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Diffusing-wave-spectroscopy measurements
of viscoelasticity of complex fluids
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We present a new use of dynamic light scattering that permits the determination of the viscoelastic behavior
of a complex fluid. By describing the motion of a scattering particle in a viscoelastic medium in terms of a
generalized Langevin equation with a memory function, we relate the time evolution of its mean-square dis-
placement to the frequency-dependent storage and loss moduli of the medium. The utility of this technique is
illustrated through the application of diffusing-wave spectroscopy to probe the viscoelastic behavior of two
complex fluids. The properties of a concentrated suspension of colloidal particles interacting as hard spheres
are shown to be strongly influenced by the incipient colloidal glass transition, which leads to an extended range
of frequencies over which they behave like an elastic solid. Similar elasticity is observed in a compressed
emulsion, resulting in this case from the additional interfacial energy of the deformed droplets. In both cases
diffusing-wave spectroscopy is used to measure the frequency dependence of the storage and loss moduli, and
these results are compared with those from mechanical measurements. Besides providing a purely optical
method for measuring mechanical properties, this technique provides new insight into the origin of the vis-
coelastic behavior. © 1997 Optical Society of America. [S0740-3232(97)01201-5]
1. INTRODUCTION
Diffusing-wave spectroscopy (DWS) has greatly enhanced
our ability to probe the dynamics of complex fluids. It ex-
tends the utility of dynamic light scattering (DLS) to
strongly multiply scattering media,1,2 allowing new physi-
cal phenomena to be measured. One of its most signifi-
cant new features is the ability to probe the dynamics of
scatterers at much shorter length scales and correspond-
ingly shorter time scales,3,4 which cannot otherwise be ob-
served with traditional, singly scattered light. In par-
ticular, many complex fluid materials are quite solidlike;
thermal fluctuations still cause motion of the scattering
particles, but this motion is highly restricted and can be
limited to as little as a few nanometers. Nevertheless,
the extent of this motion can provide a great deal of infor-
mation about the properties of the material, as it directly
reflects the elastic properties of the complex fluid. In
this paper we discuss the use of DWS to measure the elas-
tic properties of a complex fluid and show how it is pos-
sible to measure the full frequency-dependent linear vis-
coelasticity of the scattering medium.5 Moreover, we
show that these measurements are intrinsically related to
the time dependence of the mean-square displacement of
the scattering particles; this relationship can provide new
insight into the underlying origin of the viscoelasticity of
the medium. The basic physical principles that underlie
0740-3232/97/010139-11$10.00 ©
these measurements do not intrinsically rely on the use of
multiply scattered light; thus they should be equally ap-
plicable to traditional, singly scattered light. However,
the use of DWS greatly extends the types of material that
can be studied while also extending the range of moduli
that can be probed. Thus, through the use of a combina-
tion of DWS and DLS, a wide range of materials and
moduli can be measured.
This paper is organized as follows: In Section 2, we

present a review of the theory that we use to relate the
time evolution of the mean-square displacement of a scat-
tering particle to the linear viscoelastic moduli of the sur-
rounding medium. This is followed by examples of the
use of this method. Our initial focus is on the behavior of
hard spheres near the glass transition. We quantita-
tively interpret our results in terms of the mode-coupling
theory (MCT), illustrating how the light-scattering mea-
surements can provide physical insight into the viscoelas-
tic behavior. Then we discuss the measurement of the
elastic modulus of concentrated emulsions; this example
shows that the light-scattering results can yield quantita-
tive measurements of the modulus, even in the absence of
a detailed interpretation of the scattering. The paper is
concluded with a summary of the advantages of this opti-
cal technique for measuring the mechanical behavior of
complex fluids and a discussion of the range of applicabil-
ity of the method.
1997 Optical Society of America
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2. THEORY
DWS measures the dynamics of strongly scattering
samples.1,2 As with all forms of DLS, the quantity mea-
sured is the correlation function of the temporal fluctua-
tions of the scattered light. In its simplest form, the
theory for DWS allows the average mean-square displace-
ment of the scattering particles ^Dr2(t)& to be determined
from the measured correlation function.6,7 Here we show
that one can use the time-dependent mean-square dis-
placement to determine the linear viscoelastic moduli of
the medium.5 We can obtain physical insight into this
relationship by considering two limiting cases. In the
case of a purely viscous fluid the particles diffuse and the
mean-square displacement increases linearly with time,
reflecting the self-diffusion of the particle, which provides
a direct measure of the viscosity of the fluid, h, through
the Stokes–Einstein equation

D 5
kBT
6pah

, (1)

where a is the radius of the particle.8 In the other limit
the material is a purely elastic solid. A good example of
the latter condition is an elastic gel, in which thermal
fluctuations directly reflect the elastic modulus.9 These
fluctuations can be probed by the motion of a particle at-
tached to the gel. In this case the particle is not ergodic;
that is, the time-averaged correlation function is not
equivalent to the ensemble-averaged correlation function.
Then the amount of decay of correlation function of the
particle provides a measure of the elastic constant k,
which we can obtain by equating the thermal energy of
the particle with its elastic energy, giving

k 5
3kBT

^Drm
2&
, (2)

where ^Drm
2& is the maximum mean-square displacement

of the probe particle, which is measured by the light scat-
tering. The factor 3 reflects the contribution of a single
mode from the equipartition theorem; however, this rela-
tion is not exact at the level of these numerical constants.
We can generalize these results by extending the

Stokes–Einstein equation to its frequency-dependent
form.10 We accomplish this by beginning with the gener-
alized Langevin equation to describe the motion of a neu-
trally buoyant particle of mass, m:

mv̇~t ! 5 fR~t ! 2 E
0

t

dt8z~t 2 t8!v~t8!. (3)

Here v(t) is the particle velocity and fR(t) is the random
force on the particle, which causes the Brownian motion.
This force consists of both the contributions of the sur-
rounding fluid and those that are due to any interactions
with any other particles or structures in the medium.
The force is assumed to be a Gaussian random variable
with zero mean and to be completely decoupled from any
past velocity. We introduce a memory function, z (t), to
describe the viscous damping; by allowing the damping to
depend on the velocity at all previous times, we allow for
a viscoelastic medium, with the possibility of energy’s be-
ing stored by the elasticity of the medium and being re-
turned at a later time. We can solve this equation by
taking the Laplace transform and using the equipartition
theorem to obtain the initial value of the velocity:

m^n~0 !n~0 !& 5 m^n~t !n~t !& 5 kBT. (4)

The Laplace transform changes the convolution integral
in Eq. (3) to a multiplication, allowing the Laplace trans-
form of the velocity correlation function to be calculated:

^n~0 !ñ~s !& 5
kBT

@ms 1 z̃~s !#
, (5)

where s is the Laplace frequency and z̃(s) is the Laplace
transform of the memory function. The first term in the
denominator of Eq. (5) reflects the contribution of inertial
effects and is negligible, except at the very highest of fre-
quencies; we neglect it for all further discussion. Using
the Laplace transform of the mean-square displacement
instead of the velocity correlation function, we obtain

z̃~s ! 5
6kBT

s2^D r̃2~s !&
. (6)

This is a relationship between the Laplace transforms of
the mean-square displacement and the memory function.
To relate the linear viscoelasticity of the complex fluid

to the memory function, we use the stress relaxation
modulus Gr(t), which relates the macroscopic stress t (t)
to the strain rate ġ(t) at previous times:

t ~t ! 5 E
0

t

dt8Gr~t 2 t8!ġ~t8!. (7)

The magnitude of Gr is given by the thermodynamic de-
rivative of the stress with respect to the strain, and the
time scales are set by the decay of the stress autocorrela-
tion function, ^t (0)t (t)&. By taking the Laplace trans-
form of Eq. (7) we identify the viscoelastic modulus as the
coefficient of linearity between the stress and the strain
expressed in the frequency domain, G̃(s) 5 sḠr(s). This
notation preserves both Gr(t) and Ḡ(s) in the appropriate
units of a modulus, with the recognition that the Laplace
transform of Gr(t) by itself yields units of viscosity. To
obtain the linear viscoelastic moduli we assume that the
bulk stress relaxation spectrum is the same as that of the
local stress relaxation affecting the scattering particle,
which is determined by the stress of the surrounding me-
dium exerted on the particle surface. Whereas exact cal-
culation of this spectrum requires detailed knowledge of
the full flow field around a moving particle, we can ap-
proximate it by its limiting value at zero frequency in a
purely viscous fluid. Thus we use the Stokes law and
make the assumption that it can be generalized to all
frequencies5:

G̃r~s ! 5
z̃~s !

6pa
. (8)

Equation (8) represents a mean-field assumption, di-
rectly connecting macroscopic stress relaxations to micro-
scopic stress relaxations. Combining Eqs. (6) and (8), we
obtain the relationship between the macroscopic vis-
coelastic modulus and the mean-square displacement:
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G̃~s ! '
kBT

pas^D r̃2~s !&
, (9)

which represents a generalized, frequency-dependent
form of the Stokes–Einstein relation. It can be recast
into a more familiar form by use of the transform of the
time-dependent diffusion coefficient, defined as D(t)
5 1/6]^Dr2(t)&/]t, and the complex viscosity spectrum,
h̃(s) 5 G̃(s)/s. When it is substituted into relation (9),
the transformed diffusion coefficient, albeit Laplace
transformed, takes the familiar form

D̃~s ! 5
kBT

6pash̃~s !
. (10)

Equation (10) reduces to the simple Stokes–Einstein
equation for freely diffusing particles in a purely viscous
molecular fluid.
All our results are obtained in terms of the Laplace fre-

quency s, which is more convenient because of the inte-
gral expression for the memory function in Eq. (3). How-
ever, mechanical measurements of the modulus rely on
the application of a sinusoidal excitation and on the
determination of the in-phase and the out-of-phase
responses, G8(v) and G9(v), respectively. These func-
tions are related by the Kramers–Kronig relations11 and
can be determined from the single real function Ḡ(s) in
relation (9). We first calculate the complex shear modu-
lus, G* (v), from G̃(s), using analytic continuation and
the substitution s 5 iv. We then take the real and the
imaginary parts of G* (v) to obtain G8(v) and G9(v),
which ensures that the Kramers–Kronig relations are
satisfied over the frequency range probed. To do this in
practice we use our light-scattering data to determine
^Dr2(t)&; we calculate the Laplace transform of these data
numerically and then calculate G̃(s), using relation (9).
These data are then fitted to a continuous functional form
in the real variable s. Finally, we substitute s 5 iv and
take the real and the imaginary parts to obtain the de-
sired G8(v) and G9(v). Provided that the functional form
properly fits the data for G̃(s), no additional error in
G8(v) and G9(v) is introduced by analytic continuation.
Moreover, the particular functional form chosen for G̃(s)
does not influence G8(v) and G9(v), provided that the pa-
rameters in the form can be adjusted so that the form fits
the data over the measured range. Instead, the main er-
ror is introduced by the numerical Laplace transform, be-
cause the temporal range of the data for ^Dr2(t)& is lim-
ited. However, this error is most pronounced at the
bounds of the data and affects only G̃(s) only within
approximately a decade of the highest and the lowest
frequencies. Moreover, the numerical error at the
bounds influences principally the weaker of G8(v) and
G9(v), because the deviation leads to greater uncertainty
in the phase of G* than in its magnitude.
As a result of the viscoelastic behavior of the medium

the correlations in the random forces acting on the par-
ticles may exist over extended time scales, reflecting the
energy storage of the medium and ensuring thermal equi-
librium at all times. As a result, the temporal correla-
tion of the random forces becomes11

^fR~0 !fR~t !& 5 kBTz~t !. (11)
Equation (11) expresses the fluctuation–dissipation theo-
rem for the viscoelastic medium. This relationship pro-
vides insight about the physics that underlies this tech-
nique; we are using the fluctuation–dissipation theorem
to determine the viscoelastic response of the medium.
Thus the probe particle is excited thermally, and the re-
laxation of this excitation reflects the average response of
the medium. We follow the relaxation of this response
through the mean-square displacement of the particle.
The analysis presented above transforms the stochastic
response into its individual frequency components, per-
mitting a comparison with more traditional mechanical
data. The essence of this technique is the extension of
the Stokes–Einstein relationship between the particle dif-
fusion coefficient and the fluid viscosity. In its usual
form, it is a zero-frequency relationship; here we assume
its validity at all frequencies. Although this is clearly an
assumption, as we show below, empirically it seems to be
valid.

3. EXPERIMENT
We illustrate the application of this method to the study
of the rheological behavior of several representative com-
plex fluid samples. We consider in particular two differ-
ent types of dispersion, each of which exhibits pronounced
viscoelasticity when it is concentrated to sufficiently high
volume fractions. The two samples are concentrated sus-
pensions of colloidal particles that interact as hard
spheres, and concentrated emulsions. The use of the
DWS probe of the viscoelasticity allows us to measure the
response over a greatly extended frequency range. In ad-
dition, the direct relationship between the viscoelastic re-
sponse and the mean-square displacement provides con-
siderable new insight into the origin of the viscoelasticity.
We used the same arrangement for the experimental

measurements of both samples. The beam from an
Ar1-ion laser operating at a wavelength of 514.5 nm was
focused onto one face of a flat cell containing the sample,
and the multiply scattered light transmitted through the
cell was collected with a single-mode optical fiber with an
attached gradient-index lens. The collected light was
split into two equal portions with a fiber-optic beam split-
ter, and each half was directed onto a separate photomul-
tiplier tube. The output of these two tubes was cross cor-
related to yield the desired autocorrelation function.
This scheme virtually eliminated the deleterious effects of
after-pulsing in the photomultiplier tubes and reduced
the effects of the dead time in the photomultiplier tubes
and in the photon-counting electronics. The transport
mean free paths, l* , which one must know to determine
the mean-square displacements from the DWS data,2

were determined independently from additional measure-
ments of the static transmission of the samples and by
comparison with samples whose l* was known. For com-
parison with the light-scattering measurements, the lin-
ear viscoelastic moduli were also measured mechanically
with a rheometer, with the samples held in a double-
walled Couette cell for samples with lower moduli or be-
tween a cone and a plate for samples with large moduli.
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A. Hard-Sphere Colloids
Suspensions of colloidal particles interacting as hard
spheres have been widely studied as a model system that
reflects the essential behavior of suspensions.12 The ma-
jor contribution to the viscoelastic behavior of such sus-
pensions is determined by the Peclet number (Pe), or the
ratio of shear rate to the inverse of the diffusional relax-
ation time, Pe 5 ġa2/D, where ġ is the shear rate, a is
the particle radius, and D is the short-time self-diffusion
coefficient. At low Peclet numbers the particle configu-
ration relaxes to its equilibrium state faster than the ap-
plied shear, and the viscoelastic response is that of a
purely viscous fluid. By contrast, when the Peclet num-
ber is high the particle configuration cannot relax fast
enough, permitting energy storage through the change in
entropy that is due to the distorted particle configuration.
The consequences of this energy storage mechanism, and
the resultant viscoelastic properties of hard spheres, have
been reported in several studies of colloidal hard
spheres.13,14 The basic scale of the magnitude of the en-
ergy density, and hence the modulus, is set by kBT/a

3,
the entropic energy density in the suspension. However,
in addition, colloidal particles undergo several phase
transitions in their structure at increasing volume frac-
tions. If they are highly monodisperse, they can become
crystals at volume fractions above 0.49.15 At even higher
volume fractions, above ;0.58, they undergo a colloidal
glass transition, as crowding of the particle positions pre-
vents the free diffusion of the particles at longer times,
making their motion nonergodic.16,17 Even if they are
not sufficiently monodisperse to crystallize, they will still
undergo a colloidal glass transition, although the volume
fraction may well increase with increasing polydispersity,
and the packing becomes more efficient. As a conse-
quence of both of these phase transitions the colloidal par-
ticles become solids; thus these phase transitions should
also affect their viscoelastic behavior and should lead to a
more complex frequency dependence. This behavior has
been observed with traditional mechanical measure-
ments.18 Further study with the light-scattering method
will complement these measurements and could provide
additional insight into the origin of the behavior, because
the technique is a direct probe of the mean-square dis-
placement of the particles.
We study a suspension of silica particles in ethylene

glycol; these particles interact as hard spheres.14 The
particle radius is relatively uniform, a 5 0.21 mm, and
the volume fraction is f ' 0.56; the viscosity of the eth-
ylene glycol is measured as h0 5 17 cP (centipoise) at
room temperature. The sample is not index matched, al-
lowing DWS to be used to measure the dynamics. The
measured intensity autocorrelation function, normalized
by the background, and with the background subtracted,
or g2(t) 2 1, is plotted in Fig. 1. It exhibits an initial de-
cay of approximately two decades, levels off, and then ex-
hibits a final decay several decades in time later. The
fact that the correlation function exhibits the final decay
at long times means that the sample is ergodic as probed
by DWS; we confirmed this by moving the sample and en-
suring that the same correlation function was measured
at each position. We note that the conditions for a
sample to be ergodic with DWS are much less stringent
than with traditional DLS, because of the much greater
sensitivity of DWS to motion.19 The fact that the corre-
lation function levels off after the initial decay reflects the
caging effects of neighboring particles on the motion of
the probe particle at this high volume fraction, which di-
rectly reflects the consequences of the incipient transition
from a liquid to a glass and also represents an additional
method for storing energy, which should have direct con-
sequences in the viscoelastic response of the suspension.
To observe the viscoelastic behavior from the DWS

measurements we first invert the data to obtain the aver-
age mean-square displacement of the particles, using the
measured value of transport mean free path.1,2,20 In ad-
dition, we make a small correction to account for the fact
that the particles are not quite large enough to permit us
to ignore completely any collective effects in the
scattering.6,7 DWS probes an average of the scattering
over all scattering vectors q, weighted by q3; as a result of

Fig. 1. Temporal dependence of the intensity correlation func-
tion g2(t) 2 1 obtained by DWS for a suspension of concentrated
silica spheres at f 5 0.56 with a 5 0.21 mm in ethylene glycol at
room temperature. The data have not been normalized for the
intercept, which is g2(0) 2 1 ' 0.5, as expected for detection of
unpolarized light with a single-mode optical fiber.

Fig. 2. Temporal dependence of the mean-square displacement
for the concentrated suspension of silica spheres. At early
times, the linear increase leads to a short-time diffusion coeffi-
cient of Ds 5 4.2 3 10211 cm2/s.
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this weighting the high-q contributions to the scattering
dominate the average, and DWS typically probes the self-
diffusion of the particles. However, if the particles are
small enough, even this weighting is not sufficient to en-
sure that the average is dominated by the high-q contri-
butions, and there is some contribution of low-q data that
reflects collective diffusion. However, the averaging in-
herent in DWS is well established, and the contributions
of the collective effects can be taken into account.6,7 We
account for the contribution of these collective effects by
multiplying the data by a q average of the hydrodynamic
interactions, h(q), for hard spheres. This procedure re-
sults in a correction of a factor of ;1.5, which is applied
uniformly to the data and has been shown to account
properly for these effects. The results are plotted in Fig.
2, in which we show ^Dr 2(t)& as a function of time. The
data exhibit an initial linear increase in time, reflecting
diffusive motion of the particles at these time scales.
The short-time diffusion constant determined from the
data is Ds 5 4.2 3 10211 cm2/s. At longer times the mo-
tion of the particles is highly constrained to an effective
saturation displacement of r0 ' 35 nm, which is tiny
compared with the sphere’s radius. The measurement of
these small displacements is readily accomplished with
DWS. At longer times the interpretation of the DWS
data becomes more problematic; the final decay may not
reflect the average mean-square displacement of the scat-
tering particles but may instead reflect larger-scale, but
more localized and relatively rare, rearrangement events
that are reminiscent of those seen in a coarsening foam.21

Thus we do not extend the inversion of the DWS data to
the very longest times.
To determine G̃(s), the modulus as a function of the

Laplace frequency, we numerically calculate the Laplace
transform of the mean-square displacement and use rela-
tion (9). The results are shown in Fig. 3 by the open
circles. Below s ' 1 s21 the viscoelastic modulus exhib-
its an elastic plateau that depends weakly on frequency.
By contrast, at higher frequencies G̃(s) crosses over to a

Fig. 3. Frequency dependence of the viscoelastic modulus G̃(s)
of the concentrated suspension of silica spheres (open circles) and
the limiting behavior of a harmonically bound Brownian particle
(solid curve). The difference (filled squares) exhibits two power-
law regimes (dotted lines), with an exponent of 0.3 at lower fre-
quencies and of ;0.5 at higher frequencies.
linear behavior, reaching a slope of 1 above s ' 103 s21.
We can obtain some physical intuition about this behavior
by considering qualitatively the transformation from
Laplace frequency to real frequency. Inasmuch as the
substitution results in a phase shift of the frequency by
90°, data that are completely independent of frequency
are not shifted and therefore remain real, contributing
only to the elastic component of the modulus, or G8(v).
By contrast, data that increase linearly in time are
shifted exactly by 90° and thus contribute only to the vis-
cous or loss component, G9(v). Thus the hard-sphere
data at lower frequencies, which are nearly independent
of frequency, reflect a dominant elastic component,
whereas the data at higher frequencies, which increase
nearly linearly with frequency, reflect a dominant viscous
component.
We can obtain more-detailed insight into the origin of

the behavior by comparing the behavior of G̃(s) with that
expected for diffusing particles connected to a harmonic
spring, which is, on average, unstretched. At short times
the elastic force, which is proportional to the particle dis-
placement, is negligible compared with the viscous force,
which is linear in the rate of displacement. Thus the
mean-square displacement is diffusive. However, at long
times, as the particles become increasingly extended from
the mean position of the unstretched spring, the elastic
force is dominant. On average, thermal energy can
excite the particles only to a saturation displacement
r0 , which is determined by the elasticity of the spring.
Both short- and long-time behaviors are described by a
single equation: ^Dr2(t)& 5 r0

2@1 2 exp(2t/tD)#, where
tD 5 r0

2/6D is the diffusion time for the confined
particle.9 After taking the Laplace transform of this
equation and substituting the result into Eq. (8), we find
that

G̃~s ! '
kBT

par0
2

~1 1 tDs !. (12)

The viscoelastic spectrum crosses over from a constant at
low frequencies to a linear behavior at high frequencies.
By substituting s 5 iv into relation (12) we identify the
storage modulus, or elasticity of the spring, as G8(v)
5 kBT/(par0

2) 5 G0 and the loss modulus as G9(v)
5 (kBT/6paD)v 5 hv, where the viscosity of the fluid
obeys the Stokes–Einstein relation. The harmonically
bound Brownian particle represents a simple limiting be-
havior that mimics the basic features of the data and cor-
rectly captures the dominant behavior at both low and
high frequencies. Thus, to investigate the detailed dif-
ference of the observed behavior with this limiting case,
we subtract this predicted form from the data. To accom-
plish this we match the behavior at early and late times
by fixing h 5 250 cP and G0 5 52 dyn/cm2. This predic-
tion is shown by the solid curve in Fig. 3, and the differ-
ence is shown by the filled circles. The difference can be
clearly determined over a large frequency range, indicat-
ing that a description in terms of a harmonically bound
particle is strictly valid only at the extremes of the fre-
quency range.
The difference exhibits two distinct power laws; below

s ' 1 s21 it behaves like G̃(s) ' s0.3, whereas at higher
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frequencies it is more closely described by a different
power law, G̃(s) ' s0.5. Dashed lines indicating these
exponents are shown in Fig. 3 to illustrate these power-
law differences. Each power law covers several decades
in frequency and is not sensitive to variations in h and
G0 , provided that the asymptotic behavior of G̃(s) is pre-
served. The existence of these two power laws provides
new insight into the physical processes responsible for the
behavior observed. The exponent of 0.3 in the modulus is
reminiscent of that observed in the glassy dynamics of
concentrated hard spheres17,22 and is consistent with the
predictions of the MCT.23,24 By contrast, the exponent of
0.5 is reminiscent of the behavior predicted for hard-
sphere suspensions at high frequencies that are due to a
diffusional boundary layer theory.25,26 Previous experi-
mental evidence for the existence of behavior with this ex-
ponent at high frequencies is contradictory. This expo-
nent was observed in mechanical measurements of the
elastic modulus, G8(v), of concentrated hard-sphere sus-
pensions made with a lumped resonator to extend the fre-
quency range.13 However, measurements made with a
traditional shear rheometer, and thus limited to lower
frequencies, did not exhibit this behavior when time–
temperature superposition was used to extend the effec-
tive frequency range; instead, the data were reported to
reach a plateau at the highest frequencies.14 The origin
of this discrepancy is not clear; however, one possibility is
that lubrication effects become important as the spheres
come very close to one another, which is predicted to
modify the square root of frequency behavior, causing the
data to approach a plateau asymptotically instead.26

To compare these results with the more common me-
chanically measured modulus we must convert from the
Laplace frequency to the real frequency, v. We could ac-
complish this by taking the inverse Laplace transform
and then the Fourier transform to obtain the real and the
imaginary parts, G8(v) and G9(v), respectively. Instead,
we use analytic continuation; therefore we first find a
functional form in s to describe the data. We can do this
by exploiting the physical insight about the system
gained from the behavior of G̃(s). Thus we combine the
functional forms expected for the contributions for the
stress relaxations in a colloidal hard-sphere suspension
near the glass transition with the contribution that is due
to the diffusional boundary layer and the contribution
that is due to the high-frequency viscosity.18 This pro-
vides an explicit functional form:

G̃~s ! 5 GP 1 Gs@G~1 2 a8!~ts s !a8 2 BG~1 1 b8!

3 ~ts s !2b8# 1 A2GD~tDs !1/2 1 h`s, (13)

where G represents the gamma function. The first three
terms reflect the cage dynamics that account for the pla-
teau and the beginning of the low-frequency, or b, relax-
ation and are suggested by the MCT.23,24 In the MCT
each particle is considered as being in a cage of neighbor-
ing particles in a spatially self-consistent way, thereby
coupling the dynamics of differing length scales together.
This spatial coupling, in turn, leads to predictions for the
average temporal dynamics of the ensemble; these depend
on the volume fraction and exhibit the hallmark of the
glass transition when they become nonergodic at increas-
ing volume fraction. For the data presented here the cor-
relation function decays at long times, indicating that the
particles are ergodic and thus that f 5 0.56 is on the liq-
uid side of the glass transition. Therefore we use a gen-
eral asymptotic approximation of the b relaxation for the
temporal stress autocorrelation function on the liquid
side22 and then transform this correlation function into
the Laplace domain. This results in the first three terms
in Eq. (13). We calculate the constants a8 5 0.3, b8
5 0.55, and B 5 0.96 by the MCT by assuming a hard-
sphere potential.17,22,23,27 The fourth term accounts for
the predicted high-frequency elastic modulus determined
by flow calculations for a diffusional boundary layer,25,26

where GD 5 (3/5p)(kBT/a
3)f2g(2a, f) and is GD ' 2

dyn/cm2 for our suspension when we use an approxima-
tion for the radial distribution function at contact near
random close packing, g(2a, f) ' 0.78/(0.64 2 f).12

The fifth term reflects the high-frequency viscosity of the
suspension. The five fitting parameters are the plateau
modulus GP , which represents the overall scale for the
plateau at low s; the elastic amplitude scale Gs , which
sets the variation of G̃(s) about GP at low frequencies;
the scaling time ts , which determines the inflection point
of the MCT contribution; the diffusion time tD
5 a2/Ds , which is determined by the short-time diffu-
sion coefficient Ds ; and the high-frequency suspension
viscosity h` , which sets the magnitude of the rise in G̃(s)
for large s.
The functional form describes the data well. The fit-

ting parameters are GP 5 54 dyn/cm2, Gs 5 3 dyn/cm2,
ts 5 40 s, tD 5 10 s, and h` 5 2.5 P; we use them to de-
termine G8(v) and G9(v), the real and the imaginary
parts of G̃(iv), by analytic continuation, setting s 5 iv.
We obtain

G8~v! 5 GP 1 Gs@u1~tsv!a8 2 u2~tsv!2b8#

1 GD~tDv!1/2, (14)

G9~v! 5 Gs@v1~tsv!a8 1 v2~tsv!2b8#

1 GD~tDv!1/2 1 h`v, (15)

where u1 5 G(1 2 a8)cos(pa8/2), u2 5 BG(1 1 b8)
3 cos(pb8/2), v1 5 G(1 2 a8)sin(pa8/2), and v2 5 BG(1
1 b8)sin(pb8/2) are constants.
The resultant storage modulus is shown by the solid

curve and the loss modulus is shown by the dashed curve
in Fig. 4. As expected from the plateau in G̃(s), the stor-
age modulus is dominant at low frequencies; thus, despite
the fact that the suspension is still a fluid, it behaves like
a solid over an extended range of frequencies. By con-
trast, at higher frequencies the viscous behavior expected
for a fluid becomes dominant, again as expected from the
linear rise in G̃(s). The rise in G9(v) toward low fre-
quencies is due to the second (von Schweidler) term in Eq.
(15) and results from stress relaxations at long times ow-
ing to cage breakup.24 At high frequencies G8(v)
; v1/2, reflecting the diffusively relaxing stresses given
by the fourth term in Eq. (15). We emphasize that these
data reflect a purely optical measurement of the shear
modulus of the suspension.
To check both the validity of these measurements and

the interpretation of the data, we compare these results
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with measurements made with a traditional mechanical
rheometer.1 We employ a controlled strain rheometer,
using a double-walled Couette geometry. In Fig. 5 we
compare the mechanically measured values of G8(v) and
G9(v), shown by the diamonds, with those obtained opti-
cally, shown by the curves. Very good agreement is
found, particularly with the storage modulus, which is the
larger of the two components. The mechanical measure-
ment of G9(v) is slightly larger than the optical measure-
ment. This may suggest that even the tiny applied me-
chanical strain g ' 1022 may not be completely in the
linear regime but may introduce a slight additional con-
vective loss. This result also highlights an important
feature of the light-scattering method; because it intrinsi-
cally relies on thermal fluctuations, there is no question
that the sample remains in thermal equilibrium and that
the resultant moduli reflect this.
One of the greatest advantages of the light-scattering

technique is the large range of frequencies that it covers.
This is immediately apparent from Fig. 5. The tradi-
tional mechanical techniques are limited to relatively low
frequencies, in our case to v < 102 rad/s. This con-

Fig. 4. Storage modulus G8(v) (solid curve) and loss modulus
G9(v) (dashed curve), determined optically for the concentrated
suspension of silica spheres.

Fig. 5. Comparison of the optical measurements of G8(v) (solid
curve) and G9(v) (dashed curve) with mechanical measurements
(filled and open symbols, respectively) for the concentrated sus-
pension of silica spheres.
straint results from the limitations of mechanically oscil-
lating the relatively large mass of the rheometer cell at
high frequencies, because of its inertia. By contrast, the
probe particle for the light scattering has colloidal dimen-
sions, and thus inertial effects are avoided until much
higher frequencies. As a result, the light-scattering data
extend to much higher frequencies, v ' 106 rad/s.

B. Emulsions
Emulsions are droplets of one fluid in a second, immis-
cible fluid, stabilized by a layer of surfactant at the inter-
face. They are similar to the hard spheres in that they
are a dispersion of particles in a fluid; they are different
from hard spheres in that the particles, being made of
fluid, are deformable. The droplets are deformed when
they are compressed by an osmotic pressure to volume
fractions higher than random close packing, fc ' 0.64,
the highest volume fraction to which undeformed spheres
can be packed. The deformation in their shape leads to a
new mechanism for energy storage and hence to an elastic
modulus.28,29 This contribution is due to surface tension,
and its scale is set by the Laplace pressure within the
spheres, s/a, where s is the droplet surface tension and a
is the radius of curvature. The Laplace pressure is the
amount of pressure that is necessary to deform the shape
of a droplet. Typical emulsion droplets used here are col-
loidal in scale, with diameters of ;1 mm and with s
' 10 dyn/cm, giving s/a ' 107 dyn/cm2. By compari-
son, the energy density that characterizes the entropic
moduli of hard spheres is kBT/a

3 ' 1021 dyn/cm2. Even
though this is a lower bound for the moduli for hard
spheres, it is so much smaller than the surface-tension
contribution that the emulsions have a significantly
larger elasticity than the concentrated hard spheres.
Thus use of the optical probe of the viscoelasticity re-
quires measuring even smaller displacements, making
the use of DWS essential.10

We use an emulsion of silicone oil droplets in water,
stabilized by sodium dodecyl sulfate. The emulsion is
purified by a crystallization fractionation technique30 to
yield monodisperse droplets. The mismatch in the re-
fractive indices of the oil and the water causes these con-
centrated emulsions to scatter light strongly, permitting
the use of DWS. The emulsion is concentrated by cen-
trifugation, and we determine the volume fraction by
weighing the emulsion before and after the continuous
water phase is evaporated. We measure the correlation
function in transmission and determine the transport
mean free path from the total transmitted intensity. We
use this result to invert the measured correlation function
within the theory for DWS to determine the mean-square
displacement of each droplet. This interpretation implic-
itly assumes that the scattered intensity from the emul-
sion can be determined from the product of a form factor,
which reflects the angular dependence of the scattering
from isolated droplets, and the structure factor, which re-
flects the correlations of the droplet positions. Indepen-
dent measurements31 of the scattering from monodisperse
emulsions, whose continuous phase has been adjusted
through the addition of glycerol to index match the oil
phase exactly, show that this factorization remains valid
even at the high volume fractions studied here. Thus we
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assume that the measured dynamics reflect the mean-
square displacement of the center of mass of the droplets,
recognizing that this is only an approximation.
In Fig. 6 we plot the mean-square displacement of a

concentrated emulsion with f ' 0.65 that comprises
droplets with a radius of a ' 0.53 mm, as determined
from DLS from a dilute mixture. The actual volume frac-
tion of oil is f 5 0.62, but the stabilizing screened elec-
trostatic repulsion between the droplets, which is due to
the ionic surfactant that coats their surfaces; gives rise to
an effective packing volume fraction of 0.65 (Ref. 32); this
just exceeds random close packing of monodisperse
spheres. The measured ^Dr2(t)& is similar in form to that
measured for the hard spheres; it rises nearly linearly at
short times before saturating at longer times. These
data are numerically Laplace transformed, and G̃(s) is
calculated from Eq. (8); the results are plotted by the
filled circles in Fig. 7. The long-time saturation in

Fig. 6. Temporal dependence of the mean-square displacement
of emulsion droplets with a 5 0.53 mm at f 5 0.65 measured by
DWS.

Fig. 7. Frequency dependence of the viscoelastic modulus G̃(s)
(filled circles) for the concentrated emulsion. The solid curve is
a fit to the data and is indistinguishable from the data. The lim-
iting behavior of a harmonically bound Brownian particle is
shown by the dashed curve, and the difference (open squares)
has an s0.5 frequency dependence, as shown by the solid curve
through the data.
^Dr2(t)& leads to a low-frequency plateau in G̃(s), and the
early time rise in ^Dr2(t)& leads to a high-frequency rise in
G̃(s). To compare these data more explicitly with those
of the hard spheres, we again subtract from them the con-
tribution of a harmonically bound Brownian particle
matched to the asymptotic limits of the data and shown
by the dashed curve in Fig. 7. The difference, shown by
the open squares, highlights both the similarity and the
difference between the behavior of the emulsions and that
of the hard spheres. Rather than being dominated by the
two distinct power-law regimes exhibited by the hard
spheres, the emulsion data are dominated by a single
power law, with an exponent of 1/2.
On the basis of the behavior shown in Fig. 7, we fitted

the data for G̃(s), using a functional form that combines
the low-frequency constant elasticity, the high-frequency
viscous contribution, and the intermediate s0.5 behavior.
The fit is shown by the solid curve in Fig. 7 and clearly
exhibits very good agreement with the data. We again
emphasize that any functional form that describes the
data would be equally suitable. Analytic continuation is
used to calculate G8(v) and G9(v), and the results are
shown by the solid and the dashed curves, respectively, in
Fig. 8. To compare the frequency dependence with the
light-scattering data, we measure the elastic moduli by
traditional mechanical means, using a strain-controlled
rheometer, with the sample contained in a double-walled
Couette cell.32 The frequency-dependent moduli are
shown by the symbols in Fig. 8, with filled symbols repre-
senting the storage modulus, G8(v), and open symbols
representing the loss modulus, G9(v). The agreement be-
tween the two techniques is excellent. We note again the
extended range of frequencies that the light-scattering
data cover in comparison with the range covered by the
mechanical measurements.
The elasticity of the emulsion increases significantly

with increasing volume fraction.32,33 This is most evi-
dent from the rise of the low-frequency elasticity. We
can measure this directly by using the light scattering.
The leveling off of the correlation function, which leads to

Fig. 8. Frequency dependence of the storage modulus G8(v)
(solid curve) and of G9(v) (dashed curve) obtained by analytic
continuation of the fit of G̃(s) for the concentrated emulsion com-
pared with the mechanical measurements (solid and filled sym-
bols, respectively).
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the corresponding leveling off of the increase in the mean-
square displacement, as shown in Fig. 6, provides a direct
probe of this low-frequency elasticity. Physically, this
leveling off corresponds to the maximum displacement of
a droplet because of its thermal motion before it is
trapped by the elasticity of the medium. Thus we sus-
pect that this displacement is given roughly by equating
the thermal energy per droplet to the elastic energy, or

kBT

a3
'

G8a2

^Drm
2&
, (16)

where ^Drm
2& is the maximum mean-square displacement

measured from the light scattering. This approach pro-
vides a measure of the elastic modulus, as shown in Fig.
9, where we compare the values measured by light scat-
tering, shown by the filled circles, with those measured by
mechanical means, shown by the open squares. Very
good agreement is obtained, confirming the validity of
this technique. We note that the interpretation of the
light-scattering data as a mean-square displacement of a
single droplet becomes less well established as the volume
fraction increases; nevertheless, good agreement with the
mechanical data is obtained within this picture.
In addition to the low-frequency elasticity of the emul-

sion, the light-scattering data also provide a probe of the
viscoelasticity at frequencies that are much higher than
can be studied by traditional mechanical means, as can be
observed clearly in Fig. 7 for G̃(s). At the very highest
frequencies the data must approach a linear behavior, re-
flecting fact that these emulsions are fluids; thus the vis-
cosity is that of the solvent, corrected for the presence of
the droplets. However, the most pronounced behavior at
high frequencies is the s0.5 behavior observed on subtrac-
tion of the asymptotic limits.34 This behavior is also ob-
served for all the other volume fractions studied. The
origin of this additional contribution to the modulus
arises from the nature of the disordered packing of the
droplets. As their volume fraction increases, the droplets
deform to fit into the restricted volume, and this causes
them to form flattened facets where two droplets are
pressed together, leading to a repulsive force between the

Fig. 9. Comparison of the low-frequency elastic modulus mea-
sured mechanically (open symbols) with that measured optically
(filled symbols) for a monodisperse emulsion as a function of its
effective volume fraction.
centers of two neighboring droplets. However, for each
droplet the forces that are due to all its neighbors must
balance, so the net force on the droplet is zero. These in-
terdroplet forces are only repulsive and act only between
the centers of the drops. However, because of the disor-
der in the packing, there are bound to be some localized
regions in which the droplets cannot elastically respond
to a shear in some direction; instead the droplets can slide
in this direction, thereby dissipating energy.33 These re-
gions are randomly situated and randomly oriented
throughout the sample, and the response of these slip re-
gions can be modeled34 by analogy to the behavior of a
random distribution of smectic layers.35 The time re-
sponse of these layers varies with the orientation of their
slipping direction compared with the direction of the im-
posed shear, with the slowest response for those regions
whose slip planes are nearly perpendicular to the direc-
tion of the shear, so the response is most nearly elastic.
However, if the distribution of slip directions is random,
the sum over directions yields a Gaussian form when all
the contributions are included. This form leads directly
to a term that varies as the square root of frequency and
that contributes equally to both the real and the imagi-
nary parts of the shear modulus.34 Because some of the
barriers to the slipping are sufficiently low, some regions
will slip spontaneously owing to thermal excitations, lead-
ing to the observed s1/2 behavior in the data. Because
those regions that slip do not support shear elastically, a
weakening of the elastic or storage modulus of the emul-
sion results; indeed, the measured value of G8(v) is sig-
nificantly lower than expected for these emulsions.32,33

Inasmuch as this contribution arises from a viscous dissi-
pation of a small volume, it is most readily apparent at
high frequencies, where its contribution becomes greater
than the purely elastic response of the rest of the emul-
sion. For this reason it cannot be seen with normal me-
chanical measurements; by contrast, the light-scattering
method discussed here is ideally sensitive to this behav-
ior.
Although the elasticity of the emulsions results from a

fundamentally different origin, it is nevertheless quite
similar to that of the hard spheres. In fact, although the
characteristic values of the modulus differ by approxi-
mately seven decades, the contribution to the elasticity of
the hard spheres is diverging as fc is approached,
whereas the contribution to the emulsions is decreasing.
The two contributions must meet somewhere close to fc .
In fact, at the lowest volume fractions of the emulsions
that were studied the data can be well interpreted in
terms of the MCT, with parameters similar to those of the
hard spheres near the glass transition. This is a conse-
quence of the large Laplace pressure of the emulsion
droplet; at lower volume fractions the osmotic pressure of
the surrounding droplets is lower and cannot deform the
shape of the droplet. Thus here the behavior of the emul-
sions should be identical to that of the hard spheres.

4. CONCLUSIONS
The use of light scattering for measuring the viscoelastic-
ity of complex fluids has several distinct advantages.
Certainly the ability to measure mechanical properties of
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complex fluids by using solely optical techniques can be of
great use. In addition, the frequency range of this optical
method is significantly greater than that of mechanical
methods. Because the probe particle is so small, inertial
effects do not limit the measurement until large frequen-
cies. Thus the high-frequency response is limited by the
ability to detect the initial decay of the correlation func-
tion. It is here that DWS can prove valuable, as it can
probe motion over length scales that are significantly
smaller than those of the traditional DLS and thus can be
used to investigate dynamics at much higher frequencies.
In addition, the use of DWS is of particular value and im-
portance as the material becomes increasingly elastic,
which leads to much more highly restricted motion, which
cannot be detected with traditional DLS. However, al-
though it is often quite convenient to use DWS, there is
nothing intrinsic in this method that requires the exclu-
sive use of DWS; instead, the choice of single or multiple
light scattering is determined by the range over which the
particle moves and thus by the elastic modulus, and by
the nature of the sample and the degree of scattering that
it exhibits. By varying the size of the scattering particle
and by using both DLS and DWS, it should be possible to
study materials with elastic moduli varying from
;1022 to ;107 dyn/cm2.
The frequency dependence of the rheological response

of complex fluids often yields very valuable insight into
their properties. Typical mechanical rheological mea-
surements are limited in the range of frequencies to
which they have access. A common way to overcome this
limitation is through the use of time–temperature super-
position, which exploits the temperature dependence of
the characteristic time constants to shift their values
relative to the experimentally accessible regime. By con-
trast, the extended range of frequencies that are acces-
sible with the optical technique can be measured in a
single experiment. Besides making the measurements
more convenient, this method also eliminates the require-
ment of scaling with temperature and makes possible the
study of materials whose rheological properties do not ex-
hibit the time–temperature superposition.
Finally, an additional important feature of this tech-

nique is that it ensures that the equilibrium modulus is
determined, as thermal excitations are responsible for the
measurement technique. Indeed, this method can be
viewed as the direct application of the fluctuation–
dissipation theorem to measure the moduli; it is the re-
sponse of the particle to a thermal fluctuation that is in-
terpreted to yield the moduli of the medium. In addition,
this method provides considerable new insight into the
underlying origin of the viscoelasticity, as it directly re-
lates the rheological response to the mean-square dis-
placement of the scattering particles. Thus in this study
the light-scattering results have provided new insight
into the behavior of the hard spheres near the glass tran-
sition. The results were treated through the application
of the mode-coupling theory to describe the viscoelasticity
of hard-sphere colloidal glasses. In addition, the light-
scattering results permitted us to measure the loss
moduli of compressed emulsions at much higher frequen-
cies, facilitating the direct observation of an unusual fre-
quency dependence, v1/2.
In this paper we have discussed an interpretation of dy-
namic light-scattering data that allows the frequency-
dependent linear viscoelastic moduli of the surrounding
media to be determined. We used the method to study
the elasticity of concentrated suspensions of colloidal par-
ticles interacting as hard spheres and of compressed
emulsions made from monodisperse droplets. Although
the technique works very well for both of these samples,
the theoretical basis of the interpretation is still com-
pletely phenomenological. As a result, further experi-
mental tests of the applicability of this technique are
clearly required. However, given the relative ease of
making the measurements, the extended frequency
range, and the new physical insight that it provides, this
method is likely to find widespread use.
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