Characterization of polymers by NMR

- Analysis :
 - Of monomers
 - Of copolymers (sequences)
 - Of reaction products
 - Of the microstructure (3 types of isomerism, including tacticity)
 - Of the composition of a copolymer
 - Of branching in polyethylene
 - Of relaxation mechanisms

Copolymer composition analysis

Examples in ¹H NMR :

- 1. Methyl methacrylate co- hexyl methacrylate (MMA-co-HMA)
- 2. Styrene co vinyl phenol

Observation of stereoisomerism

Example in ¹H NMR : tacticity of PMMA

- The protons of the methylene group are not magnetically equivalent in isotactic PMMA → appearance of 4 lines
- Equivalent for syndiotactic PMMA → single line, in center of the 4 preceding ones
- Atactic → combination of the two, we cannot differentiate between a polymer blend or a copolymer
- Easier with protons of the methyl group → sensitive to triad arrangements : line appears at different locations for the three arrangements. The atactic line is between the iso and syndio lines

Stereoisomerism and probability

П

2 adjacent monomers :

- Meso diad (dd or
 II) → m
- Racemic diad (dl or ld) → r

GCH 6101- Analytical techniques

Туре	Designation	Projection	Bernoullian Probability
Diad	meso, m	<u>++</u> -	Pm
	racemic, r	<u>++</u>	(1 - P _m)
Triad	isotactic, mm	-<u>1</u>+<u>1</u>+<u>1</u>	Pm ²
	heterotactic, mr		2 P _m (1 - P _m)
	syndiotactic, rr	- <u>+</u> +†+ <u>+</u> -	(1 - P _m) ²
Tetrad	mmm	$\frac{1}{1}$	Pm ³
	mmr	$\frac{1}{1}$	2 Pm ² (1 - Pm)
	me	<u></u>	P _m (1 - P _m) ²
	mrm	ŢıŢı<u>↓</u>	P _m ² (1 - P _m)
	m	- <u>1-</u> 1-1-1-	$2 P_m (1 \cdot P_m)^2$
	m	$\frac{1}{1}$	(1 - P _m) ³

Observation of sequence isomerization

Example :

Polyvinylidine fluoride (PVDF) in ¹⁹F NMR

No possible tacticity, the difference between NMR spectra is due to sequence isomerization

Observation of structural isomerization

As effective as Raman spectroscopy, and much more sensitive to distribution of sequences.

¹H NMR spectroscopy is not very sensitive to structural isomerization, better in ¹³C NMR.

Examples in ¹³C NMR : Polybutadiene (PBd)

PM Wood-Adams

Distributions of sequences for copolymers

Example in ¹H NMR:

Vinylidine chloride - co -isobutylene (VDC-co-IB)

Characterization of Polymers - ¹³C NMR Spectroscopy

Copolymer Sequence Distributions - Vinylidine chloride-co-Isobutylene F. A. Bovey, High Resolution NMR of Macromolecules, Academic Press (1972)

Distinguishable sequences, N(n) of length n are given by:

For $CH_2 - CX_2$ and $CH_2 - CY_2$ n - 2 3 4 5 6 N(n) - 3 6 10 20 36

But its a nightmare:

For CH₂ - CXY and CH₂ - CRZ n - 2 3 4 5 6 N(n) - 6 20 72 272 1056

7 - IB-VDC-IB-IB

Branching in Polyethylene

- Branching in polyethylene occurs in 2 forms:
 - Short chain branching which results from copolymerization with another olefin (i.e. butene or octene) Affects mostly solid state properties.
 - Long chain branching where the length of the branches is on the same scale as that of the backbone. Affects melt state properties (and solid state properties if high enough degree)
- Can use 13C-NMR to detect and quantify these different types of branching
- This technique is based upon the chemical shifts of the carbon atoms on the backbone chain attached to the branch.
- The chemical shift depends on the length of the branch for branches up to 6 carbons in length. It is the same for all branches 6 carbons and longer.

Classification of carbons on a branched PE chain

- Methylene carbon: C atom that is bonded to 2 other C atoms
- Methine carbon: C atom that is bonded to 3 other C atoms
- αC : Carbon atom immediately adjacent to a methine C
- βC : Carbon atom immediately adjacent to an αC
- γ C: Carbon atom immediately adjacent to a β C
- 2C: second carbon atom from an end of a short branch

¹³C NMR spectrum of a LCB PE

GCH 6101- Analytical techniques

PM Wood-Adams

More examples of applications of spectroscopic techniques to polymers are available in Chapter 2 of Sperling.