 28403 25759 23136 20532 17949 15385 

.03 12841 10317 07812 05326 02859 00412 ~ ~ 2ll§l 90808 
02 88453 86116 83797 81496 79213 76948 74700 72470 70257 68061 
02 65882 63720 61574 59446 57334 55238 53159 51095 49048 47017 

.02 45002 43002 41018 39050 37097 35159 33236 31329 29436 27558 
02 25695 23846 22012 20192 18387 16596 14819 13056 11306 09571 
02 07849 06141 04446 02764 01096 ~ ~ 2§llQ 2A22! ~ 

.01 91360 89782 88217 86664 85123 83594 82078 80573 79081 77600 
01 76131 74674 73229 71795 70372 68961 67561 66172 64794 63427 
01 62071 60726 59392 58068 56755 55453 54160 52879 51607 50346 

6.0 0.014 9095 7854 6622 5401 4190 2988 1796 0613 ~ ~ 

6.1 
6.2 
6.3 

6.4 
6.5 
6.6 

.013 7122 5977 4842 3715 2598 1490 0390 .21QQ 8218 
~ 012 6081 5025 3978 2939 1909 0887 9873 8868 7870 8 1 

011 5900 4927 3962 3004 2054 1113 0118 9252 §.J.E 1421 

.010 6517 5620 4730 3848 2973 2105 1244 0390 22ill.!U.Q.ll 
009 78707 70445 62250 54123 46062 38067 30138 22274 14474 06138 
008 99066 91457 83910 76425 69002 61640 54338 47096 39914 32792 

6.7 .008 25727 18721 11773 04882 98048 ~ 8454877882 1!£1l 64114 
6.8 007 58212 51763 45367 39025 3273526497 20311 14175 08091 02057 
6.9 006 96073 90139 84254 78418 72630 66891 61199 55554 49956 44405 

7.0 0.006 38900 33441 28027 22658 11334 12054 06818 01626 ~ ~ 

7.1 
7.2 
7.3 

7.4 
7.5 
7.6 

7.7 
7.8 
7.9 

.005 86308 81287 76308 71370 66474 61619 56804 52029 47294 42599 
005 37943 33327 28748 24208 19707 15242 10816 06426 02073 2l12l 
004 93477 89232 85024 80851 76712 72609 68540 64505 60505 56537 

.004 52604 48703 44835 41000 37197 33426 29687 25979 22303 18657 
004 15043 11459 07905 04381 00887 ~ ~ ~ 87203 83~54 
003 80534 77241 73976 70739 67530 64347 61192 58063 54961 51 85 

.003 48835 45811 42813 39840 36892 33969 31071 28198 25349 22525 
003 19724 16948 14194 11465 08758 06075 03414 00776 98160 ~62 
002 92996 90447 87919 85413 82929 80465 78023 75601 73201 ~ 



E(Eimitein)/3 RT 

x o 2 3 4 5 6 7 8 9 

8.0 0.002 68460 66120 63800 61500 59220 56959 54717 52495 50292 48107 

8.1 .002 45941 43794 41665 39555 37462 35387 33330 31291 29269 27265 
8.2 002 25278 23308 21354 19418 17498 15595 13708 11837 09982 08143 
8.3 002 06320 04513 02721 00945 ~ ~ ~ 2l22l 92290 2Q£Q1 

8.4 .001 88931 87273 85630 84001 82386 80785 79197 77623 76063 74517 
8.5 001 72983 71463 69956 68462 66981 65513 64058 62615 61184 59766 
8.6 001 58360 56966 55585 54215 52857 51511 50177 48854 47543 46243 

8.7 .001 44954 43676 424104115439909 38676 37452 36240 35038 33846 
8.8 001 32665 31494 30333 29183 28042 26911 25790 24688 23577 22485 
8.9 001 21403 20330 19266 18211 17166 16130 15103 14084 13075 12074 

9.0 0.0011 1083 0099 2ill 8158 ll.Q!. 6251 2llQ ~ Jill ~ 

9.1 .00101627 0726 ~ ~ 80711 72014 ~ ~ illll ill§Q 
9.2 0009 29656 21406 13227 05120 ~ 89118 BI222 lll22 ~ ~ 
9.3 0008 50323 42767 35277 27852 20492 13197 05966 ~ ~ ~ 

9.4 .0007 77671 70751 63892 57094 50355 43675 37054 30491 23985 17537 
9.5 0007 11146 04810 ~ lliQ£ 86136 80020 1..12..22. lli2Q §lm ~ 
9.6 0006 50240 44440 38b9f 32993 27345 21747 16198 10698 0524b ~ 

9.7 .0005 94486 89178 83915 78700 73530 68406 63327 58293 53303 48358 
9.8 0005 43456 38597 33781 29008 24277 19587 14939 10332 05766 01240 
9.9 0004 96754 92308 87901 83533 79204 74913 70659 66444 62266 58125 

10.0 0.0004 54020 49952 45919 41923 37962 34036 30144 26287 22465 18676 

10.1 .0004 14921 11199 07510 03853 00229 ~ ~ ~ 86053 ~ 
10.2 0003 79151 75747 72372 69028 65713 62427 59171 55944 52745 49575 
10.3 0003 46433 43318 40232 37173 34141 31136 28158 25206 22281 19381 

10.4 .0003 16507 13659 10837 08039 05266 02518 ~ ~ 94420 ~ 
10.5 0002 89141 86536 83955 81397 78861 76348 73858 71390 68944 66519 
10.6 0002 64116 61735 59375 57036 54717 52420 50143 47886 45650 43433 

10.7 .0002 41236 39059 36901 34763 3264430543 28461 263982435422327 
10.8 0002 20319 18329 16356 14402 12464 10544 08641 06755 04886 03034 
10.9 0002 01198 .2.2.ll2 21.2li 2.2I!\2 ~ 92264 ~ 88801 87092 85400 

11.0 0.0001 83722 82059 80411 78778 77160 75556 73966 72391 70830 69283 

11.1 
11. 2 
11. 3 

.00016 7749 6230 4724 3231 1752 0287 8834 1122 ~ A25A 
00015 3153 1765 0388 2Q£2 7673 £114 2QQ1 l22I 2388 ~ 
00013 9816 8547 7290 6044 4809 3585 2373 1171 ~ ~ 

11.4 .00012 7630 6471 5322 4184 3056 1938 0830 ~ 8644 7566 
11.5 00011 6497 5438 4389 3349 2319 1297 0285 9282 8289 llQi 
11.6 00010 6328 5360 4402 3452 2511 1578 0653 97374 88296 I2lQQ 

11.7 .00009 70385 61550 52796 44120 35523 27003 18560 10194 01903 ~ 
11.8 00008 85544 77476 69481 61557 53706 45925 38215 30574 23002 15499 
11. 9 00008 08064 00696 lli.2i ~ ~ llil3J. 64842 ~ 22:l.2!. 441QQ 

203 



204 

x 

!2.0 

12.1 
12.2 
12.3 
12.4 
12.5 
12.6 

12.7 
12.8 
12.9 

13.0 

£(Einsteio)j3 RT 

o 2 4 5 6 B 9 

0.00007 37310 30582 23915 17308 10761 04273 97844 ~1 85160 78904 

.00006 72705 66562 60474 54442 48464 42541 36671 30854 25090 19379 
00006 13719 08110 02552 ~ 21588 86180 80821 1221l 70248 6202i 
00005 59867 54747 49673 44b46 39664 34727 29835 2~f 20184 15424 

.00005 10707 06033 01402 96812 ~ ~ ~ 78868 74483 1Q!li 
00004 65833 61567 57340 53151 49000 44887 40811 36772 32770 28805 
00004 24875 20982 17123 13300 09512 05758 02038 ~ 94700 9108Q 

.00003 87494 83941 80419 76930 73473 70047 66652 63288 59955 56653 
00003 53380 50137 46924 43740 40585 37458 34361 31291 28249 25236 
00003 22249 19290 16358 13453 10574 07721 04894 02094 ~ ~ 

0.00002 93843 91143 88468 85817 83190 80588 78009 75453 72921 70412 

13.1 .00002 67926 65462 63021 60603 58206 55832 53479 51147 48837 46548 
L3.2 00002 44280 42032 39806 37599 35413 33246 31100 28973 26865 24777 
13.3 00002 22708 20658 18626 16613 14619 12643 10685 08744 06822 04917 

13.4 .00002 03C"0 01159 ~ 2liIQ 2.2£2!. 93848 92062, m2 ~ 86801 
13.5 00001 85080 83374 81684 80009 78350 76705 75076 73462 71863 70278 
13.6 00001 68708 67152 65610 64083 62569 61070 59584 58112 56653 55207 

13·7 .00001 53775 52356 50950 49557 48177 46809 45454 44112 42781 41463 
13.8 00001 40157 38863 37581 36311 35052 33805 32569 31345 30132 28930 
13.9 00001 27739 26558 25389 24231 23083 21946 20819 19702 18596 17500 

14.0 0.000011 6414 5338 4272 3216 2169 1132 0105 9087 8078 7078 

14.1 .000010 6088 5107 4135 3172 2218 1272 0335 94071 84874 75762 
14.2 000009 66734 57789 48926 40145 31444 22824 14283 05820 9743 6 §9~~ 
14.3 000008 80897 72742 64662 56656 48724 40865 33079 25364 17720 10146 

14.4 .000008 02643 ~ 87842 80544 73313 66148 22Q2Q 52017 ~ 38145 
14.5 000007 31304 24527 17812 11159 04568 98037 ~ ~ 78804 lS2lQ 
14.6 000006 66275 60097 53977 47912 41904 35951 30053 24209 18420 12683 

14.7 .000006 07000 01369 221JQ 22£.6.i 84786 lillQ 7398.4 68658 63381 ~8153 
14.8 000005 52973 47840 42755 37717 32726 277S1 22881 18027 13217 08452 
14.9 000005 03731 22Q.21 ~ 89828 run ~ 76306 71882 ~ 63156 

15.0 0.000004 58854 54591 50367 46183 42037 37930 33861 29829 25834 21877 

15.1 .000004 17956 14071 10222 06409 02631 98888 ~ 2!2Q£ 87866 84260 
15.2 000003 80687 77147 73639 70165 66722 63311 59932 56584 53268 49981 
15.3 000003 46726 43500 40304 37138 34001 30893 27814 24764 21742 18747 

1~.4 .000003 15781 12842 09930 07045 04187 01355 ~ 95770 2l2ll ~0289 
15.5 000002 87586 84908 52255 79626 77022 74442 71886 69354 66845 64360 
15.6 000002 61897 59457 57040 54646 52273 49923 47594 45287 43001 40737 

15.7 .000002 38493 36271 34069 31887 29726 27584 25463 23361 21279 19216 
15.8 000002 17172 15147 13141 11154 09185 07234 05302 03387 01490 ~ 
15.9 000001 97749 95905 94077 92267 90473 88696 86936 85192 83464 81752 

16.0 0.000001 80056 
E/3RT -

-x xe when x > 16 



B. Einstein Specific Heat Function 
Cv (Einstein)j3R 



C .(Einstein)/3 R 

0.0 

0.1 
0.2 
0.3 

0.4 
0·5 
0.6 

0.7 
0.8 
0.9 

1.0 

1.1 
1.2 
1.3 

1.4 
1.5 
1.6 

1.7 
1.8 
1.9 

2.0 

2.1 
2.2 
2.3 

2.4 
2.5 
2.6 

2.7 
2.8 
2.9 

3.0 

3.1 
3.2 
3·3 

3.4 
3.5 
3.6 

3.7 
3.8 
3.9 

o 2 4 5 6 7 8 9 

1.0 00000 ~ 222tl 2.2.2£2 ~ m.2£ 22lQQ. ~ ~ 22.R2 

.9 99167 98992 98801 98593 98368 98127 97869 97595 97304 96997 
9 96673 96333 95976 95603 95214 948C8 94386 93947 93d92 93021 
9 92534 92030 91510 90974 90422 89854 E9270 88669 88053 87421 

.9 86773 86109 85429 84733 84022 83295 82552 81793 81019 80230 
9 79425 78604 77768 76917 76050 75168 74271 73359 72432 71490 
9 70532 69560 68573 67571 66555 65523 64477 63417 62341 61252 

.9 60148 59030 57897 56750 55589 5d415 53226 52023 50806 d9~75 
9 48331 47073 45801 44516 43218 41906 40581 392d2 37891 36526 
9 35148 33758 32354 30938 29509 28068 26614 25147 23668 22177 

0.9 20674 19158 17630 16091 14540 12976 11401 09815 08217 06607 

.9 04986 03354 01710 00056 ~ 967~g ~ 93328 ~16l9 ~ 
8 88170 86430 84679 82918 ~ 793 77575 75774 739b4 72144 
8 70314 68474 66626 64768 62900 61024 59139 57244 55341 53429 

.8 51509 49580 47642 45696 43742 41780 39809 37831 35844 33850 
8 31849 29839 27822 25798 23766 21728 19682 17629 15569 13502 
8 11429 09349 07262 05169 03070 00964 ~ ~ 94610 92481 

.7 903458820486057 83905 81747 7958477416 75243 7306470881 
7 68693 66500 64303 62101 59894 5768d 55469 53249 51026 48799 
7 46568 44333 42094 39852 37606 35356 33104 30848 28589 26321 

0.7 24062 21794 19523 17249 14973 12694 10413 08130 05844 03556 

.7 01266 ~ 96680 94384 92086 89787 87486 ~518g 82880 8057§ 
6 78269 7596I 13652 71343 69032 66721 64408 209 59782 57A6 
6 55154 52839 50524 48209 45893 43578 41262 38941 36632 34317 

.6 32002 29688 27374 25061 22748 20437 18125 15815 13506 11197 
6 08890 06584 04219 01975 22§1l illll. ~ m1A ~ ~8183 
585890835988130979021 7b736 7445272171 b9892b7bI5 5340 

.5 63068 60798 58530 56265 54003 51743 49486 47232 44980 42732 
5 40486 38244 36004 33767 31534 29304 27077 24853 22633 20416 
5 18203 15993 13786 11584 09385 07189 04997 02810 00625 ~ 

0.4 96269 94091 91929 89164 87604 85448 83296 81149 79006 76867 

.474732 12602 70476 68355 66238 64125 62018 59915 57816 55722 
4 53633 51549 49470 47395 45325 43260 41200 39145 37095 35050 
4 33010 30975 28946 26921 24901 22887 20878 18814 16876 14882 

.4 12894 10912 08935 06963 04996 03036 01080 22llQ ~ ~ 
3 93313 91386 89463 87547 85636 83731 81831 19937 78049 76167 
3 74290 72419 10554 68695 66841 64993 63152 61316 59486 57661 

.3 55843 54031 52224 50424 48629 46840 45058 43281 41510 39746 
3 37987 36234 34488 32747 31012 29284 27562 25845 24135 22431 
3 20733 19041 17355 15675 14001 12333 10672 09017 07367 05724 



208 C .(Einstein) /3 R 

x o 2 9 

4.0 0.3 04087 02456 lCP32 992U 97601 2.22.2.2 943:4 92eoo 91213 89631 

4.1 .2 86055 86486 84923 83365 81814 80270 78731 77198 75672 74152 
4.2 72637 71129 69627 68132 66642 65158 63681 62210 60744 59285 
4.l :7832 56385 549L4 53509 52081 50658 49241 47831 46426 45027 

4.4 .2 43635 42248 40868 39494 38125 36763 35406 34056 32711 31372 
4.5 2 3004028713 27392 26077 24768 23465 22168 20877 19591 18312 
4.6 2 17038 15770 14508 13?52 12001 10757 09518 08285 07057 05836 

4.7 .2 0462003410 02205 01006 ~ 98626 97444 96268 22Q2l 2l2l1 
4.8 1 92773 91620 90471 89329 88192 87060 t5934 84814 83699 82589 
4.9 1 81485 P0387 79294 78206 77123 76046 74975 73909 72848 71792 

5.0 0.17 0742 :!.ti2l ~ 7623 6594 lliQ ill!. llli ~ 1526 

5.1 .16 0528 
5.2 15 0827 
5.3 14 1624 

2.2l2. §.ill 7564 £5.1ll. 2§l.1. 4647 3685 2727 1775 
9885 lli~ 8015 ~ .§l£5. 5247 4334 3426 .?.2£.l 
0731 9842 §12§. 8078 7204 6334 ~ 4608 ill.? 

5.4 .13 2901 2055 1213 0376 22Al §1!.2 7.§.2l 7072 ~ 2.ill. 
5.5 12 4642 
5.6 11 6827 

3840 3044 2251 1463 0680 ~ 9126 8355 12§1 
6070 5317 4568 3823 3082 2346 i6i3 oR85 0161 

5.7 .10 9442 8726 8014 7307 6603 5904 5208 4517 3829 3146 
1791 1119 0451 WJ.5. Wl.5. 84713 78189 71704 ~ 
52475 46140 39843 33583 27359 21173 15023 08910 02832 

5.8 10 246,) 
5· 9 09 58847 

6.0 0.08 96791 90786 84816 78882 72984 67121 61293 55499 L9741 44017 

6.1 .08 38327 32672 27051 21464 15910 1039004904 22i2! 94031 88644 
6.2 07 83289 77967 72678 67421 62196 57004 51843 46713 41615 36549 
6.3 07 31513 26509 21536 16593 11681 06799 01948 97126 92335 ~l2Il 

6.4 .06 82841 78139 73465 68821 64206 59620 55063 50534 46034 41561 
6.5 06 37117 32701 28313 23953 19620 15314 11036 0678402560 98363 
6.6 05 94192 90048 85930 81838 77772 73733 69719 65731 61768 57831 

6.7 .05 53919 50032 46171 42334 38521 34734 30970 27231 23516 19826 
6.8 05 16159 12516 08896 05300 01728 98178 94652 91149 87668 84210 
6.9 04 80775 77363 73972 70604 67258 63934 60632 57351 54092 50854 

7.0 0.04 47638 44443 41269 38116 34984 31873 28782 2571~ 22662 19632 

7.1 .04 16623 13633 10663 07714 04783 01873 98982 96110 ~ 90423 
7.2 03 87609 84813 82036 79277 76538 73816 71113 68428 65761 63112 
7.3 03 60481 57868 55273 52695 50134 47591 45065 42556 4006437590 

7.4 .03 35132 32690 30266 27857 25466 23090 20731 18388 16061 13750 
7.5 03 11454 09175 06911 04662 02429 00212 98~09 ~22~ ~o ~ 
7.6 02 89350 87223 85110 83012.80928 78858 76 03 74762 72736 70723 

7.7 .02 68725 66740 64769 62812 60868 58938 57021 55118 53228 51351 
7.8 02 49487 47636 45799 43974 42162 40362 38575 36801 35039 33290 
7.9 02 31553 29828 28115 2641424725 23049 21384 19730 18089 16459 



C.(Einstein)/3 R 

o 1 2 3 4 5 6 7 8 9 

8.0 0.02 14840 13233 11638 10053 08480 06918 05367 03827 02298 00780 

8.1 .01 99273 97776 96291 94815 93350 91896 90452 89018 81595 86182 
8.2 01 84779 83385 82002 80629 19266 11912 16568 75234 13909 12594 
8.3 01 11288 69992 68105 61421 66159 64900 63649 62408 61116 59952 

8.4 .01 58138 51532 56335 55147 53961 52196 51633 50419 49333 48195 
8.5 01 41066 45945 44832 43121 42630 41541 40460 39381 38322 31265 
8.6 01 36215 35173 34138 33111 32092 31080 30016 29019 28089 21106 

8.1 .01 26131 25163 24202 23241 22300 21360 20421 19501 18582 11669 
8.8 01 16163 15864 14911 14085 13205 12332 11466 10606 09152 08904 
8.9 01 08063 07228 06399 05571 04160 03950 03145 02341 01554 00761 

9.0 0.009 99866 92116 84423 76188 69210 61688 54222 46812 39451 32151 

9.1 .009 24911 11120 10582 03498 9~4~~ 89488 8g5~1 15681 68864 6209g 
9.2 008 55310 48100 42019 35508 2 9 22513 1 0 9 09114 ~ ~ 
9.3 001 90813 84681 18541 12454 66401 60406 54449 48538 42611 36849 

9.4 .001 31011 25336 19645 13991 08391 02828 2llQl 91828 ~ §222! 
9.5 00615639 10324 65050 59815 54621 49466 4435039213 3423529235 
9.6 006 24213 19348 14462 09612 04800 00024 ~ 90582 ~ 81283 

9.1 .005 16681 12126 61600 63108 58651 54228 49839 45484 41161 36812 
9.8 005 32616 28393 24202 20043 15916 11820 01151 03124 ~ 2215g 
9.9 004 91811 81901 84022 80112 16351 12561 68199 65066 6I3b3 51687 

10.0 0.004 54041 50422 46831 43268 39133 36225 32144 29290 25862 22461 

10.1 .004 19081 15139 12416 09120 05849 02603 ~ ~ ~ 89810 
10.2 003 86149 83651 80518 11529 14503 11501 68522 65561 62634 59125 
10.3 003 56838 53913 51131 48311 45513 42131 39982 31249 34538 31841 

10.4 .003 29118 26529 23901 21294 18101 16141 13594 11068 08561 06014 
10.5 003 03606 01158 W£2. IDli ~ ~ 89202 86866 84549 82251 
10.6 002 19910 11108 15463 13236 11026 68834 66659 64501 62360 60236 

10.1 .002 58129 56038 53964 51906 49865 41839 45830 43836 41858 39896 
10.8 002 31950 36018 34102 32201 30316 28445 26589 24141 22921 21108 
10.9 002 19310 11521 15151 14002 12260 10532 08818 01118 05431 03158 

11.0 0.002 02091 00450 98816 21ill ~ .2.l22£ 92410 90840 89282 !l11.ll. 

11.1 .001 86205 84684 83116 81619 80195 18122 11261 15812 14315 12949 
11.2 001 11534 10130 68138 61351 65981 64628 63280 61942 60615 59299 
11.3 001 51994 56699 55414 54139 52815 51621 50311 49143 41919 46104 

11.4 .0014 5500 4305 3119 1944 0111 a620 8413 1334 6205 5084 
11.5 0013 3913 2811 1111 0693 ~ ~ lill ~441 2l2.2. ~ 
11.6 0012 3341 2324 1316 0316 2ltl ~ 00 lli2 ~ 4481 

11.1 .0011 3536 2598 1669 0146 ~ .§lli 8024 1!l!. 6245 ~ 
11.8 0010 4495 3631 2113 1923 1019 0243 ~ 85898 11lll ~ 
11.9 0009 61602 53635 45132 31893 30118 22401 14151 01110 ~ 92181 

209 



210 C.(Einstein)/3 R 

c 2 5 6 7 8 9 

12.0 0.0008 84777 77434 7015! 62927 55761 486;4 41605 34613 27678 20800 

12.1 .0008 13977 07211 00499 2)842 ~240 80691 74196 67754 61364 ~ 
12.2 0007 48141 42506 36323 30190 24101 18014 12090 06155 00268 94430 
12.3 0006 88640 82891 71201 71551 65948 60391 54879 49412 43990 38613 

12.4 .0006 33279 27990 22744 11540 12380 01262 02185 9~~ ~ §I£Q2 
14.5 0005 82294 77423 72592 67800 63048 58335 53661 49025 44421 39861 
12.6 0005 35345 30860 26411 22000 17624 13285 08982 04713 00481 96282 

12.1 .000492119 81990 83895 79834 15806 11811 6185063921 60024 56160 
12.8 0004 52327 48527 44151 41019 31312 33635 29989 26313 22786 19230 
12.9 0004 15103 12205 08136 05295 01883 98500 ~ 91816 88516 85243 

13.0 0.0003 81997 18779 75586 72421 69281 66168 63080 60018 56981 53970 

13.1 .0003 50983 48022 45085 42112 39284 36419 33519 30761 27968 25197 
13.2 0003 22450 19725 17023 14344 11687 09052 06439 03847 01278 ~ 
13.3 0002 96202 93696 91211 88746 86302 83879 81475 79092 76728 74384 
13.4 .0002 72060 69755 67470 65203 62955 60726 58516 56324 54151 51995 
13.5 0002 49858 47738 45637 43552 41486 39436 37404 35388 33390 31408 
13.6 0002 29443 2749425561 2364521745·1986017992 16139 14301 12479 

13.7 .0002 10672 08881 0710405342 03596 01863 00145 98442 ~ ~ 
13.8 0001 93417 91770 90137 88518 86912 85320 83741 82175 80623 79083 
13.9 0001 7755776043 74542 73054 71578 70114 68663 61224 65198 64383 

14.0 0.00016 2980 1589 0209 88~ li§2 6141 4807 ~ 2174 0874 

14.1 .00014 9585 8306 7039 5782 4536 3300 2075 0860 ill2 8461 
14.2 00013 7276 6102 4937 3783 2638 1502 0377 9261 8154 7056 
14.3 00012 5968 4889 3820 2759 1707 0664 lliQ 8605 ~ 6580 

14.4 .00011 5581 4590 3607 2633 1666 0708 2I22. 8~17 ~ ~ 
14·5 00010 6039 5129 4226 3332 2444 1564 0692 ~lli2§.~ 
14.6 00009 72762 64403 56114 47896 39748 31669 23658 15715 07840 00032 

14.7 .00008 92290 84614 71003 69457 61915 54556 47201 39908 32611 25508 
14.8 00008 18400 11352 04364 21..4l5. ~ !Uill 77002 ~ 63667 2IQM 
14.9 00001 50559 44089 37614 31313 25007 18754 12554 06408 00314 ~ 

15·0 0.00006 88281 82341 76452 70613 64824 59085 53394 47752 42158 36612 

15.1 .00006 31113 25662 20256 14897 09584 04316 22Q21 ~ 88781 83690 
15.2 00005 78648 73640 68679 63761 58885 54050 49257 44505 39193 35122 
15.3 00005 30490 25899 21346 16833 12358 07922 03523 ~ ~ 2Q52£ 
15.4 .00004 86303 82089 77912 73771 69665 65594 61558 57557 53590 49657 
15.5 00004 45758 41892 38060 34260 30493 26758 23055 19384 15745 12137 
15.6 000040856005013 01497 98011 ~ ll!£2 ~ ~ 81026 11l.!.§. 

15.7 .00003 7443571181 67956 6475861588 58446 55330 52241 49178 46142 
15.8 00003 43132 40148 37190 34257 31349 28467 25609 22775 19961 11182 
15.9 00003 14421 11685089710628103615 00911 ~ ~~ 90622 

16.0 0.00002 88090 2 
Cv / 3R. % e -% when x:> 16. 



C. Debye Internal Energy Function 
E (Debye)/3RT 



E(Debye)/3 RT 

" 
0.0 

0.1 
0.2 
0.3 

0.4 
0·5 
0.6 

0.7 
0.8 
0·9 

1.0 

1.1 
1.2 
1.3 

1.4 
1.5 
1.6 

1.7 
1.8 
1.9 

2.0 

2.1 
2.2 
2.3 

2.4 
2.5 
2.6 

2.1 
2.8 
2.9 

o 1 2 3 5 6 1 8 9 

1.0 00000 .2§lli ~ ~ 85080 !!lll2 17680 ll.22.i 10320 ~ 

.9 63000 59355 55120 52095 48480 44815 41280 31695 34119 30554 
9 26999 23454 19919 16393 12818 09313 05811 02392 ~1~ 25A5l 
8 91995 88550 85114 81688 18212 14866 11410 68084 ~ ~ 

.8 51985 54638 51302 41915 44658 41351 38053 34166 31489 28221 
8 24963 21115 18417 15248 12030 08821 05622 02433 m.2l 96083 
7 92923 89113 86633 83502 80381 77270 74168 71016 67994 64921 

.7 61858 58805 55762 52728 49103 46689 4368440688 37102 34126 
7 31759 28802 25854 22916 19981 17068 14159 11259 08368 05487 
1 02615 m2l 96900 llQ5.l .2!m. 88398 ~ §.UllllW:. 11.lll 

0.6 74415 71641 68888 66138 63397 60666 57944 55231 52527 49833 

.6 47148 44472 41805 39141 36498 33859 31228 28601 25995 23392 
6 20198 18213 15637 13070 10512 07963 05422 02891 00369 ~ 
5 95351 92856 90369 87891 85422 82962 80511 18068 75634 73209 

.510193 68386 65981 63596 61215 58842 56418 54122 51715 49431 
5 47101 44785 42472 40168 37872 35585 33306 31036 28174 26520 
5 24275 22038 19809 17589 15311 13114 10979 08192 06613 04442 

.5 02280 00126 ~ ~ .2.l1!£ ~ run llill ~ 83184 
4 81103 19030 76964 74907 72851 708I6 ~ 66756 ~ 62128 
4 60126 58731 56745 54166 52794 50831 48875 46921 44987 43054 

0.4 41128 39211 37301 3539833503 31616 29136 278642599924141 

.422291 20448 18613 1618514965 13151 1134509541 0115505911 
40419402424 00661 ~ llill ~ ~ 2!2.5.2 2.QUi 88522 
3 86816 85111 83425 81740 80062 18390 16126 75068 13418 11114 

.3 70137 68501 66883 65266 63656 62053 60456 58866 57283 55106 
3 54136 52572 51015 49465 47921 46383 44852 43328 41810 40298 
3 38793 31294 35801 34315 32835 31361 29893 28432 26971 25528 

.3 24086 22649 21219 19795 18371 16965 15559 14159 12165 11311 
3 09995 08619 01249 05885 04527 03174 01828 00481 22!2! ~ 
2 96500 95182 93870 92564 91264 89969 88680 81397 86119 ~ 

3.0 0.28 3580 2319 1063 .2lli 8568 ~ W2 4861 3644 ~ 

.27 1215 0008 8807 1610 ~ ~ ~ £§12. llQ2. Q5M 
25 9385 8230 1081 5931 4798 3664 2535 1412 0293 2l1i 
24 8070 6966 5868 4774 3684 2600 1521 0441 2lI1 8312 

.23 7252 6197 5146 4101 3060 2023 0991 ~ B942 ~ 

~i ~g~~ ~g~~ ;~g~ !~;~ j~gt ~~~; ~~i~ g~i~ 9al~ A~~3 
.20 7589 6668 5752 4840 3932 3028 2128 1233 0341 ~ 
19 8511 7692 6811 5945 5018 4215 3356 2501 1650 0803 
18 9959 9120 8284 7452 6624 5800 4980 4164 3351 2542 

213 



214 E(Debye)/3 RT 

x o 1 3 4 5 6 7 8 9 

4.0 0.18 1737 0935 0138 .21.U 8'/';1 7767 ~ 6204 ~ ill§. 

6.1 
6.2 
6.3 

6.4 
6.5 
6.6 

6.7 
6.8 
6.9 

7.1 
7.2 
7.3 

7.4 
7.5 
7.6 

7.7 
7.8 
7.9 

.17 3888 3123 2361 1603 0849 0098 il51 8601 7866 §~:~ 
16 6396 5666 4939 4216 3496 2779 ~ 135 0649 
15 9246 8549 7856 7166 6479 5795 5114 4437 3763 3092 

. U ~~: ~~~g ~~~ ~~~~ m! ml ~~~ ffif ~~~~ ~ 
13 9704 9099 8497 7898 7301 6707 6116 5528 4943 4360 

.13 3780 3203 2628 2057 1488 0921 0357 .212§. ~ 8682 
12 8129 7579 7031 6485 5942 5402 4864 4329 3797 3267 
12 2739 2214 1691 117l 0653 0138 ~ ill! 8606 8101 

0.11 7598 7097 6598 6102 5608 5116 4627 4140 3656 3174 

.ll 2694 2216 1740 1267 0796 0327 9861 ~ ~ ~ 
10 8016 7561 7107 6656 6206 5759 5314 481I 4430 3992 
10 3555 3120 2688 2257 1829 1402 0978 0555 0135 ~ 

.09 92997 88852 84726 80619 76531 72463 68414 64384 60373 56381 
09 52408 48453 44517 40600 36701 32821 28958 25114 21288 17480 
09 13690 09917 06162 02425 98706 .22QQ! llil2. ~ 84002 80369 

.08 76753 73155 69573 66007 62459 58927 55412 51913 48431 44965 
08 41515 38082 34664 31263 27877 24508 21154 17815 14493 11186 
08 07894 04618 01357 98112 94881 91666 88466 85280 82110 :@ill 

0.07 75813 72687 69575 66478 63395 60327 57273 54233 51208 48196 

.07 45198 42215 39245 36289 33347 30419 27504 24603 21715 18841 
07 15980 13132 10297 07476 04668 01813 22Q2Q ~ ~ ~0821 
06 88090 85371 82665 79972 77291 74623 7I967 ~ ~ 4072 

.06 61465 58869 56286 53715 51155 48607 46071 43547 41034 38533 
06 36043 33565 31098 28643 26199 23766 21344 18934 16534 14146 
06 11768 09402 07046 04701 02366 00043 llUQ ~ 2llli ~ 

.05 88583 86323 84073 81833 79603 77384 75174 72975 70785 68606 
05 66437 64277 62127 59987 57857 55737 53626 51525 49433 47351 
05 45278 43214 41160 39115 37080 35053 33036 31028 29029 27039 

0.05 25059 23087 21123 19169 17224 15287 13359 11440 09530 07628 

.0505734038490197300105 98245 2§l2!~ ~ 90890 ~ 
04 87261 85459 83665 81879 80101 78331 76569 74815 73068 71329 
04 69598 67875 66160 64452 62752 61059 59374 57696 56026 54363 

.04 52707 51059 49418 47785 46158 44539 42927 41322 39725 38134 
04 36550 34974 33404 31841 30285 28736 27194 25658 24129 22607 
04 21092 19583 18081 16586 15097 13615 12139 10669 09206 07750 

.04 06299 04855 03418 01987 00562 22l!l llUQ ~ ~ ~ 
03 92140 90758 89382 88011 86647 85289 83936 82590 ~ 79914 
03 78584 77261 75943 74631 73324 72023 70728 69439 68155 66876 



E(Debye)/3 RT 215 

][ 0 1 2 4 5 6 7 8 9 

8.0 0.036 5603 4335 3073 1816 0565 2..ll2. 8078 6843 2Ql 4388 
8.1 .035 3169 1954 0745 2.lli. 8342 1li2. ~ AID. ~ 2424 
8.2 034 1256 0092 §.ill I1.§Q 6631 ~ 4348 illl. 2084 2.lli. 
8.3 032 9839 8724 7613 6507 5406 4310 3218 2130 1048 mQ 

8.4 .031 8896 7827 6762 5702 4646 3594 2547 1505 0467 .2ill 
8.5 030 8403 7378 6357 5340 4328 3319 2315 1315 0319 ~ 
8.6 029 8340 7357 6378 5402 4431 3464 2500 1541 0586 ~ 

8.7 .028 8687 7744 6804 5868 4936 4008 3084 2163 1247 0334 
8.8 027 9424 8519 7617 6719 5825 4934 4047 3163 2283 1407 
8.9 027 0534 ~ .ru.2. 12ll ~ 6223 .2ill 4523 .ill.!! ~ 
9.0 0.026 1999 1164 0333 .2.2Q2 8681 ill2 7041 6227 5416 4608 

9.1 .025 3803 3001 2203 1408 0616 2m. 9041 ~ lli.2. BQ1 
9.2 024 5930 5160 4393 3629 2868 2110 1355 0603 ill! 9108 
9.3 023 8365 7625 6888 6154 5423 4694 3969 3246 2526 1809 

9.4 .023 1095 0384 5Zill. lliQ 8267 I.2§1. 6869 6174 5482 4793 
9.5 022 4107 3423 2741 2063 1387 0714 0043 .2.ll2 ~ 8046 
9.6 021 7386 6728 6073 5421 4771 4123 3478 2835 2195 1558 

9.7 .021 0923 0290 2§.22. 2Qll 8406 .1.W.1 7162 6544 2ill. .lli.2 
9.8 020 4704 4095 3488 2884 2282 1683 1085 0490 2m. 21Q1 
9.9 019 8719 8133 7549 6967 6388 5811 5236 4663 4092 3524 

10.0 0.019 2958 2393 1831 1271 0714 0158 9604 2Q2l ~ illi 
10.1 .018 7410 6867 6326 5787 5249 4714 4181 3650 3120 2593 
10.2 018 2068 1544 1023 0504 ~ lliQ ~ 8445 lli.2 lill 
10.3 017 6921 6416 5914 5413 4915 4418 3923 3430 2938 2449 

10.4 .017 1961 1475 0991 0508 0027 9548 9071 ~ 8122 1§2Q. 
10·5 016 7180 6711 6244 5779 5316 4854 4394 3936 3479 3024 
10.6 016 2570 2118 1668 1220 0773 0328 9884 9442 9001 8562 

10.7 .0158125 7689 7255 6822 6391 5962 5534 5107 4682 4259 
10.8 015 3837 3416 2997 2580 2164 1749 1336 0925 0515 0106 
10.9 014 9699 9293 8889 8486 8084 7684 7286 6888 6492 6098 

11.0 0.014 5705 5313 4923 4534 4146 3760 3375 2992 2610 2229 

11.1 .014 1849 1471 1094 0719 0345 m~ 
9600 2£J.Q 8861 §.ill 

11.2 013 8126 7761 7397 7034 6673 5954 5596 5239 4884 
11.3 013 4530 4177 3826 3475 3126 2778 2431 2085 1741 1398 

11. 4 .013 1056 0715 0375 0036 ~ 9362 2m. 8693 8360 8029 
11. 5 012 7698 7368 7040 6713 6387 6061 5737 5415 5093 4772 
11.6 012 4452 4134 3816 3500 3184 2870 2557 2245 1934 1623 

11. 7 .012 1314 1006 0699 0393 0088 lli.1 9481 !!!l2. 8878 8578 
11.8 011 8279 7982 7685 7389 7094 6799 6506 6214 5923 5633 
11. 9 011 5344 5055 4768 4482 4196 3912 3628 3346 3064 2783 



216 

12.0 

12.1 
12.2 
12.3 

12.4 
12.5 
12.6 

12.7 
12.8 
12.9 

13.0 

13.1 
13.2 
13.3 

13.4 
13.5 
13.6 

13.7 
13.8 
13·9 

14.0 

14.1 
14.2 
14.3 

14.4 
14·5 
14.6 

14.7 
14.8 
14.9 

E(Debye)/3 RT 

o 2 3 4 5 6 8 9 

0.011 2503 2224 1946 1669 1393 1118 0843 0570 0297 0025 

.010 9754 9484 9215 8947 8679 8413 8147 7882 7618 7355 
010 7093 6832 6571 6311 6052 5794 5537 5281 5025 4770 
010 4516 4263 4011 3759 3509 3259 3010 2761 2514 2267 

.010 2021 1776 1531 1288 1045 0803 0561 0321 0081 ~ 
009 96036 93661 91293 88932 86579 84233 81895 79564 77240 74923 
009 72614 70312 68017 65730 63449 61176 58909 56650 54398 52153 

.009 49915 47683 45459 43241 41031 38827 36630 34440 32257 30080 
009 27910 25747 23591 21441 19298 17161 15031 12907 10790 08680 
009 06576 04478 02387 00302 98224 ~ 94086 ~ ~ 87927 

0.008 85886 83851 81823 79801 77785 75775 73771 71774 69782 67796 

.008 65817 63843 61875 59914 57958 56008 54064 52125 50193 48266 
008 46345 44430 42521 40617 38719 36827 34941 33060 31184 29314 
008 27450 25592 23739 21891 20049 18212 16381 14555 12735 10920 

.008 09111 07306 05507 03714 01926 00143 ~ ~ ~ 93063 
007 91306 89554 87807 86066 84330 82598 80872 79151 77435 75724 
007 74017 72316 70620 68929 67242 65561 63884 62213 60546 58884 

.007 57226 55574 53927 52284 50646 49012 47384 45760 44140 42526 
007 40916 39310 37710 36114 34522 32935 31353 29775 28201 26632 
007 25068 23508 21953 20402 18855 17313 15775 14242 12713 11188 

0.007 09668 08152 06640 05132 03629 02130 00636 22112 ~ 22lll 

.006 94699 93225 91755 90290 88829 87371 85918 84469 83024 81583 
006 80146 78713 77285 75860 74439 73022 71609 70200 68795 67394 
006 65996 64603 63213 61828 60446 59068 57694 56323 54957 53594 

.006 52235 50880 49528 48180 46836 45496 44159 42826 41497 40171 
006 38849 37531 36216 34905 33597 32293 30992 29695 28402 27112 
006 25826 24543 23264 21988 20716 19447 18181 16919 15661 14405 

.006 13153 11905 10660 09418 08180 06945 05714 04485 0326002039 
006 00820 99605 ~ill TIl~ lliTI ~411l ~m ~2~83 .2!!..2Q ~1 
005 88815 87632 E6452 B5275 E4I02 ~2932 El7b4 0 00 79439 78281 

15.0 0.0057 7126 5975 4826 3680 2537 1398 0261 9128 1221 6869 

15.1 .0056 5745 4623 3504 2388 1276 0166 ~ 1222 6853 2122 
15.2 0055 4660 3567 2478 1391 0307 9226 ~ 7072 222i ~ 
15.3 0054 3862 2798 1736 0677 9621 8568 ~ 6470 ~ 4382 

15.4 .0053 3342 2305 1271 0239 9210 8184 7160 ~ 5121 4105 
15.5 0052 3092 2081 1073 0068 2Q£2 ~065 7067 ~072 5080 4090 
15.6 0051 3102 2117 1135 0155 9177 202 7230 260 ~ 4327 

15.7 .0050 3365 2405 1447 0492 ~ 8588 7640 6694 212! 4810 
15.8 0049 3872 2936 2002 1070 0141 ~ 8290 7368 6448 5531 
15.9 0048 4616 3703 2792 1884 0978 0074 2!li 8274 7377 6482 



E(Debye)/3 RT 217 

x 0 1 2 3 4 5 6 7 8 9 

16.0 0.0047 5589 4699 3811 2925 2042 1160 0281 2lli ~ ill§. 

16.1 .0046 6786 5917 5051 4187 3325 2465 1607 0752 1m ~ 16.2 0045 8198 7350 6505 5662 4821 3982 3146 2311 147 o 47 
16.3 0044 9819 8992 8167 7345 6524 5706 4889 4075 3262 2451 

16.4 .0044 1643 0836 0031 2.ill. 8428 ~ 6832 .§.Qll 5244 mi 16.5 0043 3664 2876 2091 1307 0526 ill§. 8968 8192 lli.!i 664 
16.6 0042 5875 5107 4340 3575 2812 2051 1292 0534 2m. 9024 

16.7 .0041 8272 7522 6774 6027 5282 4539 3797 3058 2320 1584 
16.8 0041 0849 0117 ill§. 8656 12ll 11.Ql §.ill. gm 2Qll 4318 
16.9 0040 3601 2885 2171 1459 0749 0040 2ill. 1m 7222 

17.0 0.0039 6521 5822 5125 4430 3736 3044 2353 1664 0977 0291 

17.1 .0038 9606 8924 8243 7563 6885 6209 5535 4862 4190 3520 
17.2 0038 2852 2185 1519 0855 0193 22li ~ 8216 7560 §.2Q2 
17.3 0037 6252 5600 4950 4301 3654 3009 23 5 1722 1081 0441 

17.4 .0036 9803 9166 8531 7897 7264 6633 6004 5376 4749 4124 
17.5 0036 3500 2878 2257 1637 1019 0403 ill1 2.lli. 8561 :ruQ 
17.6 0035 7340 6732 6125 5519 4915 4312 3711 3110 2512 1914 

17.7 .0035 1318 0723 0130 ~ !!ill ill!!. 111Q 1lli. ~ 6014 
17.8 0034 5431 4849 4269 3690 3113 2536 1961 1388 0815 0244 
17.9 0033 9674 9106 8538 7972 7408 6844 6282 5721 5161 4602 

18.0 0.0033 4045 3489 2934 2380 1828 1277 0727 0178 9631 9084 

18.1 .0032 8539 7995 7453 6911 6371 5832 5294 4757 4221 3687 
18.2 0032 3154 2622 2091 1561 1033 0505 ~ ill! ~ 8407 
18.3 0031 7886 7365 6846 6327 5810 5294 4779 4266 3753 3241 

18.4 .0031 2731 2222 1714 1206 0700 0196 ~ ~ 8687 8187 
18.5 0030 7687 7189 6692 6195 5700 5206 4713 4221 3730 3240 
18.6 0030 2752 2264 1777 1291 0807 0323 9841 ~ W2. !!ill. 
18.7 .0029 7921 7443 6967 6492 6017 5544 5072 4600 4130 3661 
18.8 0029 3192 2725 2258 1793 1329 0865 0403 .2lli. 2.ili. 9022 
18.9 0028 8563 8106 7649 7193 6739 6285 5832 5381 4930 4480 

19.0 0.0028 4031 3583 3136 2690 2245 1800 1357 0915 0473 0033 

19.1 .0027 9593 9155 8717 8280 7844 7409 6975 6542 6109 5678 
19.2 0027 5247 4818 4389 3961 3534 3108 2683 2259 1835 1413 
19.3 0027 0991 0570 0151 ~ llil. 8896 8480 8064 1ill ill2 

19.4 .0026 6822 6410 5999 5588 5179 4770 4362 3955 3549 3143 
19.5 0026 2738 2335 1932 1530 1128 0728 0328 m~ 2lli. ill! 
19.6 0025 8738 8342 7947 7553 7160 6768 6376 5595 5206 

19.7 .0025 4817 4430 4043 3657 3272 2887 2503 2120 1738 1357 
19.8 0025 0976 0596 0217 .2lll2. 2.@. ~ 8708 llil ill!! U§.2 
19.9 0024 7212 6839 6468 6097 5727 5358 4989 4621 4254 3888 



218 E(Debye)/3 RT 

J[ 0 2 3 4 5 6 7 8 9 

20.0 0.0024 3522 3157 2793 2429 2067 1705 1343 0983 0623 0264 

20.1 .0023 9905 9548 9191 8834 8479 8124 7770 7416 7064 6712 
20.2 0023 6360 6010 5660 5310 4962 4614 4266 3920 3574 3229 
20.3 0023 2884 2540 2197 1855 1513 1172 0832 0492 0153 ill.4 
20.4 .0022 9476 9139 8803 8467 8132 7797 7463 7130 6798 6466 
20.5 0022 6135 5804 5474 5145 4816 4488 4161 3834 3508 3182 
20.6 0022 2857 2533 2210 1887 1564 1242 0921 0601 0281 2lli. 
20.7 .0021 9643 9325 9008 8691 8375 8059 7744 7430 7116 6803 
20.8 0021 6491 6179 5867 5556 5246 4937 4628 4319 4012 3705 
20.9 0021 3398 3092 2786 2481 2177 1874 1571 1268 0966 0665 

21.0 0.0021 0364 0064 21M 2ill. 9166 8868 ~ !!ill. m!l. 7682 

21.1 .0020 7387 7092 6798 6505 6212 5920 5628 5337 5046 4756 
21.2 0020 4466 4177 3889 360l 3313 3026 2740 2454 2169 1884 
21.3 0020 1600 1316 1033 0750 0468 0187 22.Q§. 2ill. 2ill. 9066 
21.4 .0019 8787 8509 8231 7953 7676 7400 7124 6849 6574 6300 
21.5 0019 6026 5753 5480 5208 4936 4665 4394 4124 3854 3585 
21.6 0019 3316 3048 2780 2513 2246 1980 1714 1449 1184 0920 
21. 7 .00190656 0393 0130 ~ 22Q2 ~93: 2Q§l 8823 !l2§l !llQl 
21.8 0018 8044 7786 7528 7270 7013 6500 6244 5989 5734 
21.9 0018 5480 5226 4973 4720 4467 4215 3964 3713 3462 3212 

22.0 0.0018 2962 2713 2464 2216 1968 1720 1473 1227 0981 0735 

22.1 .0018 0490 0245 0001 llil 2m. ~ 9028 8786 8544 !llQl 
22.2 0017 8062 7821 7581 7342 7103 864 6626 6388 6150 5913 
22.3 0017 5677 5441 5205 4970 4735 4501 4267 4033 3800 3567 
22.4 .0017 3335 3103 2871 2640 2409 2179 1949 1720 1491 1262 
22.5 0017 1034 0806 0578 0351 0125 2!!22. m~ .2ill. ~222 ~ 22.6 0016 8774 8550 8326 8103 7880 7658 7215 994 773 
22.7 .0016 6553 6333 6113 5894 5675 5457 5239 5021 4804 4587 
22.8 0016 4371 4155 3939 3724 3509 3294 3080 2866 2653 2440 
22.9 0016 2227 2015 1803 1591 1380 1169 0958 0748 0539 0329 

23.0 0.0016 0120 lli! 21Ql 2ill. 9288 ~ l!ru. 8667 ~ ~ 

23.1 .0015 8050 7845 7640 7435 7231 7028 6824 6621 6419 6217 
23.2 0015 6015 5813 5612 5411 5210 5010 4810 4611 4412 4213 
23.3 0015 4014 3816 3619 3421 3224 3027 2831 2635 2439 2243 
23.4 .00152048 1854 1659 1465 1271 1078 0885 0692 0499 0307 
23.5 0015 0116 ~~~f m~ n% ~~g! 9162 .§m. 2782 2fU !!ill 
23.6 0014 8215 7277 7091 904 6533 
23.7 .0014 6347 6162 5977 5793 5609 5425 5241 5058 4875 4693 
23.8 0014 4510 4328 4147 3965 3784 3603 3423 3243 3063 2883 
23.9 0014 2704 2525 2346 2168 1990 1812 1634 1457 1280 1104 

24.0 0.0014 0928 
B/3RT - 19.481818/ z3 when J[ > 24. 



D. Debye Specific Heat Function 
C v (Debye}/3R 



C.(Debye)/3 R 

" 
0.0 

0.1 
0.2 
0.3 

0.4 
0.5 
0.6 

0.1 
0.8 
0.9 

1.0 

1.1 
1.2 
1.3 

1.4 
1.5 
1.6 

1.7 
1.8 
1.9 

2.0 

2.1 
2.2 
2.3 

2.4 
2.5 
2.6 

o 2 3 4 5 6 7 8 9 

1.0 00000 ~ ~ .22222. ~ ~ 99820 m22. 2.22.§9. ill22. 

.9 99500 99395 99280 99156 99021 98&Y~ 98721 98556 98382 98197 
9 98003 91798 91584 97360 91126 96882 96628 96364 96091 95808 
9 95514 95211 94899 94516 94244 93902 93550 93188 92811 92436 

.9 92045 91645 91235 90816 90381 89948 89500 89042 88514 88097 
9 81611 81115 86610 86095 85511 85031 84494 83942 83380 82809 
9 82229 81639 81041 80433 19816 19190 18554 11910 11256 16594 

.9 75922 75242 74552 73854 13147 12430 11705 10971 70229 69471 
9 68717 67948 61171 66385 65590 64781 63915 63155 62326 61489 
9 60643 59189 58921 58056 51117 56290 55395 54491 53580 52660 

0.9 51732 50796 49853 48901 47941 46974 45999 45016 44025 43026 

.9 42020 41006 39985 38956 37919 36815 35824 34765 33699 32626 
9 31545 30451 29362 28259 27150 26033 24910 23179 22642 21498 
9 20346 19188 18024 16852 15674 14489 13298 12100 10895 09684 

.9 08467 b7243 06013 04777 0353402286 01031 ~ ~ 21£lQ 
8 95951 94666 93315 92078 90775 89467 88153 ~ B5509 ~ 
8 82842 81500 80153 78800 77442 76079 74711 73337 71959 10515 

.8 69186 61192 66394 64990 63581 62168 60750 59327 57900 56468 
8 55031 53590 52144 50694 49239 47780 46311 44850 43318 41902 
8 40423 38939 31451 35959 34463 32963 31460 29952 28441 26926 

0.8 25408 23886 22361 20832 19299 11163 16224 14681 13135 11586 

.8 10034 08419 06920 05359 03194 02221 00656 ~ ~ ~ 
1 94341 92163 91116 89586 87994 86400 84803 ~ BIOO2 ~ 
7 78391 76183 15112 73559 11944 70321 68708 67081 65464 63839 

.7 62212 60584 58954 51322 55688 54053 52416 50171 49137 47496 
1 45853 44209 42563 40916 39268 37619 35968 34316 32664 31010 
1 29355 27699 26042 24385 22726 21067 19407 17146 16084 14422 

.1 12759 11095 09431 07166 06101 04436 0277001104 22!ll 2111Q 
6 96103 94435 92768 91100 89432 87764 86096 84428 82760 81092 
6 79424 17751 16089 14422 72754 71087 69421 67755 66089 64423 

0.6 62758 61093 59429 57166 56103 54440 52718 51111 49456 47796 

.6 46131 44419 42821 41165 39509 31854 36200 34546 32894 31243 
6 29593 21944 26296 24649 23003 21359 19115 18073 16432 14192 
6 13154 11511 09881 08241 06614 04983 03353 01124 00091 ~ 

.59684895226 9360591986 9036988753 8713985526 83916 82301 
5 80700 19095 11491 15889 14290 12692 71096 69502 67910 66320 
5 64132 63146 61562 59980 58400 56823 55241 53614 52102 50533 

.5 48966 41401 45839 44219 42121 4116539611 3806036511 34965 
5 33421 31819 30340 28803 27268 25736 24201 22680 21155 19633 
5 18113 16596 15082 13510 12061 10554 09050 07548 06049 04553 

221 



222 C.,(Debye)/3 R 

" 0 1 2 3 4 5 6 7 8 9 

4.0 0.5 03059 01568 00080 ~ mn ~ ~ ~ 91207 ~ 

4.1 .4 88272 86808 85347 83889 82434 80982 79532 78086 76642 75201 
4.2 4 73763 72328 70896 69466 68040 66616 65196 63778 62363 60952 
4.3 4 59543 58137 56734 55334 53938 52544 51153 49765 48380 46999 

4.4 .4 45620 44244 42872 41502 40136 38772 37412 36055 34701 33350 
4.5 4 32002 30657 29315 27976 26641 25308 23979 22653 21330 20010 
4.6 4 18693 17380 16069 14762 13458 12157 10859 09565 08273 06985 

4.7 .4 05700 04418 03139 01864 00591 ~ ~ ~ ~ ~ 
4.8 3 93025 91775 90528 89284 88044 07 5573 4342 3114 1 90 
4.9 3 80669 79451 78237 77025 75817 74612 73410 72211 71016 69824 

5.0 0.36 8635 7449 6267 5087 3911 2738 1568 0402 2m. ~ 
5.1 .35 6922 5768 4618 3470 2326 1186 0048 llil ~ 6654 
5.2 34 5529 4408 3289 2174 1062 ~g5~ ~;21 H:: 58:~ R2g 5.3 33 4456 3366 2279 1195 0115 

5.4 .32 3698 2640 1585 0533 ~ §.ill. U22 m§ 2.lli. ~ 
5.5 31 3255 2228 1203 0182 9164 !ru.2. ~ 2m. 4121 
5.6 30 3121 2125 1131 0141 .2!2! 8169 ~ 6210 2n2. 4262 

5.7 .29 3293 2327 1364 0404 2.ill ~ 1.ill. 2m. ~~ 5.8 28 3767 2830 1897 0967 0039 lli2 ~ 1lli. 7~g~ gli8 5.9 27 4536 3629 2725 1824 0926 0031 .2!ll! 8249 

6.0 0.26 5597 4719 3843 2971 2101 1234 0370 ~ 8651 1122 
6.1 .25 6943 6093 5246 4401 3559 2721 1885 1051 0221 n~l 6.2 24 8568 7745 6926 6109 5295 4483 3674 2868 2065 
6.3 24 0466 illQ. 8878 8088 UQQ ili2 llil illA ill1 l4Ql 

6.4 .23 2631 1862 1095 0331 ~6§g 8811 ~ ~ ill!. ~80~ 6.5 22 5056 4313 3572 2834 1364 o 33 .9.2Q.5. .2!12. Ij~8 6.6 21 7735 7017 6301 5588 4877 4168 3462 2758 2057 

6.7 .21 0662 ~ ~ ~ :r2QQ W:2. ;~H §~~~ ~ ~ 6.8 20 3828 3158 2490 1824 1161 0500 .lliQ 1!ITl! 
6.9 19 7229 6581 5936 5294 4653 4015 3379 2745 2113 1484 

7.0 0.19 0856 0231 ~ 8988 .lliQ 1lli. lli.2. 00- 22!.l 2ll.Q 

7.1 .18 4704 4101 3500 2901 2304 1709 1116 0526 m.:r. ill!. 
7.2 17 8766 8184 7604 7025 6449 5875 5303 4733 4165 3599 
7.3 17 3035 2473 1913 1355 0799 0245 2§.2.l .2.lli. §222 ~ 

7.4 .16 7505 6963 6422 5884 5347 4813 4280 3750 3221 2694 
7.5 16 2169 1646 1124 0605 0087 2lli. ~ ~ 8036 1.2ll 
7.6 15 7021 6516 6013 5512 5013 4515 4020 352 3034 2543 

7.7 .15 2055 1568 1083 0599 0118 2ru!. 9160 8683 8209 m~ 7.8 14 7264 6795 6327 5861 5396 4933 4472 4013 3555 
7.9 14 2644 2191 1740 1290 0842 0395 m.! 25.2§. 9066 8626 



C.(Debye)/3 R 

o 2 3 4 5 6 8 9 

8.0 0.13 8187 7750 7315 6881 6449 6019 5590 5162 4736 4312 

8.1 .13 3889 3468 3048 2630 2213 1798 1384 0972 0561 0152 
8.2 12 9744 9338 8933 8529 8127 7727 7328 6930 6534 6139 
8.3 12 5746 5354 4964 4575 4187 3801 3416 3032 2650 2270 

8.4 
8.5 
8.6 

8.7 
8.8 
8.9 

9.0 

9.1 
9.2 
9.3 

9.4 
9.5 
9.6 

9.7 
9.8 
9.9 

10.0 

10.1 
10.2 
10.3 

10.4 
10.5 
10.6 

10.7 
10.8 
10.9 

11.0 

11.1 
11.2 
11.3 

11. 4 
11. 5 
11. 6 

11. 7 
11.8 
11. 9 

• 12 1890 1512 1136 0761 0387 0014 9643 9273 8905 8538 
11 8172 7807 7444 7082 6722 6362 6004 5648 5292 4938 
11 4585 4234 3883 3534 3187 2840 2495 2151 1808 1466 

• 11 1126 0787 0449 0113 21l1. 9443 9110 ~ 8447 8118 
10 7790 7463 7137 6812 6489 6166 5845 5525 5206 4888 
10 4572 4256 3942 3628 3316 3005 2695 2387 2079 1773 

0.10 1467 1163 0859 0557 0256 ~ 2§2I1 2l22i 90626 87669 

.0984722817867886175946730417014667262643896152558672 
09 55829 52996 50174 47361 44558 41766 38983 36210 33448 30695 
09 27951 25218 22494 19780 17076 14381 11696 09021 06355 03698 

.09 01051 98414 22ill 93166 .2.Q221 87956 ~365 82783 80210 77646 
08 75092 72546 70010 67482 64964 62454 59953 57461 54978 52504 
08 50038 47581 45133 42693 40262 37840 35426 33020 30623 28235 

.08 25855 23483 21120 18765 16418 14080 11750 09428 07114 04808 
08 02510 00221 llil2. 9~6 93400 g1142 88893 86621. 84417 F191 
07 79972 77762 7555973364 71176 8996 66824 64659 62502 0352 

0.07 58210 56075 53948 51828 49716 47611 45513 43422 41339 39263 

.07 37194 35133 33078 31031 28991 26957 24931 22912 20900 18895 
07 16897 14905 12921 10943 08973 07009 05051 03101 01157 ~ 
06 97290 95366 93449 91539 89635 87738 85847 83962 82084 80213 

.06 78348 76489 74637 72791 70952 69118 67291 65470 63656 61848 
06 60045 58249 56459 54676 52898 51126 49361 47601 45847 44100 
06 42358 40622 38892 37168 35450 33738 32031 30330 28635 26946 

.06 25263 23585 21913 20246 18585 16930 15280 13636 11997 10364 
06 08737 07115 05498 03887 02281 00681 ~ 97496 ~ ~ 
05 92759 91190 89627 88069 86516 84969 83426 81889 ~ 78830 

0.05 77308 75791 74280 72773 71271 69774 68283 66796 65314 63837 

.05 62365 60898 59436 57978 56526 55078 53635 52197 50763 49334 
05 47910 46491 45076 43666 42261 40860 39464 38073 36686 35304 
05 33926 32552 31183 29819 28460 27104 25753 24407 2)065 21727 

.05 20394 19065 17740 16420 15104 13792 12484 11181 09882 08587 
05 07297 06011 04728 03450 02177 00907 ~ 98380 21122 ~ 
04 94620 93374 92133 90896 89663 88433 87208 85987 84769 83556 

.04 82346 81140 79938 78740 77546 76356 75169 73987 72808 71533 
04 70461 69294 68130 66969 65813 64660 63511 62366 61224 60085 
04 58951 57820 56693 55569 54448 53332 52219 51109 50003 48900 

223 



224 C JDebye)/3 R 

:It 0 1 2 3 4 5 6 1 8 9 

12 .. 0 .... ......... n ...... t' ...... r eL"., .U::I'lIE 'II .'IIn ,,'!IE" ,,,.,0 0204 0' 1. I!) An/:. v-v",,,, fUV.L UI\J;) .JU~~ '+.1'-; ~"~7 ·J,II .. ,~ ~ -"' .... .,. 
12.1 .043 6999 5931 4819 3824 2112 1124 0619 llil ~ H~~ 12.2 042 6531 5502 4411 3454 2435 1419 0406 2121 
12.3 041 6386 5389 4395 3404 2416 1431 0449 lliQ 8i~4 12£ 

12.4 .040 6552 5585 4621 3660 2103 1148 0196 .2§!1 8901 ~m 12.5 039 1011 6080 5145 4213 3285 2359 1435 0515 ~ 
12.6 038 1111 6862 5956 5052 4151 3253 2358 1465 0515 9688 

12.1 ·031 8803 1921 1042 6166 5292 4421 3552 2686 1823 0962 
12.8 031 0104 ~ !!J.2§. mt ~i~~ ~ ~ 4169 3331 2496 
12.9 036 1664 0834 0006 2!§l TIl§. lli.Q. .22Q! 5091 4281 

13.0 0.035 3413 2661 1864 1063 0264 9468 8614 1883 1094 6301 

13.1 ·034 5523 4141 3961 3184 2409 1639 0865 0091 lll!. !i2.tl 
13.2 033 1805 1046 6289 5534 4182 4031 3283 2531 1193 1051 
13.3 033 0312 .2.ill. 8840 8101 1.ill. 6641 W,Q .ill§. .ill.! .illl 

13.4 .032 3035 2319 1605 0893 0183 lli..2. !lllQ 8066 7364 6665 
13.5 031 5961 5212 4518 3886 3191 2509 1824 1140 0458 :uli 
13.6 030 9101 8425 1151 1019 6409 5141 5015 4411 3148 3088 

13.1 .030 2429 1113 1118 0465 9814 9164 8511 1812 1228 65~~ 13.8 029 5946 5308 4611 4031 3404 2173 2144 1516 0890 02 
13.9 028 9644 9024 8405 1188 1113 6559 5948 5338 4129 4123 

14.0 0.028 3518 2915 2313 1113 1115 0519 ~ lll!. §.ill. 8149 

14.1 .027 1561 6915 6390 5806 5225 4645 4066 3489 2914 2341 
14.2 021 1169 1198 0629 0062 W.§. ~ ~ 1808 1249 6691 
14.3 026 6134 5519 5026 4414 3924 3315 2828 2282 1131 1194 

14.4 .026 0653 0113 .2.ill. 9038 8502 ~ 7436 ~ 6315 5841 
14.5 025 5320 4195 4271 3148 3221 2108 2190 1613 1151 0643 
14.6 025 0130 .22!2. ~ 8601 ~ 1.2ill! 1083 6580 §Qli 2.2.l§. 

14.1 .024 5019 4582 4085 3590 3091 2604 2113 1624 1135 0648 
14.8 024 0162 2tl!!. 2.!.22 8113 8232 112l 1.ill. 6198 6322 5848 
14.9 023 5315 4903 4432 3963 3495 3028 2563 2098 1635 1114 

15.0 0.023 0113 0253 2122 2.ill. 8882 8428 IDA 12£ lQll.. 6621 

15.1 .022 6112 5125 5219 4833 4389 3941 3505 3064 2625 2181 
15.2 022 1150 1314 0819 0445 0013 22§!. .2.!2l 8122 8294 1.ll§1 
15.3 021 1441 1016 6592 6110 5148 5328 4909 4490 4013 3651 

15.4 .021 3242 2828 2415 2004 1593 1183 0115 0361 .22§Q 2lli. 
15.5 020 9150 8141 8345 1943 1543 1144 6145 6348 5952 5551 
15.6 020 5162 4169 4311 3985 3595 3206 2818 2430 2044 1659 

15.7 .020 1274 0891 0508 0127 2lll.. §~~l 8988 8611 8234 1858 
15.8 019 7484 7110 6737 6365 5994 5254 ~ 4519 4152 
15·9 019 3187 3422 3059 2696 2334 1913 1613 1254 0896 0538 



C .(Debye )/3 R 225 

:z: 0 1 2 3 4 5 6 7 8 9 

16.0 0.019 0182 9826 2fl.l 9118 §1§2 .§.ill 8061 llll lli.!. 1.Qll 

l6.1 .018 6665 6318 5972 5627 5283 4939 4596 4255 3914 3574 
16.2 018 3234 2896 2558 2221 1885 1550 1216 0882 0550 0218 
16.3 017 9887 9556 9227 8898 8570 8243 7917 7592 7267 6943 

16.4 .017 6620 6298 5976 5655 5335 5016 4698 4380 4063 3747 
16.5 017 3432 3117 2803 2490 2178 1866 1555 1245 0936 0627 
16.6 017 0319 0012 2J.2§.. 2!QQ ~ §..ill. 8488 8185 7883 ~ 

16.7 • 016 7281 6981 6682 6383 6086 5789 5492 5197 4902 4608 
16.8 016 4314 4021 3729 3438 3147 2857 2568 2279 1991 1704 
16.9 016 1417 1131 0846 0561 0277 .2..22A 2ill. 2R2. 9148 8867 

17.0 0.015 8587 8308 8029 7751 7474 7197 6921 6646 6371 6097 

17.1 '015 5823 5550 5278 5007 4736 4465 4196 3927 3658 3390 
17.2 015 3123 2857 2591 2325 2060 1796 1533 1270 1008 0746 
17.3 015 0485 0224 .2.2.§.1. 2l.Q.2. 9446 9188 lli!. 8674 8418 8162 

17.4 ·014 7907 7652 7398 7145 6892 6640 6388 6137 5886 5636 
17.5 014 5387 ~138 4890 4642 4395 4148 3902 3657 3412 3168 
17.6 014 2924 2681 2438 2196 1954 1713 1473 1233 0994 0755 

17.7 .014 0516 0278 0041 9804 ~ ill.i ~ 8863 8629 §ill 
17.8 013 8162 7930 7698 7467 7236 7005 6775 6546 6317 6089 
17.9 013 5861 5633 5406 5180 4954 4729 4504 4280 4056 3833 

18.0 0.013 3610 3387 3165 2944 2723 2503 2283 2064 1845 1626 

18.1 .013 1408 1191 0974 0757 0541 0326 0110 ~ 9682 ~ 
18.2 012 9255 9042 8830 8618 8407 8196 7985 7775 7566 7357 
18.3 012 7148 6940 6732 6525 6318 6112 5906 5700 5495 5291 

18.4 .012 5087 4883 4680 4477 4275 4073 3871 3670 3470 3270 
18.5 012 3070 2871 2672 2473 2275 2078 1881 1684 1487 1291 
18.6 012 1096 0901 0706 0512 0318 0125 22E .ill.2. .2.2ll 2m. 

18.7 .011 9164 8973 8783 8593 8403 8214 8025 7836 7648 7460 
18.8 011 7273 7086 6900 6714 6528 6342 6157 5973 5789 5605 
18.9 011 5422 5239 5056 4874 4692 4511 4330 4149 3969 3789 

19.0 0.011 3609 3430 3251 3073 2895 2717 2540 2363 2186 2010 

19.1 .011 1834 1659 1484 1309 1135 0961 0787 0614 0441 0268 
19.2 Oll 0096 22£1. llii 22§l 9411 9241 9071 8901 8732 ~ 
19.3 010 8394 8226 8058 7890 7723 7556 7390 7223 7057 6892 

19.4 .010 6727 6562 6397 6233 6069 5906 5743 5580 5417 5255 
19.5 010 5093 4932 4771 4610 4449 4289 4129 3970 38ll 3652 
19.6 010 3493 3335 3177 3019 2862 2705 2549 2392 2236 2081 

19.7 .010 1925 1770 1616 1461 1307 ll53 1000 0845 0694 0541 
19.8 010 0389 0237 0085 ~ ~ ~ ~ ~ 91820 ~ 
19.9 009 88833 87344 85858 4375 2 94 81417 79943 7 472 77003 7553 



226 C.(Debye)/3 R 

% 0 2 3 4 5 6 7 6 9 

20.0 0.009 74076 72616 71160 69706 66255 66607 65362 63920 62461 61044 

20.1 .009 59611 56160 56752 55327 53905 52465 51069 49655 46244 46636 
20.2 009 45430 44026 42626 41231 39637 36445 37056 35670 34267 32906 
20.3 009 31526 30153 26761 27411 26044 24679 23317 21956 20602 19246 
20.4 .009 17697 16549 15203 13660 12519 11181 09846 08513 07163 05656 
20.5 009 04531 03206 01669 00572 ~ ~ ~ ~ ~ 92A22 
20.6 006 91423 90126 66631 67539 250 49 3 3 79 2397 III 79 41 
20.7 .006 76566 77294 76025 74756 73493 72231 70971 69714 66459 67206 
20.6 006 65956 64706 63463 62220 60960 59742 56506 57272 56041 54612 
20.9 006 53566 52362 51140 49921 46704 47469 46277 45067 43659 42654 

21.0 0.0064 1451 0250 ~ 1§22 6661 2.ill. ~ ~ !m Qlgj 

21.1 .0062 9544 6366 7190 6016 4644 3675 2507 1342 0160 2Q!i 
21.2 0081 7861 6704 5550 4399 3249 2101 0956 W m~ H~a 21.3 0080 6396 5261 4129 2998 1870 0744 9620 ~ 
21. 4 .0079 5144 4031 2919 1610 0702 llil §.illffit llil ~ 
21. 5 0078 4101 3008 1917 0828 ~§a~ 8656 mt~ 2lli. m~ 21.6 0077 3262 2189 1118 0049 1lli illl ~ illl 
21.7 0076 2621 1567 0516 2ill. !!ill u.u. ill.Q. 5288 ~ 3210 
21.8 0075 2174 1140 0108 2Q1§. ~ 7022 2ill. ~ 5~a: .ill.2 
21.9 0074 1918 0902 ~ .§ru WI ~ ~ ~ 2846 

22.0 0.0073 1847 0650 ~ 8861 ~ ~ 2l!2!. !2.Q2 lm. ill.@. 

22.1 .0072 1957 0978 0001 ~ ~051 1Qll ~109 5140 l~U 3~08 
22.2 0071 2245 1283 0323 m~ 8;~§ A66i ~ffi§ ~2g~ 22.) 0070 2706 1762 0819 .7.Q22 illQ .ill§. 
22.4 .0069 3337 2409 1463 0559 ~ !i1.!2 n~B 68A~ m! 2.Q!1 
22.5 0068 4134 3222 2313 1405 049 am 222.Q 
22.6 0067 5093 4197 3303 2411 1521 .2lli. AA58 7974 1Q2!. 
22.7 .0066 6210 5330 4452 3576 2701 1827 0955 0085 9~16 ~ 22.8 0065 7483 6618 5755 4694 4034 3176 2319 1464 o 10 i1i6 22.9 0064 8907 8058 7210 6363 5518 4675 3833 2992 2153 

23.0 0.0064 0480 ~ 6812 illQ illQ. 6321 2ill. 4667 .l!!!l 3020 

23.1 .0063 2198 1378 0559 2ill ~ 8110 11ll ~ 2ID i~66 23.2 0062 4058 3252 2447 1643 0841 0041 ru!. ~ 'lli1. 89f~ 23.3 0061 6058 5265 4474 3664 2896 2109 1323 053 ID.2 
23.4 .0060 8193 7414 6636 5860 5065 4311 3539 2766 1998 1229 
23.5 0060 0462 ~ ID!. 8166 ~ ~ 5886 5128 iffi- ~616 
23.6 0059 2661 2108 1357 0606 .2!lli. ~ 8362 llil 2m. lliQ 

23.7 .0056 5388 4648 3909 3171 2434 1699 0965 0232 ~ !mQ. 
23.8 0057 8041 7313 6586 5860 5136 4413 3691 2970 2251 1532 
23.9 0057 0615 0099 lli2 8671 :illi ~ ill!!. ~ 5121 4415 

24.0 0.0056 3710 

Cv / 3R- 77. 92727 / xl ... hen % ,. 24 • 
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142,147,149,151,175,176 

p 

Palladium, 33, 63, 68, 69 
Palladium alloys, 68 
Paraelectricity, 168 
Paramagnetic relaxation, 18, 100-102, 

105, 186 
Paramagnetism, 11, 15,68,85,86,93, 

94,98-102,105-109,162, 
172, 177 

Partition function, 13-15,23,24,96, 
139-145, 147 

Pauli exclusion principle, 56, 95 
Penetration depth, 74 
Perchloryl fluoride, 150, 151, 157 
Periodic boundary condition, 39, 139 
Phase change, first order, 182 

second order, 76, 94, 183, 194 
cooperative effects, 14,93,96, 

100, 109, 120, 123, 162-179 
glass, 129-133, 194 

Phonon,30,31,55, 80,89,90, 107, 
115-120, 128, 161 

Subject Index 

Phonon dispersion, solids, 35-41, 45, 
47,49,53,64 

Phonon spectrum, liquid helium-4, 
115, 116, 119, 120 

solids, 24, 30, 39-49,160 
Phonons in liquid helium-3, 128 
Photon, 23, 31 
Pippard relations, 122-124, 183-185 
Planck's constant, 22, 140 
Plasma modes, 64 
Platinum, 20, 33, 34, 51, 63 
Polyethylene, 193, 194 
Polymers, 32 
Polystyrene, 194 
Polytetrafluorethylene, 193, 194 
Polyvinyl alcohol, 194 
Potassium, 33, 63-65, 140 
Potassium bromide, 12,21,33,49. 

50,52 
Potassium chloride, 31, 33, 50, 52 
Potassium dihydrogen phosphate, 168, 

169 
Potassium iodide, 33, 50, 52 
Power law singularity, 97,162,176-178 
Praseodymium, 33. 17I. 172. 174, 175 
Precooling, 2, 195 
Premelting, 187, 189 
Promethium, 172 
Protoactinium, 33 
Pseudo T3-region, 45 
Pyrex, 193 
Pyroelectricity, 168 

Q 
Quantum statistics, 22-24, 30. 55. 56. 

60,129,138-143 
Quartz, crystalline, 33, 184, 185 

fused, 49, 193 
Quasi-harmonic theory, 49 
Quasi-particles, 127 

R 
Radon, 33 
Raman spectra, 52 
Rare-earth metals, 68, 109, 162, 

170-175 
Refrigeration, calculation, 1, 194, 195 
Relaxation, magnetic (see 

paramagnetic relaxation) 
rotation-vibration, 186, 187 
stress, 112, 130, 189, 190 

Residual rays, 51 
Rhenium, 33, 63, 110 



Subject Index 

Rhodium, 33, 63, 68, 69 
Rigid band model, 68-70 
Rochelle salt, 168 
Rock salt (see sodium chloride) 
Rotation of molecules in solids, 150, 

154,156, 162, 166, 167 
Rotation, hindered, 152-154, 167 
Rotational characteristic temperature 

of gases, 142, 145, 146 
Rotational specific heat, 136, 138, 

140-147, 161, 186, 187 
Roton, 115, 118-120 
Roton specific heat, 79, 116-120 
Rubber, 193, 194 
Rubidium, 33, 63-65 
Rubidium bromide, 33, 50, 52 
Rubidium iodide, 33, 50, 52 
Rutger's relation, 76 
Ruthenium, 63 
Rutile, 33 

S 
Sackur-Tetrode equation, 140, 142 
Samarium, 172 
Saturated vapor, specific heat of, 185, 

186 
Schottky specific heat, 43, 79, 100, 

102-110,128,148,159-162 
Schrodinger equation, 138, 140 
Selenium, 33 
Semiconductors, 72-74, 190 
Shear waves, 29, 112 
Silica, 49, 193 
Silicon, 20,21,33,51,53,72,73 
Silver, 20, 33, 34, 49, 52, 63, 65, 68, 69 
Silver bromide, '33 
Silver chloride, 21, 33 
Silver iodide, 51 
Silver sulfide, 21 
Sodium, 18,33,41,45,47,48,62-65, 

140,171 
Sodium chloride, 21, 31, 33,41,43-45, 

49,50,52, 166 
Sodium chromate, 152 
Sodium iodide, 35, 36 
Sodium sulfate, 152 
Soft solder, 163, 193 
Specific-heat anomaly, peak and 

singularity, 158 
Specific-heat compilations, 192, 194 

definition, 5 
use of the study of, 1,2 
(see also heat capacity, or desired 

materials and conditions) 

239 

Spin density waves, 71 
Spin-lattice and spin-spin relaxation, 

101, 102 
Spin temperature, 102 
Spin waves, 87-89, 96 
Spin wave specific heat, 89-92,98 
Spiral magnetic structure, 87, 172-175 
Stainless steel, 192-194 
Stark effect, 106, 170 
Steam, 137, 151, 186 
Stefan-Boltzmann law, 31 
Stirling approximation, 140 
Strontium, 33, 63 
Strontium titanate, 170 
Styrene, 194 
Sulfur, 32, 133 
Sulfur dioxide, 135, 137 
Sulfuryl fluoride, 150, 151, 157 
Superconductivity, 64, 74-82, 128, 162, 

163,170,178,182,183 
specific heat effects, 76-81,128, 

129, 158 
types I and II, 81, 82 

Supercooled liquids, 129-133 
Superfluidity of liquid 4He, 114, 116, 

162, 163 
3He, 128, 129, 163 

Surface effects, general absence, 29, 37, 
139, 190 

Surface specific heat, 190-192 
Sylvine (see potassium chloride) 

T 
T3-1aw, 31, 32, 35, 61,73,78,79,90, 

92,99,105,116,118,119 
Tabulation of specific heats, 192-194 

of specific-heat functions 194-226 
Tail of specific-heat curves, 95, 97, 163, 

164 
Tantalum, 33, 63, 74, 77, 81 
Technical materials, specific heat of, 

193, 194 
Teflon, 193, 194 
Tellurium, 33 
Terbium, 33,172,173 
Thallium, 33, 63, 81,140 
Thermal energy, 14-16, 149, 170 
Thermal expansion, 8, 9, 24, 50, 51, 

78,122-124,130,176,183, 
184, 186, 194 

Thermodynamic laws, 1,6,10,11,76, 
132,148,149,163 



240 

Thermodynamics of fluids and solids, 
6-11 

of magnetic materials, 84-85 
Thorium, 33, 63 
Thulium, 172 
Ti" ~n ~~ lA ~l ~7 ~A ~~ Q1 177 
..LU_~, -v, -'oJ, .... ...,., v..J, 1-', I"'T, f I, U.l, J.J..J, 

193 
Titanium, 33, 63, 67 
Transition metals, 66-70 
Triglycine sulfate, 168 
Tritium, 142, 147 
Tungsten, 33, 52, 63 
Tutton salts, 107 

U 
Uranium, 63 

V 
Vacuum calorimeter, 16-19 
Valence band, 58, 65,72,73 
Vanadium, 33,63,67,74,77,79,81 
Velocity of sound, 18, 28, 34, 115, 119, 

122,129,177,186,187 
Vibrational characteristic temperature 

of gases, 147, 148 

Subject Index 

Vibrational specific heat of gases, 137, 
138, 147, 148, 186, 187 

of solids (see lattice heat capacity) 

W 
Water, 8,114, 137, 150, 151, 157 
Water, heavy, 150, 151, 157 
Weiss model, 93-96,179,182 
Wood's metal, 193 

X 
X-ray scattering, 43, 45, 52,53, 130, 

151,152,163 

Y 

Yttrium, 33, 172 
Yttrium iron garnet, 91 

Z 
Zero-point energy, 23, 24,115,156 
Zinc,20,33,63,66,81,163 
Zinc sulfide, 33, 51 
Zirconium, 33, 63 
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