
Heat Capacity
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DSC

Heat is not a state function, so we define a state function related to heat, dS = dQ/T

-S    U(E)  V
 H   A(F)
-p     G       T

dH = VdP + TdS
At constant P (dH = TdS = dQ)P

We have Cp = (dQ/dT) P = (dH/dT) P

In the DSC we measure the heat flow dQ/dt (Watts) at a constant heating rate dT/dt at constant pressure, 
(dQ/dT) P = Cp
So, the y-axis is Cp times dT/dt the latter of which is constant

dS = dQ/T
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Cp = (dH/dT) P  = (dQ/dT) P = ((dQ/dt) (dT/dt))P 
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Derive the expression for Cp – CV

Cp - Cv = a2VT/kT
a = (1/V) (dV/dT)p
kT = (1/V) (dV/dP)T

CV = (dU/dT)V
From the Thermodynamic Square
dU = TdS – pdV and, CV = (dQ/dT) V  = T (dS/dT)V - p (dV/dT)V = (dU/dT)V 
Second term is 0, dV at constant V is 0
 (dS/dT)V = CV /T
Similarly
Cp = (dH/dT)p
From the Thermodynamic Square
dH = TdS + Vdp so Cp = (dH/dT)p = T (dS/dT)p - V (dp/dT)p  
Second term is 0, dp at constant p is 0
 (dS/dT)p = Cp /T

Write a differential expression for dS as a function of T and V 
dS = (dS/dT)VdT + (dS/dV)TdV using expression for CV above and Maxwell for (dS/dV)T
dS = CV /T dT + (dp/dT)VdV use chain rule: (dp/dT)V = -(dV/dT)p (dP/dV)T = Va / (VkT)
Take the derivative for Cp: Cp/T = (dS/dT)p = CV /T (dT/dT)p + (a/kT)(dV/dT)p = CV /T + (Va2/kT)
Cp - Cv = a2VT/kT

-S U V

H  A

-p G T

From Chapter 1

dS = dQ/T

dU = TdS – PdV
dH = TdS + VdP
dQ = TdS



Molecular Basis for the Heat Capacity (Gasses)

Internal Energy of a gas

For an ideal gas, the potential is 0

Monoatomic Gas: Ar
3 translational degrees of freedom each with ½ kT energy

Linear molecule, CO2, can rotate in two axes, CV,m = 5/2 R
Non-Linear, H2O, can rotate in three axes, CV,m = 6/2 R
Plus, vibrational degrees of freedom
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We calculate CV since all models assume constant volume
We measure Cp since calorimetric measurements are made at atmospheric pressure

From CV for an ideal gas, you add R to obtain Cp
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For an ideal gas PV = RT
a is (dV/dT)p/V = R/PV = 1/T
k is -(dV/dP)T/V = RT/P2V = 1/P
Cp – Cv = (1/T)2 (TV) P = PV/T = R

For other materials you need to know the thermal expansion 
coefficient and compressibility as a function of temperature.



Heat Capacity, multi-atomic gasses and vibrations

Linear molecule, CO2, can rotate in two axes, CV,m = 5/2 R
Non-Linear, H2O, can rotate in three axes, CV,m = 6/2 R
Plus, vibrational degrees of freedom

Potential and Kinetic degrees of vibrational freedom add 2(R/2) for each type of vibration

Generally, 3n-6 vibrational modes
(For linear 3n-5 so for CO2 4 modes symmetric stretch, asymmetric stretch, two dimensions of bend)
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For an ideal gas

a = 1/V (dV/dT) = R/PV = 1/T
k = -1/V (dV/dP) = RT/VP2 = 1/P
a2TV/kT = VP/T = R

PV = RT
dV/dT = R/P
dV/dP = -RT/P2
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Monoatomic H(g) with only 
translational degrees of 
freedom is already fully 
excited at low temperatures. 
The vibrational frequencies 
(n) of H2(g) and H2O(g) are 
much higher, in the range of 
100 THz, and the associated 
energy levels are 
significantly excited only at 
temperatures above 1000 K. 
At room temperature only a 
few molecules will have 
enough energy to excite the 
vibrational modes, and the 
heat capacity is much lower 
than the classical value. The 
rotational frequencies are of 
the order 100 times smaller, 
so they are fully excited 
above ~10 K. 
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3R = 25 J/(mol K)

J/(mol K)
20.8
37.5
58.3

Ideal Gasses



Monoatomic H(g) with only 
translational degrees of 
freedom is already fully 
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The vibrational frequencies 
(n) of H2(g) and H2O(g) are 
much higher, in the range of 
100 THz, and the associated 
energy levels are 
significantly excited only at 
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so they are fully excited 
above ~10 K. 
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Ideal Gasses
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Dulong and Petit Law (Observation, heat capacity of solids)

In the classical statistical theory of Ludwig Boltzmann, the heat capacity of solids approaches a 
maximum of 3R per mole of atoms because:
 
• full vibrational-mode degrees of freedom amount to 3 degrees of freedom per atom (x, y, z), 
• each corresponding to a kinetic energy term and a potential energy term. 
• By the equipartition theorem, the average of each term is 1⁄2kBT per atom, or 1⁄2RT per mole. 
• Multiplied by 3 degrees of freedom (x, y, z) and the two terms per degree of freedom (kinetic 

and potential), this amounts to 3R per mole heat capacity.

CV/n = 3R   (25 J/(mol K)

Heat Capacity of Solids

https://en.wikipedia.org/wiki/Ludwig_Boltzmann
https://en.wikipedia.org/wiki/Mole_(unit)
https://en.wikipedia.org/wiki/Equipartition_theorem
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Dulong and Petit Law (Observation for Solids)

Cv
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Dulong and Petit Law (Observation for solids)

Cv
Fails for strongly bound light atoms



Atoms in a crystal (Dulong and Petit Law)
Works at high temperature

Three degree of freedom oscillators per atom so Um = 3RT
dU = -pdV + TdS
(dU/dT) V = T(dS/dT) V = CV

-SUV
 H  A
-pGT
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Boltzman 1877 Explains
Each atom in a solid has 6 springs
Each spring with ½ kT energy
So, 6/2R = 3R = Cv

Three Harmonic oscillators, x, y, z
Spring (Potential Energy)
dU/dx = F = -Kx where x is 0 at the rest position
U = -1/2 Kx2

Kinetic Energy
U = ½ mc2

c is the velocity of the atom so dx/dt

Force Balance
      -K x = m d2x/dt2

Plug in a sine wave solution, 
        x = A sin(wt)
Yields w = √(K/m)
So, there is a fixed frequency 
for a fixed spring constant 
and mass, since E = hw/2p, 
there is a fixed or quantized 
energy

Potential and Kinetic Energies balance 
in an oscillatory spring so U = 0



Atoms in a crystal (Dulong and Petit Law)
Works at high temperature
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Force Balance
      -K x = m d2x/dt2

Plug in a sine wave solution, 
        x = A sin(wt)
Yields w = √(K/m)
So, there is a fixed frequency 
for a fixed spring constant and 
mass, since E = hw/2p, there is 
a fixed or quantized energy

For something like a guitar string, we have quantized energy and frequency, it has one tone, but also overtones so, E = nE1 
where n is the mode of vibration or quantized state, and n has integer values starting with 1.  E1 is the energy of the 
primary mode, E = nhn or nhw/2p for the vibration.

For quantum mechanics (very small particles like atoms) there is a problem with E = nhn or nhw/2p
 1) At absolute 0 there is a ”zero-point energy” that keeps everything from collapsing for instance, we don’t observe 

collapse as we approach absolute 0.  Schrodinger equation finds this zero-point energy is ½ hn
2) If energy were 0 at absolute 0 then we would know both the position of an atom and its momentum = 0
 This would disagree with the Heisenberg uncertainty principle. So, you need a “zero-point energy”
3) A “zero-point energy” can be measured experimentally
  E = hn (1/2 + n) and n has integer values starting at 0 for the ground state energy.

Einstein Model
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Einstein Derivation of Dulong Petit -S U(E) V

H  A(F)

-p G T
U = A + TS
dA = -SdT – pdV
(dA/dT)V = -S

U = A - T (dA/dT)V

A =  NE0 + NkT ∑! 𝑙𝑜𝑔
"#!

$%

(dA/dT)V = Nk ∑! (𝑙𝑜𝑔
"#!

$%
) − 𝑁𝑘𝑇 &'

%
 

U = NE0 + NkT ∑! 𝑙𝑜𝑔
"#!

$%

 - NkT ∑! 𝑙𝑜𝑔
"#!

$%
− ∑! 𝑁𝑘𝑇

     = NE0 + gNkT

𝐶( = (dU/dT)V =gNk = 3Nk

dlnx = dx/x

g is number of DOF or 3



17

Consider the crystal is made up of free atoms confined into boxes as harmonic oscillators in 3D, x, y, z.  All the atoms 
have the same Einstein frequency, nE.  There are then, 3N ”independent” harmonic oscillators, where N is the number of 
moles of atoms in the crystal. First consider one harmonic oscillator using k then multiply by 3N to get 3R.

The energy of one harmonic oscillator for quantum state (mode) “n” is en = hnE (1/2 + n) where n is 0, 1, 2, 3,…,∞
The harmonic oscillators are at equilibrium at temperature T so the partition function (Zustandssumme, sum of states),
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Einstein Model

because
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Phonons From Dove

Einstein Model

Almost perfect fit, very high value for CV
(see homework paper Caplin Grüner Dunlap)



Einstein Model
Works at low and high temperature (3R) 
Error in dependence near 0K

19
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Single vibrational mode for all three DOF
Low T behavior exp(QE/T) doesn’t work
Cv follows T3

The deviation is because Einstein ignored that
lattice vibrations are coupled to each other, 
not independent
“Collective Lattice Vibrations”

Einstein Model
Works at low and high temperature (3R) 
Error in dependence near 0K



Debye Model
Works

21



22

Electronic Contribution to Heat Capacity (Briefly)

http://vallance.chem.ox.ac.uk/pdfs/EinsteinDebye.pdf

For T < 10K

Einstein Temp. 
Copper 236K
Aluminum 294K
Lead 72.8 K
Iron 355K

Grüner Constant
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Phonons

k-vectors exceeding the first Brillouin zone (red) do not carry 
any more information than their counterparts (black) in the first 
Brillouin zone.

Two size scales, a and l
If l ≥ a you are within a Brillouin Zone
Wavevector k = 2p/l

Crystal of lattice spacing a; Sound waves of wavelength l or k vector 2p/l

Black are atoms subject to a high frequency transverse (wave) vibration (red)

https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Phonon
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Phonons Two size scales, a and l
If l ≥ a you are within a Brillouin Zone
Wavevector k = 2p/l

A phonon with wavenumber k is thus equivalent to an infinite 
family of phonons with wavenumbers k ± 2π/a, k ± 4π/a, and 
so forth.

k-vector is like the inverse-space vectors for the lattice (or the Miller indices)
It is seen to repeat in inverse space making an inverse lattice

Brillouin zones, (a) in a square lattice, and (b) in a hexagonal lattice

those whose bands become zero at the center of the Brillouin 
zone are called acoustic phonons, since they correspond to classical 
sound in the limit of long wavelengths. The others are optical 
phonons, since they can be excited by electromagnetic radiation.

https://en.wikipedia.org/wiki/Brillouin_zone
https://en.wikipedia.org/wiki/Brillouin_zone
https://en.wikipedia.org/wiki/Acoustic_phonon
https://en.wikipedia.org/wiki/Optical_phonon
https://en.wikipedia.org/wiki/Optical_phonon
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Phonons

The density of states is defined by 

The partition function (Z) can be defined in terms of energy (E), 𝐸 = −𝑁𝑘𝑇	𝑙𝑛𝑍,    
     or in terms of the wavevector k=2p/l = 2pE/hc = -2p𝑁𝑘𝑇	𝑙𝑛𝑍/hc
E and k are related by the dispersion relationship (dispersion of energy in k)
     which differs for different systems
(longitudinal, transverse, acoustic, optical phonons)

For a Longitudinal Phonon in a string of atoms the dispersion relation is: 
Transverse is like an ocean wave or a guitar string, longitudinal is a compressive wave like sound

Two size scales, a and l
If l ≥ a you are within a Brillouin Zone
Wavevector k = 2p/l

This relates modulus to frequency

sin x = x – x3/3! + x5/5! - …
For small x; sin x = x
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Phonons

Dispersion Relationship is value of energy or frequency of 
vibrations at a size-scale or wavelengths or what happens to 
vibrational energy in the crystal, i.e., modulus.  

Density of States is how the total energy is distributed to different 
frequencies of vibration.  This is related to what happens at different 
wavenumbers to different wavelength phonons.  

N is an integer related to the vibrational state k
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Frequency of a Harmonic Oscillator

Do a Force Balance
F = mx” = Kx where K is the spring constant, m is the mass
Then mx” – Kx = 0 is a second order differential equation  or
x” – (K/m)x = 0
If you know that the derivative of exponential is the exponential
Then you can guess one answer (this helps)
x = exp(±√(K/m)  t); x’= ±√(K/m) exp(±√(K/m)  t); x” = K/m exp(±√(K/m)  t)
√(K/m) and t have to have inverse units so √(K/m) = w
This is the native frequency of the oscillator
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Phonons

Bose-Einstein statistics gives the probability of finding a phonon in a given state:

µ is the ground state energy and e is the energy of a state

As temperature increases the 
number at frequency n increases
As n increases the number at 
fixed T drops

If n = exp((µ-e)/kT)/Z and A/(1-A) = 1/((1/A)-1) and 1/e(x) = e(-x)
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Phonons
Dispersion relation (relating E to k) for phonons 
(much math to get this expression)

Plus optical

Minus Acoustic

Atoms or ions of mass m1, m2
Separated by a distance a
With spring constant K

2 modes of vibration result for a crystal 
     with two atoms in a primitive cell

+ is optical (atoms move against each 
     other, picture Na+ Cl- subject to an
     oscillating electric field, i.e. IR light)
     finite value at k = 0 reflects the
     polarization of the material i.e. the
     dielectric constant
- is acoustic (atoms move with each other)  move at 

speed of sound. 0 energy at k = 0 or infinite l means 
motion of the whole object

For three or more atoms in a primitive cell there are Three 
acoustic modes: One longitudinal (sound) and Two 
transverse (ocean)

Number of optical models is 3N-3

Fluids can’t support shear stress so, they only have 
longitudinal (sound) acoustic modes

https://en.wikipedia.org/wiki/Phonon
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Phonons From Dove

Phonons have energy hw/2p
The energy at 0K is not 0 it is ½ hw/2p
This is a consequence of energy quantization (lattice calculations are done at 0K)
(Uncertainty principle)

n is the number of phonons at wavelength 
w and temperature T

Bose-Einstein Relationship

Average of some parameter ”q”
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Phonons From Dove

Bose-Einstein Relationship

At high T

3 vibrations for each atom

E = 3RT

Dulong Petit result for the Bose-Einstein Relationship at high T



32

Debye Model (Wikipedia) Why the cutoff in g(n) at nD?

For a cube of size L vibrations are limited to certain modes like a string of length L

cs is the speed of sound in the solid

For 3d
pn is the momentum of a phonon

Modes of vibration, n

For N atoms in the box

This is the highest energy vibration 
At high temperature all of the vibrations are excited

(Transverse Wave)



Debye Model (This is “borrowed” by Rouse for polymer dynamics)

Collective modes of vibration

If atom n vibrates and atoms n+1 and n-1 vibrate, the potential energy of n isn’t independent of the motion of 
the neighboring atoms.

Before we had F = -Ku for uncoupled pairs

For coupled units

33

Force

Force Balance

u is POSITION (x) and F is FORCE here

F is ma also Kx also 
dU = F dx

(Longitudinal Wave)



Propose a solution:

Atomic spacing is “a”Phase 
angle d

Angular frequency of vibrations as a function of wavevector, q
This is a dispersion relation relating energy to q or wavelength

Use in the equation of motion and solve for frequency

34

Force

”n” is the atom index



Debye Dispersion Relation

Angular frequency of vibrations as a function of wavevector, q
This is a dispersion relation relating energy to q or wavelength

35

Einstein Dispersion Relation

https://ebrary.net/196904/mathematics/einstein_model_specific_heat_solids

Debye Dispersion Relation
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Phonons

The density of states is defined by 

The partition function (Z) can be defined in terms of E or in terms of the wavevector k=2p/l= 2pE/hc 
E and k are related by the dispersion relationship which differs for different systems
(longitudinal, transverse, acoustic, optical phonons)

For a longitudinal Phonon in a string of atoms the dispersion relation is: 
Transverse is like an ocean wave or a guitar string, longitudinal is a compressive wave like sound

Two size scales, a and l
If l ≥ a you are within a Brillouin Zone
Wavevector k = 2p/l



Debye Dispersion Relation

Angular frequency of vibrations as a function of wavevector, q
This is a dispersion relation relating energy to q or wavelength
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Debye Dispersion Relation
For small qa, sin(qa/2) = qa/2
( to qD related to nmax)

https://ebrary.net/196904/mathematics/einstein_model_specific_heat_solids

Einstein 
Dispersion 
Relation



Dispersion Curve

Angular frequency of vibrations as a function of wavevector, q

First Brillouin Zone of 
the one-dimensional 
lattice

Longer wavevectors 
are smaller than the 
lattice
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Dispersion Curve

Angular frequency of vibrations as a function of wavevector, q

First Brillouin Zone of 
the one-dimensional 
lattice

Longer wavevectors 
are smaller than the 
lattice

39

Slope is related to 
the modulus
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Phonons

k-vectors exceeding the first Brillouin zone (red) do not carry 
any more information than their counterparts (black) in the first 
Brillouin zone.

Two size scales, a and l
If l ≥ a you are within a Brillouin Zone
Wavevector k = 2p/l

https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Phonon


Dispersion Curve

Angular frequency of vibrations as a function of wavevector, q

For small wave vectors (long wavelength) sin(q) => q

Long wavelengths

Acoustic or Ultrasonic range Acoustic 
or 
Ultrasonic 
Range

Group Velocity = dw/dq = 
a√(K/m)
Speed of sound in the solid

Material is a continuum at these 
large distances
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Dispersion Curve

Angular frequency of vibrations as a function of wavevector, q

For large wave vectors (short wavelengths)

Dispersion region
w isn’t proportional to q
For larger q velocity drops until it 
stops at the Brillouin zone boundary
Standing Wave
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Longitudinal versus Transverse Waves

There are 2 transverse waves
If material is isotropic or for 
symmetric crystal planes 
they are degenerate
In plane and out of plane
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Longitudinal and Transverse dispersion relationships for [100],[110], 
and [111] for lead
Transverse degenerate for [100] and [111] (4- and 3-fold rotation axis)
Not for [110] (two-fold rotation axis)
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Diatomic Chain Model

Acoustic and Optical modes

45

Minus Acoustic

Plus Optical
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Physics of Condensed Matter
By Prasanta Misra



http://www.chembio.uoguelph.ca/educmat/chm729
/Phonons/optical.htm
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Phonons

Dispersion relationship is how the energy or frequency of 
vibrations related to the size scale or wavelengths or what happens 
to vibrational energy in the crystal, i.e., modulus.  

Density of states is how the total energy is distributed to different 
frequencies of vibration.  This is related to what happens at different 
wavenumbers to different wavelength phonons.  

N is an integer related to the vibrational state k

Short sizes (long 
wavelengths) are 
high energy 
(frequency)

Probability of 
energy going to 
different 
frequencies due 
to the structure
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Convert dispersion relation to DOS for a 1D wave in the continuum limit 

Density of states doesn’t depend on time so use:

Wave equation

https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Density_of_States

Choose periodic boundary condition

Apply boundary conditions to Yields

This only occurs if: Since:

That is qL = n 2p 

n are the modes or the number of waves for a given frequency and the maximum number is how many atoms on a line.

This is a kind of dispersion relation relating energy or 
frequency to wave vector
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Convert Dispersion relation to DOS For a 1D wave in the continuum limit 

https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Density_of_States

dn = 

This number is the density of states (DOS) at a frequency w

For modes in positive and negative “q=space”

A constant density of states like the Einstein Model

Using 
dispersion 
relation



Number of vibrational modes
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Dispersion Relationship Density of States



3-d Crystal

Transverse and longitudinal optical and acoustic modes exist for 3d crystals.

n atoms in unit cell
3NAn vibrational modes
3NA acoustic modes (Unit cell vibrates as an entity)
3NA(n-1) optical modes (deformation of unit cell)
At high T each mode has kBT  (2 springs for each 
Cartesian coordinate in two directions)
So, heat capacity is 3R

Number of vibrational modes
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Dispersion Relationship Density of States



Debye Model

At low temperature
Low energy, low frequency vibrations
are excited
These are acoustic mode vibrations
Unit cell vibrates as an entity
Long distances compared to a unit cell
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Debye Model
Derivation
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Debye_Model_For_Specific_Heat
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https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Debye_Model_For_Specific_Heat
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Debye_Model_For_Specific_Heat
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Debye_Model_For_Specific_Heat


Debye Model

55https://en.wikipedia.org/wiki/Debye_model

One Longitudinal Two 
Transverse

Convert to Spherical 
Coordinates



Debye Model

56https://en.wikipedia.org/wiki/Debye_model

There are 8 cubes worth of 
particles in the sphere



Debye Model

57https://en.wikipedia.org/wiki/Debye_model



Debye Model

58https://en.wikipedia.org/wiki/Debye_model

At high T (Dulong-Petit)

So far I can’t do this



Debye Model

59https://en.wikipedia.org/wiki/Debye_model



Debye Model

60https://en.wikipedia.org/wiki/Debye_model

x = TD/T



Debye Model

61https://en.wikipedia.org/wiki/Debye_model



Debye Model
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EinsteinDebye

https://en.wikipedia.org/wiki/Debye_model



Debye Model
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EinsteinDebye

https://en.wikipedia.org/wiki/Debye_model

Low T

High T

Dulong Petit

Exponential approach to T = 0
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https://lampx.tugraz.at/~hadley/ss1/phonons/table/dosdebye.html

https://lampx.tugraz.at/~hadley/ss1/phonons/table/dosdebye.html
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https://lampx.tugraz.at/~hadley/ss1/phonons/table/dosdebye.html

https://lampx.tugraz.at/~hadley/ss1/phonons/table/dosdebye.html


Debye Model

At low temperature
Low energy, low frequency vibrations
are excited
These are acoustic mode vibrations
Unit cell vibrates as an entity
Long distances compared to a unit cell

Distribution of frequencies, g(w), 
above a cutoff frequency, wD
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Debye Model

At low temperature
Low energy, low frequency vibrations
are excited
These are acoustic mode vibrations
Unit cell vibrates as an entity
Long distances compared to a unit cell

Energy also equals kT 
This defines the Debye temperature, 
qD

Quantized energy levels

67



Debye Model

Heat Capacity is given by,

Einstein temperature: 

At Low T this reduces to,

The T3 dependence is seen experimentally

68

Einstein Model



Higher Characteristic T 
represents stronger bonds
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Higher Characteristic T 
represents stronger bonds
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Higher Characteristic T 
represents stronger 
bonds
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Higher Characteristic T 
represents stronger 
bonds
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Modulus and Heat Capacity

s = E e
F/A = E Dd/d

F = K Dd
K = F/Dd = E A/d

At large q, w = √(4K/m)
This yields wD from E

For Cu, qD = 344K

wD = 32 THz

K = 13.4 N/m
wD = 18 THz
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Modulus and Heat Capacity

The Debye Temperature reflects the highest energy, lowest 
wave vector vibrations so the linear part of the dispersion curve
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How to obtain Cp from calculated CV?

At low T 
CV = Cp

The harmonic oscillator model assumes constant volume
So, deviations for constant pressure are related to 
“anharmonic” vibrations
Anharmonic vibrations contribute to the heat capacity 
They also lead to a finite thermal expansion coefficient
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Volume Change part

Volume 
Change and 
thermal 
expansion 
parts

77

Anharmonic 
vs Harmonic 
Contributions 
to Heat 
Capacity
(due to 
thermal 
expansion 
and thermal 
conductivity)



Approximate relationships for Cp - CV 

If you know the thermal expansion coefficient,

78

If you don’t know the thermal expansion coefficient

How does the 
frequency of 
vibration change 
with specific 
volume of a unit cell
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http://lampx.tugraz.at/~hadley/ss1/dbr/dos2cv.html

http://lampx.tugraz.at/~hadley/ss1/dbr/dos2cv.html


Spectroscopy measures vibrations, this can be used to calculate the 
density of states, this can be integrated to obtain the heat capacity

Number of vibrational modes
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IR: High Polarity 
Motion of charged 
atoms under 
electromagnetic field

NaCl

Raman: High 
Polarizability 
Motion of electrons in 
polarizable bonds 
under electromagnetic 
field

Benzene, Graphene, 
Nanotubes, 



Spectroscopy measures vibrations, this can be used to calculate the 
density of states, this can be integrated to obtain the heat capacity
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Spectroscopy measures vibrations, this can be used to calculate the 
density of states, this can be integrated to obtain the heat capacity
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CV = (dU/dT)V
From the Thermodynamic Square
dU = TdS – pdV so CV = (dU/dT)V = T (dS/dT)V - p (dV/dT)V  
Second term is 0 dV at constant V is 0
 (dS/dT)V = CV /T
Similarly
Cp = (dH/dT)p
From the Thermodynamic Square
dH = TdS + Vdp so Cp = (dH/dT)p = T (dS/dT)p - V (dp/dT)p  
Second term is 0 dp at constant p is 0
 (dS/dT)p = Cp /T

Integrate Cp/T dT or Integrate CV/T dT to obtain S 

-SUV
 H   A
-pGT

Entropy from Heat Capacity
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Low Temperatures Solve Numerically
High Temperatures Series Expansion
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Calorimetrically determine S at high temperature then find the Debye temperature that makes the calculation of S match

Large qD means 
more stable
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Group Contribution Method for Entropy and Heat Capacity

Sum the component entropy and heat capacities 
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or

Entropy correlates with molar volume

Maxwell (dS/dV)T = (dp/dT)V
Triple product (dp/dT)V = -(dV/dT)P (dP/dV)T

Q0 is characteristic T at V0

(dS/dq)T from 

-SUV
 H   A
-pGT
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-SUV
 H   A
-pGT

dG = -SdT +Vdp
For a transition DG = 0
And
dp/dT = DS/DV
DS and DV have the same sign

This  isn’t true with a change in oxidation state or coordination number

entropy

Density = mass/volume

All the Si atoms are tetrahedrally coordinated in pyroxene, 
while 50% are tetrahedrally coordinated and 50% octahedrally 
coordinated in garnet. In the ilmenite and perovskite 
modifications all Si atoms are octahedrally coordinated. 

Tetrahedral Si

Octahedral Si

Octahedral Si 50%

50%Tetrahedral Si

Octahedral Si

Octahedral Si
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Electronic Heat Capacity

Electrons that escape from the valence band to the conduction band have three degrees of freedom so contribute (3/2)R to 
the heat capacity (Drude Model of conduction)
For monovalent Cu we expect Dulong Petit 3R plus 3/2 R (but we see only 3R so where is the 3/2 R?)

For Cu, (3 + 3/2)R this isn’t seen due to quantization of the electron energy level

Fermi Level = Electron energy level that at equilibrium is 50% occupied

Electrons above this energy are free electrons on average
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n(eF) is the number of 
electrons at the Fermi level

g is the electronic heat capacity coefficient

N1 is the number of electrons 
excited by kT
These occupy electronic states in 
a band of kT about the Fermi level

Heat from 0K to T

Free 
electron gas 
at 0 K 
(shaded)

Excited at T 
(dashed 
line)

g is 0 for an insulator and has a value for a metal
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For T < 10K
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A striking example is the electronic heat capacity coefficients 
observed for Rh–Pd–Ag alloys given in Figure 8.22 [17]. In the 
rigid band approach, the addition of Ag to Pd gives an extra 
electron per atom of silver and these electrons fill the band to a 
higher energy level. Correspondingly, alloying with Rh gives an 
electron hole per Rh atom and the Fermi level is moved to a 
lower energy. The variation of the electronic heat capacity 
coefficient with composition of the alloy maps approximately 
the shape of such an electron band. 

Add an 
electron from 
Ag raises 
Fermi level

Add a 
hole 
from Rh 
reduces 
n(eF)
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Magnetic Heat Capacity
Magnetic excitation
Magnon
Spin waves

Spin waves are propagating disturbances in the 
ordering of magnetic materials.

Ferromagnet T3/2 at low T

Slide 93 for density of states
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Cp = (dH/dT) P  = (dQ/dT) P = ((dQ/dt) (dT/dt))P 
Heat Capacity for 
Systems that 
Display a 
Transition
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Heat Capacity for Systems that Display a Transition

Rate of entropy change with 
T, Cv = T(dS/dT)V, 

-increases as kT approaches 
the transition temperature. 
 
-At high temperatures all 
states are active so the 
change in entropy is small.  

This results in a peak in Cv 
and Cp
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From Kittel and Kroemer Thermal Physics Chapter 2

For a system with quantized energy and two states e1 and e2, the ratio of the 
probabilities of the two states is given by the Boltzmann potentials, (t is the 
temperature kBT)

If state e2 is the ground state, e2 = 0, and the sum of exponentials is called the 
partition function Z, and the sum of probabilities equals 1 then,

Z = exp(-e2/t) + 1

Z normalizes the probability for a state “s”

P(es) = exp(-es/t)/Z

The average energy for the system is 𝑈 = B∑ 2!1$0!/1
4 = 𝜏. 57)4

5=
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From Kittel and Kroemer Thermal Physics Chapter 2

Second term 
increases with 
~ exp(-e/kT)

First term 
decays with  
(e/kT)2
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Metal-Insulator Transition

First order transition at Ttrs between an insulator g = 0 and a metal g = g met 

A quantum transition, critical quantum behavior

Transition can occur on doping of an oxide like Fe2O3
Temperature or Pressure Changes

(dS/dT)p = Cp /T
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Magnetic Order-Disorder Transition

At the Curie temperature material goes from a ferromagnet to a paramagnet and loses magnetic order

This impacts the entropy and heat capacity

Maximum total order-disorder entropy can be calculated, DS

(dS/dT)p = Cp /T
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Co3O4 Transitions

Cathode in Li+ batteries or blue pigment for pottery
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Co3O4 Transitions
The normal spinel contains Co2+ at tetrahedral sites and low-
spin Co3+ at octahedral sites. The heat capacity effect observed 
at T b 900K is in part a low- to high-spin transition of the Co3+ 
ions and in part a partial transition from normal toward random 
distribution of Co3+ and Co2+ on the tetrahedral and octahedral 
sites of the spinel structure. The insert to the figure shows the 
magnetic order–disorder transition of Co3O4 at around 30 K. 

(dS/dT)p = Cp /T
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Two levels with energy spacing e/kB
T > e/kB both levels occupied equally
T< e/kB only lower level occupied
Boltzmann statistics yields

(dS/dT)p = Cp /T
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Schottky Defects

Endothermic formation enthalpy
Entropy associated with disorder of defect location

(dS/dT)V = CV /T

DG =DH - TDS
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Fast Ion Conductors (solid oxide fuel cells high T)

Solid electrolytes for batteries and fuel cells

AgI, I lattice remains intact, Ag+ conductor becomes a liquid

Also, Cu2S, Ag2S.  NaS battery

Heat Capacity drops with temperature
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Cp = (dH/dT) P  = (dQ/dT) P = ((dQ/dt) (dT/dt))P Liquids and 
Glasses
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Liquids and Glasses
Broad minimum in heat 
capacity

Loss of short-range order with 
rising T leads to drop in heat 
capacity

Initially, loss of vibrational 
degrees of freedom associated 
with short range order led to 
decrease in Cp

Later, S increases with T

T(dS/dT)p = Cp 
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Liquids and Glasses
Broad minimum in heat 
capacity

Loss of short-range order with 
rising T leads to drop in heat 
capacity

Initially, loss of vibrational 
degrees of freedom associated 
with short range order led to 
decrease in Cp

Later, S increases with T

T(dS/dT)p = Cp 

Kauzmann Paradox
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Anomalous behavior of glasses near absolute 0

Debye CV ~ T3 near 0 K

Behavior is due to 
anharmonic vibrations
(Relaxation phenomena)
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Pseudo-second order transition behavior of glasses

Relaxation phenomena
In glasses
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Pseudo-second order transition behavior of glasses

Relaxation phenomena
In glasses
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Pseudo-second order transition behavior of glasses

Relaxation phenomena
In glasses
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Thermodynamic and Kinetic Fragility

Fragile versus strong glass

Kinetics:  Deviation from Arrhenius behavior

h = h0 exp(-Ea/kBT)

Scaled Exponential

h = h0 exp(-Ea/kBT)m
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DS = SL-Sglass
m is at Tm
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Heat Capacity of Polymers

Amorphous structure but with regular order along the chain
1-d vibrational structure

Natoms = number of atoms in a mer unit
 3 for CH2
N = number of skeletal modes of vibration
 N = 2 for -(CH2)n-

Einstein method works well above 100K

E is the heat capacity contribution 
for each vibration
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Weak Van der Waals interactions between chains described by 3d Debye function

For skeletal modes normal to the chain

Strong covalent interactions along chains described by 1d Debye function

For skeletal vibrations in the chain axis

Linear heat capacity increase from 0 to 200K

Below 50K need more detailed breakup of 1d and 3d vibrations using Debye Approach
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At low frequency 3d vibrations, at high frequency 1d vibrations

1d Tasarov simplification (generates about 1% error versus experimental)
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Polystyrene

Natoms = 16 atoms per unit

NE = 42
θ1 = 285 K

42 total atomic group modes of vibration

Or calculate with the Tasarov Equation 

N = 6 skeletal mode vibrations
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Average Energy and the Partition Function

Consider a set of N independent (No Enthalpy) molecules at different energy states, Ni molecules at Ei

The average energy is 𝐸 = ∑! 𝑁!𝐸!
The Boltzmann Probability gives 𝑁! = ∑!

>1$.!/,-

4
 and 𝑍 = ∑! 𝑒&-!/$%  is the partition function

Then 𝐸 = >
4
∑! 𝐸!𝑒&-!/$%

Consider 5
5%
𝑒&-!/$% = + -!

$%#
 𝑒&-!/$%  so 𝐸!𝑒&-!/$% = 𝑘𝑇. 5

5%
𝑒&-!/$%

𝐸 =
𝑁𝑘𝑇.

𝑍
D
!

𝑑
𝑑𝑇

𝑒&-!/$%

𝐸𝑑𝑇 =
𝑁𝑘𝑇.

𝑍
𝑑𝑍

𝐸 = −𝑁𝑘𝑇	𝑙𝑛𝑍

For ground state E = 0, Z at T = 0 is 1; for T = ∞, Z is the number of states (degeneracy)

For molecular vibrations E = hw
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1907 Einstein Solid Model for Dulong Petit Law at high kT

Energy is quantized, quantum number is “n” goes from 1 to positive integer values
     for the principal quantum number
Smallest quantum of energy is e = hn
Energy for quantum number ”n” is 
En = hn(n+1/2) = e(n+1/2)
Total number of quantum states N
Total energy Ne(n+1/2)
Ground state energy µ

Geometric Series           
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1907 Einstein Solid Model for Dulong Petit Law at high kT

Energy = -kT log (Z); log(1/Z) = -log(Z)

exp(x) = 1 + x+ x2/2! + x3/3! +… At high kT => log(hn/kT)

F is A; E is U
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1907 Einstein Solid Model for Dulong Petit Law at high kT

F is A; E is U

Molar Cv/N = gk or Cv = 3R in 3d
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Phonons From Dove

Bose-Einstein Relationship

As temperature increases the 
number at frequency n increases
As n increases the number at T 
drops
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Phonons From Dove
Einstein Model for Heat Capacity

E is U
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Phonons From Dove
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Phonons From Dove Phonon Free Energy

Including ground state 
energy

At high T

F is A  Helmholz Free Energy
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Phonons From Dove For a crystal sum over all vibrations

F is A  Helmholz Free Energy
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From Kittel and Kroemer Thermal Physics Chapter 3

For quantized phonons

This is of the form ∑ 𝑥 !  with x <<1 equals 1/(1-x)

Planck Distribution



Einstein Model
Works at low and high temperature 
Lower at low temperature

Quantized energy levels

Bose-Einstein statistics determines the distribution of energies

The mean “n” at T is given by 

Average energy for a crystal with three identical oscillators
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Einstein Model
Works at low and high temperature 
Lower at low temperature

Average energy for a crystal with three identical oscillators

Einstein temperature: 
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Einstein Model
Works at low and high temperature 
Lower at low temperature
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Einstein Model
Works at low and high temperature 
Lower at low temperature

140

Single vibrational mode for all three DOF
Low T behavior exp(QE/T) doesn’t work
Cv follows T3

Lattice vibrations are coupled to each other
Collective Lattice Vibrations



Debye Model
Works
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