

Basic Principles of X-ray Reflectivity in Thin Films

Félix Jiménez-Villacorta

02-24-2011

Outline

- X-ray diffraction
- X-ray diffraction in thin films: high angle vs low angle
- XRR as structural characterization
- Diffuse scattering: specular vs off-specular reflectivity
- Summary

X-ray diffraction

William Henry Bragg

William Lawrence Bragg

Northeastern University

X-ray diffraction

Bragg s law: angle where constructive interference of scattered X-rays produces a diffraction peak:

$n\lambda = BC + CD = 2d_{hkl}sin\theta$

where d_{hkl} is the vector drawn from the origin of the unit cell to intersect the crystallographic plane.

High angle vs Low angle

X-ray Reflectivity

At every interface, a portion of x-rays is reflected. Interference of these partialy reflected x-ray beams creates a reflectometry pattern.

X-ray Reflectivity

- · X-ray reflectivity can be used for:
 - Layer thickness of thin films and multilayers.
 - Surface and interface roughness.
 - Surface density gradients and layer density.

X-ray Reflectivity

Special case: bilayers and multilayers

Bilayer: 2 oscillation frequencies are evidenced

Multilayer: n-1 Kiessig fringes between 2 Bragg Peaks

Northeastern University

Diffuse scattering

Longitudinal diffuse scattering

Specular vs off-specular reflectivity

Specular contribution of the diffuse scattering
Same oscillations than reflectivity curve

Northeastern University

Diffuse scattering

Longitudinal diffuse scattering

Diffuse scattering

Transverse diffuse scan (ω-rocking curve)

Various ξ : Large lateral correlation ξ at interface U
Specular peak

Yoneda wings : each time α_i or $\alpha_f = \alpha_c$

Summary

- At every interface, a portion of x-rays is reflected. Interference of these partialy reflected x-ray beams creates a reflectometry pattern.

- X-ray reflectivity is a useful techinque for structural characterization of thin films. Information about the thickness and the roughness of such samples can be obtained.

- Diffuse scattering of x-rays give also information about the roughness, correlation length (fractal parameters) in surfaces and interfaces.

