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S1. Reduction of piercing points 

In our protocol, all LP chains are separated by the piercing point, and the adjacent 

piercing points separated by a sub-chain with a length smaller than the cutoff length are 

reduced (See Figure S1(a)). After merging the piercing points, the sub-chain lengths are 

checked again. Those shorter than the cutoff length are considered as transient piercing 

and then removed, the remaining piercing points are taken as effective threading points. 

The resulting threading number of RPs obtained in this way are re-examined using PPA 

methods (Figure S1(b)). To obtain the primitive path, two ends of LP chains are fixed 

and intramolecular interactions are turned off, while the intermolecular LJ and bonded 

interactions remain the same. The systems are then allowed to relax freely at a low 



temperature, then all chains shrink into their primitive path.1 Consistent results can be 

obtained with the two methods. Using this strategy, the threading number of RP chains 

can be obtained directly without closing the LP chains.1, 2  

 

     

Figure S1. (a) Schematic view of the piercing point reduced technique. (b) 

Configures reexamined using PPA method, LP chains and the threaded RP chain are 

colored in red and green respectively. 

The piercing number obtained directly from the above method is denoted as NP. By 

using the IMS technique, both NP and effective threading number NT are obtained. Since 

not every piercing can be taken as an effective threading, so the ratio of NP and NT will 

always be greater than 1. We plot NP against the entanglement number of RP chains in 

Fig. S2. From Fig. S2, we find that NP is systematically larger for much more flexible 

chains. Meanwhile, NP of kθ = 1.5 and 2.0 are very similar for the systems with RP 

chains with approximately the same entanglement number, indicating that the threading 

events tend to be stable when the stiffness of the system increases to a certain level. 

Interestingly, we also find that the relationship NP ~ ZRγ holds for all systems. The value 

of γ is 1.352, 1.290 and 1.289 for the cases kθ = 0.75, 1.5, and 2.0 separately. We can 

see the exponent value is also close for kθ = 1.5 and 2.0. 



 

Figure S2. The average piercing number ⟨NP⟩ for RP chains versus the entanglement 

number of RP chains ZR. Dashed lines are fitting curves of the equation ⟨NP⟩ = cZRγ. 

S2. Mutual effects between LP and RP 

Compared to the conventional entanglement, which is determined between two LP 

chains, thread can be considered as an entanglement formed between LP and RP chains. 

In pure LP melt with entanglement number ZL, there will be ZL entanglements are 

formed between the central LP with other chains in the system. While in LRB with LP 

fraction ϕ, the possibility it entangles with RP chain is (1-ϕ), so on average there should 

be ⟨NT⟩L = ZL(1-ϕ) entanglements formed between LP chain and RP chain. For our LRB 

systems with ZL=6, the value of ⟨NT⟩L is summarized in Fig. S3(a), and little dependence 

of ⟨NT⟩L on ZR is found, implying that for all entanglements of a central LP chain, the 

contribution of RP is a relatively constant value. Here we define the upper bound as 

(ZL,max+1)(1-ϕ), and the lower bound as (ZL,min+1)(1-ϕ), where ZL,max = 5.71 and ZL,min 

= 5.56 are the maximum and minimum values of the entanglement number of the LP 



chain as defined in Section 2.1 of the main text. The region between the two boundaries 

is shaded in green in Fig. S3(a). We find that our theoretical prediction underestimates 

the real value of ⟨NT⟩L, and as the chain stiffness increases, the discrepancy becomes 

more pronounced. As we have discussed earlier, the threading number of RP chains is 

larger for stiffer LRB systems, so it is not surprising that, on average, more RP chains 

found threaded along each LP chain at the same entanglement level. 

 

Figure S3. (a) ⟨NT⟩L plotted versus ZR in LRB with fixed ZL=6. (b) ⟨NT⟩R plotted versus 

ZL in LRB with fixed ZR=6. The shaded region is explained in the main text. 

On the other hand, we are also interested in whether the threading number of the RP 

chain varies when mixed with LP chains of different chain lengths. Therefore, we turn 

to LRB systems with fixed ZR=6 and varying ZL. The average threading numbers for 

RPs (denoted as ⟨NT⟩R) are plotted against the entanglement number of LP chains ZL 

(Fig. S3(b)). And we find that ⟨NT⟩R is irrelevant with ZL, which means that the 

threading number is an intrinsic property for RPs in LRB with a fixed fraction of LP as 

the main component, and it cannot be tuned by changing the chain length of LP 

components. Meanwhile, we find that the values of ⟨NT⟩R for all systems are closed to 



the predetermined entanglement value ZR. Similarly, we also define a region with the 

upper and lower bounds equals to ZR,max+1 and ZR,min-1, where ZR,max = 5.71 and ZR,min 

=5.56 are the maximum and minimum values of RP chain for the three stiffness. Region 

between the two bounds is shaded in green in Figure S3(a). We can see that all the 

values basically fall within the region. This fact again confirms that threading number 

of RP chains can be approximated by their entanglement number, regardless of the chain 

length of the LP chain in LRB, as long as LP is the dominant component.  

In the previous section, we have found that ⟨NT⟩L does not change with ZR, and vice 

versa. Furthermore, we wonder whether the static properties of LP/RP chains are 

affected by increasing/decreasing the chain length of the other component. The ⟨Rg2⟩ of 

LP with fixed ZL = 6 is summarized versus ZR in Fig. S4(a), and	we find that the size of 

LP chains with various stiffness does not change by blending with RP chains, regardless 

the chain length of RP chains. This means that the size of LP chains in our LRB system 

is not changed by mixing RP chains. To compare with the size of LP chain in the pure 

melt state, we also summarized the normalized ⟨Rg2⟩ in Table S1. It is clear that there is 

no difference in size between the LP chains in LRB and in pure melt. This is partly due 

to the small fraction of RP chains (20%), the amount of which is not large enough to 

induce discernible differences with pure LP melts. Meanwhile, since the RP chains are 

fully penetrated, they behave as if they were LP chains in LRB. This makes it much 

easier to predict the properties of LRB, since the properties of LP chains in LRB is 

expected to be the same as those of pure LP melts. 



 

Figure S4. (a) ⟨Rg2⟩L versus ZR in LRB with fixed ZL=6 and (b) ⟨Rg2⟩R versus ZL in 

LRB with fixed ZR=6. 

We then we turn to LRB with ZR=6 and varying ZL. The ⟨Rg2⟩ of RP chains are plotted 

against ZL in Fig. S4(b), and we find that the size of RP chains is also irrelevant to the 

chain length of LP chains. We also summarize the value of the normalized ⟨Rg2⟩ of RP 

chains in Table S1. Here we find a universal swelling ratio for RP of about 1.30±0.025, 

regardless of the length of the LP chains. This fact again suggests the same threading 

ability of LP chains to RP chains of different chain length when the LP component 

dominates in LRB.  

Table S1. Normalized ⟨Rg2⟩ of LP/RP chains in LRB with fixed LP/RP chain length 

 

kθ 
⟨Rg

2⟩L /⟨Rg
2⟩L,0 ⟨Rg

2⟩R / ⟨Rg
2⟩R,0 

ZR = 3 ZR = 6 ZR = 11 ZL = 3 ZL = 6 ZL = 11 

0.75 0.993 1.000 0.994 1.290 1.266 1.358 

1.5 1.000 1.001 0.997 1.288 1.293 1.290 

2.0 0.994 0.999 1.001 1.297 1.297 1.292 

 



S3. Dynamic properties 

The value of the characteristic time τ1 and τ2 are summarized in Table S2. τ1 and τ2 are 

defined as the time when the fitting curve of correlation function χ(t) is equal to 0.4 and 

0.2 separately using equation (8) of the main text.  

 

Table S2. Summary of τ1 and τ2  

kθ 
 τ (χ = 0.4) /105τ  τ (χ = 0.2) /105τ 

ZR = 3 ZR = 6 ZR = 11 ZR = 3 ZR = 6 ZR = 11 

0.75 1.79 1.66 2.19 8.46 8.55 13.0 

1.5 1.09 1.03 1.20 3.94 4.44 5.96 

2.0 0.836 0.816 0.931 2.66 3.10 4.05 
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